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ABSTRACT

We propose Waveformer that learns attention mechanism in the wavelet coefficient
space, requires only linear time complexity, and enjoys universal approximating
power. Specifically, we first apply forward wavelet transform to project the in-
put sequences to multi-resolution orthogonal wavelet bases, then conduct non-
linear transformations (in this case, a random feature kernel) in the wavelet co-
efficient space, and finally reconstruct the representation in input space via back-
ward wavelet transform. We note that other non-linear transformations may be
used, hence we name the learning paradigm Wavelet transformatIon for Sequence
lEarning (WISE). We emphasize the importance of backward reconstruction in
the WISE paradigm — without it, one would be mixing information from both
the input space and coefficient space through skip-connections, which shall not
be considered as mathematically sound. Compared with Fourier transform in re-
cent works, wavelet transform is more efficient in time complexity and better cap-
tures local and positional information; we further support this through our ablation
studies. Extensive experiments on seven long-range understanding datasets from
the Long Range Arena benchmark and code understanding tasks demonstrate that
(1) Waveformer achieves competitive and even better accuracy than a number of
state-of-the-art Transformer variants and (2) WISE can boost accuracies of various
attention approximation methods without increasing the time complexity. These
together showcase the superiority of learning attention in a wavelet coefficient
space over the input space.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has become one of the most influential models in natural lan-
guage processing (Devlin et al., 2018; Brown et al., 2020), computer vision (Dosovitskiy et al.,
2020), speech processing (Baevski et al., 2020), code understanding (Chen et al., 2021a) and many
other applications. It is composed of the attention layer and the feed-forward layer with layer norms
and skip-connections added in between. The original design of the attention layer scales quadrat-
ically to the sequence length, becoming a scalability bottleneck of Transformers as texts, images,
speech, and codes can be of vast lengths.

State-of-the-art attention approximation methods have enabled Transformers to scale sub-quadratic
or even linearly to the input sequence length. Typical approaches to computing a cheaper pseudo-
attention include sparse attention patterns (Parmar et al., 2018; Wang et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020), low-rank approximation (Wang et al., 2020; Chen et al., 2021b), and
kernel approximation (Katharopoulos et al., 2020; Choromanski et al., 2020; Peng et al., 2020),
where most of these methods are linear in time complexity. For a comprehensive review, please
refer to Section 4.

Recent works on improving the effectiveness and efficiency of long-range capabilities of Trans-
formers start to explore attention learning in a transformed space. For example, conducting low-
cost token-mixing with forward Fourier transform leads to remarkable accuracy improvement with
a quasi-linear time complexity (Lee-Thorp et al., 2021). Token-mixing ideas (You et al., 2020;
Lee-Thorp et al., 2021) are simple and effective, however, they lose Transformer’s universal approx-
imating power by replacing attention with hard averaging (Yun et al., 2019). Moreover, without
backward transform the model will mix information from both the input and transformed spaces,
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Figure 1: An overview of our proposed Waveformer and WISE. (a) The only difference between a
Transformer block and a Waveformer block is the attention computation. (b) The general flow of
computation in WISE with forward and backward wavelet transform.

which is not mathematically sound. Since multiplication in the Fourier coefficient space, after pro-
jected back to the input space, is equivalent to directly calculating convolutions in the input space,
people have also utilized the forward and backward Fourier transform to learn large global filters
with linear weights (Rao et al., 2021) and non-linearities (Guibas et al., 2021).

We propose Waveformer that facilitates the attention mechanism learning in a wavelet coefficient
space, as shown in Figure 1(a). It requires only linear time complexity and enjoys universal approx-
imating power. Specifically, we first apply forward wavelet transform to project the input sequence
to multi-resolution orthogonal wavelet bases, then conduct non-linearity (e.g., random feature ker-
nel (Rahimi & Recht, 2007)) in the wavelet coefficient space, and finally, reconstruct the representa-
tion in input space via backward wavelet transform. We name this general learning paradigm WISE,
as shown in Figure 1(b), it can be suited with attention approximation methods to boost their long-
range understanding capabilities. We implement wavelet transform using Fast Wavelet Transform
(FWT) (Mallat, 1989) so both transform steps are linear in time. Intuitively, WISE operates on a lo-
cal to global, coarse to fine-grained cascading structure. Compared with Fourier transform, wavelet
transform is more efficient in time complexity and better captures local and positional information
since the wavelet basis is localized in space with ranging granularity. For the non-linear transfor-
mation in the wavelet coefficient space, one can apply any non-linearities, while we suggest using
attention approximation methods. A reason behind this is that since wavelet transformation is invert-
ible and exact, WISE will be universal approximating when coupled with universal approximators
as its non-linearity.

We conduct extensive experiments on the Long Range Arena (LRA) benchmark and common code
understanding tasks to empirically ablate and justify this method. Compared with a number of
widely-used Transformer variants, Waveformer with a linear time complexity can achieve compet-
itive and even better performance. When combined with various representative attention approx-
imation functions, WISE can boost their performance without incurring extra time complexities.
This shows that learning in a wavelet coefficient space provides better long-range understanding
capability over direct learning in the input space. Our ablation studies also support the use of the
forward-backward schema and the superiority of wavelet transform over Fourier transform.

In summary, our major contributions are as follows.

• We propose WISE to facilitate learning in the wavelet coefficient space following a forward-
backward paradigm which can be suited with attention approximation methods while boosting
their long-range understanding capabilities.

• Based on WISE, we develop Waveformer that requires only linear time complexity and enjoys
universal approximating power for sequence-to-sequence functions.

• Extensive experiments on the Long-Range Arena benchmark and code understanding tasks have
demonstrated the effectiveness and also justified the design of Waveformer.

Reproducibility. We will release our code on GitHub.

2 WAVEFORMER

As shown in Figure 1(a), the only difference between a Transformer block and a Waveformer block
is the attention computation. In this section, we introduce the details that replace the attention

2



Under review as a conference paper at ICLR 2023

computation in Waveformer. The general flow of WISE is shown in Figure 1(b), which constitutes
the forward wavelet transform, the non-linearity in the middle, and the backward wavelet transform.

We list our notations here — we denote scalars as x, vectors as x, matrices as X; we denote inner
product between functions f, g as ⟨f, g⟩ =

∫
f(t)g(t) dt; we denote function f ’s transformation in

the coefficient space as f̂ .

Background about Attention Let X ∈ Rn×d denotes the input sequence of length n and hidden
dimension d. A dense self-attention layer is shown below:

Attention(X) = Softmax(
QK⊤
√
d

)V (1)

where Q = XWq , K = XWk, V = XWv with Wq,Wk,Wv ∈ Rd×m stand for the query, key, and
value, respectively. The attention head size is denoted by m. The self-attention layer Attention(·)
computes a weighted average for each column of V according to the dot-product similarity QK⊤

that is of O(mn2) number of operations.

2.1 GENERALIZED FORWARD-BACKWARD PARADIGM

We propose the generalized forward-backward paradigm to conduct learning in the coefficient space
between forward and backward transformation. WISE is a special case of the generalized paradigm
when the transformation is wavelet transform. The forward transformation, also called analysis, de-
composes the input sequence into coefficients of a set of orthogonal, complete functional basis. We
then conduct non-linear transformation in the coefficient space, which directly operates on the func-
tion. In the backward transformation, also called synthesis, we reconstruct the target representation
in the original function space.

We require the forward-backward transformation pair to be invertible and exact, meaning that one
can perfectly reconstruct the same input from the coefficients. Note that orthogonality is not neces-
sary for this condition but a non-orthogonal basis cannot be transformed via simple inner product.

The general framework is shown below. Without loss of generality, we limit ourselves to 1d func-
tions. Given input and output function x(t), y(t) : R −→ R on time domain t, functional basis g(ω, t)
on both time domain t and frequency domain ω, and non-linear transformation F .

Forward Transform : x̂(ω) =

∫
x(t)g∗(ω, t) dt =

∑
i

x(ti)g
∗(ω, ti) (2)

Nonlinear Transform : ĥ(ω) = F ◦ x̂(ω) (3)

Backward Transform : y(t) =

∫
ĥ(ω)g(ω, t) dω =

∑
j

ĥ(ωj)g(ωj , t) (4)

where g∗(ω, t) denotes the complex conjugate of g in case g has complex parts.

As a concrete example, we use the Fourier transformation pair (formally defined in Appendix A.2)
to illustrate this idea. Under Fourier transform, the functions are decomposed into sinusoidal waves,
with g(ω, t) = ei2πωt. The coefficients will represent the magnitude of the corresponding sinusoidal
function. Hence, learning the mapping between any sequential function x(t) −→ y(t) becomes
learning a coefficient mapping between the transformed x̂(ω) −→ ŷ(ω) in a vector space.

In WISE, we utilize the more localized wavelet transform as the forward-backward mechanism and
in Waveformer we use the random feature kernel as the non-linear transformation. However we want
to highlight that numerous alternative candidates can fit in our generalized paradigm, we briefly
list a few below. For the forward-backward mechanism, any transformation based on orthogonal
polynomials such as Chebyshev transform and Hartley transform will suit our purposes. For the
non-linear transformation, essentially any neural architecture with sufficiently strong learning power
will be a valid candidate.

We will explain the inner workings of our Waveformer’s forward-backward transformation and the
reason for choosing it in the next part.
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Figure 2: We show a chirp signal from 1Hz to 4Hz on the left, its Fourier transform in the middle
and its wavelet transform on the right. As you can see, from the Fourier transform graph one can
only infer the existence of signal in the range of 1-4Hz without information on its happening time,
while in the wavelet transform graph both time and frequency information are present and one can
tell this is a chirp signal.

2.2 WAVELET TRANSFORM

Fourier transform decomposes the entire function into global sinusoidal waves. It tells people what
frequencies are there and in what magnitude, but no information is given about when that frequency
started or ended. See Figure 2 for an illustration on a chirp signal. This limits the capability to
understand the local structures of the input and to conduct learning on top of it, which is crucial to
many machine learning tasks.

Wavelet transform is designed to solve this issue. It employs a function ψ(x), x ∈ R, called mother
wavelet, to generate a family of translated and dilated wavelets (see Figure 1(b)):

ψi,j(x) = 2
i
2ψ(2ix− j), i, j ∈ Z (5)

where scale i controls the resolution of the wavelet and j controls the position of the wavelet. With
a larger i the wavelet will be squeezed shorter in space, hence the normalization factor 2

i
2 to ensure

the same L2 norm for all wavelets. The wavelet family ψi,j(x) is orthogonal on this dyadic grid.

To be a valid mother wavelet ψ(x), the only requirement is admissibility:∫
R
ψ(x) dx = 0 (6)

In other words, the sum of function value should be 0.

Given any square integrable function f ∈ L2(R) (i.e.,
∫
|f(x)|2 dx < ∞) and wavelet functions

ψi,j , the wavelet transform pair is defined as:

Forward Discrete Wavelet : f̂(i, j) =

∫
R
f(x)ψ∗

i,j(x) dx =
∑
t

f(xt)ψ
∗
i,j(xt) (7)

Backward Discrete Wavelet : f(x) =

+∞∑
i=−∞

+∞∑
j=−∞

f̂(i, j)ψi,j(x) (8)

where ψ∗
i,j(x) denotes the complex conjugate of ψi,j(x).

Intuitively, in wavelet transform, we are scanning f(x) with a microscope that has two knobs. One
knob is the location j, the other one is the frequency (i.e., 2i). We will be able to oversee the local
structure of the input and calibrate it accordingly with parameterized functions in WISE paradigm.
See Figure 2 for a direct comparison.

To generalize beyond L2(R) and avoid using an infinite number of wavelets, we must introduce
another function ϕ, called scaling function with a similar admissibility and orthogonality constraint:∫ +∞

−∞
ϕ(x) dx = 1, ϕi,j(x) = 2

i
2ϕ(2ix− j), s.t.⟨ϕi,j , ψi′,j′⟩ = 0, i′ > i, ∀j, j′ (9)
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ϕi,j is designed to cover the scale up to i, hence the orthogonality requirement. The decomposition
of f(x) therefore becomes:

f(x) =

+∞∑
j=−∞

⟨ϕ0,j , f⟩ϕ0,j(x) +
+∞∑
i=0

+∞∑
j=−∞

⟨ψi,j , f⟩ψi,j(x) (10)

Note that although i still goes to +∞ in (10), i usually has an upper limit in practice since it is
impossible to work with infinite frequency. We also highlight that both the forward and backward
discrete wavelet transform have an efficient O(n) complexity algorithm (Mallat, 1989).

In the d-dimensional case, we do not have a general orthogonal discrete Rd wavelet, unlike the con-
tinuous case. However, we can still perform discrete wavelet transform over each spatial dimension
of the input, and we’d still be able to perfectly project and reconstruct the original function.

To summarize, wavelet transform enjoys O(n) time complexity, an already desirable property com-
pared to Fourier transform’sO(n log n) complexity. It further provides the capability to examine the
local structures with different resolutions via altering the scale. Learning carried out in this wavelet
space will correspond to gathering and processing information from local to global level, in a coarse
to fine-grained fashion.

2.3 RANDOM FEATURE KERNEL

We have explained the transformation mechanism for WISE. One question remains unanswered:
which architecture should we choose to use as the parameterized non-linear transformation? For
our purpose, the architecture should have linear complexity in sequence length; should be able to
tackle sequential inputs effectively; should be as expressive as possible. Among the ones that fit our
criteria, we choose random feature kernel (Rahimi & Recht, 2007) due to its simplicity, efficiency,
and theoretical benefits.

We have shown the self-attention in Equation (1). It can be rewritten using the softmax kernel (SM):

Softmax(QK⊤)i,j =
SM(Qi,Kj)∑n
j=1 SM(Qi,Kj)

, SM(x, y) = exp (x⊤y) (11)

Random feature kernels aim to approximate SM(·, ·) with randomized mapping ν : Rd −→ Rr
+.

K(x, y) = E[ν(x)⊤ν(y)] (12)

We use FAVOR+ from Performer (Choromanski et al., 2020) as the randomized mapping ν:

ν(x) =
exp (−∥x∥2

2 )
√
m

(exp (w⊤
1 x), . . . , exp (w

⊤
mx)), wi ∼ N (0, Id) ∀i ∈ {1, . . . ,m} (13)

where m denotes the number of random features. Similar to FAVOR+, we require w1, . . . , wm to
be orthogonal to reduce the variance of estimation. However, we impose additional normalization
on x beforehand to further stabilize the estimation inspired by Peng et al. (2020). We note that this
in-place normalization is important when bounding the MSE error of the random feature kernel, as
shown in Appendix A.1 Lemma 1.

2.4 UNIVERSAL APPROXIMATION POWER

In this subsection, we show that Waveformer has the same universal approximation power for seq-
to-seq functions as Transformer. The goal is to show that for any f in F , ∀p ∈ [1,+∞),∀ϵ > 0, we
can find a f̄ in the class of Waveformer, such that:

dp(f, f̄) =

(∫
Rn×d

∥f(X)− f̄(X)∥pp dX
) 1

p

≤ ϵ

We define the Waveformer class that has positional encoding, h heads, head size s, hidden dimension
r as Wh,s,r with FAVOR+ kernel as described in Section 2.3.
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Table 1: Evaluation results on Long-Range Arena benchmark. We show both the average accuracy
(Avg) and average accuracy without Retrieval (Avg (w/r)) since LUNA 256, Nyströmformer, and
our Waveformer all use prolonged 20k training steps on Retrieval task.

Model ListOps Text Retrieval Image Pathfinder Avg Avg (w/r)

Transformer 36.37 64.27 57.46 42.44 71.40 54.39 53.62

Local Attention 15.82 52.98 53.39 41.46 66.63 46.06 44.22
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 51.24 49.15
Longformer 35.63 62.85 56.89 42.22 69.71 53.46 52.60
Linformer 35.70 53.94 52.27 38.56 76.34 51.36 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 50.67 49.99

Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 51.39 50.89
Synthesizer 36.99 61.68 54.67 41.61 69.45 52.88 52.43

BigBird 36.05 64.02 59.29 40.83 74.87 55.01 53.94
Linear Trans. 16.13 65.90 53.09 42.34 75.30 50.55 49.92

Performer 18.01 65.40 53.82 42.77 77.05 51.41 50.81
FNet 35.33 65.11 59.61 38.67 77.80 55.30 54.23

LUNA 256 37.98 65.78 79.56 47.86 78.55 61.95 57.54
Nyströmformer 37.15 65.52 79.56 41.58 70.94 58.95 53.80

Waveformer 38.20 75.60 78.56 42.98 79.17 62.90 58.99

Theorem 1 ∀p ∈ [1,+∞), ϵ > 0, and for any f ∈ F , we can find a Waveformer network w ∈
W2,1,4, such that dp(f,w) ≤ ϵ.

The sketch of the proof is simple: since we have required the transformation pair to be invertible and
exact, so for any seq-to-seq function, we can universally approximate it in the wavelet space and it
is equivalent to having universal approximation power in the original space. The detailed proof of
Theorem 1 is shown in appendix A.1.

3 EXPERIMENTS

Besides intuitively and theoretically showing the superiority of the WISE paradigm, we also em-
pirically show the accuracy of our design when compared with other recent efficient transformers,
along with several ablations on each component of our Waveformer.

3.1 EXPERIMENTAL DESIGN

To examine the performance of various efficient transformer variants, we compare them on datasets
that require long-range understandings, (1) five datasets from the publicly available benchmark Long
Range Arena, and (2) two code understanding datasets.

Long Range Arena (LRA) Tay et al. (2020b) is a recent benchmark that is designed to com-
pare different efficient transformers. Since its release which already contains ten different efficient
transformers, more and more efficient transformers have chosen it as the primary evaluation. The
benchmark contains five datasets to evaluate1. The datasets require understanding long sequences of
mathematical operations, classifying text based on sentiment, matching similar documents, classify-
ing images, and recognizing 2D spacial information. The sequence lengths of the dataset are within
the range of 1K-4K.

Code Understanding Tasks Apart from the rather synthetic datasets in LRA (e.g., flattening
CIFAR-10 images to simulate long sequence lengths), we also select a real-world long sequence
task that involves detecting the vulnerabilities in source code. This task test Waveformer’s ability to
learn on source code and classify a piece of source code as buggy or not. Two datasets are included:
CodeXGLUE (Lu et al., 2021) is introduced as a multi-programming language benchmark for code

1There are also hard variants that even full attention transformers fail to solve, which is out-of-scope of this
paper.
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Table 2: Sequence length for each dataset’s train split.
The task of vulnerability detection requires reasoning
over the entire piece of code snippet to deduct the label.

Dataset CodeXGLUE D2A-Func

Average Length 1277.49 1038.86

Median Length 561 717

Table 3: Accuracy on vulnerability detec-
tion tasks. † Evaluation on validation set.

Model CodeXGLUE D2A-Func

Code/C BERT 62.08 60.2

BERT-medium 59.69 59.73†

Waveformer 62.81 62.58†

model evaluation, one of the tasks is vulnerability detection on C code, and the labels are created by
security experts; D2A (Zheng et al., 2021)2 is created for vulnerability detection with multi-modal
trace and function data, we only use the function subset for our evaluation. To show the long-
range nature of these tasks, we show the average sequence length (in the number of tokens after
tokenization) in Table 2.

Experiment Environment. Our early-stage experiments are mostly conducted on RTX 3090
GPUs, and later moved to TPU v3-8s. Our code is written in Jax (Bradbury et al., 2018) with the
Flax framework (Heek et al., 2020). The wavelet transformation implementation is primarily based
on Jax Wavelet Toolbox (Moritz Wolter, 2021) and PyWavelets (Lee et al., 2019).

3.2 WAVEFORMER

LRA. We first highlight the performance of our method on the LRA benchmark in Table 1. No-
tably, among all the attention approximation methods, our Waveformer performed the best on three
of the five datasets, and with a close-to-top performance on another. The time complexity of Wave-
former is also the theoretically lowest possible among all other approximation methods, matching
the size of the input.

Code Understanding. To show that our Waveformer’s long-range reasoning ability can also be
applied to real-world tasks, we compare it with a full attention BERT model on solving the two code
understanding tasks. For Waveformer and BERT, we use a BERT-medium configuration (8 layers, 8
heads, 512 hidden dimensions) as the model size due to resource constraints.

We mostly follow existing works, Code-BERT (Feng et al., 2020) and C-BERT (Buratti et al., 2020),
on the training and evaluation settings on the two datasets. Following Code-BERT’s practice, we
pre-train on CodeSearchNet (Husain et al., 2019) corpus that contains 6.4M code snippets across
six programming languages (Python, Java, JavaScript, PHP, Ruby, and Go) with the masked lan-
guage modeling objective. We then finetune our models on the downstream vulnerability detection
datasets. Both Code-BERT and C-BERT take in sequence up to 512 tokens, but the code snippets’
median length already surpassed 512, meaning that more than half of the inputs will be truncated.
Therefore we set the max sequence length as 1,024 for our Waveformer and BERT. We also note
that there is more extensive training for Code-BERT and C-BERT that we could not afford, for in-
stance, Code-BERT’s pre-training uses batch size 2,048 over 100K training steps whereas our batch
size is set to 64, effectively 32 times less training epochs, and both models choose a 12-layer 768-
dimension configuration compared to our 8-layer 512-dimension. The detailed hyperparameters and
training configurations are included in Appendix A.4. We report their published test accuracy for
CodeXGLUE and D2A-Func respectively as a strong baseline.

Table 3 contains the performance of Waveformer and BERT-medium on the two code-understanding
tasks. We can see that on a fairground of training and model size, Waveformer outperforms a full-
attention transformer model by a large margin. Further, when compared with larger-sized models
that have dedicated training methodologies, Waveformer performs on par on the vulnerability de-
tection task of CodeXGLUE, due to the power of abling to handle long-range sequences and under-
standing long-range relationships.

3.3 ATTENTION IN WISE

Our WISE paradigm has a general philosophy of applying non-linearity in the wavelet transformed
space and is not limited to a certain type of attention method. We comprehensively evaluate rep-

2We note that D2A-Func hasn’t released the test set, hence we report the validation accuracy for our imple-
mentations instead.
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Table 4: We use F /W to denote that the attention is performed in the Fourier/wavelet space (which
also incurs an O(n log n)/O(n) complexity cost). † We reran Linformer & Linear Trans. for all
(N/A, F ,W) with the same additional five sets of hyperparameters because of convergence issues.‡
We note that we are unable to reproduce a score close to the original Linformer performance on
Pathfinder. § This is the normalized version of Performer as described in Section 2.3, when combined
with the wavelet space, it is our Waveformer.

Attention ListOps Text Retrieval Image Pathfinder

N/A F W N/A F W N/A F W N/A F W N/A F W

Full O(n2) 36.37 17.80 37.15 64.27 56.42 74.82 57.46 51.78 72.43 42.44 31.41 42.29 71.40 50.55 78.25
Linformer O(n) 35.70 36.15 37.65 53.94 57.06 55.22 52.27 55.93 65.85 38.47† 34.89† 39.17† 66.44† ‡ 61.76† 70.21†

Linear Att. O(n) 16.13 37.65 37.55 65.90 71.66 71.93 53.09 72.71 70.71 42.32† 51.07† 40.83† 75.91† 70.45† 76.43†

Longformer O(n) 35.63 18.95 36.65 62.85 55.36 74.99 56.89 52.52 66.21 42.22 29.12 37.10 49.71 50.38 78.15
Performer§ O(n) 18.01 37.15 38.20 65.40 65.52 75.60 53.82 60.56 78.56 42.77 9.99 42.98 77.05 50.49 79.17

resentative attention methods on different space transformations (no transformation, Fourier trans-
formation, and wavelet transformation). We show that performing full attention, or many other
attention approximation operations in a wavelet transformed space as proposed in WISE paradigm
almost always brings great accuracy improvements. In Table 4 almost all attention methods have
increased accuracy when applied in the wavelet space compared to an untransformed space, except
for the Image dataset, where some methods incur a slight drop in accuracy. When compared with
Fourier transformation, we can see that in most cases, the wavelet transformation is much better.

We do note an interesting finding that Linear Trans. when coupled with a Fourier transformation
space, showed pretty good results on all the tasks, and especially a significant improvement on the
Image task3. One hypothesis is that this is due to the fact that Linear Trans.’s polynomial kernel in
Fourier space, which occurs in the forms ofK(x, y) = (x⊤y), can be interpreted as self-convolution
in input space. We leave this for future discovery.

4 RELATED WORK

4.1 ATTENTION APPROXIMATION METHODS

There has been plenty of prior work to enable transformers to handle long input more efficiently and
effective. Since the inefficiency comes from the quadratic dependency on sequence length because
of the dense attention operation, a large portion of research simulates the attention operation with
certain approximations, for example, replacing the dense attention matrix with a sparse version, or
assume that it satisfies certain low-rank structures. We briefly review some methods on this topic in
this section. For a more detailed survey, we refer the readers to Tay et al. (2020c).

Sparse Attention. Perhaps the most intuitive solution to alleviate the quadratic cost, Sparse At-
tention only calculates a portion of the full n2 attention matrix. Early stage methods include Local
Attention (Parmar et al., 2018) and Multi-passage BERT (Wang et al., 2019) use sliding windows
or chunked blocks to speed up computation. Longformer (Beltagy et al., 2020) and BigBird (Za-
heer et al., 2020) further combine global attention, sliding window attention, dilated sliding window
attention, and random attention together to form strong sparse attention mechanisms, and BigBird
showed that their method is a universal approximator of sequence functions. To make the block
truncation a learnable process, Reformer (Kitaev et al., 2019) groups and sorts input segments via
locality-sensitive hashing such that similar tokens are placed in the same chunk. Similarly, Sinkhorn
Transformer (Tay et al., 2020a) trains a meta sorting network to reorganize input sequences before
applying windowed attention.

Low-rank Approximation. The self-attention matrix, at the center of transformer, has been
found to display low-rank behaviors after pre-training. Linformer (Wang et al., 2020) performed
spectrum analysis on the pre-trained attention matrix, and the results indicate that the top 128 singu-
lar values composite 88%-96% of the entire 512 singular values across attention heads and layers.
Based on this observation, Linformer added low-rank projection matrices in attention to approxi-
mate the original attention matrix. On a similar notion, Drone (Chen et al., 2021b) extended the
low-rank approximation scope to all matrices in transformer via data-driven optimal compression.

3Note that the hyperparameters were tuned for Linear Trans. on this task, see Appendix A.3
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Kernel Methods. The kernel methods approximate the whole self-attention by replacing the
softmax with a kernel function that can be decomposed to avoid the explicit calculation of theO(n2)
matrix multiplication. Linear Transformer (Katharopoulos et al., 2020) proposed a non-negative
elu feature mapping as the substitution for the softmax, they further pointed out the connection
between their formulation and RNNs, and argued that transformers and RNNs can be unified under
the same umbrella. Building on top of this, Random Feature Attention (Peng et al., 2020) and
Performer (Choromanski et al., 2020) utilized random feature approximation of the attention, one
highlights the importance of normalization before random projection while the other one emphasizes
the benefits of positive & orthogonal random features.

Token Mixing. Token Mixing methods are another version of efficient transformer building
blocks. Different from the methods discussed above, they do not approximate attention, but rather
conduct a new way of enabling communication between tokens. You et al. (2020) showed the pos-
sibility that a random token mixing strategy can work well in transformer encoders, as opposed to
delicate (pre-)trained attention heads. Token Mixing is a new view towards self-attention as methods
are not approximating self-attention. Lee-Thorp et al. (2021) pushed this idea further by providing
an efficient method to mix the tokens with Fourier forward transformation.

Among these methods, our Waveformer utilizes a wavelet transform, thus, is slightly similar to
Token Mixing. However, our work should be seen as a new approach to efficient transformers, which
mixes the idea of a orthogonal space transform that communicates between tokens and attention
approximations methods that can benefit in the new space. In our study, we also pick representatives
from each of the of attention approximation types and show that the dense attention operation and
these sparse attention operations can benefit from learning in a wavelet transformed space.

4.2 FOURIER & WAVELET TRANSFORM IN ML

Fast Fourier Transform (Cooley & Tukey, 1965) has been widely used in many machine learning
domains, probably the most common usage is to speed up the computation of convolution. For a
similar purpose to our work, AFNO (Guibas et al., 2021) learns global filters for images via adding
block-wise MLP in Fourier transformation, equivalent to a convolutional layer with large filters.
However, AFNO is designed for visual inputs, we show in our ablation study that such architecture
cannot fully capture long-range text information.

Fast Wavelet Transform (Mallat, 1989) has been the backbone of numerous modern technologies
including JPEG-2000 image compression (Skodras et al., 2001), digital communication (Akansu
& Smith, 1995) and many others. FWT has been used for computation speed up (Wolter et al.,
2020), speech recognition (Tufekci & Gowdy, 2000), and time series analysis (Michau et al., 2022).
Recently in computer vision, WaveMix (Jeevan & Sethi, 2022) proposed to mix the input images
with forward wavelet transform. We note that our work differs from theirs by learning the non-linear
transformation in the coefficient space amid forward and backward wavelet transform.

5 CONCLUSIONS

In this paper, we propose to learn sequential mapping in the wavelet coefficient space. Specifically,
the inputs are first forward transformed into the wavelet space, then the sequential mapping is learned
and finally, we reconstruct the transformed sequence back in the input space. We combine this
paradigm with random feature kernels and propose Waveformer, that has universal approximation
power and linear time complexity. When coupled with attention approximation methods, WISE
can boost their performance on long-range understanding tasks while enjoying no extra cost in time
complexity. Our experiments support the superiority of Waveformer and obtain strong performance
on the LRA benchmark and code understanding datasets.

Through this work we have focused on performing attention in the transformed space, but how will
other seq-to-seq models work in Fourier or wavelet space remains unknown. We also note that
there exist hundreds of wavelet bases, each with different design purposes and properties. Findings
crucial properties for conducting effective learning in the coefficient space and constructing adaptive
wavelet basis accordingly are both interesting problems we leave for future work.
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A APPENDIX

A.1 PROOF FOR THEOREM 1

We define the function class F to be the set of all countinous functions that map a compact domain
in Rn×d to Rn×d.

We start from making the connection between random feature kernel and regular transformer block:

Lemma 1 (Asymptotic Result for FAVOR+) The following is true for independent random wi,

MSE( ˆSM(x, y)) =
1

m
exp (∥x+ y∥2)SM2(x, y)(1− exp (−∥x+ y∥2))

⇒ lim
SM(x,y)−→0

MSE( ˆSM(x, y)) −→ 0

where SM denotes the softmax kernel, ˆSM denotes the random feature kernel, and MSE stands for
mean-squared error.

The proof of this lemma can be found at Choromanski et al. (2020, Lemma 2). It tells us the the
MSE error is upper bounded to a constant since x, y is normalized beforehand, and vanishes to 0 as
the original softmax kernel value tends to 0 and the number of random features m tends to +∞.

Next we use the main theorem of Yun et al. (2019). We denote the transformer network class that
has positional encoding, h heads, head size s, and hidden dimension r as T h,s,r.
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Hyperparameter Config1 Config2 Config3 Config4 Config5

Layers 1 1 2 2 2
Embedding Dim. 128 128 128 256 256
Attention Dim. 64 64 64 64 64
MLP Dim. 128 128 256 1024 512
Attention Heads 8 8 2 4 4
Dropout 0.2 0.1 0.1 0.1 0.2
Attention Dropout 0.1 0.1 0.1 0.1 0.1

Table 5: Additional hyperparameter configurations tried for Linformer and Linear Trans. in Image
and Pathfinder

Lemma 2 ∀p ∈ [1,+∞), ϵ > 0, and for any f ∈ F , we can find a Transformer network g ∈
T 2,1,4, such that dp(f, g) ≤ ϵ.

The proof of Lemma 2 constitutes of several steps, of which the first step is to approximate any
function f ∈ F as a piece-wise constant function f̃ . Since f is continuous, the piece-wise constant
approximation can be of arbitrary accuracy. Next they find a modified transformer g̃ with hardmax
operator and a special class of activations. Finally they show that the transformer block g is able to
approximate g. The functional distance is then bounded by:

dp(f, g) ≤ dp(f, f̃) + dp(f̃ , g̃) + dp(g̃, g) ≤ ϵ

We show that with slight modification, the proof will work for Waveformer, and can be generalized
to the WISE paradigm under certain constraints.

The proof is outlined below: For ∀f ∈ F , its wavelet transform f̂ (we will also use fw to denote
this, see (7) for details) is still continuous. Hence, the discretization claim remains valid. We can
then effectively approximate the self-attention transformer block with the FAVOR+ block up to ϵ

4
difference by controlling the number of random features m. In the end, the backward reconstruction
is exact, the distance bound becomes when we control the other three terms to be less than 1

4ϵ as
well:

dp(f,w) ≤ dp(fw, f̃w) + dp(f̃w, g̃) + dp(g̃, g) + dp(g,w) ≤ ϵ ■

A.2 FOURIER TRANSFORM PAIR

Given function f(x), x ∈ R, the Fourier transform pair is defined as the following:

Forward Fourier : f̂(ω) =

∫ ∞

−∞
f(x)e−i2πωx dx (14)

Backward Fourier : f(x) =

∫ ∞

−∞
f̂(ω)ei2πωx dω (15)

where ω stands for frequency in Fourier space.

A.3 LRA CONFIGURATION DETAILS

We tried to follow all hyperparameters as suggested for each of the attention approximations with
exceptions on Linformer and Linear Trans. in Image and Pathfinder. For them, we experimented
with five additional configurations as shown in 5.

For all wavelet transform conducted in this work, we use Daubechies 2 (Daubechies, 1992) as the
basis and we set level of decomposition to 1.

For Waveformer, the number of random features in random feature kernel is set as 256 for all text
tasks (ListOps, Text, Retrivial), 512 for all image tasks (Image, Pathfinder).

13



Under review as a conference paper at ICLR 2023

Table 6: Ablation study on Long-Range Arena benchmark.

Model ListOps Text Retrieval Image Pathfinder Avg Avg (w/r)

Waveformer 38.20 75.60 78.56 42.98 79.17 62.90 58.99

Linear 37.70 55.36 55.27 15.75 50.58 42.93 39.84
Fourier 36.85 65.52 60.56 9.99 50.49 44.68 40.71

Forward Fourier 37.15 64.91 65.98 37.84 53.39 51.85 48.32

A.4 CODE PRE-TRAINING & FINETUNING DETAILS

For pre-training, we use the CodeSearchNet dataset retrieved from Huggingface dataset. We use
GPT-2 (Radford et al., 2019) tokenizer for Waveformer and BERT since source code does not have
fixed vocabulary. We believe byte-level tokenization is more reasonable than sub-word tokenization.

We use the following set of hyper-parameters in pre-training: batch size is 64, learning rate is 5e-
5, masking probability is 0.15, warm up steps is 10k, training steps is 100k with a linear learning
schedule; we use AdamW optimizer with β1 = 0.9, β2 = 0.98, weight decay is 0.1.

We use the following set of hyper-parameters in finetuning: batch size is 64, learning rate is 2e-5,
training length is 10 epochs; we use AdamW optimizer with β1 = 0.9, β2 = 0.999.

A.5 ABLATION STUDY

We conduct an ablation study for Waveformer, as shown in Table 6. For (Linear), We limit the
transformation in wavelet space to be linear. For (Fourier), we use the Fourier transform as the
transformation mechanism for Waveformer. For (Forward Fourier), we only use the forward Fourier
transform without backward transform. It can be observed that performance dropped significantly in
all cases, indicating the necessity of non-linearity in wavelet space and forward-backward wavelet
transform.
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