
Make Some Noise: Unlocking Language Model Parallel Inference
Capability through Noisy Training

Anonymous ACL submission

Abstract

Existing speculative decoding methods typi-001
cally require additional model structure and002
training processes to assist the model for draft003
token generation. This makes the migration of004
acceleration methods to the new model more005
costly and more demanding on device mem-006
ory. To address this problem, we propose the007
Make Some Noise (MSN) training framework008
as a replacement for the supervised fine-tuning009
stage of the large language model. The training010
method simply introduces some noise at the011
input for the model to learn the denoising task.012
It significantly enhances the parallel decoding013
capability of the model without affecting the014
original task capability. In addition, we propose015
a tree-based retrieval-augmented Jacobi (TR-016
Jacobi) decoding strategy to further improve017
the inference speed of MSN models. Experi-018
ments in both the general and code domains019
have shown that MSN can improve inference020
speed by 2.3-2.7x times without compromis-021
ing model performance. The MSN model also022
achieves comparable acceleration ratios to the023
SOTA model with additional model structure024
on Spec-Bench.025

1 Introduction026

Large language models (LLMs) represented by027

GPT-4 (OpenAI et al., 2024) and LLaMA (Touvron028

et al., 2023) have made great breakthroughs to ar-029

tificial intelligence (Kocoń et al., 2023). However,030

LLMs suffer from high inference latency due to031

the autoregressive (AR) decoding paradigm, which032

constrains the model to generate only one token033

per decoding step. It significantly limits the appli-034

cations of LLMs when needs lengthy response.035

To address the bottleneck introduced by AR,036

speculative decoding (Leviathan et al., 2023; Chen037

et al., 2023) is proposed to get more than one token038

in one decoding step. It first guesses multi-step039

draft tokens and then verifies them simultaneously040

in one model forward. Once any draft token is041

Base Model SFT Model SFT Model

Base Model

supervised
fine-tuning

specific
training

Robust
SFT Model

Model-based Speculative Decoding Methods

noisy
fine-tuning

Additional Structures

MSN Noisy Training Framework（Ours）

Figure 1: An illustration of the differences between the
proposed MSN framework and existing model-based
speculative decoding methods. The book icon repre-
sents task-specific capabilities and the rocket icon rep-
resents parallel decoding capabilities.

accepted, it can effectively speedup the inference 042

process. Chen et al. (2023) employ a relatively 043

small LLM to generate multi-step draft tokens and 044

verify them in parallel on the target LLM. Medusa 045

(Cai et al., 2024) extends and train multiple lan- 046

guage model heads for existing models to predict 047

later draft tokes. It achieves considerable inference 048

speedup through efficient validation using tree at- 049

tentions. BiTA (Lin et al., 2024a) takes full ad- 050

vantage of the capabilities of LLM itself through 051

a parameter-efficient design that allows the model 052

to generate daft tokens based on trainable special 053

tokens. Kou et al. (2024) propose a post-training 054

method based on constructed Jacobi trajectories 055

that can accelerate the model’s own Jacobi decod- 056

ing capabilities. 057

Although the above methods improve the infer- 058

ence efficiency of the model to a certain extent, 059

there are still some problems to be solved as shown 060

in Figure 1. (1) Additional Structures. Most 061

current speculative decoding methods rely heav- 062

ily on additional model structures to accomplish 063

draft token prediction (e.g., separate models, lan- 064

guage model heads, trainable prompts, etc.). In the 065

case of Medusa, for example, it adds 1.6B param- 066

eters (5 additional medusa heads) to the 7B target 067

1



model, which will undoubtedly increase the mem-068

ory requirements for model inference. (2) Separate069

Post-Training. Existing model-based speculative070

decoding methods are trained after LLMs’ super-071

vised fine-tuning (SFT) stage to obtain acceleration072

capability. This process usually requires complex073

model setups or time-consuming data construction,074

and some methods even lose part of the model’s075

original task capabilities. Separate training of task076

and acceleration capabilities leads to an overly com-077

plex approach which is not easy to deploy.078

To address the above problem, we propose a079

noisy training framework 1 Make Some Noise080

(MSN) as a replacement for SFT, which enables081

the model to acquire both task-relevant capability082

as well as acceleration capability at the same stage083

without the need for additional structures and train-084

ing stages. Specifically, we consider the process of085

Jacobi decoding (Santilli et al., 2023) as a denois-086

ing process, and improve the denoising ability of087

the model by including a causal language model de-088

noising task in the SFT stage. Since the SFT stage089

is almost a necessary aspect of LLM applications,090

our proposed approach can be interpreted as a free091

lunch to the parallel inference capability of LLMs.092

In the inference phase, we use Jacobi decoding093

to achieve inference acceleration through repeated094

iterations of random noise tokens as well as verifi-095

cation. Besides, in order to alleviate the cold-start096

problem of Jacobi decoding and mitigate the ef-097

fect of random initial noise, we also propose the098

tree-based retrieval-augmented Jacobi (TR-Jacobi)099

decoding method, which can effectively improve100

the speedup ratio.101

We have conducted detailed experiments in the102

general and code domains. The results show that103

the MSN training framework can significantly im-104

prove the denoising ability of the model without af-105

fecting the performance of the original SFT model,106

which in turn achieves a 2.3-2.7x inference acceler-107

ation effect. In addition, we performed a detailed108

evaluation on Specbench, which is specifically de-109

signed for speculative decoding. As a speculative110

decoding method without additional structure and111

training, the acceleration ratio of the MSN model112

under TR-Jacobi decoding strategy significantly113

outperforms other additional-structure-free meth-114

ods and possesses comparable speedup ratios to the115

SOTA model with additional model structure and116

training.117

1https://github.com/XXX

Our main contributions can be summarised as 118

follows: 119

• We propose a new training framework Make 120

Some Noise (MSN) as an alternative to SFT, 121

which can unlock the parallel decoding ca- 122

pability of the model through the denoising 123

task. 124

• We propose a tree-based retrieval-augmented 125

decoding method that effectively improves the 126

inference speed of MSN models under mem- 127

ory bottlenecks. 128

• Experiments show that MSN training enables 129

the model to have a comparable acceleration 130

ratio to the SOTA method without significant 131

loss of task performance. 132

2 Related Work 133

2.1 Jacobi Decoding 134

Jacobi decoding (Santilli et al., 2023) treats greedy 135

decoding of generative tasks as solving equations: 136
y1 = argmaxPθ(y1|x)
y2 = argmaxPθ(y1|y1, x)

...
ym = argmaxPθ(ym|y1:m−1, x)

(1) 137

Auto-regressive decoding solves the equations from 138

first to last based on the given input x, progressively 139

replacing the resolved variables. In contrast, Jacobi 140

decoding relies on Jacobi and Gauss-Seidel (GS) 141

fixed-point iteration methods (Ortega and Rhein- 142

boldt, 2000) to solve Equation 1 in parallel. Specif- 143

ically, it passes an initialisation sequence of length 144

m into the model for iterative generation until the 145

sequence converges to a fixed point. Jacobi de- 146

coding expects to solve the equation in less than 147

m iterations, but in fact existing models perform 148

poorly under this decoding strategy due to the lack 149

of denoising capability. Kou et al. (2024) greatly 150

improve the efficiency of Jacobi decoding by con- 151

structing the trajectory data during Jacobi decoding 152

and performing consistency training. 153

2.2 Speculative Decoding 154

Speculative decoding can effectively increase the 155

decoding speed without changing the output qual- 156

ity by guessing and verifying the output of the 157

auto-regressive language model in parallel. Current 158

mainstream work has focused on investigating how 159

2



Current Token

LM Task

Prefix _I _am _always _on _always _I out _for _exc

_am _always _on _the _look out _for _exc iting_I

Noisy Input

Gold Output

MSN Training Stage Ahead Noise Denoising Task

Randomly Selected Noise

Auto-regressive Language Model

Prefix: I am always _on _always _I

_the _look out _a

Inference Stage （Jacobi Decoding）

Randomly Selected Noise

_am

_a

_on _the _look

_look out

out

_for

Draft Token

Accept

Reject

_a

_for

Accepted Token

_on _the _look out _for

Prefix: I am always

Prefix: I am always _for _look _on

Ahead Noise

... ... ... ...

Padding Noise

Step1

Step2

Step3

Figure 2: Illustrations of the Make Some Noisy training framework and Jacobi decoding strategy. The training
phase in the figure uses a noise segment of length 2, and the inference phase is shown as an example when the
length of the noise segment is set to 3.

to complete draft token generation efficiently. Stern160

et al. (2018) complete the prediction of draft tokens161

with additional model structures. Chen et al. (2023)162

generate reliable draft tokens by a external small163

model. Cai et al. (2024) train multiple heads for164

the LLM model for predicting draft tokens based165

on the previous work. Li et al. (2024) make full166

use of the information in the hidden layer to accom-167

plish high-quality predictions of draft models with168

a separate decoder layer. Lin et al. (2024a) enable169

the model to predict draft tokens by training prefix170

tokens.171

In addition, there are speculative decoding meth-172

ods that do not require training. Fu et al. (2024)173

performs more efficient verification by collecting174

n-gram segments generated during Jacobi decoding175

as draft tokens. Saxena (2023) achieves accelera-176

tion in specific domains simply by retrieving draft177

tokens from the ahead prompt. He et al. (2023)178

enable plug-in draft token generation by retrieving179

a constructed knowledge database.180

In order to further improve the verification effi-181

ciency of draft token, Miao et al. (2023) propose182

to verify multiple paths as a token tree at a time183

by designing an attention mask matrix. Nowadays,184

token tree verification has become a widely used185

technique to improve the verification efficiency of186

speculative decoding.187

3 Method 188

3.1 Overall 189

Our core idea is to consider parallel decoding as 190

a kind of text generation under noise, similar to 191

the Jacobi decoding. This requires the model to 192

have the ability to generate the corresponding cor- 193

rect token despite the noisy token, which is not 194

possible with the current teacher-forcing training 195

(Bachmann and Nagarajan, 2024). 196

Inspired by related work addressing exposure 197

bias (Bengio et al., 2015; Zhang et al., 2019), we 198

chose to enhance the denoising ability of the model 199

by adding some token-level noise to the input se- 200

quence in the SFT stage of LLMs. As shown in Fig- 201

ure 2, we incorporate a causal language model de- 202

noising task in the training phase to ensure that the 203

model has the robust generation capability. During 204

the inference phase, we use random noise spliced 205

at the end of the sequence, and keep generating 206

and verifying draft tokens by iterative denoising, 207

consistent with the Jacobi decoding process. 208

To guarantee that the denoising ability is im- 209

proved without affecting the acquisition of task ca- 210

pabilities, we construct the method in terms of the 211

content and location of the noise segment(Section 212

3.2). In addition, to further enhance the validation 213

efficiency of the model, we propose a tree-based 214

3



retrieval-augmented Jacobi (TR-Jacobi) decoding215

strategy (Section 3.3).216

3.2 Noisy Training Framework217

Teacher-forcing has been widely adopted as an effi-218

cient training method by the dominant generative219

models. It trains the model with the label at mo-220

ment t as the input at moment t+ 1, which can ac-221

celerate the model convergence. For the sequence222

X = x0x1...xn, the loss function of a traditional223

auto-regressive model can be formulated as:224

LossAR =

n∑
i=0

− logP (Xi|X<i; θ) (2)225

where θ is the set of parameters of the lan-226

guage model and X<i represents the sub-sequence227

x0x1...xi−1. The model is trained to generate re-228

sults based on the correct labels, therefore each229

generation step requires the results generated in the230

previous step.231

In order to equip the model with denoising ca-232

pability, we introduce causal noise token in the233

training phase. As shown in Figure 2, we insert234

some noise tokens at the input to break the restric-235

tion that teacher-forcing always takes golden labels236

as input. To minimise the impact of noise on train-237

ing, we only replace one short segment with noise238

tokens in each sample. The noise sample can be ex-239

pressed as X̂ = x0x1...x̂i...x̂j ...xn where x̂i...x̂j240

represents the noise segment. The loss function of241

the noisy training method can be formulated as:242

LossMSN =

n∑
i=0

− logP (Xi|X̂<i; θ) (3)243

where Xi represents the token of golden labels244

and X̂<i represents the sub-sequence with noise245

tokens. It should be noted that even though the246

input contains partially noise tokens, the target of247

the model to learn is still the correct labels. Such248

training with noise can unlock the parallel decoding249

capability of the model to some extent. To further250

reduce the impact of noise on the SFT task, we251

investigate the content of the noise and the location252

of the noise.253

The Content of the Noise Segment. The main254

motivation for noisy training is to equip the model255

with the ability to generate correct tokens despite256

noisy inputs, which is achieved through the loss257

of the noise segments. However, the causal atten-258

tion mask of the LLMs leads to the possibility that259

the noise tokens may have an impact on the later 260

auto-regressive training objectives. To minimise 261

the impact, we chose the ahead noise as the main 262

content of the segments. Specifically, we randomly 263

sample the ahead tokens as the current noise token, 264

which can be formulated as: 265

x̂i = random_sample(X<i) (4) 266

where X<i represents for the sub-sequence ahead 267

of xi. Compared to random noise, ahead noise has 268

less impact on subsequent tokens. In addition, de- 269

noising the ahead noise tokens is more challenging 270

since they are more relevant to the context. 271

The Location of Noise Segment. Inspired by Lin 272

et al. (2024b), we have tried two noise location se- 273

lection methods, random selection and PPL-based 274

selection. Experiments (see the Appendix A for 275

details) have found that neither method has a sig- 276

nificant impact on the model task performance and 277

the speedup ratios are similar. We speculate that 278

our noise segments (less than 10) may be relatively 279

short on SFT datasets with an average length of 280

600 or more, and do not have an impact on the 281

training of the model itself. We therefore choose 282

the simpler random replacement noise method. 283

In practice, at each step of training, we only re- 284

place one fixed-length random segment with ahead 285

noise for the response of each sample. 286

3.3 TR-Jacobi Decoding 287

Tree-based Jacobi Decoding. As discussed in 288

Section 2.2, using token tree verification has be- 289

come a common method of verification in spec- 290

ulative decoding. In this paper, we also want 291

to improve the efficiency of Jacobi decoding by 292

constructing multiple candidate sequences. Like 293

Medusa (Cai et al., 2024), we heuristically chose a 294

sparse tree as our tree-attention template (see the 295

Appendix B for details). At the beginning of the 296

generation, we initialise all the nodes of the tree 297

using ahead noise to start the tree-based Jacobi de- 298

coding. As shown in Figure 3, for each forward 299

process, each path performs an ordinary Jacobi de- 300

coding process via tree attention. We then choose 301

the longest accept-length path and continue to fill 302

the validation tree nodes for next round based on 303

the path’s subsequent predictions. It is important to 304

note that we use the ahead noise tokens to populate 305

the remaining positions in the validation tree, just 306

like regular Jacobi decoding. 307

4



Retrieval-Augmented Jacob Decoding. In ad-308

dition, for methods that design draft token predic-309

tions on the input side of the model (e.g., Jacobi,310

BiTA, etc.), cold-start is also a key issue that needs311

to be addressed. When all draft tokens of this in-312

put are accepted, the model will have no way to313

get new draft tokens in this round. Existing meth-314

ods mitigate this problem by subsequently splicing315

more tokens, but incur additional inference costs.316

To avoid starting validation from completely ran-317

dom noise in this case, we consider combining318

retrieval-based draft token and model-based draft319

token generation.320

Specifically, we set a retrieval path in the to-321

ken tree to hold the candidate tokens obtained by322

retrieving the previous tokens. For retrieval, we323

use a simple and efficient method called prompt324

lookahead decoding (Saxena, 2023) to obtain draft325

tokens with the same beginning directly from the326

current ahead tokens for verification, which sig-327

nificantly accelerates inference on tasks such as328

summarization. The analysed experiments in Sec-329

tion 5.3 demonstrate that incorporating retrieved330

information is effective in improving the model’s331

acceleration ratio in specific domains. Also, Jacobi332

decoding can alleviate the inherent problems of333

retrieval methods in domains such as translation.334

4 Experiments335

4.1 Experimental Setup336

Datasets. To verify that our proposed Make337

Some Noise (MSN) SFT training can bring in-338

ference acceleration without compromising model339

performance, we have constructed SFT datasets340

in the general and code domains, respectively.341

For the general domain, we follow Lin et al.’s342

(2024a) setup to construct a training dataset con-343

taining 190k samples from LIMA (Zhou et al.,344

2024), Alpaca-GPT4 (Peng et al., 2023), CodeAl-345

paca (Chaudhary, 2023), OpenPlatypus (Lee et al.,346

2023) and CIP (Palla, 2023). Note that we only use347

100k samples from CIP. For the code domain, we348

adopt a total of 185k samples from Magicoder-OSS349

(Wei et al., 2023) and Evol-CodeAlpaca (Luo et al.,350

2023) as the training dataset, which are widely used351

in the program synthesis task.352

Training Settings. To evaluate the proposed353

method comprehensively, we select LLama3-8B-354

Base (Touvron et al., 2023) and DeepseekCoder-355

6.7b-Base (Guo et al., 2024) as the foundation mod-356

els for the general and code domains, respectively.357

Prefix: I am always _on _always _I

TopK Results

Prefix: I am always on look

Candidate Token Generation

out
(0.62)
_am

(0.22)

_am
(0.43)
_for

(0.12)

_look

Tree-Jacobi Verification 
(w Retrieval)

_out
_am

_am

_for

_am

_for

_forward _to

Accepted Length

1

2

0

0

0

Retrieved from previous text

Select the longest pathGenerate the verification tree

Step T

Step T+1

Figure 3: The main flowchart of TR-Jacobi decoding.
It should be noted that candidate generation and tree
verification are performed in the same step. For clarity,
we choose candidate generation at moment T and tree
verification at moment T+1 for analysis in the figure.

The training settings for MSN are aligned with 358

the baseline (SFT), maintaining a sequence length 359

of 2048 tokens, a batch size of 512, and a training 360

epoch of 4. Full-parameter fine-tuning is performed 361

on two servers, each equipped with 8 A100-80GB 362

GPUs, utilizing bf16 precision. We determine that 363

a noise segment length of 4 is optimal for dynamic 364

noise replacement for each sample. 365

Evaluation Settings. In this paper, we conduct 366

experiments on the task performance and acceler- 367

ation performance of MSN, respectively. For task 368

performance, we use the MT-bench (Zheng et al., 369

2024) in the general domain, the HumanEval (Chen 370

et al., 2021) and MBPP (Austin et al., 2021) bench- 371

marks in the code domain for evaluation. Evalplus 372

(Liu et al., 2023) , which provides additional test 373

cases for problems in HumanEval and MBPP, is 374

also included. For acceleration performance, we 375

performed a speedup evaluation of the proposed 376

parallel decoding methods on Spec-Bench (Xia 377

et al., 2024). This benchmark contains data from 378

multiple domains and provides a fair comparison 379

with existing acceleration methods. Following pre- 380

vious work, all speed related experiments are done 381

on a single A100-80G device with the batch size as 382

1. For our MSN model, the draft token length dur- 383

ing inference is consistent with the noise segment 384

length during training, which is 4. 385

5



Methods Metric(+) Speed Speedup(tokens/s)

LLaMA3-8B-Base (General)

SFT
6.13

38.00 1.00×
+Jacobi 39.38 1.01×
+TR-Jacobi 72.04 1.90×
MSN (Ours)

6.12
44.69 1.00×

+Jacobi 72.53 1.62×↑60
+TR-Jacobi 99.32 2.28×↑20

DeepseekCoder-6.7B-Base (Code)

SFT
76.6 (68.6)

48.47 1.00×
+Jacobi 48.59 1.00×
+TR-Jacobi 90.81 2.08×
MSN (Ours)

77.0 (68.7)
48.03 1.00×

+Jacobi 89.73 1.97×↑97
+TR-Jacobi 128.50 2.68×↑29

Table 1: Results of task performance experiments in
general and code domains. The general domain metric
uses scores from MT-bench and the code domain uses
pass@1 under greedy decoding. For the code domain,
we choose the average of HumanEval and MBPP as a
composite metric. ‘(+)’: Results after executing addi-
tional tests from evalplus. ‘↑’: Percentage improvement
over models without MSN.

4.2 Comparison with SFT386

Baselines. We first validate the impact of the pro-387

posed MSN training framework on the performance388

of the model tasks in the general and code domains.389

The standard supervised fine-tuning (SFT) is cho-390

sen as the baseline method for comparison. Specif-391

ically, we perform domain-specific SFT and noise392

training based on the same base model and com-393

pare the performance of both on downstream tasks.394

Results. The metric in Table 1 represents the task395

performance of each model. There is no significant396

performance loss of the model trained by MSN on397

the downstream task compared to SFT. Futhermore,398

The MSN model even delivers a slight performance399

boost in both domain. The enhancement in the400

code domain is particularly noteworthy, given that401

evaluating generated programs is more rigorous402

than evaluating conversation. Programs must be403

correctly formatted and pass all test cases to be404

deemed successful. It indicates that MSN does405

not hurt the model to acquire capabilities during406

the SFT phase. Our analysis suggests that this407

gain comes from the fact that noise mitigates the408

negative effects of teacher forcing training on the409

model to some extent. The causal denoising task410

forces the model to focus on more distant tokens 411

when predicting the current location token because 412

the current input is noisy. 413

In addition to this, we briefly test the accelera- 414

tion effect of the MSN method on the Jacobi-like 415

decoding strategy. We can see that targeted training 416

on the denoising ability of the model significantly 417

improves the acceleration ratio of Jacobi decoding 418

in different domains. Our proposed TR-Jacobi fur- 419

ther improves the acceleration ratio by verifying 420

multiple paths simultaneously. 421

4.3 Comparison with Other Speculative 422

Decoding Methods 423

Baselines. To further compare MSN with exist- 424

ing speculative decoding methods, we conducted 425

an evaluation on Spec-Bench (Xia et al., 2024). We 426

choose both speculative methods that include no ad- 427

ditional structures (Jacobi, LookAhead, PLD) and 428

those that require additional structures (Medusa2, 429

EAGLE) for comparison. EAGLE and Medusa2 430

are post-trained on Vicuna-7b-v1.3 (Chiang et al., 431

2023), which is already a post-SFT model. Since 432

our proposed MSN is performed in the SFT stage, 433

we need to perform MSN SFT on a base model. 434

Therefore, we conduct MSN on LLaMA3-8B-Base 435

and perform acceleration evaluations on two differ- 436

ent foundation models for a rough comparison of 437

speedup ratios based on different auto-regressive 438

(AR) throughputs. 439

Results. The overall acceleration experiment re- 440

sults are shown in Table 2. After specific train- 441

ing on denoising capabilities, the MSN model im- 442

proves the speedup ratio on all Jacobi-like decoding 443

strategies. For LookAhead, the denoising ability 444

may produce incoherent n-grams, which can lead 445

to a relatively low improvement. For both Jacobi 446

decoding and TR-Jacobi decoding acceleration ra- 447

tios, noisy training brings significant improvements. 448

TR-Jacobi has a fine blend of retrieved and gener- 449

ated draft tokens with respectable average receive 450

lengths in all domains. 451

The speedup ratio of the MSN model under TR- 452

Jacobi decoding is competitive with other methods. 453

As a method with no additional training stages and 454

no additional model structure, the proposed accel- 455

eration method is also comparable to the models 456

with additional structures. It is fair to say that MSN 457

is a lightweight and efficient way to achieve infer- 458

ence speedup comparable to existing SOTA models 459

while improving model robustness. 460

6



Methods AS MT-B Trans Sum QA Math RAG #MAT #Speed Overall(tokens/s)

Vicuna-7B-v1.3

AR ✗ 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00 49.64 1.00×
PLD ✗ 1.60× 1.03× 2.58× 1.15× 1.72× 2.15× 1.85 84.23 1.69×
Medusa2 1.6B 2.54× 2.01× 2.22× 2.00× 2.59× 2.09× 3.12 111.49 2.25×
EAGLE 0.3B 2.59× 1.91× 2.25× 2.07× 2.61× 2.01× 3.58 111.58 2.25×
LookAhead ✗ 1.44× 1.14× 1.31× 1.26× 1.57× 1.21× 1.65 65.80 1.32×
Jacobi ✗ 0.95× 0.92× 0.94× 0.94× 0.98× 0.94× 1.05 47.06 0.95×
TR-Jacobi ✗ 1.69× 1.31× 2.10× 1.28× 1.74× 1.58× 2.00 80.30 1.62×

LLaMA3-8b-MSN (Ours)

AR ✗ 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00 42.13 1.00×
LookAhead ✗ 1.51× 1.36× 1.46× 1.35× 1.65× 1.40× 1.75 61.51 1.46×↑11
Jacobi ✗ 1.62× 1.54× 1.75× 1.41× 1.67× 1.48× 1.86 66.68 1.58×↑66
TR-Jacobi ✗ 2.22× 2.03× 2.77× 1.85× 2.16× 1.96× 2.94 91.63 2.17×↑34

Table 2: Experimental results of acceleration ratios in various areas of Spec-Bench (Multi-turn Conversation,
Translation, Summarization, Question Answering, Mathematical Reasoning, Retrieval-aug. Generation). Under
the dashed line indicates the Jacobi-like decoding method. ‘AS’: Additional Structure. ‘#MAT’: Mean Accepted
Tokens. ‘↑’: Percentage improvement over models without MSN.

L HEval(+) MBPP(+)
Speed

Speedup
(tokens/s)

1 74.4 (70.1) 75.9 (64.6) 58.35 1.55×
4 73.2 (68.3) 76.5 (64.3) 80.47 2.13×
8 71.3 (65.9) 76.5 (65.1) 80.02 2.12×

Table 3: The effect of the training noise segments length
on acceleration and task capability. ‘L’ represents the
length of the noise segment.

5 Discussion461

5.1 Effect of Noise Segment Length462

The span length includes the length of the noise463

segment during training and the length of the draft464

sequence added during inference. The training span465

length affects the difficulty of the model learning466

from samples, while the span length during infer-467

ence impacts both the hit length and the speculative468

operation latency.469

Training Noise Segment length. Traning Noise470

segment length refers to the number of noise tokens.471

If the length is too short, the denoising capability472

of the model may be diminished, resulting in lim-473

ited acceleration during inference. Conversely, if474

the length is too long, it significantly increases the475

difficulty of denoising, affecting the model’s un-476

derstanding of the sample and thereby harming its477

task performance. To observe the impact of vary-478

ing training span lengths, we experiment with span479

1 4 8 16
Length of the noise segment

1.30

1.50

1.70

1.90

2.10

#M
AT

The Effect of Inference Noise Segment Length

LLaMA3-8B-MSN(L4)
LLaMA3-8B-MSN(L8)
LLaMA3-8B-MSN(L1)

Figure 4: The effect of the inference noise segments
length on acceleration with Jacobi decoding. ‘MAT’:
Mean Accepted Token.

lengths of 1, 4, and 8 on Deepseek Coder and the 480

task performance and acceleration are shown in Ta- 481

ble 3. It demonstrates that a length of 1 yields high 482

task performance but offers minimal acceleration. 483

A length of 8 provides substantial acceleration but 484

at the cost of significant task performance degrada- 485

tion. A length of 4 achieves the highest acceleration 486

with a lower impact on performance. 487

Inference Noise Segment Length Inference 488

noise segment length represents the draft token 489

num for Jacobi iteration, which is also the max- 490

imum number of times the token can be itera- 491

tively denoised. We perform parallel inference ex- 492

periments with different inference noise segment 493

lengths for models trained with different training 494

noise segment lengths (described above). We find 495

that the model can generalize from a smaller train- 496

7



MT-B Trans Sum QA Math RAG Overall
Domain

0

1

2

3

4

5
#M

AT

1.51
1.11

3.61

1.36 1.55 1.73 1.66

2.30 2.09
2.51

2.11 2.35 2.29 2.32
2.65

2.33

4.18

2.97
2.66

3.18 2.94

Analysis Experiment on Spec-Bench
PLD
TR-Jacobi(w/o R)
TR-Jacobi(w/ R)

Figure 5: Results of ablation experiments on the retrieval part of TR-Jacobi decoding.

StarCoder2-3B StarCoder2-7B StarCoder2-15B
Model

1.00

1.50

2.00

2.50

3.00

Sp
ee

d 
up

2.26× 2.18×

2.83×
The Effect of Model Scale

#MAT

1.50

2.12

2.75

3.38

4.00

#M
AT

Figure 6: Acceleration experimental results of MSN
training for StarCoder2 models of different sizes.

ing noise segment size to a larger inference noise497

segment size. This suggests that even though we498

only trained one step to go directly from noise to-499

ken to gold token, the model is able to generalize500

to obtain iterative denoising ability. In addition, the501

training noise length of 8 does not outperform the502

training noise length of 4, suggesting that length 4503

has reached the bottleneck of the model’s denoising504

ability in the SFT stage.505

5.2 Effect of Model Scale506

To assess the generalisation capability of MSN,507

experiments are conducted on different sizes of508

Starcoder2 (Lozhkov et al., 2024), specifically 3B,509

7B, and 15B parameters. The training data remains510

consistent with Section 4.1, and HumanEval with511

Jacobi decoding is utilised to evaluate the acceler-512

ation. The results of the experiment are shown in513

Figure 6. Overall, MSN demonstrates significant514

speedup across all model sizes, indicating its broad515

applicability.516

Specifically, when increasing the model size517

from 3B to 7B, the Mean Accepted Tokens (#MAT)518

only increases by 0.03, and the speedup ratio519

slightly decreases. It suggests that a 3B model520

is sufficient to learn the denoising capability and521

that the effectiveness of denoising does not signifi-522

cantly change with an increase in parameters from523

3B to 7B. The incremental increase in MAT for524

the 7B model is insufficient to offset the additional 525

computational cost of draft tokens during inference, 526

resulting in a decrease in the speedup ratio. How- 527

ever, when the model size reaches 15B, the denois- 528

ing capability increases dramatically. The #MAT 529

rises by nearly 1, and the additional computational 530

cost of draft tokens is mitigated by the substantial 531

improvement in hit rate, resulting in a 0.6 increase 532

in the speedup ratio. The outcomes on model scale 533

further exemplify the extensive applicability of our 534

method and demonstrate that larger models have 535

greater potential. 536

5.3 Effect of Retrieval Paths 537

In order to further analyse the performance en- 538

hancement brought by the retrieval paths to TR- 539

Jacobi decoding, we perform ablation experiments 540

with Llama3 on Mt-Bench. We compare the #MAE 541

for the pure retrieval method PLD, the pure Jacobi 542

method TR-Jacobi w/o R, and TR-Jacobi on each 543

domain. The results of the experiment are shown in 544

Figure 5. Our proposed TR-Jacobi integrates and 545

surpasses pure Jacobi and pure retrieval solutions 546

in terms of acceleration performance in various 547

domains. Retrieval paths mitigate the cold start 548

and instability due to random noise of Jacobi’s ap- 549

proach. The Jacobi method can continue to iterate 550

over the retrieval path and can also handle tasks 551

with shorter contexts (e.g., translation). 552

6 Conclusion 553

In this paper, we propose an effective training 554

framework Make Some Noise (MSN) to be used 555

as a replacement for the SFT stage. It enhances 556

the denoising ability of the model without affecting 557

the SFT training performance. Combined with our 558

proposed TR-Jacobi decoding strategy, the MSN 559

model is able to achieve 2.3-2.7x speedup in the 560

general and code domains without additional struc- 561

ture and training. 562

8



Limitations563

Causal denoising, as a more general task, is only564

used for experiments in the SFT phase in this paper565

due to limited computational resources. It is a566

worthy exploration to merge the denoising task567

with the next token prediction task into the pre-568

training task. In addition to this, the optimal noise569

fragment length may be related to the content of the570

SFT training set (parallel prediction of code text is571

less difficult, natural language text is more difficult).572

For a new SFT dataset, confirming the optimal573

noise segments may require some pre-experiments574

for searching, which imposes a certain burden on575

MSN training.576

Ethics Statement577

The source data for proposed methods come exclu-578

sively from publicly available project resources on579

legitimate websites and do not involve any sensitive580

information. In addition, all baselines and datasets581

used in our experiments are also publicly available,582

and we have acknowledged the corresponding au-583

thors by citing their work.584

References585

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten586
Bosma, Henryk Michalewski, David Dohan, Ellen587
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.588
Program synthesis with large language models. arXiv589
preprint arXiv:2108.07732.590

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The591
pitfalls of next-token prediction. arXiv preprint592
arXiv:2403.06963.593

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam594
Shazeer. 2015. Scheduled sampling for sequence595
prediction with recurrent neural networks. Advances596
in neural information processing systems, 28.597

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,598
Jason D Lee, Deming Chen, and Tri Dao. 2024.599
Medusa: Simple llm inference acceleration frame-600
work with multiple decoding heads. arXiv preprint601
arXiv:2401.10774.602

Sahil Chaudhary. 2023. Code alpaca: An instruction-603
following llama model for code generation. Code604
alpaca: An instruction-following llama model for605
code generation.606

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,607
Jean-Baptiste Lespiau, Laurent Sifre, and John608
Jumper. 2023. Accelerating large language model609
decoding with speculative sampling. arXiv preprint610
arXiv:2302.01318.611

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 612
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 613
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 614
Greg Brockman, et al. 2021. Evaluating large 615
language models trained on code. arXiv preprint 616
arXiv:2107.03374. 617

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 618
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 619
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 620
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 621
source chatbot impressing gpt-4 with 90%* chatgpt 622
quality. 623

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 624
2024. Break the sequential dependency of llm in- 625
ference using lookahead decoding. arXiv preprint 626
arXiv:2402.02057. 627

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 628
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 629
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 630
large language model meets programming–the rise of 631
code intelligence. arXiv preprint arXiv:2401.14196. 632

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 633
and Di He. 2023. Rest: Retrieval-based speculative 634
decoding. arXiv preprint arXiv:2311.08252. 635

Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz 636
Kochanek, Dominika Szydło, Joanna Baran, Julita 637
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil 638
Kanclerz, et al. 2023. Chatgpt: Jack of all trades, 639
master of none. Information Fusion, 99:101861. 640

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and 641
Hao Zhang. 2024. Cllms: Consistency large lan- 642
guage models. arXiv preprint arXiv:2403.00835. 643

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. 2023. 644
Platypus: Quick, cheap, and powerful refinement of 645
llms. arXiv preprint arXiv:2308.07317. 646

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 647
2023. Fast inference from transformers via spec- 648
ulative decoding. In International Conference on 649
Machine Learning, pages 19274–19286. PMLR. 650

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 651
Zhang. 2024. Eagle: Speculative sampling re- 652
quires rethinking feature uncertainty. arXiv preprint 653
arXiv:2401.15077. 654

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian 655
Yu, Guangming Lu, and Rong Xiao. 2024a. Bita: Bi- 656
directional tuning for lossless acceleration in large 657
language models. arXiv preprint arXiv:2401.12522. 658

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ye- 659
long Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian 660
Jiao, Nan Duan, et al. 2024b. Rho-1: Not all tokens 661
are what you need. arXiv preprint arXiv:2404.07965. 662

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 663
ming Zhang. 2023. Is your code generated by chat- 664
GPT really correct? rigorous evaluation of large lan- 665
guage models for code generation. In Thirty-seventh 666

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7


Conference on Neural Information Processing Sys-667
tems.668

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-669
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,670
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,671
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur672
Zucker, Younes Belkada, Zijian Wang, Qian Liu,673
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-674
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue675
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,676
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,677
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,678
Niklas Muennighoff, Xiangru Tang, Muhtasham679
Oblokulov, Christopher Akiki, Marc Marone, Cheng-680
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,681
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas682
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten683
Scholak, Sebastien Paquet, Jennifer Robinson, Car-684
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-685
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz686
Ferrandis, Lingming Zhang, Sean Hughes, Thomas687
Wolf, Arjun Guha, Leandro von Werra, and Harm688
de Vries. 2024. Starcoder 2 and the stack v2: The689
next generation. Preprint, arXiv:2402.19173.690

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-691
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,692
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:693
Empowering code large language models with evol-694
instruct.695

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao696
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-697
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and698
Zhihao Jia. 2023. Specinfer: Accelerating genera-699
tive llm serving with speculative inference and token700
tree verification. arXiv preprint arXiv:2305.09781,701
1(2):4.702

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,703
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-704
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-705
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,706
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-707
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-708
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,709
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,710
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-711
man, Tim Brooks, Miles Brundage, Kevin Button,712
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany713
Carey, Chelsea Carlson, Rory Carmichael, Brooke714
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully715
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben716
Chess, Chester Cho, Casey Chu, Hyung Won Chung,717
Dave Cummings, Jeremiah Currier, Yunxing Dai,718
Cory Decareaux, Thomas Degry, Noah Deutsch,719
Damien Deville, Arka Dhar, David Dohan, Steve720
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,721
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,722
Simón Posada Fishman, Juston Forte, Isabella Ful-723
ford, Leo Gao, Elie Georges, Christian Gibson, Vik724
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-725
Lopes, Jonathan Gordon, Morgan Grafstein, Scott726
Gray, Ryan Greene, Joshua Gross, Shixiang Shane727

Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 728
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 729
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 730
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 731
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 732
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 733
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 734
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 735
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 736
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 737
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 738
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 739
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 740
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 741
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 742
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 743
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 744
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 745
Anna Makanju, Kim Malfacini, Sam Manning, Todor 746
Markov, Yaniv Markovski, Bianca Martin, Katie 747
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 748
McKinney, Christine McLeavey, Paul McMillan, 749
Jake McNeil, David Medina, Aalok Mehta, Jacob 750
Menick, Luke Metz, Andrey Mishchenko, Pamela 751
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 752
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 753
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 754
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 755
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 756
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 757
tista Parascandolo, Joel Parish, Emy Parparita, Alex 758
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 759
man, Filipe de Avila Belbute Peres, Michael Petrov, 760
Henrique Ponde de Oliveira Pinto, Michael, Poko- 761
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow- 762
ell, Alethea Power, Boris Power, Elizabeth Proehl, 763
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 764
Cameron Raymond, Francis Real, Kendra Rimbach, 765
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 766
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 767
Girish Sastry, Heather Schmidt, David Schnurr, John 768
Schulman, Daniel Selsam, Kyla Sheppard, Toki 769
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 770
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 771
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 772
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 773
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 774
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, 775
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, 776
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe- 777
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 778
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, 779
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, 780
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji- 781
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, 782
Clemens Winter, Samuel Wolrich, Hannah Wong, 783
Lauren Workman, Sherwin Wu, Jeff Wu, Michael 784
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim- 785
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong 786
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao 787
Zheng, Juntang Zhuang, William Zhuk, and Bar- 788
ret Zoph. 2024. Gpt-4 technical report. Preprint, 789
arXiv:2303.08774. 790

10

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2303.08774


James M Ortega and Werner C Rheinboldt. 2000. It-791
erative solution of nonlinear equations in several792
variables. SIAM.793

Alessandro Palla. 2023. chatbot instruction794
prompts. https://huggingface.co/datasets/795
alespalla/chatbot_instruction_prompts.796

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-797
ley, and Jianfeng Gao. 2023. Instruction tuning with798
gpt-4. arXiv preprint arXiv:2304.03277.799

Andrea Santilli, Silvio Severino, Emilian Postolache,800
Valentino Maiorca, Michele Mancusi, Riccardo801
Marin, and Emanuele Rodolà. 2023. Accelerating802
transformer inference for translation via parallel de-803
coding. arXiv preprint arXiv:2305.10427.804

Apoorv Saxena. 2023. Prompt lookup decoding.805

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.806
2018. Blockwise parallel decoding for deep autore-807
gressive models. Advances in Neural Information808
Processing Systems, 31.809

Chenxi Sun, Hongzhi Zhang, Zijia Lin, Jingyuan Zhang,810
Fuzheng Zhang, Zhongyuan Wang, Bin Chen, Chen-811
gru Song, Di Zhang, Kun Gai, et al. 2024. Decoding812
at the speed of thought: Harnessing parallel decod-813
ing of lexical units for llms. In Proceedings of the814
2024 Joint International Conference on Computa-815
tional Linguistics, Language Resources and Evalua-816
tion (LREC-COLING 2024), pages 4476–4487.817

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier818
Martinet, Marie-Anne Lachaux, Timothée Lacroix,819
Baptiste Rozière, Naman Goyal, Eric Hambro,820
Faisal Azhar, et al. 2023. Llama: Open and effi-821
cient foundation language models. arXiv preprint822
arXiv:2302.13971.823

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and824
Lingming Zhang. 2023. Magicoder: Source code is825
all you need. arXiv preprint arXiv:2312.02120.826

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,827
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and828
Zhifang Sui. 2024. Unlocking efficiency in large829
language model inference: A comprehensive sur-830
vey of speculative decoding. arXiv preprint831
arXiv:2401.07851.832

Wen Zhang, Yang Feng, Fandong Meng, Di You, and833
Qun Liu. 2019. Bridging the gap between training834
and inference for neural machine translation. arXiv835
preprint arXiv:1906.02448.836

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan837
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,838
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.839
Judging llm-as-a-judge with mt-bench and chatbot840
arena. Advances in Neural Information Processing841
Systems, 36.842

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 843
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 844
Yu, Lili Yu, et al. 2024. Lima: Less is more for align- 845
ment. Advances in Neural Information Processing 846
Systems, 36. 847

A PPL-Based Location Selection 848

As discussed in Section 3.2, we try to use the PPL- 849

based selection method to select the location of the 850

noise segments. Inspired by Lin et al. (2024b), dif- 851

ferent tokens contribute differently to the learning 852

of that sample. Therefore, we consider using cross- 853

entropy loss to score the input tokens and select the 854

segment with the lowest loss for noise replacement, 855

which can be formulated as: 856

k = argmin

k+l∑
i=k

− logP (Xi|X<i; θ) (5) 857

where k represents the start index of the noise seg- 858

ment and l represents the length of the noise seg- 859

ment. Segments with low cross-entropy loss pos- 860

sess both correct prediction and high prediction 861

confidence. Correct predictions indicate that the 862

model has learnt this segment sufficiently and re- 863

placement with noise has minimal impact on model 864

performance. High prediction confidence means 865

that the segment is likely to be a commonly used 866

expression (Sun et al., 2024), which is useful for 867

learning acceleration capabilities. 868

The final results of the experiment are shown in 869

Table 4. Even in code domains with stringent out- 870

put requirements, ppl-based position selection has 871

no significant speed or performance advantage over 872

random selection. Considering that the ppl-based 873

training method is too complicated and increases 874

the training time to some extent, we subsequently 875

adopt random noise locations. 876

B Templates for Token Tree 877

As shown in Figure 7, token tree verification or- 878

ganizes multiple paths into a tree structure, which 879

is verified in parallel by sparse attention masks. 880

With high accuracy of draft token prediction, to- 881

ken tree verification can effectively improve the 882

average acceptance length. However, for Jacobi de- 883

coding, since no additional structure is introduced, 884

the correct prediction rate of its draft token is rel- 885

atively low, and the generation of draft fragments 886

is mainly achieved by iterative decoding. There- 887

fore the enhancement brought by tree verification 888

mainly depends on the topK of the first draft token, 889

11

https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://github.com/apoorvumang/prompt-lookup-decoding/


HumanEval (+) MBPP (+) Speed (tokens/s) Speedup

Baseline 77.4 (72.6) 75.7 (64.6) 44.01 1.00×
Random 76.8 (72.0) 75.4 (65.1) 99.96 2.11×
PPL-Based 77.4 (70.7) 76.5 (66.7) 101.18 2.13×

Table 4: The comparison between the randomly selected noise segment and the lowest loss noise segment.

and experiments show that TR-Jacobi decoding890

is not sensitive to the structure of the verification891

tree. In this paper, we use the same heuristic tree892

structure as vicuna-7b in medusa (Cai et al., 2024),893

containing 63 nodes. In particular, we also add a894

retrieval path of length 5 to store the retrieved draft895

tokens.896

 Current token
 Draft token

0

3

1

4 5 6

2

1
2

3

4

5

6

1 2 3 4 5 6

Convert

Token Tree Verification Tree Attention Sequence

0

0

Figure 7: Illustration of token tree verification. The
model achieves simultaneous verification of multiple
candidate paths through a specially constructed sparse
attention matrix.

12


	Introduction
	Related Work
	Jacobi Decoding
	Speculative Decoding

	Method
	Overall
	Noisy Training Framework
	TR-Jacobi Decoding

	Experiments
	Experimental Setup
	Comparison with SFT
	Comparison with Other Speculative Decoding Methods

	Discussion
	Effect of Noise Segment Length
	Effect of Model Scale
	Effect of Retrieval Paths

	Conclusion
	PPL-Based Location Selection
	Templates for Token Tree

