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Abstract001

Retrieval augmented Question Answering (QA)002
helps QA models overcome knowledge gaps003
by incorporating retrieved evidence, typically a004
set of passages, alongside the question at test005
time. Previous studies show that this approach006
improves QA performance and reduces hallu-007
cinations, without, however, assessing whether008
the retrieved passages are indeed useful at an-009
swering correctly. In this work, we propose to010
quantify the uncertainty of a QA model via esti-011
mating the utility of the passages it is provided012
with. We train a lightweight neural model to013
predict passage utility for a target QA model014
and show that while simple information the-015
oretic metrics can predict answer correctness016
up to a certain extent, our approach efficiently017
approximates or outperforms more expensive018
sampling-based methods.1019

1 Introduction020

Retrieval augmented Question Answering (QA)021

allows QA models to overcome knowledge gaps at022

test time through access to evidence in the form of023

retrieved passages (Lewis et al., 2020; Guu et al.,024

2020; Izacard et al., 2024). Recent work leverages025

external retrievers (Chen et al., 2017; Izacard and026

Grave, 2021b) and the language understanding and027

generation capabilities of Large Language Models028

(LLMs; Brown et al. 2020; Ouyang et al. 2024) to029

predict answers based on questions and retrieved030

passages which are provided as input context. In031

Figure 1, we show an example of a question (Who032

sings Does He Love Me with Reba? ), retrieved033

passages, and predicted answers.034

Retrieval augmented QA architectures have035

proven beneficial in increasing LLM performance036

on tail knowledge (Izacard et al., 2024; Mallen037

et al., 2023), reducing hallucinations in the gen-038

erated answers, and even improving model cali-039

bration (Jiang et al., 2021). However, there are040

1Code and data are available at XXXX.

various ways in which retrieval augmented QA can 041

go wrong at inference time. The set of retrieved 042

passages is far from perfect (Sciavolino et al., 2021; 043

Yoran et al., 2024; Kasai et al., 2024) containing 044

irrelevant or misleading evidence, the model might 045

be under-trained to read certain passages and rea- 046

son over these and the question (Izacard et al., 2024; 047

Liu et al., 2024b), and the question can be ambigu- 048

ous or unanswerable (Kasai et al., 2024). In such 049

cases of uncertainty, QA models should ideally 050

be able to deal with it (e.g., communicating it or 051

abstaining from answering) rather than risking an 052

incorrect response. 053

A good deal of previous work has focused on 054

quantifying answer uncertainty in the context of 055

closed-book QA tasks, where the answer is pre- 056

dicted based on a question and the model’s encoded 057

knowledge. Sampling-based methods rely on out- 058

put discrepancies among multiple predictors of the 059

same input (Gal and Ghahramani, 2016; Lakshmi- 060

narayanan et al., 2017). They measure diversity 061

on a set of answers (Kuhn et al., 2023; Chen and 062

Mueller, 2024) sampled via temperature scaling 063

(Guo et al., 2017), with larger variance indicating 064

higher uncertainty. LLM-based methods rely on the 065

QA model’s own judgment of uncertainty (Kada- 066

vath et al., 2022; Lin et al., 2022; Tian et al., 2023). 067

Through prompting, the model is encouraged to ex- 068

press its uncertainty (e.g., 0.5 or ‘almost certain’), 069

either alongside the predicted answer (Lin et al., 070

2022; Tian et al., 2023) or after generating it (Ka- 071

davath et al., 2022; Tian et al., 2023). 072

In this paper, we focus on retrieval augmented 073

QA and hypothesize that a passage is useful, if 074

a model can correctly answer questions based on 075

it. If passages are informative and prime the QA 076

model towards appropriate knowledge, we expect 077

it to produce a correct answer. On the contrary, 078

if passages are misleading and the question falls 079

outside the QA model’s knowledge, it is likely to 080

produce an incorrect answer — either factually in- 081
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Who sings does he love me with Reba?

Linda Davis

Does He Love You. Does He Love You "Does He Love You"
is a song written by Sandy Knox and Billy Stritch, and
recorded as a duet by American country music artists
Reba McEntire and Linda Davis. It was released in August
1993 as the first single from Reba’s album "Greatest
Hits Volume Two". It is one of country music’s several
songs [cont.] 4.1

Reba McIntyre and Brooks & Dunn’s Ronnie Dunn

Reba: Duets. The first collaborator on the album was
LeAnn Rimes, who recorded the track, "When You Love
Someone Like That" which also -3.94 appeared on LeAnn
Rimes’s "Family" album that same year. Jurek called
the duet between the pair "stellar," while "about.com"
called the pairing "an undeniable outcome of perfection.
Reba’s strong country voice with LeAnn’s young, soulful
sound [cont.] -3.94

Trisha Yearwood

Reba: Duets. Artist, Trisha Yearwood on the song, "She
Can’t Save Him", which was formerly released as a single
by Canadian country artist, Lisa -3.91 Brokop. Tracks
six and seven were collaborations with American pop
artist, Carole King and country artist, Kenny Chesney,
who both help in providing musical variations towards
[cont.] -3.91

Figure 1: Example question from Natural Questions
dataset (Kwiatkowski et al., 2019) with three top-
retrieved passages using Contriever-MSMARCO (Izac-
ard et al., 2022). On top of each passage, we show
the answer generated by GEMMA2-9B when prompted
with that passage and the question. The QA model an-
swers correctly (green) only when prompted with the
first passage. Numbers at the bottom right of each pas-
sage are utility scores predicted by our model (higher
values indicate more useful passages).

accurate or entirely fabricated. We quantify the082

utility of a retrieved passage with a small neural083

model trained on utility judgements predicted by084

the target QA model. We borrow ideas from direct085

uncertainty quantification approaches (Van Amers-086

foort et al., 2020; Lahlou et al., 2023) but do not087

decompose uncertainty or outline shifts in the input088

distribution. We make utility predictions for each089

retrieved passage which we then use to estimate090

the uncertainty of the QA model.091

We evaluate our approach on short-form ques-092

tion answering tasks (see Figure 1 for an example).093

Results on six datasets show that our uncertainty es-094

timator outperforms existing sampling-based meth-095

ods (especially in complex reasoning questions and096

adversarial QA settings with rare entities or unan-097

swerable questions) while being more test-time098

efficient. Sampling-based solutions are expensive099

for in-production QA systems, in terms of latency100

(see comparison in Appendix A) and cost (e.g., QA 101

engines built on top of proprietary language mod- 102

els would need to process relatively long prompts). 103

Our contributions can be summarized as follows: 104

• We propose to quantify QA model uncertainty 105

via estimating the utility of the passages it is 106

provided with. 107

• We (contrastively) train a small neural model 108

on utility scores obtained through combining 109

accuracy (is the generated answer correct?) 110

and entailment (is the answer supported by 111

the passage?) metrics. 112

• Our approach is lightweight, improves upon 113

more expensive sampling-based methods, and 114

is not tied to the retriever (and passages) used 115

to prompt the QA model. 116

• We show that utility scores predicted by our 117

model can further improve QA accuracy by 118

re-ranking passages obtained via an external 119

retriever (Liu et al., 2024b). 120

2 Related Work 121

Uncertainty Quantification for Question An- 122

swering Several methods have been proposed to 123

predict answer uncertainty in QA; however, none 124

of them has analysed uncertainty in retrieval aug- 125

mented QA models. Many existing approaches rely 126

on the assumption that output variation is an ex- 127

pression of model uncertainty (Kuhn et al., 2023; 128

Farquhar et al., 2024; Chen and Mueller, 2024). 129

For example, Kuhn et al. (2023) first cluster an- 130

swers with similar meaning (in a sample) via nat- 131

ural language inference before computing entropy 132

while Chen and Mueller (2024) focus on black-box 133

models; they also compute similarities in the set 134

of answers but associate them with a model self- 135

judgement of confidence. These approaches are 136

expensive to run at inference time for a production 137

QA system, they require several inference steps 138

in addition to performing similarity computations 139

which can become more complex with longer an- 140

swers (Zhang et al., 2024). Hou et al. (2024) focus 141

on quantifying aleatoric uncertainty (i.e., uncer- 142

tainty in the data) caused by ambiguous questions, 143

an approach which could be combined with ours. 144

Judging the Utility of Retrieved Passages Pre- 145

vious work has analysed the quality of retrieved 146

passages (Yu et al., 2023; Asai et al., 2024; Wang 147

et al., 2024; Xu et al., 2024; Yoran et al., 2024) 148

as they can be irrelevant or misleading. Asai et al. 149

(2024) make use of an external critic model to judge 150
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whether a question requires retrieval (or not) and151

whether the retrieved passages are relevant to for-152

mulate the answer. While they analyse passage rele-153

vance, this decision is taken by an external extreme-154

scale critic (e.g., GPT-4) and used to fine-tune their155

QA model. In contrast, we elicit utility judgements156

from the target QA model and use these to train157

a secondary small-scale model to predict passage158

utility (i.e., our approach does not require LLM159

fine-tuning). Other work creates auxiliary tasks160

around retrieved passages enforcing the QA model161

to reason on them; e.g., by taking notes about each162

passage (Yu et al., 2023) or generating passage163

summaries (Xu et al., 2024). These methods also164

use extreme-scale LLMs to generate training data165

for fine-tuning a retrieval augmented QA model.166

Park et al. (2024) select in-context examples with167

conflicting content (e.g., different dates for a given168

event) in order to improve LLM reasoning on input169

passages. These approaches aim at improving QA170

performance while our primary goal is modelling171

QA uncertainty.172

Improving Retrieval via QA Performance Pre-173

vious work has focused on jointly training the re-174

triever and QA modules end-to-end (Lee et al.,175

2019; Lewis et al., 2020; Izacard and Grave, 2021a).176

This joint training scheme is very expensive for cur-177

rent (extreme-scale) LLMs. Our approach can be178

seen as an intermediate module between the QA179

model and the external retriever and could be used180

to provide feedback (i.e., utility scores) for fine-181

tuning the retriever, however, we leave this to fu-182

ture work. Salemi and Zamani (2024) evaluate the183

quality of retrieval on QA tasks and show that ex-184

ternal judgements (e.g., query-document relevance185

labels) of passage utility correlate poorly with QA186

performance.187

Using a Separate Model to Predict Confidence188

Some approaches train a specific model to predict189

answer confidence scores (Dong et al., 2018; Ka-190

math et al., 2020; Zhang et al., 2021; Mielke et al.,191

2022) by incorporating various features from the192

input and model output. Our approach predicts193

answer uncertainty directly from individual pas-194

sage utilities but could be combined with other195

features (e.g., output sequence probability). Some196

work (Kamath et al., 2020; Zhang et al., 2021) pre-197

dicts answer correctness in the context of Reading198

Comprehension (the task of generating an answer199

based on a single supportive passage). However,200

as there is no retrieval involved, the input passage201

is by default useful, and the main goal is to de- 202

tect answer uncertainty due to the QA model being 203

under-trained. In our setting, the number and utility 204

of passages varies leading to additional sources of 205

uncertainty (e.g., misleading information). 206

Our passage utility predictor is related to meth- 207

ods aiming to estimate error directly (Lahlou et al., 208

2023), e.g., by training a secondary model to es- 209

timate target model loss; instead, our predictor is 210

trained with sequence-level metrics, i.e., accuracy 211

and entailment, which measure error indirectly. 212

3 Modelling Answer Uncertainty 213

We formally define retrieval augmented QA as fol- 214

lows. Given question x and a set of retrieved 215

passages R = {p1, p2, · · · , p|R|} obtained with 216

retriever R, an LLM-based QA model M is 217

prompted to generate answer y to question x token- 218

by-token according to its predictive distribution: 219

P (y|x,R;M) =

|y|∏
t=1

P (yt|y1..t−1, x,R;M). (1) 220

We wish to estimate M’s uncertainty (i.e., chance 221

of error) of generating y given x and R. 222

When a retrieved passage is useful to answer a 223

given question (such as the first passage in Figure 1 224

for the question Who sings Does He Love Me with 225

Reba? ), the QA model is likely to be confident 226

when generating the answer (Linda Davis). When 227

the passage is not useful (such as the third passage 228

in Figure 1), the QA model is likely to be uncertain 229

and provide an incorrect answer (Trisha Yearwood ). 230

Our hypothesis is that the utility of each passage p 231

in R is indicative of the QA model’s uncertainty in 232

generating y, when prompted with R. If there are 233

passages in R with high utility (e.g., in Figure 1, 234

the first passage is useful to answer the question), it 235

is likely that the QA model will be confident when 236

generating answer y. In contrast, if all passages in 237

R have low utility, it is likely that the QA model 238

will be uncertain when generating the answer. 239

The core of our approach is estimating the util- 240

ity υM of individual passages for a target QA 241

model M. Specifically, we develop an estimator 242

{x, p} 7→ υM({x, p}) for each passage p ∈ R 243

(Section 3.1). We then leverage the predicted pas- 244

sage utility υM to estimate M’s uncertainty when 245

generating answer y to question x based on evi- 246

dence R, {x,R} 7→ uM({x,R}) (Section 3.2). 247
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3.1 Passage Utility Prediction248

Intuitively, a retrieved passage p is useful for a QA249

model M if M can correctly answer question x250

when prompted with p. However, the model’s de-251

pendence on p may vary. In some cases, M may252

generate the correct answer even if p does not ex-253

plicitly contain it, instead it positively primes the254

model to draw upon its memorised knowledge. In255

Figure 1, the first passage has high utility because256

the QA model generates a correct answer when257

prompted with it, and explicitly states that “Linda258

Davis sings alongside Reba McEntire”. In contrast,259

the second and third passages, while related to the260

question’s topic, are not useful. The QA model261

struggles to answer correctly when prompted with262

them, suggesting uncertainty. Since these passages263

do not provide helpful information and lead to in-264

correct answers, their utility is low.265

We estimate the utility of passage p in answer-266

ing question x for QA model M by combining267

two key measures: accuracy and entailment. Accu-268

racy, denoted as a(y), indicates whether the gener-269

ated answer y is correct, while entailment, denoted270

as e(y), measures the degree to which p supports y.271

Accuracy is determined by an evaluator A, and272

entailment is assessed using a Natural Language273

Inference (NLI) classifier model E. We define the274

combined passage utility as υM = (a(y)+e(y))/2275

which ranges between 0 and 1, given that a takes276

values in {0, 1} and e falls within the [0, 1] interval.277

We train a lightweight neural model on dataset278

DM = {(x, p, υM)} to predict passage utility279

scores, {x, p} 7→ υM({x, p}), We construct D by280

pairing input questions x and passages p with util-281

ity scores υM which we obtain after running M282

on examples (x, p) and computing observed an-283

swer accuracy and entailment scores from the QA284

model M. We retrieve |R| > 1 passages per ques-285

tion to ensure a diverse range of usefulness and286

create training instances {(x, pi, υi) | pi ∈ R} un-287

der model M. We leverage this data to train the288

passage utility predictor with a contrastive learn-289

ing scheme. Specifically, if two passages pi and290

pj belong to R and pi is more useful than pj for291

answering question x, the predicted utility score υi292

should be higher than υj by margin m, ensuring293

that pi is ranked above pj . We train the utility294

predictor with the following ranking objective:295

Lrank =
∑

((x,pi),(x,pj))∈R×R,i ̸=j

max(0,−z(υi−υj)+m)), (2)296

where z controls the gold order between pi and pj 297

(e.g., if z = 1, pi has higher utility, and conversely 298

z = −1 indicates the opposite ordering) and m is 299

a hyper-parameter. 300

We train the passage utility predictor with a 301

Siamese neural network consisting of a BERT- 302

based encoder (Devlin et al., 2019) followed by 303

a pooling and two MLP layers stacked on top of 304

BERT outputs (Fang et al., 2024). The output layer 305

computes the utility score as υi = Woh
L + bo 306

where hL is the vector representation for (x, pi) 307

from the last hidden layer (the L-th layer) of the 308

network. At inference time, we compute a single 309

utility score for each passage. We provide imple- 310

mentation and training details in Section 4. 311

To strengthen the role of accuracy prediction as 312

a training signal and regularise the range of utility 313

values learned by the ranking scheme, we combine 314

the ranking objective in Equation (2) with the fol- 315

lowing Binary Cross Entropy (BCE; Sculley 2010) 316

objective: 317

LBCE =
∑

(x,p)∈{(x,pi),(x,pj)}

[a× log(p(x, p))+

(1− a)× log(1− p(x, p))],

(3) 318

where p(x, p) = sigmoid(υ) and a is the target 319

accuracy label under model M taking values in the 320

set {0, 1}. We train the utility predictor with the 321

following combined objective: 322

L = Lrank + λLBCE , (4) 323

where λ is a hyper-parameter. 324

Both ranking and BCE objectives are compatible 325

with gold annotations that could be provided in ac- 326

tive learning or interactive settings (Simpson et al., 327

2020; Fang et al., 2024). For example, moderators 328

of the QA system would provide judgments on the 329

accuracy of the answers it predicts (e.g., correct/in- 330

correct) and whether these are supported by the 331

retrieved passages (e.g., best or worse). 332

3.2 Answer Uncertainty Estimation 333

For our QA task, we want to define an estimator 334

{x,R} 7→ uM({x,R}) which quantifies the un- 335

certainty of model M when generating answer y 336

for question x based on a prompt with passages R. 337

We propose estimating uM directly from the util- 338

ity scores of individual passages in R. The key 339

intuition is that the higher the utility of one (or 340

more) passages, the less uncertain M will be when 341
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generating answer y. Specifically, we estimate an-342

swer uncertainty uM by taking the maximum util-343

ity score among the passages in R:344

uM({x,R}) = max(υM({x, p}) | p ∈ R). (5)345

4 Experimental Setup346

Datasets We evaluate our approach to predicting347

answer uncertainty on short-form question answer-348

ing tasks. Specifically, we present experiments349

on the following six datasets: Natural Questions350

(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,351

2017), WebQuestions (Berant et al., 2013), SQuAD352

(Rajpurkar et al., 2016), and PopQA (Mallen et al.,353

2023). We also evaluate on RefuNQ (Liu et al.,354

2024a), a dataset with unanswerable questions355

about non-existing entities. In Appendix B.1, we356

describe each dataset, provide example questions,357

and make available details about the splits used in358

our experiments.359

QA Models We consider backbone instruction360

fine-tuned LLMs from different families of similar361

size. These are Llama-3.1-8B-Instruct (AI@Meta,362

2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),363

and Gemma2-9B-it (Riviere et al., 2024). We364

also assess answer uncertainty quantification per-365

formance on QA models of the same family but366

with different sizes. To this end, we additionally367

evaluate on Gemma2-2B-it and Gemma2-27B-it.368

For all QA models, we use a simple prompt in-369

cluding the retrieved passages and the question in370

the context; the prompt is shown in Table 6 in the371

Appendix. The QA models’ response is the most372

likely answer generated with greedy sampling at373

temperature equal to 0. Following previous work374

on retrieval augmented QA, we use Contriever-375

MSMARCO (Izacard et al., 2022) as our exter-376

nal retriever (Asai et al., 2024) and the target QA377

models are prompted with |R| = 5 passages (Yu378

et al., 2023; Asai et al., 2024; Xu et al., 2024).379

In Appendix B.2, we provide more details about380

inference and passage retrieval.381

Accuracy Evaluation A precise metric for mea-382

suring accuracy is key when evaluating the quality383

of uncertainty estimation. Token overlap metrics384

are imprecise and can over- or under-estimate accu-385

racy (e.g., 5 will not match five). Thus, we rely on386

an LLM-based accuracy evaluator to create training387

data for the Passage Utility predictor (i.e., A in Sec-388

tion 3.1) and to evaluate retrieval augmented QA389

performance. We use Qwen2-72B-Instruct (Yang390

et al., 2024) and the prompt proposed in Sun et al. 391

(2024) to obtain accuracy judgments. More de- 392

tails about the LLM evaluator can be found in Ap- 393

pendix B.2. 394

Evaluation of Uncertainty Estimation To as- 395

sess the quality of answer uncertainty prediction, 396

we follow Farquhar et al. (2024) and report the Area 397

Under the Receiver Operator Curve (AUROC) on 398

detecting incorrect answers (i.e., answers with high 399

uncertainty). In Appendix C.3, we also report the 400

area under the ‘rejection accuracy’ curve (AURAC) 401

which captures the accuracy a model would have if 402

it refused to answer questions with highest uncer- 403

tainty. Rejection accuracy is essentially the model’s 404

accuracy on the remaining questions. We report 405

accuracy at different answer rejection thresholds, 406

i.e., when models answer 80% and 90% of the 407

least uncertain questions, as well as when always 408

answering. We provide implementation details in 409

Appendix B.2. 410

Training the Passage Utility Predictor We train 411

a Passage Utility predictor per QA model and 412

QA task. For each task, we create set DM = 413

{(x, p, υM)} to train and evaluate a Passage Util- 414

ity predictor for QA model M. We use the train 415

(and development) questions available for the QA 416

task and consider the top five retrieved passages 417

for each question (i.e., |R| = 5). Note that this 418

is a hyper-parameter and other values would be 419

also possible. Larger sizes of |R| would yield more 420

training data, since the Utility predictor takes in- 421

dividual passages (together with the question) as 422

input, First, the target QA model M is prompted 423

with passage p ∈ R and question x to generate an- 424

swer y. Then, we annotate passages p with a utility 425

score computed with the accuracy evaluator A and 426

the entailment judge E on the generated answer y 427

(Section 3.1). We use an ALBERT-xlarge (Lan 428

et al., 2020) model optimized on MNLI (Williams 429

et al., 2018) and the VitaminC dataset (Schuster 430

et al., 2021). We report further details about the 431

Passage Utility predictor training in Appendix B.2. 432

Comparison Approaches and Baselines We 433

compare against several strong uncertainty esti- 434

mation methods (Fadeeva et al., 2023) which we 435

briefly describe below and also report additional 436

comparisons in Appendix C.3. 437

Information-Theoretic Measures We compare 438

against uncertainty estimation methods that are 439

based on the predictive probabilities of the target 440
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QA model. For a generated answer y with probabil-441

ity p(y|x,R;M) =
∏|y|

t=1 p(yt|y1..t−1, x,R;M),442

the Perplexity (PPL) of model M is computed as:443

PPL(x,R,M) =

exp {− 1

|y|

|y|∑
t=1

log p(yt|y1..t−1, x,R;M)},
(6)444

Perplexity essentially calculates token-level entropy445

as it is based on the average negative log-likelihood446

of the generated tokens.447

Regular entropy, on the other hand, is computed448

over sequences, quantifying the entropy of the449

answers. It is defined as E[−logP (Y |x,R;M)]450

where the expected value, E, is computed on se-451

quences y sampled from the conditional distribu-452

tion P (Y |x,R;M), where random variable Y de-453

notes the answer sequences, and x and R are the454

input question and retrieved passages, respectively.455

In practice, regular entropy is approximated via456

Monte-Carlo integration, i.e., sampling N random457

answers from P (Y |x,R;M):458

RE(x,R,M) =

− 1

N

N∑
n=1

log P̃ (yn |x,R;M),
(7)459

where P̃ (yn |x,R;M) is the length normalised460

version of P (yn|x,R;M).461

Kuhn et al. (2023) propose Semantic Entropy,462

a variant of regular entropy that disregards uncer-463

tainty related to the surface form of the generated464

answers. The method works by sampling several465

possible answers to each question and grouping the466

set of N samples into M clusters (with M ≤ N )467

that have similar meanings (which are determined468

on the basis of whether answers in the same clus-469

ter entail each other bidirectionally). The average470

answer probability within each cluster is:471

SE(x,R,M) =

−
M∑

m=1

P̂m(x,M) log P̂m(x,M),
(8)472

where P̂m(x,M) =
∑

y∈Cm
P̃ (y|x,R;M)∑M

m=1

∑
y∈Cm

P̃ (y|x,R;M)
.473

LLM-based Measures We compare with p(true)474

which uses the same LLM-based target QA model475

to assess whether the answers it produces are cor-476

rect (Kadavath et al., 2022). We follow the p(true)477

variant used in previous work (Kuhn et al., 2023). 478

The QA model is prompted with the question and 479

a set of candidate answers (consisting of the most 480

likely answer and a sample of N answers) and is in- 481

structed to respond whether the most likely answer 482

is true or false (i.e., correct/incorrect). The score 483

produced by this approach is the probability of 484

model M generating the token True. This method 485

needs several in-context examples to work well; 486

following Kuhn et al. (2023), we use 20 in-context 487

examples. Note that since our backbone LLMs are 488

recent models with a large context (unlike Kuhn 489

et al. 2023), all 20 examples are fed in the con- 490

text making p(true) an expensive but very strong 491

approach. In the context of retrieval augmented 492

QA, we include in the prompt the set of retrieved 493

passages for the question to evaluate. We illustrate 494

the prompt used by p(true) in Appendix B.3. 495

For approaches that require sampling, we fol- 496

low previous work (Farquhar et al., 2024) and take 497

N = 10 samples, which we generate with multino- 498

mial sampling. We set the sampling temperature 499

to 1, with nucleus sampling (P = 0.9; Holtzman 500

et al. 2020) and top−K sampling (K = 50; Fan 501

et al. 2018), and use a different random seed to 502

draw each sample. We provide further details about 503

inference in Appendix B.2 and report inference 504

costs for each approach in Appendix A. 505

5 Results and Analysis 506

Light-weight answer uncertainty prediction 507

works across model families and question 508

answering tasks. Uncertainty estimation AU- 509

ROC results for three QA models (GEMMA2- 510

9B, LLAMA-3.1-8B, and MISTRAL-7B-V0.3) are 511

shown in Table 1 (results on the development set 512

are included in Appendix C.3). In general, an- 513

swer perplexity (PPL) performs rather poorly, espe- 514

cially for GEMMA2-9B and MISTRAL-7B-V0.3. 515

Regular Entropy improves upon PPL by ignoring 516

surface form choices and focusing on meaning, Se- 517

mantic Entropy further improves AUROC scores. 518

p(true) performs well at detecting answer uncer- 519

tainty matching or surpassing Semantic Entropy. 520

It is important to note that this method relies on 521

sampled answers and a long prompt with 20 in- 522

context examples. Our Passage Utility approach 523

performs on par or outperforms all other methods 524

with a single inference step on each input passage. 525

Passage Utility performs particularly well on 526

challenging question answering tasks represented 527
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NQ TQA WebQ SQuAD PopQA RefuNQ
GEMMA2-9B

PPL 0.64 0.68 0.52 0.53 0.59 0.51
p(true) 0.73 0.75 0.67 0.63 0.81 0.62
Regular Entropy 0.66 0.69 0.54 0.56 0.61 0.51
Semantic Entropy 0.70 0.73 0.57 0.64 0.73 0.59
Passage Utility 0.72 0.82 0.70 0.79 0.84 0.81

LLAMA-3.1-8B
PPL 0.75 0.80 0.68 0.74 0.83 0.60
p(true) 0.79 0.88 0.72 0.77 0.85 0.67
Regular Entropy 0.76 0.81 0.69 0.78 0.83 0.65
Semantic Entropy 0.71 0.78 0.69 0.78 0.79 0.58
Passage Utility 0.78 0.78 0.76 0.82 0.86 0.82

MISTRAL-7B-V0.3
PPL 0.63 0.71 0.57 0.65 0.64 0.62
p(true) 0.73 0.82 0.68 0.74 0.75 0.68
Regular Entropy 0.64 0.75 0.62 0.65 0.66 0.60
Semantic Entropy 0.66 0.77 0.66 0.74 0.74 0.61
Passage Utility 0.74 0.82 0.70 0.81 0.86 0.80

Table 1: AUROC values for QA models GEMMA2-
9B, LLAMA-3.1-8B, and MISTRAL-7B-V0.3 on Nat-
ural Questions (NQ), TriviaQA (TQA), WebQuestions
(WebQ), SQuAD, PopQA, and RefuNQ test sets. Best
values are highlighted in bold.

by datasets like WebQ, SQuAD, and RefuNQ. In528

these cases, our light-weight uncertainty estimation529

model works better than p(true) which requires the530

same QA model (i.e., the same backbone LLM)531

to judge the correctness of its own generated an-532

swers. We speculate that for questions with high533

uncertainty, i.e., where the model does not have the534

knowledge to answer, it confidently generates a re-535

sponse and also fails at assessing it (e.g., questions536

about non-existing concepts in RefuNQ). We at-537

tribute the Passage Utility’s success to the fact that538

it has been specifically trained to detect situations539

where the target QA model is prone to answer incor-540

rectly (i.e., when provided with retrieved passages541

of lower relevance).542

Answering selectively based on Passage Utility543

improves QA accuracy. Answer uncertainty can544

be used to decide whether to answer or refrain545

from doing so. Figure 2 shows QA model accu-546

racy across datasets (average AccLM) at different547

thresholds of answer rejection. We report accu-548

racy when models choose to answer only 80% and549

90% of the cases where they are most certain, and550

when they always answer. Across different LLM551

backbones, Passage Utility performs on par with or552

better than more expensive uncertainty estimation553

approaches.554

Passage Utility performance remains consistent555

across model sizes. Figure 3 (left), shows aver-556
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Figure 2: Average QA model accuracy (AccLM) across
test sets: models refuse to answer according to different
uncertainty estimation methods. 80/90%: the model
answers 80/90% of the questions with low uncertainty;
100%: the model answers all questions.

age AUROC scores on answer uncertainty estima- 557

tion for Passage Utility and comparison approaches 558

with different GEMMA2 sizes: 2B, 9B, and 27B. 559

Our Passage Utility approach performs best across 560

model sizes. All approaches obtain better AU- 561

ROC scores for the smaller GEMMA2 model (2B) 562

which makes most errors; we observe a notice- 563

able decrease in performance for most information- 564

theoretic models when using the biggest GEMMA 565

model (27B). We attribute this to the fact that 566

the 27B model more confidently makes less er- 567

rors. p(true) on the other hand benefits from the 568

largest model’s context understanding and memo- 569

rised knowledge. 570

Figure 3 (right) shows average accuracy when 571

the target QA models choose to answer 80% of 572

the cases they are most confident about. For com- 573

parison, we also show QA accuracy when always 574

answering, i.e., black bold dots. When looking at 575

selective performance according to Passage Util- 576

ity, the small GEMMA2-2B model surpasses the 577

bigger GEMMA2-27B one when always answering 578

(0.68 vs 0.65), whereas the biggest GEMMA2-27B 579

model improves by +9 points (0.74 vs 0.65). 580

Passage Utility scores provide good passage re- 581

ranking. We hypothesize that by re-ordering the 582
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Figure 3: (left) Average AUROC for answer uncertainty
estimation methods with varying GEMMA2 sizes: 2B,
9B, and 27B. (right) Average AccLM on the 80% most
confident answers; black dots indicate average AccLM
when always answering. Results computed on test sets.

set of retrieved passages according to their Passage583

Utility score and filtering the top-k ones, it will be584

possible to improve the accuracy and efficiency of585

the target QA model (Salemi and Zamani, 2024;586

Liu et al., 2024b). To test this, we measure QA ac-587

curacy for GEMMA2-9B on sets of input passages588

varying in order and size. Specifically, we measure589

performance with a set of |R| = 10 passages in590

their original ranking provided by an external re-591

triever and the re-ranking imposed by the Passage592

Utility score. We then compute accuracy for the593

top-k passages with k in the range of {10, 5, 3, 1}.594

Figure 4 shows average accuracy (AccLM) values595

across five datasets (NQ, TQA, WebQ, SQuAD,596

and PopQA) on different input sets created based597

on the original retriever (gray) and the Passage598

Utility scores (red). At k = 10 both rankings lead599

to the same average QA accuracy (67%). How-600

ever, when reducing the size of the context to the601

top k = 5, 3, 1 passages re-ranked by the Passage602

Utility score, the QA model achieves higher accu-603

racy, indicating that Passage Utility indeed captures604

which passages are useful for the target QA model.605

Training with pairwise judgements on Pas-606

sage Utility helps improve predictions. Table 2607

shows AUROC results on answer uncertainty pre-608

diction with Passage Utility estimators trained with609

different variants of the objective in Equation (4).610

The first row shows the full objective (see training611

details in Section B.2), the second row shows a612

variant where the ranking objective uses only en-613

tailment annotations (e), and in the third row the614

objective is solely based on accuracy prediction615

(LBCE). As can be seen, there is a drop in perfor-616

mance when the pairwise ranking loss is not used617

(i.e., last line of Table 2); this component of the618
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0.55

0.6

0.65

A
vg

A
cc
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Retriever Score Passage Utility

Figure 4: Average retrieval augmented QA accuracy
(AccLM) for GEMMA2-9B across five QA test sets (NQ,
TQA, WebQ, SQuAD, and PopQA). Points on the x-axis
correspond to different context sizes |R|, when taking
the top-k passages from different rankings produced by
the retriever and Passage Utility estimator; k varies over
{10, 5, 3, 1}.

G9B L8B M7B
Lrank, (e+ a)/2 + λLBCE 0.79 0.81 0.79
Lrank, (e) + λLBCE 0.71 0.73 0.71
LBCE 0.77 0.78 0.80

Table 2: Answer uncertainty estimation with Passage
Utility predicted by models trained with different vari-
ants of the training objective in Equation 4. We re-
port AUROC for GEMMA2-9B (G9B), LLAMA3.1-8B
(L8B), and MISTRAL-7B-V0.3 (M7B) averaged over
development sets.

objective provides a smoother signal on passage 619

utility which is empirically beneficial. However, 620

when the pairwise ranking loss is only based on 621

entailment (an external critic), performance drops 622

by several points which highlights the importance 623

of training with utility judgements provided by the 624

target QA model. 625

6 Conclusions 626

In this work we focus on retrieval augmented QA 627

and present an approach to answer uncertainty pre- 628

diction that relies on single passage utilities. We 629

train a small neural model on passage utility judge- 630

ments collected from the target QA model. We 631

show that our uncertainty estimator is competitive 632

or better than existing strong error prediction meth- 633

ods while being light-weight. Our experiments also 634

show that our approach is particularly good in cases 635

of extreme answer uncertainty such as questions 636

about non-existing entities, where bigger QA mod- 637

els are prone to confidently formulate an incorrect 638

answer. As future work, we would like to explore 639

how to extend our approach to long-form genera- 640

tion tasks, such as query focused-summarisation. 641
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7 Limitations642

Instruction-tuned models are known to refuse to643

answer questions, i.e., they produce answers such644

as “This information is not available in the text”.645

Refusing to answer is an adequate response when646

none of the input passages contains appropriate647

information. However, in many cases QA models648

refuse when in fact they should provide an answer649

(Adlakha et al., 2024; Liu et al., 2024a). Following650

previous work (Farquhar et al., 2024), we did not651

explicitly instruct the QA models to abstain and652

consider all cases where the answer does not match653

the goldstandard as incorrect. Refusing to answer is654

in our setting an indication of uncertainty (i.e., the655

QA model cannot provide a correct answer) which656

we aim to predict.657

In this work, we focus on answer uncertainty658

estimation for short-form information-seeking QA659

tasks (Rodriguez and Boyd-Graber, 2021) where660

the answer can be often found in one Wikipedia pas-661

sage. Going forward, it would make sense to extend662

our approach to multi-hop and related questions in-663

volving more complex reasoning (Yang et al., 2018;664

Pal et al., 2022). Although we expect Passage Util-665

ity to be effective in estimating the usefulness of666

individual passages, it is also possible that a more667

complex Passage Utility aggregation function is668

required (Dong et al., 2018).669
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Methods Inference Calls at Test Time
PPL 1G
p(true) (N + 1)G + 1E
Regular Entropy (N + 1)G
Semantic Entropy (N + 1)G +

(
N
2

)
E

Passage Utility |R|Bert-F

Table 3: Number and type of inference calls required
to estimate answer uncertainty for question x and set of
retrieved passages R. G means inference is performed
with a retrieval augmented QA model, i.e., a LLM for-
ward pass with the prompt including the set of |R| re-
trieved passages and question x to generate a candidate
answer y. E is inference with an evaluation model,
e.g., a forward pass to ask an LLM for correctness in
p(true) or a forward pass with an entailment model in
Semantic Entropy. Bert-F is an inference call to predict
passage utility for passages p in R and question x.
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calls required. Simple information theoretic meth- 1171

ods (e.g., PPL) require a single call to the target 1172

QA model with the retrieval augmented QA prompt 1173

(i.e., |R| retrieved passages and question x). How- 1174

ever, approaches that estimate uncertainty based on 1175

diversity (e.g., Regular Entropy, Semantic Entropy, 1176

and p(true)) require generating N answers, i.e., 1177

N inference calls with the retrieval augmented QA 1178

prompt. In addition, Semantic Entropy requires the 1179

computation of answer clusters (i.e., grouping an- 1180

swers with the same meaning), so additional calls 1181

to an entailment model are required to compare 1182

the set of sampled answers. p(true) requires one 1183

additional LLM call to elicit a True/False answer 1184

but with a very long prompt including in-context 1185

examples and the assessment question with the |R| 1186

retrieved passages, sampled and most likely an- 1187

swers, and question x (see Table 7). In contrast, 1188

our approach requires |R| utility predictions with a 1189

BERT-sized model. 1190
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B Experimental Details1191

B.1 Datasets and Splits1192

In our experiments, we use six QA tasks which we1193

describe below. Table 4 shows dataset statistics and1194

example question-answers pairs.1195

Natural Questions (NQ; Kwiatkowski et al.1196

2019) is a QA dataset compiled from real user1197

questions submitted to the Google search engine.1198

As part of the dataset curation process, annotators1199

judge the quality of questions and associate them1200

with a short answer that can be extracted from a1201

related Wikipedia page.1202

TriviaQA (TQA; Joshi et al. 2017) is a question1203

answering dataset designed for training and eval-1204

uating machine learning models on open-domain1205

question answering tasks. The dataset was cre-1206

ated by gathering questions from trivia websites,1207

along with their corresponding answers, to provide1208

a broad range of factual questions.1209

WebQuestions (WebQ; Berant et al. 2013) was1210

mined off questions generated with the Google Sug-1211

gest API. The answers to the questions are defined1212

as Freebase entities (i.e., their string label) and1213

were elicited by Amazon Mechanical Turk (AMT)1214

annotators.1215

SQuAD (Rajpurkar et al., 2016) contains ques-1216

tions formulated by AMT annotators based on a1217

given Wikipedia paragraph, with the answer being1218

a short span in that paragraph. Annotators were1219

encouraged to use paraphrasing when writing the1220

question. The answer types not only cover named1221

entities but also other categories such as noun- and1222

verb-phrases.1223

PopQA (Mallen et al., 2023) is an open-domain1224

QA dataset, focusing on popular culture topics,1225

such as movies, TV shows, music, and sports. It1226

contains question-answer pairs derived from (sub-1227

ject, relation, object) triples in Wikidata . Triples1228

were translated into natural language and the ob-1229

ject entity was taken to be the gold answer. The1230

collection process focused on gathering questions1231

about subject entities of varying popularity.1232

RefuNQ (Liu et al., 2024a) is derived from NQ1233

and consists of answerable and unanswerable ques-1234

tions. Unanswerable questions are created by re-1235

placing entities in the original NQ question by non-1236

existing concepts.1237

We follow previous work (Lee et al., 2019) and 1238

use only the question and gold answers, i.e., the 1239

open versions of NQ, TQA, and SQuAD. We use 1240

the unfiltered TQA dataset. We follow the train/de- 1241

v/test splits as used in previous work (Lee et al., 1242

2019) and randomly split PopQA. RefuNQ only 1243

provides a test set so our experiments on this 1244

dataset are zero-shot from a Passage Utility pre- 1245

dictor trained on SQuAD. We follow Farquhar et al. 1246

(2024) and use 400 test examples randomly sam- 1247

pled from the original larger test datasets for evalu- 1248

ation of uncertainty quantification. 1249

B.2 Implementation Details 1250

QA Models For all question answering tasks, 1251

we use the off-the-shelf Contriever-MSMARCO 1252

(Izacard et al., 2022) tool to retrieve sets of pas- 1253

sages R for question x from Wikipedia and the offi- 1254

cial Wikipedia embeddings based (2018 snapshot) 1255

as our document knowledge-base. For PopQA, we 1256

follow the work by Mallen et al. (2023) who also 1257

use the full 2018 English Wikipedia dump. 1258

The QA prompt used for all models (embedded 1259

in the corresponding chat templates) is shown in 1260

Table 6. For inference, we set the maximum num- 1261

ber of generated tokens to 50 for both the greedy 1262

(most likely answer) as well as temperature scaled 1263

(sampled candidates) decoding. We use vLLM for 1264

inference (Kwon et al., 2023). For all models, in- 1265

ference was run on a single A100-80GB GPU. 1266

Passage Utility Predictor We train a different 1267

predictor for each target QA model and QA task. 1268

Given the large number of predictors required 1269

in our experiments, we initially tested the hyper- 1270

parameters used in Fang et al. (2024) on the NQ 1271

dataset and choose a set thereof for all predictor in- 1272

stances. We train each predictor for 3 epochs, with 1273

a batch size of 32 examples, learning rate equal 1274

to 2e−5, and weight decay 0.001. For each predic- 1275

tor we performed search on values for λ, i.e., the 1276

contribution of the LBCE loss (Equation 4), and 1277

different criteria for model selection, i.e., the best 1278

at pairwise ranking or at both pairwise ranking and 1279

accuracy prediction (combined). 1280

Table 5 shows the configuration for each pre- 1281

dictor. Table cells show selection criteria (R for 1282

ranking and C for combined) and the value for λ. 1283

A trend that seems to emerge for LLAMA-3.1-8B 1284

and MISTRAL-7B-V0.3 is that best predictors tend 1285

to rely more on the target QA model accuracy, po- 1286

tentially indicating that their answers in some cases 1287
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Dataset Train Dev Test Example Question Example Answer
NQ 79,168 8,757 3,610 Who plays Letty in Bring it on all or nothing? Francia Raisa
TQA 78,785 8,837 11,313 Who was the first artistic director of the National

Theatre in London?
Lord Laurence Olivier

WebQ 2,474 361 2,032 What party was Andrew Jackson? Democratic-Republican Party
SQuAD 78,713 8,886 10,570 What is the Grotto at Notre Dame? A Marian place of prayer and

reflection
PopQA 10,000 1,267 3,000 Who was the director of Champion? Rabi Kinagi
RefuNQ — — 2,173 Who does the voice over in the Requirtion? —

Table 4: Dataset statistics, number of instances per Train/Development(Dev)/Test sets, and example question-answer
pairs (all taken from the Dev set except for RefuNQ).

Models NQ TQA WebQ SQuAD PopQA

GEMMA2.9B R, 0.25 R, 0.25 C, 1 C, 1 R, 0.25
LLAMA-3.1-8B C, 0.25 C, 1 R, 0.25 C, 1 C, 1
MISTRAL-7B-V0.3 R, 0.25 C, 1 R, 0.25 C, 1 C, 1
GEMMA2.2B R, 0.25 R, 0.25 R, 0.25 R, 0.25 R, 0.25
GEMMA2.27B R, 0.25 C, 1 C, 1 R, 0.25 R, 0.25

Table 5: This table shows the λ value and selection crite-
ria (R for pairwise ranking or C for combined pairwise
ranking and accuracy prediction) for each Passage Util-
ity predictor in our experiments.

depend less on context. However, for the smaller1288

model GEMMA2-2B all predictors achieve a good1289

ranking, which supports the hypothesis that small1290

models rely more on the provided content to for-1291

mulate their answers. At inference time we predict1292

a single Passage Utility score given by the selected1293

best checkpoint. For all predictor instances (except1294

for all WebQ and PopQA predictors and the pre-1295

dictor for LLAMA-3.1-8B and NQ), we use half1296

of the available training data to speed up experi-1297

ments. Training and inference was run on a single1298

A100-40GB GPU, training takes less than 12 hours1299

depending on the dataset.1300

Comparison Approaches In the additional re-1301

sults section of the appendix (Section C.3), we1302

report the following additional answer uncertainty1303

estimation methods. Maximum Sequence Probabil-1304

ity (MSP) is based on the probability of the most1305

likely answer and is computed as1306

MSP(x,R,M) = 1− P (y|x,R;M). (9)1307

Note that, in contrast to PPL(x,R,M) reported1308

in the main section of the paper, this metric is bi-1309

ased by answer length, i.e., identifying an answer1310

to have low probability (low confidence) because1311

of its length. Despite the fact that QA models are1312

instructed to produce short answers, they do not1313

always follow instructions. For this reason, we con-1314

sider perplexity a more accurate metric. Indeed, the1315

length of the answer could be a feature indicating 1316

that the model is uncertain about the answer. 1317

We estimate answer uncertainty from the Aver- 1318

age Answer Length (Avg.Ans.Len) as the average 1319

number of words in the sampled answers. We also 1320

report Cluster Assignment (CA) which is a variant 1321

of SE without answer probabilities where the prob- 1322

ability of each generated meaning (i.e., a cluster) 1323

is approximated from the number of answers in the 1324

cluster. We found that in general CA estimations 1325

are very close to Semantic Entropy ones. 1326

Another uncertainty estimation approach is the 1327

negative mean Point-wise Mutual Information 1328

(PMI; Takayama and Arase 2019) over tokens; 1329

i.e., it compares the probability of answer sequence 1330

y given a prompt with question x and passages R 1331

w.r.t the probability given by M to y without any 1332

context. Intuitively, the higher the point-wise mu- 1333

tual information, the more certain the QA model 1334

is on generating y (i.e., the answer is related to or 1335

depends on x and R). PMI is computed as 1336

PMI(x,R,M) =

− 1

|y|

|y|∑
t=1

log
p(yt|y1..t−1, x,R;M)

p(yt|y1..t−1;M)
.

(10) 1337

We use the implementation provided by Far- 1338

quhar et al. (2024) to compute Regular Entropy, Se- 1339

mantic Entropy, Cluster Assignment, and p(true). 1340

Metrics We use the implementation provided by 1341

Farquhar et al. (2024) for the AUROC, Accuracy 1342

at X% of rejection, and AURAC metrics. 1343

We use Qwen2-72B-Instruct (Yang et al., 2024) 1344

to obtain accuracy judgments (i.e., A judge, Sec- 1345

tion 4); specifically, we use the Activation-aware 1346

Weight Quantization (Lin et al., 2024) version 1347

Qwen2-72B-Instruct-AWQ. We prompt the accu- 1348

racy evaluator with the prompt proposed by Sun 1349

et al. (2024), as we found it to perform well. The 1350

accuracy evaluation (AccLM) prompt is shown in 1351
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Retrieval augmented QA prompt

Knowledge:
[1] passage
[2] passage
...
[|R|] passage

Answer the following question with a very short
phrase.

Question: question

Table 6: Prompt designed as user turn for QA models.

Table 8. In a sample of 840 generated answers1352

human and LLM-based judgment of correctness1353

agreed 98% of the time (Sun et al., 2024). As a ref-1354

erence point, to relate to accuracy as computed in1355

previous work, we report retrieval augmented QA1356

accuracy (Acc) defined as whether the gold answer1357

is contained in the generated answer (Mallen et al.,1358

2023; Asai et al., 2024).1359

B.3 Prompts1360

The prompt we use for our QA models is shown1361

in Table 6. Table 7 illustrates the prompt used for1362

our the p(true) baseline. Table 8 shows the prompt1363

used for the LLM-based accuracy (AccLM) metric.1364

C Additional Results1365

C.1 Generalisation of Uncertainty Estimation1366

In this series of experiments, we assess the gen-1367

eralisation ability of our Passage Utility estimator.1368

To this end, following previous work on question1369

answering and out-of-distribution (o.o.d) scenarios1370

(Kamath et al., 2020; Zhang et al., 2021); we train1371

a Passage Utility predictor on the SQuAD dataset1372

and then use it to predict zero-shot (i.e., without1373

further fine-tuning) passage utilities on all other1374

datasets’ test cases. As p(true) relies on 20 in con-1375

text training examples, we also evaluate its ability1376

to generalise to out of distribution test cases.1377

Table 9 shows AUROC for answer uncertainty1378

prediction on o.o.d scenarios. We also report PPL1379

as a baseline and the AUROC values for the in1380

distribution scenario as upper-bound. Although1381

Passage Utility performance decreases in o.o.d set-1382

tings, it remains competitive in three out of five1383

datasets. On NQ and WebQ the performance is1384

slightly above the PPL baseline. Note that we focus1385

on zero-shot accuracy to assess bare transfer perfor-1386

mance; however, it would make sense to adapt the1387

p(true) prompt

Question: question
Brainstormed Answers: most likely answer
sampled answer 1
...
sampled answer N
Possible answer: most likely answer
Is the possible answer:
A) True
B) False
The possible answer is: correct choice

...

Knowledge:
[1] passage
[2] passage
...
[|R|] passage

Question: question
Brainstormed Answers: most likely answer
sampled answer 1
...
sampled answer N
Possible answer: most likely answer
Is the possible answer:
A) True
B) False
The possible answer is:

Table 7: Prompt used for the p(true) comparison ap-
proach. The items in blue are filled in with in-context
examples from the training set and the current example
being evaluated. N represents the number of sampled
answers. The ’sequence of in-context examples’ prefix
is a sequence of examples taken from the training split
with the same question format but with the answer to
The possible answer is: resolved.

model with few examples from the o.o.d data (Ka- 1388

math et al., 2020; Zhang et al., 2021). Interestingly, 1389

p(true)’s performance also drops in all o.o.d test 1390

sets showing that relying on a fixed number of train- 1391

ing examples is neither robust nor has a principled 1392

and scalable adaptation method (e.g., fine-tuning). 1393

C.2 Reference Retrieval Augmented QA 1394

Accuracy 1395

Table 10 shows retrieval augmented QA perfor- 1396

mance (Acc and AccLM) for the five QA models 1397

on the development and test sets of the six QA 1398

tasks. 1399

C.3 Detailed Uncertainty Estimation Results 1400

Table 11 shows performance of uncertainty quan- 1401

tification approaches on the development sets. We 1402

report AUROC and AURAC. 1403
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D Examples of False Positives and1404

Negatives1405

Tables 12–15 illustrate the working of Passage Util-1406

ity for answer uncertainty estimation. As we report1407

AUROC scores, we do not set any correct/incorrect1408

decision threshold; for the purpose of this discus-1409

sion, we assume a decision point at 0.5 and analyse1410

clear success and failure cases. For each example,1411

we show the question, gold, and generated answers1412

in the top block. Then, we show three retrieved1413

passages with their estimated Passage Utility and1414

a final block with the ten sampled answers, their1415

grouping into clusters, and the Cluster Assignment1416

entropy.1417

Table 12 shows an example for a SQuAD ques-1418

tion and the LLAMA-3.1-8B QA model. In this1419

case, the QA model correctly answers and the Pas-1420

sage Utility estimate is high (i.e., indicating cor-1421

rect answer). Table 13 illustrates a case where1422

LLAMA-3.1-8B’s answer is incorrect and all Pas-1423

sage Utilities are very low (i.e., indicating incorrect1424

answer). The example from NQ in Table 14 shows1425

a case where all Passage Utilities are low but the1426

QA model (GEMMA2-9B) answers correctly. The1427

first passage is not useful, the second does not ex-1428

plicitly mention the answer but still primes the QA1429

model to answer correctly, while the third passage1430

mentions the answer.1431

In Table 15, Passage Utility scores are high esti-1432

mating a correct answer for the TQA test question;1433

however, GEMMA2-9B answers with the incorrect1434

magazine name. Note that none of the passages1435

corresponds to the National Geographic magazine1436

but have high token overlap with the question (in1437

particular the first and second passages).1438

Accuracy evaluation (AccLM) prompt

You need to check whether the prediction of a question-
answering system to a question is correct. You should
make the judgment based on a list of ground truth answers
provided to you. Your response should be "correct" if
the prediction is correct or "incorrect" if the prediction is
wrong.

Question: Who authored The Taming of the Shrew
(published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"]
Prediction: W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew
(published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"]
Prediction: Roma Gill and W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew
(published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"]"
Prediction: Roma Shakespeare
Correctness: incorrect

Question: What country is Maharashtra Metro Rail
Corporation Limited located in?
Ground truth: ["India"]
Prediction: Maharashtra
Correctness: incorrect

Question: What’s the job of Song Kang-ho in Par-
asite (2019)?
Ground truth: ["actor"]
Prediction: He plays the role of Kim Ki-taek, the patriarch
of the Kim family.
Correctness: correct

Question: Which era did Michael Oakeshott be-
long to?
Ground truth: ["20th-century philosophy"]
Prediction: 20th century."
Correctness: correct

Question: Edward Tise (known for Full Metal Jacket
(1987)) is in what department?
Ground truth: ["sound department"]
Prediction: 2nd Infantry Division, United States Army
Correctness: incorrect

Question: What wine region is Finger Lakes AVA
a part of?
Ground truth: ["New York wine"]
Prediction: Finger Lakes AVA
Correctness: incorrect

Question: question
Ground truth: gold answer
Prediction: generated answer
Correctness:

Table 8: Prompt used for LLM-based accuracy evalua-
tion (AccLM).
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NQ TQA WebQ PopQA RefuNQ
PPL 0.64 0.68 0.52 0.59 0.51
p(true) (i.i.d) 0.73 0.75 0.67 0.81 —
Passage Utility (i.i.d) 0.72 0.82 0.70 0.84 —
p(true) (o.o.d) 0.67 0.63 0.63 0.72 0.62
Passage Utility (o.o.d) 0.66 0.82 0.57 0.73 0.81

Table 9: Out-of-domain performance of Passage Utility predictor (with GEMMA2-9B). Uncertainty predictors are
trained on SQuAD and evaluated zero-shot on NQ, TQA, WebQ, PopQA, and RefuNQ test sets.

NQ TQA WebQ SQuAD PopQA RefuNQ
Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM

Development
GEMMA2.9B 0.48 0.66 0.74 0.80 0.46 0.66 0.38 0.60 0.51 0.52 — —
LLAMA-3.1-8B 0.48 0.62 0.71 0.77 0.53 0.64 0.39 0.57 0.51 0.49 — —
MISTRAL-7B-V0.3 0.48 0.62 0.72 0.76 0.52 0.69 0.37 0.58 0.53 0.51 — —
GEMMA2.2B 0.43 0.59 0.67 0.73 0.47 0.65 0.34 0.55 0.48 0.49 — —
GEMMA2.27B 0.48 0.66 0.75 0.81 0.49 0.67 0.38 0.60 0.52 0.52 — —

Test
GEMMA2.9B 0.49 0.65 0.74 0.80 0.40 0.66 0.43 0.60 0.50 0.52 0.26 0.40
LLAMA-3.1-8B 0.49 0.61 0.71 0.77 0.44 0.63 0.43 0.58 0.50 0.49 0.27 0.36
MISTRAL-7B-V0.3 0.49 0.62 0.72 0.77 0.47 0.66 0.41 0.58 0.51 0.50 0.26 0.35
GEMMA2.2B 0.44 0.57 0.67 0.72 0.39 0.61 0.39 0.56 0.48 0.49 0.24 0.33
GEMMA2.27B 0.48 0.65 0.76 0.81 0.41 0.66 0.42 0.61 0.51 0.53 0.26 0.39

Table 10: Performance of target QA models (with |R| = 5) on the development and test sets. We report token- and
model-based accuracy (Acc and AccLM). AccLM is computed by Qwen2-72B-Instruct.

NQ TQA WebQ SQuAD PopQA NQ TQA WebQ SQuAD PopQA
AUROC AURAC

GEMMA2-9B
PPL 0.61 0.52 0.58 0.66 0.56 0.67 0.78 0.67 0.65 0.52
MSP 0.64 0.60 0.64 0.71 0.61 0.69 0.80 0.69 0.67 0.56
PMI 0.53 0.46 0.52 0.50 0.48 0.64 0.75 0.64 0.57 0.50
p(true) 0.70 0.71 0.66 0.73 0.83 0.72 0.84 0.70 0.69 0.71
Regular Entropy 0.64 0.54 0.60 0.70 0.58 0.69 0.78 0.68 0.67 0.54
Cluster Assignment 0.68 0.65 0.65 0.70 0.68 0.71 0.82 0.70 0.67 0.60
Semantic Entropy 0.67 0.69 0.64 0.72 0.69 0.71 0.84 0.69 0.68 0.61
Avg.Ans.Len 0.61 0.64 0.65 0.63 0.68 0.68 0.83 0.71 0.65 0.61
Passage Utility 0.71 0.83 0.71 0.83 0.86 0.74 0.88 0.75 0.76 0.72

LLAMA-3.1-8B
PPL 0.75 0.78 0.68 0.75 0.81 0.76 0.85 0.71 0.71 0.68
MSP 0.77 0.80 0.71 0.76 0.85 0.76 0.85 0.72 0.72 0.70
PMI 0.55 0.52 0.48 0.54 0.58 0.64 0.73 0.60 0.61 0.53
p(true) 0.80 0.86 0.73 0.82 0.85 0.78 0.87 0.75 0.75 0.71
Regular Entropy 0.77 0.80 0.69 0.76 0.83 0.76 0.85 0.71 0.72 0.69
Cluster Assignment 0.75 0.83 0.69 0.75 0.82 0.75 0.85 0.71 0.71 0.67
Semantic Entropy 0.74 0.83 0.69 0.74 0.81 0.75 0.86 0.71 0.71 0.68
Avg.Ans.Len 0.73 0.73 0.69 0.69 0.84 0.73 0.82 0.71 0.67 0.69
Passage Utility 0.79 0.84 0.76 0.82 0.85 0.77 0.87 0.76 0.74 0.70

MISTRAL-7B-V0.3
PPL 0.66 0.70 0.60 0.63 0.66 0.69 0.84 0.72 0.63 0.63
MSP 0.70 0.75 0.65 0.71 0.77 0.70 0.85 0.73 0.68 0.67
PMI 0.38 0.33 0.42 0.42 0.30 0.53 0.68 0.62 0.52 0.39
p(true) 0.72 0.82 0.71 0.75 0.74 0.71 0.87 0.76 0.71 0.64
Regular Entropy 0.67 0.71 0.63 0.66 0.68 0.69 0.85 0.73 0.66 0.63
Cluster Assignment 0.72 0.81 0.68 0.73 0.76 0.71 0.87 0.75 0.68 0.66
Semantic Entropy 0.72 0.80 0.68 0.73 0.76 0.71 0.87 0.76 0.69 0.66
Avg.Ans.Len 0.66 0.75 0.65 0.68 0.81 0.69 0.85 0.73 0.67 0.70
Passage Utility 0.77 0.81 0.74 0.83 0.84 0.74 0.87 0.79 0.74 0.71

Table 11: Answer uncertainty estimation for QA models GEMMA2-9B, LLAMA-3.1-8B, and MISTRAL-7B-V0.3
on NQ, TQA, WebQ, SQuAD, and PopQA development sets. We report AUROC and AURAC.
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Question: Due to increased unemployment, who mainly opposed the Shah’s regime?
Generated Answer: Millions of youth and poor migrants.
Gold Answer: Millions of youth who had migrated to the cities.

Youth who migrated to cities for construction jobs.

Iran. unemployment, especially among millions of youth who had migrated to the cities of Iran looking for construction jobs
during the boom years of the early 1970s. By the late 1970s, many of these people opposed the Shah’s regime and began to organize
and join the protests against it. The 1979 Revolution, later known as the “Islamic Revolution”, began in January 1978 with the
first major demonstrations against the Shah. [cont.] 3.93

Unemployed and the poor.

Ruhollah Khomeini. unemployment, ideological disagreement over the economy, and “international pressure and isolation” such as
US sanctions following the hostage crisis. Due to the Iran–Iraq War, poverty is said to have risen by nearly 45% during the
first 6 years of Khomeini’s rule. Emigration from Iran also developed, reportedly for the first time in the country’s history.
Since the revolution and war with Iraq, an estimated “two to four million entrepreneurs, professionals, technicians, and skilled
craftspeople (and their capital)” have emigrated to other countries. [cont.] -1.37

The National Front.

Mohammad Reza Pahlavi. professors issued a public statement criticising the 1953 coup, all were dismissed from their jobs, but
in the first of his many acts of “magnanimity” towards the National Front, Mohammad Reza intervened to have them reinstated.
Mohammad Reza tried very hard to co-opt the supporters of the National Front by adopting some of their rhetoric and addressing
their concerns, for example declaring in several speeches his concerns about the Third World economic conditions and poverty
which prevailed in Iran, a matter that had not much interested him before. [cont.] -3.48

[’Migrants to the cities.’], [’Millions of youth who had migrated to cities.’, ’Millions of youth who migrated to cities.’],
[’Cultural and religious conservatives, and the urban poor who had migrated to cities for jobs.’], [’Youth who had migrated to the
cities.’], [’Millions of young migrants who had moved to cities in the early 1970s.’], [’Millions of youth and poor migrants to
cities.’], [’Cultural and religious conservatives, mostly urban migrants.’, ’Cultural and religious conservatives, particularly
the migrants to cities.’, ’Cultural and religious conservatives, especially those recently migrated to the cities.’] 1.83

Table 12: True negative example (from SQuAD development set): Passage Utility predicts the right answer as well
as the QA model (LLAMA-3.1-8B).

Question: Which company was targeted by the NAACP for not having fair practices?
Generated Answer: Target Corporation.
Gold Answer: Lockheed Aircraft Corporation.

Target Corporation.

Target Corporation. of Colored People has repeatedly given Target failing grades on its annual Economic Reciprocity Initiative
report card, a measure of the company’s “commitment to the African-American citizenry”. In 2003 and 2005, the NAACP has rated
Target an “F” on this report; in 2004, Target was rated a “D-”. In 2006, when Target was asked why it didn’t participate
in the survey again, a representative explained, “Target views diversity as being inclusive of all people from all different
backgrounds, not just one group.” In February 2006, the National Federation of the Blind (NFB) filed a class action [cont.]
-3.59

None, the NAACP was involved in the Duke lacrosse case.

Reactions to the Duke lacrosse case. formed an opinion on the case. North Carolina NAACP Legal Redress Chair, Al McSurely,
explained that “The NAACP stands for fair play for all parties, zealous investigation and deep concern for the survivors of
racist/sexist attacks.” At the same time, some have criticized the NAACP for making statements that portrayed the players as
racist despite evidence to the contrary, using the case to promote the group’s cause, and implying guilt. McSurely stated that
“[w]ithin five minutes, the men threatened the women with racial and misogynist verbal assaults, [cont.] -3.67

Philadelphia Transit Company (PTC).

Philadelphia transit strike of 1944. (PRTEU), Frank Carney, proved to be equally reticent and claimed that he was not authorized
by the union members to consider a request to allow promotions of black employees. The black PTC employees enlisted the help
of the NAACP and started lobbying the federal authorities, particularly the Fair Employment Practices Commission (FEPC), to
intervene. The Fair Employment Practices Commission, created by an executive order of the President in 1941, was charged with
ensuring non-discrimination employment practices by government contractors. [cont.] -3.49

[’Target.’], [’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’,
’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’], [’Target Corporation and the National Federation of the
Blind filed a lawsuit against Michigan.’] 0.33

Table 13: True positive example from (SQuAD development set): Passage Utility predicts the answer provided by
the QA model (LLAMA-3.1-8B) which is incorrect.
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Question: Close Encounters of the Third Kind Oscar nominations?
Generated Answer: Eight Oscar nominations.
Gold Answer: Eight Oscars.

Sound effects editing.

Close Encounters of the Third Kind. although the Academy honored the film’s sound effects editing with a Special Achievement
Award (Frank Warner). At the 32nd British Academy Film Awards, “Close Encounters” won Best Production Design, and was nominated
for Best Film, Direction, Screenplay, Actor in a Supporting Role (François Truffaut), Music, Cinematography, Editing, and Sound.
“Close Encounters” lost the Hugo Award for Best Dramatic Presentation to “Star Wars” [cont.] -1.86

Eight Oscar nominations.

Close Encounters of the Third Kind. Close Encounters of the Third Kind Close Encounters of the Third Kind is a 1977 American
science fiction film written and directed by Steven Spielberg, and starring Richard Dreyfuss, Melinda Dillon, Teri Garr, Bob
Balaban, Cary Guffey, and François Truffaut. It tells the story of Roy Neary, an everyday blue-collar worker in Indiana, whose
life changes after an encounter with an unidentified flying object (UFO). [...] In late 1973, he developed a deal with Columbia
Pictures for a science fiction film. Though Spielberg received sole credit for the script. [cont.] -1.58

Eight Oscar nominations.

Close Encounters of the Third Kind. in 2017, in tribute to its 40th anniversary, the movie was given a 4K restoration of the
original camera negative. Following its theatrical re-release of the director’s cut, the movie was released in 4K and Blu-ray
with all three versions given the same 4K treatment. The film was nominated for 8 Oscars at the 50th Academy Awards, including
Best Director, Supporting Actress (Melinda Dillon), Visual Effects, Art Direction (Joe Alves, Daniel A. Lomino, Phil Abramson),
Original Music Score, Film Editing, and Sound (Robert Knudson, Robert Glass, Don MacDougall and Gene Cantamessa). The film’s
only win was for Vilmos Zsigmond’s cinematography [cont.] -1.48

[’Eight nominations.’, ’Eight Oscar nominations.’, ’Eight Oscar nominations.’], [’Eight nominations, one win.’, ’Eight
nominations, one win.’], [’Eight, including Best Director.’], [’Eight nominations at the 50th Academy Awards.’, ’8 nominations
at the 50th Academy Awards.’], [’8 nomin ations, 1 win for cinematography.’, ’Eight Oscars, won for cinematography.’] 1.56

Table 14: False positive example from (NQ development set): Passage Utility predicts a wrong answer whereas the
prediction of the QA model (GEMMA2-9B) is correct.

Question: What magazine, with its iconic yellow border, was first published on Sept 22, 1888?
Generated Answer: The Yellow Book.
Gold Answer: National Geographic.

The New Yorker.

Time (magazine). plays, musicals, television programs, and literary bestsellers similar to “The New Yorker”’s “Current Events”
section. “Time” is also known for its signature red border, first introduced in 1927. The border has only been changed five
times since 1927: The issue released shortly after the September 11 attacks on the United States featured a black border to
symbolize mourning. However, this edition was a special “extra” edition published quickly for the breaking news of the event;
the next regularly scheduled issue contained the red border. Additionally, the April 28, 2008, Earth Day issue, dedicated to
environmental issues, contained a green border. [cont.] 1.92

The Yellow Book.

The Yellow Book. The Yellow Book The Yellow Book was a British quarterly literary periodical that was published in London from
1894 to 1897. It was published at The Bodley Head Publishing House by Elkin Mathews and John Lane, and later by John Lane alone,
and edited by the American Henry Harland. The periodical was priced at 5 shillings and lent its name to the “Yellow Nineties”,
referring to the decade of its operation. It was a leading journal of the British 1890s; [cont.] 0.35

The Crisis.

The Colored American Magazine. The Colored American Magazine The Colored American Magazine was the first American monthly
publication that covered African-American culture. The magazine ran from May 1900 to November 1909. It was initially published
out of Boston by the Colored Co-Operative Publishing Company, and from 1904, forward, by Moore Publishing and Printing Company
of New York. Pauline Hopkins, its most prolific writer from the beginning, sat on the board as a shareholder, was editor from
1902 to 1904, though her name was not on the masthead until 1903. [cont.] -1.27

[’The Yellow Book’, ’The Yellow Book’, ’The Yellow Book’, ’The Yellow Book’, ’The Yellow Book’, ’Time magazine.’, ’The Yellow
Book’, ’The Yellow Book’, ’The Yellow Book’], [’Time magazine’] 0.50

Table 15: False negative (from TQA development set): Passage Utility predicts a correct answer, and the answer by
the QA model (GEMMA2-9B is wrong.
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