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ABSTRACT

It is important to guarantee that machine learning algorithms deployed in the real
world do not result in unfairness or unintended social consequences. Fair ML
has largely focused on the protection of single attributes in the simpler setting
where both attributes and target outcomes are binary. However, the practical
application in many a real-world problem entails the simultaneous protection of
multiple sensitive attributes, which are often not simply binary, but continuous or
categorical. To address this more challenging task, we introduce FairCOCCO,
a fairness measure built on cross-covariance operators on reproducing kernel
Hilbert Spaces. This leads to two practical tools: first, the FairCOCCO Score,
a normalized metric that can quantify fairness in settings with single or multiple
sensitive attributes of arbitrary type; and second, a subsequent regularization term
that can be incorporated into arbitrary learning objectives to obtain fair predictors.
These contributions address crucial gaps in the algorithmic fairness literature,
and we empirically demonstrate consistent improvements against state-of-the-art
techniques in balancing predictive power and fairness on real-world datasets.

1 INTRODUCTION

There is a clear need for scalable and practical methods that can be easily incorporated into machine
learning (ML) operations, in order to make sure they don’t inadvertently disadvantage one group
over another. The ML community has responded with a number of methods designed to ensure that
predictive models are fair (under a variety of definitions that we shall explore later) (Caton & Haas,
2020). Perhaps due to the archetypal fairness example, an investigation into the COMPAS software
that found racial discrimination in the assessment of risk of recidivism (Angwin et al., 2016), most
of the focus has been on single, binary variables - in this case race being treated as an indicator of
whether an individual was black or white. This, combined with a discrete target, allows for easy
analysis of fairness criteria such as demographic parity and equalized odds (Barocas & Selbst, 2016;
Hardt et al., 2016), through the rates of outcomes in the confusion matrix of the subgroups.

The problem is, however, that in many practical applications we may have multiple attributes which
we would like to protect, for example both race and sex - indeed U.S. federal law protects groups
from discrimination based on nine protected classes (EEOC, 2021). Algorithms deployed in the
real-world therefore need to be capable of protecting multiple attributes both jointly (e.g. ‘black
woman’) and individually (e.g. ‘black’ and ‘woman’). This is non-trivial and cannot be simply
achieved by introducing separate fairness conditions for each attribute. Such an approach both does
not provide joint protection of sensitive attributes and complicates matters by introducing additional
hyperparameters that need to be traded-off against each other. Matters are further complicated by
the fact that many sensitive attributes (e.g. age) and outcomes (e.g. credit limit) take on continuous
values, for which calculated rates do not make sense. Existing methods simply discretise these into
categorical bins, which leads to several issues in practice, as it entails thresholding and data sparsity
effects while discarding element order information. As we shall see later in Section 4, this approach
is unlikely to be optimal in delivering discriminative yet fair predictors.

Contributions and Outline. Consequently, we introduce two practical tools to the community, which
we hope can be used to more easily incorporate fairness into a standard ML pipeline: a (1) Fairness
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metric. We introduce the FairCOCCO score, a flexible normalized metric that can quantify the
level of independence-based fairness in tasks with multitype and multivariate sensitive attributes by
employing the cross-covariance operator on reproducing kernel Hilbert Spaces (RKHS); and a (2)
Fairness regulariser. Based on the FairCOCCO score, we construct a fairness regulariser that
can be easily added to arbitrary learning objectives for fairness-aware learning.

In what follows, we introduce current notions of fairness alongside contemporary methods to ensure
fair learning (Section 2), before introducing our contributions and explain how they plug the crucial
gaps in the literature (Section 3). With that established, we illustrate the practical advantages
of FairCOCCO in a series of demonstrations on multiple real-world datasets across a variety of
modalities, quantitatively demonstrating consistent improvements over state-of-the-art techniques
(Section 4). We conclude with a discussion on future work and societal implications (Section 5).

2 BACKGROUND

Fairness Notions Let dx, dy, d4 be dimensions of measur- Table 1: Popular definitions of fair-
able space X' C Rix Y c R% and A C R4, respectively.
We introduce random variable X defined on X to denote the
features; Y and A are similarly defined and denote the target
and sensitive attribute(s) that we want to protect (e.g. gender

ness. Defined in terms of (condi-
tional) independence requirements.

or race). Note that A can be part of X, i.e. with a slight abuse Definition ‘ Requirement
of notation, we can write A C X. FTU A 1L (ff | X\ 4)
We are mainly concerned with quantifying group fairness, DP A J—'; Y
which requires that protected groups (e.g. black applicants) be EO AULY)|Y
treated similarly to advantaged groups (e.g. white applicants) CAL (ALY)| Y

(Caton & Haas, 2020). In Table 1, we highlight four popular
definitions and how each quantifies a different aspect of fairness. Fairness through unawareness
(FTU) (Grgic-Hlaca et al., 2016) prohibits the algorithm from using sensitive attributes explicitly
in making predictions. While straightforward to implement, this method ignores the indirect dis-
criminatory effect of proxy covariates that are correlated with A, e.g. “redlining” (Avery et al.,
2009). Demographic parity (DP) (Barocas & Selbst, 2016; Zafar et al., 2017) accounts for indirect
discrimination, by requiring statistical independence between predictions and attributes Y U A
Evidently, this strict notion sacrifices predictive utility by ignoring all correlations between Y and
A, thereby precluding the optimal predictor. Dwork et al. (2012), most notably, argues that this
approach permits laziness, which can hurt fairness in the long run. To address some of these concerns,
Hardt et al. (2016) introduced equalized odds (EO), requiring that predictions Y and attributes A are
independent given the true outcome Y, i.e. YU A | Y. This approach recognizes that sensitive
attributes have predictive value, but only allows A to influence Y to the extent allowed for by the true
outcome Y. For binary predictions and sensitive attributes, a metric known as difference in equal
opportunity (DEO) highlights the different predictions made based on different group memberships:

DEO =|P(Y|[A=1Y =1) - P(Y|A=0,Y =1)|

Additional notions of fairness include calibration (CAL) (Kleinberg et al., 2016), which ensures
that predictions are calibrated between subgroups, i.e. Y 1l A | Y. For a comprehensive review of
fairness notions, we defer to §3 in Caton & Haas (2020). In the remaining sections, we illustrate our
proposed methods using the framework of EO, but this is without loss of generality, as our method
is compatible with any dependency-based fairness measure. It is important to note that there is no
universal measure of fairness, and the correct notion depends on ethical, legal and technical contexts.

2.1 RELATED WORKS

Technical approaches to algorithmic fairness can be categorized into three main types: prior to
modelling (pre-processing), during modelling (in-processing) or after modelling (post-processing)
(del Barrio et al., 2020). The work herein falls into the category of in-processing techniques, which
achieve fairness by incorporating either constraints or regularisers. Table 1 makes explicit the
connection between fairness notions and (conditional) dependence. At the core of many algorithmic
fairness techniques is how fairness is estimated and constrained. Much of the literature focuses on
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Table 2: Overview of related work for fairness-aware learning. Comparison made on method
of fairness estimation, underlying model class and the following desiderata: (1) supports contin-
uous outcomes; (2) continuous attributes; (3) protects multiple attributes; (4) compatible with all
dependency-based notions of fairness (as in Table 1).

Method \ Fairness Estimation Predictive Model \ 1 (2) A3 “4)

Zemel et al. (2013) Mutual information Linear v
Zafar et al. (2017) Conditional covariance Linear/Kernel
Donini et al. (2018) Linear loss Linear/Kernel

Cho et al. (2020) Linear loss Any v

Mary et al. (2019) Rényi correlation Any v v v

Steinberg et al. (2020b) Mutual information Any v v

Pérez-Suay et al. (2017) Kernel measure Linear/Kernel v v v
FairCOCCO | Kernel measure Any | v v v v

settings with a single, binary label and attribute (Kamishima et al., 2012; Goel et al., 2018; Jiang
et al., 2020; Donini et al., 2018), where fairness quantification is straightforward by comparing rates
of outcomes between subgroups. However, settings involving continuous variables are significantly
more challenging (Bergsma, 2004). Recent efforts in fair regression (where only outcomes are
continuous) (Agarwal et al., 2019; Chzhen et al., 2020) discretise continuous variables, but such
approaches introduce unwanted threshold effects, discards order information and requires sufficient
sample coverage in each bin.

Protecting continuous attributes. To pursue a fully continuous treatment, recent methods have made
parametric or other assumptions to simplify conditional dependence criteria. Calders et al. (2013),
Johnson et al. (2016b) and Bechavod & Ligett (2017) reduce the task of dependence minimization to
minimizing the distances between moments of distributions. Donini et al. (2018) generalizes this
to minimizing the distance between first moments of functions. Woodworth et al. (2017) and Zafar
et al. (2017) similarly employ second moment relaxation to regularize only conditional covariance,
corresponding to removing linear correlations only. Kamishima et al. (2012) introduced a first
moment relaxation of mutual information (MI). However, such approaches are limiting as weak
fairness measures that cannot fully capture important fairness effects and potentially lead to harm if
the distribution assumptions are miss-specified (Daudin, 1980).!

Ideally, we hope for a strong measure that can accurately identify the level of fairness. Key approaches
include kernel methods, MI, maximal correlation. Cho et al. (2020) employ kernel density estimation
(KDE) to compute MI to enforce fairness. Lowy et al. (2021) and Mary et al. (2019) developed
regularization using maximal correlation, but similarly rely on KDE, which does not scale to higher
dimensions. Steinberg et al. (2020a) and Steinberg et al. (2020b) adopts a MI-based measure using
density ratio estimation, but requires the training of an inner-loop probabilistic classifier.

Protecting multiple attributes. Few existing methods support protection of multiple attributes, even
though this is a common and necessary requirement in practice. Kearns et al. (2018) highlighted
fairness gerrymandering, in which a predictor appears to be fair on each individual attribute (e.g.
black) but badly violates fairness when considering multiple sensitive attributes (e.g. black woman).
Put formally, the prediction should be jointly independent (i.e. fair) to multiple sensitive attributes
while also being independent to each individual attribute. Fortunately, this is already implied due to
the decomposition property:

Y U (A, Aq) Y = VUL A |Y Vie{l,...,da} (1)

However, we cannot naively extend existing methods to protect multiple attributes by introducing
separate conditions on each attribute. This is evident, as the inverse proposition of (1) does not hold
in general. In other words, while this naive approach can ensure individual protection, it does not
guarantee protection of all attributes simultaneously. A related stream of research investigates inter-
sectional fairness (Kearns et al., 2018; Foulds et al., 2020), which models combinatorial intersection
of various subgroups. However, this only considers discrete attributes and outcomes, and one notion
of fairness (DP). Table 2 provides an overview and comparison of related works.

! Weak and strong, as defined by (Daudin, 1980), refer to the strength of characterizations of dependence.
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3  EVALUATING AND LEARNING FAIRNESS

In this section, we introduce FairCOCCO, a strong fairness measure from which we develop a
metric and regulariser for fair learning. It applies kernel measures to quantify and control the
level of dependence between algorithm predictions and protected attributes, such that the fairness
requirements in Table 1 hold.

3.1 KERNEL MEASURE OF FAIRNESS

Setup. Let Hy denote the RKHS on Y, with positive definite kernel ky. k4 and H 4 are defined
similarly. 2 Formally, the problem of interest is quantifying the conditional fairness between Y and
A given Y on finite samples.

We propose a measure based on the conditional cross-covariance operator in Reproducing Kernel
Hilbert Space (RKHS). A RKHS #y, is a Hilbert space of functions, in which each point evaluation
fly), forany y € Y and f € Hy, is a bounded linear functional. Distributions of variables can be
embedded into the RKHS through kernels, where inference of higher order moments and dependence
between distributions can be performed (Bach & Jordan, 2002; Gretton et al., 2005).

Unconditional fairness. We start by describing how operators in the RKHS can be used to evaluate
fairness in the unconditional case (DP), by quantifying reliance of model predictions Y on sensitive
attributes A. The cross-covariance operator (CCO) Xy, : Ha — Hy is the unique, bounded
operator that satisfies the relation:

(9, Ty 4y = Eg a [F(Y)g(A)] = Eg [f(V)]Ealg(A)], 2)
forall f € Hy and g € H 4. Intuitively, the Xy, , operator extends the covariance matrix defined on

Euclidean spaces to represent higher (possibly infinite) order covariance between Y and A through
kernel mappings f(X) and ¢g(Y). Additionally, we can obtain a normalized operator, i.e. the
normalized cross-covariance operator (NOCCO) V5. , (Baker, 1973):

1 _1

Via= EY;ZYAEAEU 3)
where Yy -, ¥4 4 are defined similarly to (2). This normalization is analogous to the relationship
between covariance and correlation, and disentangles the influence of marginals while retaining the

same dependence information. Intuitively, we have obtained a strong measure of correlation between
sensitive attributes and fairness by leveraging the RKHS to represent higher-order moments.

Conditional fairness. For many notions of fairness (i.e. EO and CAL), we also require a measure
of conditional fairness. We will frame the discussion around EO, where the prediction should be
independent of the sensitive attribute given the true outcome Y1 A | Y. Tt is straightforward to adapt
this for CAL by swapping variables around. We can derive a normalized, conditional cross-covariance
operator, by manipulating (3), i.e. Vy Ay (COCCO):

Voay = Voa—VoyVra (4)
where Vi, Vy 4 are defined similarly to (3). In line with the intuition established previously, this
operator measures higher-order partial correlation through function transformations f(A)YV f € H 4

and g(Y),h(Y)V g, h € Hy. We round up this discussion by characterizing the relation between
the V. A|y operator and conditional fairness.

Lemma 3.1 (COCCO and Conditional Fairness (Fukumizu et al., 2007))
Denote A = (A,Y), and the product of kernels k 4 2 kaky, and further assuming kjisa
characteristic kernel. Then: .

V};A‘Y:0<:>YJ_LA|Y 5)

Note that A denotes the extended variable set. For ease of notation, we write Vi AlY in place of
Ve Aly from this point onward. (3) and (4) gives us a way to measure unconditional and conditional
fairness, respectively, and lower values will indicate higher levels of fairness. Additionally, we note
that (3) can be viewed as a special case of (4), where Y = 0, i.e. Voa=0¢ Yy 1 A

2Wf: make mild assumptions on the involved RKHSs, assuming they are separable and square integrable (Gretton et al., 2005); and employ
characteristic kernels, e.g. Gaussian and Laplacian kernels.
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3.2 METRIC: FAIRCOCCO SCORE

Having described a kernel-based measure of fairness, we propose a fairness metric that is applicable
to conditional and unconditional fairness as well as settings with multiple sensitive attributes of
arbitrary (continuous or discrete) type. Many metrics (e.g. DEO (Hardt et al., 2016) to evaluate
EO, and DI (Feldman et al., 2015) to evaluate DP) have been proposed for binary fairness settings.
However, their utility is limited to classification tasks with single binary sensitive attributes. This
is insufficient in real-world conditions, where there often exists many sensitive attributes that can
be discrete or continuous. To address these challenges, we propose FairCOCCO Score that can
evaluate fairness of several attributes of mixed type and for both continuous and discrete outcomes.

We start by summarizing the information contained in V5. , into a single statistic using the squared
Hilbert-Schmidt (HS) norm (Bach & Jordan, 2002):

I= Vi allirs (6)

This scalar value can be estimated from samples analytically, and we provide the complete closed-
form expression in Appendix A. By Lemma 3.1, we know that ||Vy, ,||3,¢ = 0 < Y 1 A. Thus,
values closer to zero indicate higher levels of conditional fairness. However, while (6) is non-negative,
it can be arbitrarily large. This makes it hard to interpret and compare across different tasks. To
address this, we propose the normalized metric FairCOCCO score:

Definition 3.2 (FairCOCCO Score)

Ve 2

FairCOCCO Score (unconditional) = Voo |lmsl|Vaall
YY HS AA||HS

Vi i vllEs

FairCOCCO Score (conditional) = (8)

Vg llmsl Vi llms

which takes values in [0, 1], where value closer to 0 indicates higher levels of fairness, and vice versa.

This normalization scheme is derived from the Cauchy-Schwarz inequality and can be understood
as taking into account the (conditional) variance within each variable (c.f. relationship between
covariance and correlation). In Appendix A, we derive the metric and its conditional counterpart and
additionally demonstrate how the measure (6) can be used to perform (conditional) independence
testing for additional transparency and interpretability.

The FairCOCCO Score can be used to measure any of the independence based notions of fairness.
In particular, to make the connection with the Table 1 clear, the terms for the different notions can be
expressed as:

Ipo = ||VYA|Y||%ISv Icar = HVYAW”%IS, Ipp = ||VYA||%{S )

3.3 LEARNING: FAIRCOCCO LEARNING

Now that we have established the FairCOCCO Score that can be used to detect (un-)fairness,
we move on to how it can be employed in order to obtain fair predictors. We focus on a standard
supervised learning setup with the task to learn the map X x A — ), with a given fairness condition
F that should be satisfied. Given a batch D of N training triplets {(X;,Y;, A;)},, a learning
function fy(-) with learnable parameters § € ©, training loss £, and I denoting one of the fairness
statistics from (9) that takes both the batch and learning function and returns the corresponding score,

we arrive at a constrained optimization problem:

N
1 )
gélgﬁgﬁ(fg(xi),yi) subject to I (D, f3) =0 (10)

Practically speaking, this can be relaxed via a Lagrangian in order to obtain an unconstrained
optimization problem that can be solved significantly more easily:

1o
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The summary statistic (6) and therefore I (D, fy) is differentiable and so as shown here can be
employed as a regulariser in any gradient-based method, with A > 0 a hyperparameter that determines
the fairness-performance trade-off: a higher A guarantees higher fairness, but this typically leads
to lower predictive performance. Consequently, this measure can be used to quantify and enforce

fairness notions by controlling dependence between Y, Aand A. We term this regularization scheme
FairCOCCO Learning.

3.4 IN SUMMARY

The proposed kernel fairness measure provides a non-parametric, and strong characterization of
fairness. The mappings allow both multivariate continuous and discrete variables to be embedded
into the RKHS, from which we infer higher-order dependencies, and thus fairness effects. This
enables the evaluation of multivariate, multitype fairness problems as commonly encountered in the
real world. Additionally, the proposed metric and regularization methods are compatible with all
dependency-based notions of fairness (as in Table 1), giving practitioners more flexibility in choosing
the appropriate definitions for their scenario.

;— 112 ..
In our experiments, we use a Gaussian kernel: k(X;, X;) = exp (—%) Vi,7 € N where o,

the bandwidth parameter, is selected with the median heuristic, ¢ = median{|z; —z;|, Vi # j € N}
(Scholkopf et al., 2002). As the calculation of (9) comprises a matrix inversion operation, the
computational complexity scales with the number of samples O(IN3). We improve the scaling with
training samples in two ways, (/) by employing a low-rank Cholesky decomposition of the Gram
matrix (of rank 7), resulting in O(r? N) complexity (Harbrecht et al., 2012) and (2) by estimating
regulariser on mini-batches. We empirically investigate the effect of these relaxations on fairness
estimation in Appendix C.2 and demonstrate that they lead to strong results in real-world experiments.

4 EXPERIMENTAL DEMONSTRATION

We now turn our attention to how our proposed methods works in practice. We perform experiments
within the EO framework, since it is usually considered the most challenging, and it covers the
middle-ground between the strict DP and lenient FTU definitions. However, we re-iterate that our
method is framework-agnostic and attach further results under alternative definitions in Appendix C.1.
There are a number of areas that require empirical demonstration, and so we proceed as follows:

1. First, in Section 4.1, we employ standard real-world benchmarks to compare against existing
methods on single binary attributes and outcomes, resulting in competitive (and usually superior)
predictive performance on these tasks while consistently producing the best DEO score.

2. Then, in Section 4.2, we apply FairCOCCO to real data with multiple attributes and continuous
outcomes. This is an area that to the best of our knowledge no other method naturally extends to,
and one that FairCOCCO now sets a strong benchmark for future work.

3. Finally, in Section 4.3, we consider the more complicated setting of fair learning in image data
and time series. Here, we demonstrate how the problems of sepsis treatment and facial recognition
are important applications of our method.

In the interest of limited space, we attach additional results in Appendix C. Specifically, we include
experiments on: 4. Different notions of fairness: evaluating accuracy-fairness trade-off on dif-
ferent definitions of fairness (specifically DP and CAL); 5. Statistical testing: demonstrating the
FairCOCCO Score as a test statistic for stronger fairness transparency; 6. Sensitivity analysis: to
better evaluate the performance of our method on varying numbers of sensitive attributes.

Benchmarks. We compare against state-of-the-art fairness methods, including classic baselines
(Zafar et al., 2017; Hardt et al., 2016; Donini et al., 2018) and more recent methods that adopt a
stronger fairness quantification: FACL (Mary et al., 2019) and FARMI (Steinberg et al., 2020b),
which leverages MCC and MI, respectively.

Datasets. Following the experiment design in recent works (Hardt et al., 2016; Donini et al., 2018),
we employ 9 real-world datasets from the UCI machine learning repository (Dua & Graff, 2017).
Specifically, we consider 4 datasets contain single sensitive attributes and binary outcomes and 5
datasets with multiple sensitive attributes and outcome of arbitrary type. We employ datasets with



Under review as a conference paper at ICLR 2023

Table 3: Performance in binary setting. Accuracy (ACC) and DEO on benchmark datasets. NN
is an unregularised neural network, on top of which the regularizers from competitor methods and
FairCOCCO are applied to. Best results are emboldened.

COMPAS German Drug Adult
Method ACC DEO ACC DEO ACC DEO
Zafar et al. (2017) 0.69+£0.02 0.10+0.06 | 0.62+0.09 0.13+0.11 | 0.69+0.03 0.02+£0.07 | 0.78 0.05
Hardt et al. (2016) 0.71+0.01 0.08+£0.01 | 0.714+£0.03 0.114+0.18 | 0.75£0.11 0.14+0.08 | 0.82 0.11
Donini et al. (2018) 0.73+£0.01 0.05+0.03 | 0.73+0.04 0.05+0.03 | 0.80+0.03 0.07+£0.05 | 0.81 0.01
NN 0.90£0.02 0.064+0.00 | 0.744+0.07 0.11+£0.35 | 0.80+0.08 0.06+0.12 | 0.84 0.19
Mary et al. (2019) 0.88+£0.02 0.04+0.01 | 0.734+0.03 0.07+0.15 | 0.80+0.04 0.01+0.01 | 0.82 0.08
Steinberg et al. (2020b) | 0.88 £0.01 0.03£0.01 | 0.71+0.10 0.09+£0.14 | 0.794+0.05 0.04+0.02 | 0.80 0.10
FairCOCCO | 0.89+0.01 0.00+0.01 | 0.74+0.03 0.02+0.09 | 0.80+£0.06 0.02+0.01 | 0.83 0.04

different number of samples (ranging from 649 to 299285) and different feature counts (ranging from
10 to 128) to gain a better understanding of our method’s performance profile.

Additionally, we also employ time-series dataset on sepsis treatment from the MIMIC-III ICU
database (Johnson et al., 2016a) and an image dataset CelebA (Liu et al., 2015) for face attribute
recognition. We provide additional information about benchmarks, datasets, model design, hyper-
parameters, and evaluation methods in Appendix B. For all results, we report mean =+ std over 10
runs.

4.1 BINARY ATTRIBUTES AND OUTCOMES

While the focus of this work is on introducing practical

methods for fairness in multitype, multivariate settings, 0.225 1) —e— Fair-COCCO
we want to first prove that FairCOCCO is also com- ' FACL
petitive with state-of-the-art methods on problems with 0.200 1} = FARMI

binary sensitive attributes and outcomes. We reproduce o
benchmarks based on UCI’s Drugs, German, Adult and 8
COMPAS datasets. We compare against representative O
methods in literature as well as a standard (unfair) neural =
network (NN). For strong fairness methods, specifically

including our method, FACL and FARMI, we employ 0.100

the same NN as the underlying predictive model to en-

sure comparability.> We report our results in Table 3. 0.075

FairCOCCO achieves higher levels of fairness (lower 00 02 04 06 08 10
DEO) while maintaining strong predictive accuracy on MSE

all datasets except Drug. We note that (Mary et al., 2019)

is specifically tailored for settings with binary sensitive : —— Fair-COCCO
attribute and outcome, but our method is more gener- 0125 N Eﬁgkm

ally applicable to settings with multitype, multivariate Ny i

sensitive attributes. S 0.120
S

4.2 CONTINUOUS ATTRIBUTES AND OUTCOMES N 0.115
£ 0.

. . . . L

Next, we illustrate the main contributions of our work,

by demonstrating FairCOCCO can protect fairness in 0.110

settings involving multiple sensitive attributes and out-

comes of arbitrary type. We employ Crimes and Commu- 0.105

03

04 05

MSE

nities (C&C), Credit Card, KDD-Census, Law School, 06 07
and Students datasets from the UCI repository. We start
by looking at protection of single continuous attributes,

before examining the joint protection of multiple sensi- Figure 1: Fairness accuracy trade-off.

tive attributes.

Single continuous attribute. We compare our method
against our closest competitors FACL and FARMI.

Crimes and Communities (top) and Stu-
dents (bottom). Optimum desiderata at
the origin, where both MSE and unfairness
are minimized.

We re-ran the available implementation in our own pipeline, reporting the best results between our re-runs and original reported scores.
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Table 4: Protection of multiple attributes. Investigation on joint fairness effects and fairness
protection with respect to individual sensitive attributes on array of benchmarks. Lowest MSE/ACC,
FairCOCCO and DEO scores are emboldened.

Crimes and Communities

Joint racePctBlack racePctAsian racePctHisp
Method MSE cocco cocco DEO cocco DEO CcocCco DEO
NN 022+0.01 0.27+0.01 | 024+0.02 025+0.03 | 0.10£0.01 0.14+0.02 | 0.16+0.01 0.08 £0.04

FACL 0.66 £0.01 0.15£0.02 | 0.10+£0.02 0.10+£0.08 | 0.10+£0.02 0.13+0.06 | 0.09£0.02 0.09 £ 0.03
FARMI 0.65+0.01 020£0.02 | 0.14+0.02 0.10+£0.06 | 0.11 £0.02 0.11+0.05 | 0.13+0.02 0.08 & 0.02
FairCOCCO | 0.63+£0.01 0.11+0.01 | 0.08+0.01 0.07 +0.05 | 0.07 +£0.01 0.11£0.05 | 0.07£0.02 0.05+ 0.03
KDD-Census
Joint age sex race
Method ACC Ccocco cocco DEO Ccocco DEO COCCO DEO
NN 0.95+0.02 0.18+0.04 | 0.17+£0.03 0.244+0.06 | 0.07£0.00 0.09+0.01 | 0.07+0.01 0.1040.02

FACL 0.93+0.01 0.10+£0.02 | 0.104£0.03 0.124+0.03 | 0.04£0.01 0.03+0.00 | 0.08 £0.02 0.09 £ 0.02
FARMI 0.88+0.03 0.15+£0.05 | 0.134+0.05 0.18+0.05 | 0.05+£0.00 0.04+0.01 | 0.07+£0.01 0.05=£0.02
FairCOCCO ‘ 0.94 +£0.02 0.02+0.00 ‘ 0.02 +£0.00 0.01 +£0.00 ‘ 0.00 £0.01 0.02+0.01 ‘ 0.00 £0.01 0.02+0.00
Credit Card
Joint sex education marriage
Method ACC cocco Ccocco DEO Ccocco DEO COoCCO DEO
NN 0.82+0.02 0.13+0.01 | 0.06£0.01 0.08+0.00 | 0.04+0.01 0.024+0.00 | 0.04+£0.02 0.03+0.02
FACL 0.80+0.01 0.07+0.00 | 0.04+0.00 0.03+0.00 | 0.02£0.01 0.02+£0.00 | 0.05+0.01 0.03+0.01
FARMI 0.81+0.02 0.05+0.00 | 0.02+0.00 0.024+0.00 | 0.03£0.00 0.02+0.00 | 0.04+0.01 0.03+0.01
FairCOCCO | 0.81£0.01 0.01+0.00 | 0.00+0.00 0.01+0.00 | 0.0040.00 0.02+£0.00 | 0.00+0.00 0.01+0.00
Law School
Joint male race
Method ACC cocco cocco DEO cocco DEO
NN 0.89 £+ 0.03 0.07 £ 0.04 0.01 £ 0.00 0.02 £ 0.00 0.11 +£0.01 0.12 £0.05
FACL 0.85+0.02 0.04 +0.02 0.00 +£0.01 0.01 +0.00 0.04 £ 0.02 0.05 +0.03
FARMI 0.86 £ 0.02 0.04 £0.01 0.01 £ 0.00 0.01 +£0.00 0.03 £0.01 0.04 £0.02
FairCoCCoO ‘ 0.89 +0.01 0.02 +0.00 ‘ 0.00 + 0.00 0.00 + 0.00 ‘ 0.01 +0.01 0.04 +0.00
Students
Joint age sex
Method MSE cocco cocco DEO cocco DEO
NN 0.25 +0.05 0.16 + 0.03 0.12 £ 0.02 0.06 + 0.03 0.09+ 0.03 0.07 £ 0.02
FACL 0.324+0.03 0.144+ 0.02 0.12 £ 0.02 0.07+ 0.03 0.074 0.02 0.044 0.05
FARMI 0.36+ 0.06 0.15 £ 0.01 0.11£0.02 0.05 + 0.01 0.10 £ 0.02 0.074 0.04
FairCoCco | 0.29 + 0.05 0.14+ 0.02 | 0.10 + 0.03 0.06 £ 0.03 | 0.07+ 0.01 0.03 + 0.03

While FACL does not support multiple attributes, it is applicable to protect a single continuous
variable. FARMT is only compatible with discrete sensitive attributes; we thus binarise the sensitive
attributes at the median during training. We take the datasets C&C and Students, and use protected at-
tributes racePctBlack and age respectively. We plot the performance versus fairness by varying
the fairness penalty in Figure 1. Notably, FairCOCCO obtains a better trade-off between fairness
and MSE than both methods (optimum desiderata at the origin).

Multiple (arbitrary type) attributes. Going one step further, we want to evaluate the concurrent
protection of multiple sensitive attributes. We note that while this is natural for FairCOCCO, to
the best of our knowledge, there are no existing methods that can jointly protect multiple sensitive
attributes of arbitrary type. To enable adequate comparison, we adapt FACL and FARMI by including
a separate regularization term for each attribute. In contrast, the FairCOCCO regularization is
applied directly and jointly on all sensitive attributes. Previously, we showed that the protection
of individual fairness effects does not guarantee protection of joint fairness. To that end, we are
interested in analyzing both joint fairness effects and protection w.r.t. individual attributes. In
Table 4, we evaluate the joint fairness (Joint) and fairness on individual attributes (e.g. racePctBlack,
racePctAsian, racePctHisp on C&C). To evaluate individual fairness, we also calculate the DEO by
binarising the attributes at the median during evaluation.

We first note that FairCOCCO and DEO scores are highly correlated in their respective estimation
of unfairness. However, the key result we wish to highlight is that not only does FairCOCCO
successfully minimize joint fairness effects, it also consistently minimizes the levels of unfairness
for each sensitive attribute. The same cannot be said for FARMI and FACL, where the joint fairness
outcomes are inadequate as the protection granted to individual attributes are traded-off to the
detriment of other attributes. To better investigate the sensitivity of our method to the number of
sensitive attributes, the performance fairness trade-off by varying the number of protected attributes
in Appendix C.4.
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Table 5: Facial attribute recognition. Accuracy (ACC) and DEO on three separate classification
tasks - attractive, smile, and wavy hair. Best results are emboldened.

attractive smile wavy hair
Method ACC DEO ACC DEO ACC DEO
NN 0.82 4+ 0.02 0.43 +£0.03 0.98 +0.03 0.05+0.01 0.814+0.02 0.18 £0.02
FACL 0.78 £ 0.02 0.11 £0.02 0.95+0.03 0.02 £0.00 0.78 £ 0.02 0.10£0.01
FARMI 0.794+0.03 0.07 £0.01 0.96 + 0.02 0.01 +0.00 0.74 £+ 0.01 0.04 £0.00

FairCocco | 0.80+0.03 0.03+0.00 | 0.96+0.04 0.01+0.00 | 0.80+0.02 0.02 £ 0.00

4.3 BEYOND TABULAR DATA

CelebA facial attributes recognition. In this section, we highlight that Fai rCOCCO can be applied
beyond tabular data by experimenting on the CelebA dataset (Liu et al., 2015). The CelebA dataset
contains images of celebrity faces, where each face is associated with binary sensitive attributes,
including gender. We follow the experimental design in (Chuang & Mroueh, 2021) and form binary
classification tasks using attributes attractive, smile, and wavy hair, and treat gender as the sensitive
attribute. We fine-tune a ResNet-18 (He et al., 2016) with two additional hidden layers to perform
the classification task. We report the results in Table 5, noting similar improvements in fairness with
little decrease in accuracy, especially on the classifying attractive and wavy hair.

Sepsis treatment. Finally, we emphasize that - Typje 6: Sepsis treamtent. Accuracy (ACC), DEO
FairCOCCO is not limited to the standard su- ,,4 51 rCcOCCO score on learning fair sepsis

pervised learning setup and demonstrate how

! - : treatment policies; the best results are emboldened.
our approach can be applied for learning fairer

policies in time series setting. We employ the Method |  ACC DEO COCCO

MIMI.C.-III ICU database (Johnson et al., 2016a), NN 0821003 0052003 013002
containing data routinely collected from adult FACL 0814004 0024001 0.08+0.02
patients in the United States. We analyze the de- FARMI 0.78+£0.04 0.03+0.01 0.10£0.01

cisions made by clinicians to treat sepsis, using  raircocco | 0.814+0.02 0.00+0.01 0.04+0.01
a patient cohort fulfilling the Sepsis-3 criteria,
delineated by Komorowski et al. (2018). For each patient, we have relevant physiological parameters
recorded at 4 hour resolution, and static demographic context. The task is to predict the clinical
intervention to treat sepsis by learning from clinician’s actions. For this, we have access to a binary
variable corresponding to clinical interventions targeting sepsis. Ground-truth treatment outcomes
are computed from SOFA scores (measuring sequential organ failure) and lactate levels (correlated
with severity of sepsis) in the subsequent time step, and we consider gender as the sensitive attribute.
For the complete problem setup, refer to the Appendix B.2. Table 6 indicates that FairCOCCO
successfully reduced any bias contained in expert demonstrations and achieved the best predictive
and fair performance when compared to FACL and FARMI.

5 DISCUSSION

In this work, we proposed FairCOCCO, a kernel-based fairness measure that strongly quantifies
the level of unfairness in the presence of multiple sensitive attributes of mixed type. Specifically,
we introduced a normalized fairness metric (FairCOCCO Score), applicable to different problem
settings and dependency-based fairness notions, and a fairness regularization scheme. Through our
experiments, we empirically demonstrated superior fairness-prediction trade-off and protection of
multiple and individual fairness outcomes.

Limitations and future works. The main limitation of our work is computational complexity—the
matrix operations, required to kernalise the data and embed it in the RKHS, has complexity O(N?).
We propose two directions to alleviate this (i.e. low-rank approximation, mini-batch evaluations),
which empirically do not noticeably impact performance. Future works should consider speeding up
kernel operations using methods proposed in (Zhang et al., 2012). Additionally, while our regularizer
can be applied to models trained using gradient-based methods, future works should extend our
approach to be compatible with powerful decision-tree based algorithms.
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ETHICS AND REPRODUCIBILITY STATEMENT

Ethics statement. We caution against using our proposed methods as a certificate of fairness. As
Corbett-Davies et al. (2017) rightfully emphasize, fairness measures do not rule out unfair practices.
Additionally, future works should focus on interpretable fairness quantification that sheds insight on
root causes of unfairness, allowing them to be eliminated through procedural changes rather than
solely in prediction tasks. Lastly, we encourage more lively discourse on philosophical implications
of ML methods on justice and fairness (Kuppler et al., 2021) that is critical to Fair ML deployment.

Reproducibility statement. We detailed exact implementation details, including dataset prepro-
cessing, implementation of benchmark methods, architecture design, hyperparameter tuning, and
evaluation methods in Section 3, Section 4 and Appendix B. We will release code upon acceptance of
the paper for the camera-ready version.
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A MORE ON FAIRCOCCO

A.1 CLOSED FORM EXPRESSION

We introduced covariance operators on RKHSs, which can be used to quantify unconditional (VY )

and conditional fairness (VY Al Y) . FairCOCCO is based on the Hilbert-Schmidt (HS) norm of the
covariance operators. An operator A : H1 — Hs is called HS if, for complete orthonormal systems
{¢:} of H1 and {1, } of Ho, the sum Zi,j (¥, Agbi)?{S is finite (Reed & Simon, 1980). Thus, for
an HS operator A, the HS norm, ||A||gs is defined as || A||%s = Y=, ; (15, A¢i)3;5. Provided that
Vs i 'y and V3 , are HS operators, FairCOCCO scores can be expressed as:

Vi 4 Y ||3;¢ (conditional fairness measure)

Vi 4ll3rs (unconditional fairness measure)

The umlaut on A represent extended variable sets, i.e. A= (A,Y). Here, we briefly flesh out the
closed-form expression of the empirical estimators, while more details can be found at (Fukumizu
et al., 2007; Gretton et al., 2005). Let Gy be the centered Gram matrices, such that:

Grig = (koY) =i ky(¥5) =)

We choose a Gaussian RBF kernel, k(Y;,Y;) = exp (—%) Vi,5 € N, and employ the

median heuristic introduced by Scholkopf et al. (2002), i.e. ¢ = median{|Y; —Y;|, Vi# j € N}
to select bandwidth o. Additionally, 7" = 1/N 3N | ky(-, ;) is the empirical mean. G4, Gy

are defined similarly. Based on this, proxy Gram matrices Ry can be defined as follows:
Ry =Gy (Gy + eNIN)71

where € = le—4 is a regularization constant, used in the same way as Bach & Jordan (2002), I is
an identity matrix and Ry, R4 are defined similarly. The empirical estimator of [|Vy 5 | v | |4 can
then be computed:

Ve i vls (12)

I=|

=Tr[RyR; — 2Ry R;Ry + Ry Ry R ; Ry (13)
The unconditional fairness score can similarly be estimated empirically as follows (note that uncondi-
tional dependence does not entail using extended variables):

I=|[Vy4lls (14)
= Tr[RyRA} (15)

Choice of Kernels. While, in general, kernel dependence measures depend not only on variable
distributions, but also the choice of kernel, Fukumizu et al. (2007) showed that, in the limit of infinite
data and assumptions on richness of the RKHS, the estimates converges to a kernel-independent
value. We employ a Gaussian RBF (characteristic kernel) in our experiments.

On the computational complexity. For our experiments, we use a Gaussian RBF kernel:
kE(X;, X;) = exp (,M) Vi,j € N where o is the tuneable bandwidth parameter. We

202
employ the median heuristic introduced by Schélkopf et al. (2002), i.e. o = median{|z; — z;|, Vi #
j € N} to select bandwidth.

As the calculation of (9) comprises a matrix inversion operation, the computational complexity scales
with the number of samples in O(NN?). We improve the scaling with training samples in two ways,
(1) by employing a low-rank Cholesky decomposition of the Gram matrix (of rank r), resulting in
O(r?N) complexity (Harbrecht et al., 2012) and (2) by estimating regulariser on mini-batches. We
empirically demonstrate that these lead to strong results in real-world experiments.

14
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A.2 FAIRCOCCO SCORE

Here, we derive FairCOCCO score from the underlying measure using the Cauchy-Schwarz In-
equality. The FairCOCCO score for conditional fairness and unconditional fairness can be written
as:
2
Ve alltrs
Ve v llaslVaallas

FairCOCCO Score (unconditional) =

Ve i vllEs
IRy — Ry Ry||lus||R; — RiRyl|lus

FairCOCCO Score (conditional) =

We start by looking unconditional version of FairCOCCO, we know from (14) and the Cauchy-
Schwarz inequality for the inner-product (-, -) that:

11V allfzs| = [Tr[Ry Ral| = [(RY, Ra)l

< ||[Ry|lms||Rallns = /Tt[RE Ry ]/ Tr[R) R4

= [|[VyyllaslVaallus

By the inequality, FairCOCCO Score (unconditional) € [—1, 1]. Additionally, as the score is also
non-negative, it takes value € [0, 1] where 0 indicates perfect fairness (as indicated by Lemma 3.1).
By contrast, the score takes value 1 iff the gram matrices, Ry and R 4, are linearly dependent (i.e.
perfectly unfair). The derivation and interpretation can similarly be shown for the conditional case:

11V a |y |[izsl = [Tr[Ry Ra — 2Ry RaRy + Ry Ry RaRy]|

= |Tr[(Ry — Ry Ry)(Ra — RaRy)]| = [{(Ry — Ry Ry)",(Ra — RaRy))|
< ||Ry — Ry Ry||us||Ra — RaRy||us

Here, Ry — Ry Ry is related to the conditional covariance operator, i.e. VYY/ Iy which captures the

conditional covariance of Y’ given Y. See (Fukumizu et al., 2007; 2009; Baker, 1973) and others for
more.

B EXPERIMENTAL DETAILS

B.1 SUPERVISED LEARNING TASKS
B.1.1 MODEL DETAILS

For all experiments, we train a two-layer neural network with ReLU-activated nodes. The number
of nodes chosen is between 40~100 depending on the complexity of the data. The network is
trained with Cross Entropy or MSE Loss and is optimized using Adam (Kingma & Ba, 2014). The
hyperparameters include batch size € {64, 128,256}, learning rate € {le—2, le—3, le—4}, and
fairness penalty € {0.0,0.5,1.0,2.0,5.0} and are chosen through cross-validation. For datasets
without a defined test set, the data is split 60-20-20 into train, validation and test set and results are
averaged over 10 runs. Experiments are run on either a CPU or NVIDIA Tesla K40C GPU, taking
around an hour.

B.1.2 DATASETS

Adult (Kohavi, 1996). The task on the Adult dataset is to classify whether an individual’s income
exceeded $50K/year based on census data. There are 48842 training instances and 14 attributes, 4 of
which are sensitive attributes (age, race, sex, native-country). Here, the sensitive attribute
is chosen to be sex, which can be either female or male.

Drug Consumption (Drugs) (Mirkes, 2015). The classification problem is whether an individual
consumed drugs based on personality traits. The dataset contains 1885 respondents and 12 personality
measurements. Respondents are questioned on drug use on 18 drugs, including a fictitious drug
Semeron to identify over-claimers. Here, we focus on Heroin use, drop the respondents who
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Table 7: Description of datasets. ‘-B’ suffix indicates binary variables, ‘-D’ indicates discrete
variables (i.e. >2 classes) ‘-C’ indicates continuous variables.

| Dataset | Examples | Features | Sensitive (A4) | Outcome (Y)
Single Adult 45222 12 Geqde;r—B Income-B
sensitive Drugs 1885 11 Ethnl;lty-B Drug use-B
attributes German 1700 20 Fore_:lgn—B In_co.m.e—B

COMPAS 6172 10 Ethnicity -B Recidivism-B

C&C 1994 128 Ethnicity-C (x4) Crime rate-C

Multiple Students 649 33 Age-C, Gender-B Performance-C
sensitive | KDD-Census | 299285 40 Sex-B, Race-B, Age-C Income-B
attributes | Credit Card 30000 24 Sex-B, Marriage-D, Education-D Default-B

Law School 20798 12 Male-B, Race-D Pass-B

claimed to use Semeron and transform the categorical response into a binary outcome: “Never
Used” versus “Used”. The binary sensitive attribute is Ethnicity.

South German Credit (German) (Hoffman, 1994). The German dataset contains 1000 instances
with 20 predictor variables of a debtor’s financial history and demographic information, which are
used to predict binary credit risk (i.e. complied with credit contract or not). The sensitive attribute is
a binary variable indicating whether the debtor is of foreign nationality.

COMPAS (Angwin et al., 2016). COMPAS is a commercial software commonly used by judges
and parole officers for scoring a criminal defendant’s likelihood of recidivism. The dataset contains
6172 instances with 10 features. The outcome is a binary variable corresponding to whether violent
recidivism occurred (is_violent_recid) and the sensitive attribute is race, which is binarised
into “Caucasian” and “Non-Caucasian” defendants.

Communities and Crime (C&C) (Redmond, 2009). C&C contains socio-economic data from the
1990 US Census, law enforcement data from the 1990 US LEMAS survey and crime data from
1995 FBI UCR. It contains 1994 instances of communities with 128 attributes. The outcome of the
regression problem is crime rate within each community ViolentCrimesPerPop, which is a
continuous value. There are three sensitive attributes, corresponding to ethnic proportions in the
community—racePctBlack, racePctWhite, racePctAsian.

Student Performance (Students) (Cortez, 2014). The Students dataset predicts academic perfor-
mance in the last year of high school. There are 649 instances with 33 attributes, including past
academic information and student demographics. The response variable is a continuous variable
corresponding to final grade and the sensitive attributes are age (continuous value from 15-22) and
sex (‘F’-female, ‘M’-male).

B.2 TIME SERIES TASK

The data used to develop and evaluate our experiment on fair imitation learning is extracted from
the MIMIC-III ICU database (Johnson et al., 2016a), based on the Sepsis-3 cohort defined by
Komorowski et al. (2018).

Discrimination in Healthcare. Sepsis is one of the leading causes of mortality in intensive care
units (Singer et al., 2016), and while efforts have been made to provide clinical guidelines for
treatment, physicians at the bedside largely rely on experience, giving rise to possible variations in
fair treatments. Prejudice in healthcare has been reported in many instances—for example, healthcare
professionals are more likely to downplay women’s health concerns (Rogers & Ballantyne, 2008)
and racial biases affect pain assessment and treatment prescribed (Hoffman et al., 2016). Thus, it
is critical, when learning to imitate expert policy, that no underlying prejudices are leaked into the
learned policy.

Problem Setup. We have access to a set of expert trajectories D = {71, ..., 7 }, where each trajectory
is a sequence of state-action pairs {(s1,a1), ..., (ST, ar)}. The time-varying state space is modelled
with a Markov Decision Process (MDP), i.e. at every time step t, the agent observes current state sy
and takes action a;.
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Data. We obtain data from MIMIC-III and use the pre-processing scripts provided by Komorowski
et al. (2018) to extract patients satisfying the Sepsis-3 criteria. For each patient, we have relevant
physiological parameters, including demographics, lab values, vital signs and intake/output events.
Data are aggregated into 4 hour windows.

State Space. The pre-processing yields 45 x 1 feature vectors for each patient at each time step,
which are summarized in Table 8. We consider gender as the sensitive attribute.

Table 8: MIMIC-III Features. Description of patient features recorded at four hour intervals.

Feature Type \ Features

Demographic | Gender, Age, Weight (kg),

Re-admission, Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA),
Systematic Inflammatory Response Syndrome (SIRS), Shock Index,

Potassium, Sodium, Chloride, Glucose, Magnesium, Calcium, White Blood Cell Count,

Platelets Count, Bicarbonate, Hemoglobin, Partial Thromboplastin Time (PTT), Prothrombin Time (PT),
Lab Values Arterial pH, Arterial Blood Gas, Arterial Lactate, Blood Urea Nitrogen (BUN), Creatinine,

Serum Glutamic-Oxaloacetic Transaminase (SGOT), Serum Glutamic-Pyruvic Transaminase (SGPT),
Total Bilirubin, International Normalized Ratio (INR),

Heart Rate, Systolic Blood Pressure, Mean Blood Pressure, Diastolic Blood Pressure,

Respiratory Rate, Temperature (Celsius), FiO2, PaO2, PaCO2, PaO2/FiO2 ratio, SpO2,

Mechanical Ventilation, Fluid Intake (4 hourly), Fluid Intake (Total), Fluid Output (4 hourly),

Fluid Output (Total)

Static

Vitals

Intake/Output

Action Space. We define a binary action for medical intervention based on intravenous (IV) fluid and
maximum vasopressor (VP) dosage in a given 4 hour window, where a; = 1 represent either or both
interventions taken, and a; = 0 indicates no action taken.

Treatment Outcome. The ground truth treatment outcome in each time step is evaluated using SOFA
(measuring organ failure) and the arterial lactate levels (higher in septic patients). Specifically, the
treatment outcome penalizes high SOFA scores and increases in SOFA and lactate levels from the
previous time step (Raghu et al., 2017):

Y, = — 0.0251(sp 24 = s7OT 4 & 7074 > 0) — 0.125(s707 4 — 57974
_ 2tanh(8i¢icfate _ siactate)

Behavioral Cloning. Our proposed framework should work with any imitation learning algorithm as
long as predictions of action rewards are differentiable. For now, we will focus on behavioral cloning.
The expert’s demonstrations D are divided into i.i.d. state-action pairs. We train a neural network as
described in the experimental setup to predict posterior action probabilities.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional results to comprehensively evaluate our proposed methods,
specifically:

1. DP and EO: While the main paper investigates fairness using EO, Appendix C.1 demonstrates
application of FairCOCCO using DP and CAL notions of fairness.

2. Estimation convergence: Appendix C.2 evaluates the convergence of FairCOCCO score
estimation on different mini-batch sizes on real datasets.

3. Statistical testing: Appendix C.3 demonstrates how the FairCOCCO Score can be employed
as a test statistic in permutation-based testing for stronger fairness transparency.

4. Sensitivity: Appendix C.4 investigates performance sensitivities, specifically performance-fairness
trade-offs, according to varying numbers of sensitive attributes.

C.1 ADDITIONAL RESULTS: EXPERIMENTS WITH DP AND CAL

To highlight FairCOCCO’s compatibility with fairness definitions other than EO, we apply it to
demographic parity (DP) and calibration (CAL). We perform the same experiments on 1) binary clas-
sification tasks, 2) regression task with multiple sensitive attributes. The experiments are performed
using the procedures described in the experimental setup.
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Demographic Parity. DP requires statistical independence between predictions and attributes.
Disparate impact (DI) is a metric frequently used to evaluate DP (Feldman et al., 2015):

_P(Y=1A=1)
 P(Y =1/A=0)

where A = 1 and A = 0 denote respectively the discriminated and non-discriminated groups. The
US Equal Employment Opportunity Commission Recommendation advocates that DI should not
be below 80%, commonly known as the 80%-rule.* DI closer to 1 corresponds to lower levels of
disparate impacts across population subgroups. We show the performance of FairCOCCO for DP in
Table 9 and 10, demonstrating superior performance on a benchmark of binary classification tasks as
well as protection of multiple sensitive attributes in regression settings.

(16)

Table 9: Performance in binary setting. Accuracy (ACC) and DI under DP. NN is an unregularised
neural network that is used as base learner; the best results are emboldened.

COMPAS German Drug Adult
Method ACC DI ACC DI ACC DI ACC DI
Donini et al. (2018) 0.70 £ 0.02 0.81+0.03 0.70 &+ 0.06 0.93 +£0.07 0.744+0.03 0.75+£0.01 | 0.72 0.84
NN 0.90 £+ 0.02 0.39 +0.32 0.74 +0.07 1.26 £ 0.54 0.80 £ 0.08 0424022 | 0.84 0.22
Mary et al. (2019) 0.87+0.04  0.76 +£0.07 0.714+0.08 0.96 £+ 0.25 0.80 £+ 0.06 0.73+£0.17 | 0.79 0.83
Steinberg et al. (2020b) | 0.86 + 0.03 0.83 +0.05 0.71 4+ 0.06 0.93+0.13 0.77+0.03 0.86+0.05 | 0.77 0.76
FairCoCCO | 0.88+0.03 0.90+0.06 | 0.73+0.06 1.02+0.19 | 0.78+0.02 0.84+0.07 | 0.83 0.97

Table 10: Protection of multiple attributes. Level of protection provided to individual attributes
when all attributes are simultaneously protected under DP. Lowest MSE & FairCOCCO scores are
emboldened. (left) C&C dataset, (right) Students dataset.

Joint racePctBlack | racePctWhite | racePctAsian | racePctHisp Joint age sex
Method MSE COCCO | COCCO €OCCo €OCCoO €OCCO Method MSE  COCCO | COCCO | COCCO

. 022 020 0.16 0.24 0.03 0.09 . 025 0.6 0.13 0.11
£001  £008 +£0.06 +0.03 +£001 £0.05 £005 £006 | £003 | 007

eacL 053 009 0.07 0.15 0.05 0.07 acL 030 008 0.04 0.03
£004  £002 £001 £0.04 £0.03 £0.02 £002  £001 | £001 | +0.02

060 012 0.15 0.15 0.04 0.06 035 0.1 0.09 0.05

FARMI | 1007 003 £0.02 +0.02 £001 £0.03 FARMI | 1005 4003 | £002 | £001

) 049 008 0.05 0.07 0.03 0.04 ‘ 033 0.06 0.03 0.04
FairCOCCO | L o06 +0.02 ‘ +0.01 ‘ =0.02 ‘ £0.01 ‘ +£0.01 FaircOCCo | to02  +0.02 ‘ £0.01 ‘ +0.02

Calibration. CAL requires conditional independence between target and sensitive attributes given
predictions. As the conditioning variable is continuous, we report the FairCOCCO score on the
same experiments. We see in Table 11 and 12 that FairCOCCO achieves superior fair and predictive
outcomes under different definitions of fairness when compared to other methods.

Table 11: Performance in binary setting. Accuracy (ACC) and FairCOCCO (COCCO) under
CAL; the best results are emboldened.

COMPAS German Drug Adult
Method ACC cocco ACC cocco ACC cocco ACC cocco
Donini et al. (2018) 0.76 +0.03 0.12£0.02 0.70 +0.05 0.06 +0.01 0.804+0.07  0.13+0.21 | 0.78 0.16
NN 0.90 £ 0.02 0.07 +0.02 0.744+0.07  0.074+0.03 0.80 4+ 0.08 0.244+0.08 | 0.84 0.18
Mary et al. (2019) 0.87 £0.12 0.07 £ 0.03 0.71£0.11 0.06 £0.02 | 0.79+0.03 0.08+0.03 | 0.81 0.15
(Steinberg et al., 2020b) | 0.88 4 0.03 0.06 £0.01 | 0.73£0.06 0.04 +0.02 0.77 4+ 0.05 0.16+0.05 | 0.80 0.14
FairCOCCO | 0.89+0.02 0.0240.02 | 0.71+£0.05 0.02£0.01 | 0.78+0.06 0.1140.06 | 0.83 0.11

C.2 FAIRCOCCO ESTIMATION

In this section, we provide additional results on convergence of FairCOCCO Score estimation as
a function of batch size, similar to the experiment performed in the main paper. We show convergence
on Adult and German dataset in Figure 2. We note that while convergence of estimation depends
on properties of different datasets, the estimation of FairCOCCO Score stabilizes at batch sizes
> 256.

4 . . .
www.uniformguidelines.com.
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Table 12: Protection of multiple attributes. Level of protection provided to individual attributes
when all attributes are simultaneously protected under CAL. Lowest MSE and FairCOCCO score
are emboldened. (left) C&C dataset, (right) Students dataset.

Joint racePctBlack | racePctWhite | racePctAsian

racePctHisp Joint age sex
Method MSE COCCO | COCCO COCCO COCCO cocco Method MSE COCCO | COCCO | COCCO
. 0.22 0.16 0.16 0.13 0.07 0.12 0.25 0.11 0.09 0.05
£001  £003 £0.04 40,03 £0.08 £0.03 NN +£005 4005 | £001 | +0.06
eacL 055 0.14 0.11 0.09 0.11 0.09 0.32 0.14 0.12 0.07
£0.10  £0.02 £0.01 +0.03 £0.01 +0.04 FACL £003  £002 | £002 | +002
0.53 0.15 0.13 0.12 0.05 0.10 0.36 0.15 0.11 0.10
FARML | £ 005 005 +0.02 +0.03 +001 +0.03 FARMI | 1006 £001 | £002 | +0.02
. 0.47 0.06 0.08 0.07 0.03 0.06 . 0.37 0.04 0.06 0.03
FairCocCo | 409  +0.01 ‘ +0.01 ‘ +0.02 ‘ +0.01 ‘ £0.01 FaizCOCCO | 1005  +0.02 ‘ +0.01 ‘ +0.03
03 025
0.2
0.2
8 8 0.15
Q Q
S o1 g o1
E E 0.1
0.1
oos | | Lo 0.05 [
~o | R A po-mmeee 4--mmmmm | 008
T------ 41
0 64 128 256 512 1024 0 0 64 128 256 512 1024 0
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Figure 2: Estimation of FairCOCCO Score. (a) Adult dataset, (b) German dataset.

C.3 STATISTICAL TESTING

We demonstrate how the proposed fairness measures can be employed as a test statistic to perform
statistical tests, resulting in stronger guarantees and transparency (Fukumizu et al., 2007; Gretton
et al., 2005). We highlight that while other fairness measures (MI and MCC) can be developed as test
statistics, the empirical estimation of these measures involve multiple levels of approximations, and it
is unclear whether the approximated statistics still retain the theoretical properties. Figure 3 shows
the distributions of predictions with fairness regularization. Notably, EO only requires statistical
independence between predictions and sensitive attributes given true outcome, whereas DP enforces
“strict” independence between predictions and attributes.

Table 13: Statistical testing. Accuracy-fairness trade-offs under different fairness notions and
corresponding test of statistical significance. (left) EO setting, (right) DP setting.

A | ACC | DEO | COCCO | p-value A | ACC | DI | COCCO | p-value
0.0 | 7833 | 0.66 | 0.21 0.00 0.0 | 7833 [ 3.05 | 007 | 0.00
027667 | 039 | 014 | 0.14 02| 7256 | 1.54 | 003 | 004
057036 | 0.07 | 003 | 045 05 |6933 | 1.77 | 001 0.09
10 | 67.78 | 003 | 0.02 | 074 1.0 | 67.38 | 1.13 | 0.01 0.14
2.0 | 60.57 | 0.00 | 0.01 0.90 20 | 6460 | 0.92 | 000 | 027

As the null distribution is not known (Fukumizu et al., 2007), permutation testing is performed. Table
13 reveals the accuracy-fairness trade-offs and p-values under different regulation strengths. The
p-values indicate the probability of observing the test statistic under null hypothesis of (conditional)
independence. As we expect, stronger fairness regularization leads to lower levels of unfairness as
measured by DI and DEO, as well as stronger guarantees in statistical tests. For example, at A = 2.0,
we can say with 90% chance that predictions are conditionally independent of sensitive attributes
(under EO) or 27% chance that predictions are independent of sensitive attributes (under DP).
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Figure 3: Visualizing FairCOCCO regularization. (Top) distribution of predictions for label 1
of different group memberships under EO. (Bottom) distribution of predictions for different group
memberships under DP. Predictions are produced by regularized logistic regression model with
A =0,\=0.5,\ = 1.0, respectively, across each row.

C.4 SENSITIVITY ANALYSIS: ACCURACY-FAIRNESS TRADE-OFFS

One of the key contributions of this study is the introduction of a differentiable fairness penalty
that can naturally extend to multiple sensitive attributes. In this section, we generate the frontier of
possible values on three experiments to better evaluate the sensitivity of our proposed methods to
different numbers of sensitive attributes:

0275 » 0165 o
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2 0225 g | Loiss |
3 $ 030 S 1
£ 0200 2 J | gomso
3 0175 S / g “
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Figure 4: Fairness-accuracy trade-off. (left) C&C dataset with four sensitive attributes; (middle)
students dataset with two sensitive attributes; (right) drugs dataset with three sensitive attributes.

* Regression on C&C with 4 attributes: racePctBlack, racePctAsian, racePctWhite,
and racePctHisp,

* Regression on Students with 2 attributes: age and gender,

* Binary classification task on Drugs with 3 attributes: age, gender, and ethnicity.

As Figure 4 illustrates, similarly, fairness and prediction outcomes are achieved at various number of
sensitive attributes.
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