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ABSTRACT
3D occupancy prediction (OCC) aims to estimate and predict the
semantic occupancy state of the surrounding environment, which is
crucial for scene understanding and reconstruction in the real world.
However, existing methods for 3D OCC mainly rely on surround-
view camera images, whose performance is still insufficient in some
challenging scenarios, such as low-light conditions. To this end,
we propose a new multi-modal fusion network for 3D occupancy
prediction by fusing features of LiDAR point clouds and surround-
view images, called FusionOcc. Our model fuses features of these
two modals in 2D and 3D space, respectively. By integrating the
depth information from point clouds, a cross-modal fusion module
is designed to predict a 2D dense depth map, enabling an accurate
depth estimation and a better transition of 2D image features into
3D space. In addition, features of voxelized point clouds are aligned
and merged with image features converted by a view-transformer
in 3D space. Experiments show that FusionOcc establishes the new
state of the art on Occ3D-nuScenes dataset, achieving a mIoU score
of 35.94% (without visibility mask) and 56.62% (with visibility mask),
showing an average improvement of 3.42% compared to the best
previous method. Our work provides a new baseline for further
research in multi-modal fusion for 3D occupancy prediction.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
3D occupancy prediction, Scene understanding, Cross-modal fusion,
Depth estimation

1 INTRODUCTION
Perceiving and modeling the surrounding scenes accurately and
comprehensively plays an important role in robotics navigation,
autonomous driving and so on. Modern researches for 3D per-
ception mainly focus on 3D object detection and semantic map
reconstruction, where objects are described by 3D bounding boxes
and generated maps are used for path planning.

While the 3D bounding box usually erases the geometric details
of objects[3, 37], 3D occupancy prediction (OCC) offers ameticulous
partitioning of the 3D space into semantically labeled voxels, which
provides richer semantic and geometric expressiveness. 3D OCC is
now widely used in the field of autonomous driving, providing dri-
vers with detailed road conditions and a better driving experience.
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Compared with 3D object detection [40], LiDAR segmentation [47],
and semantic map reconstruction, estimating the detailed occu-
pancy states and semantics of a scene is more complicated [2, 21].
Besides, the immense number of voxels brings new challenges to
computation, necessitating the employment of techniques such as
sparse convolution.

Some previous works have focused on vision-based occupancy
prediction, aiming to avoid additional economic costs from LiDAR
sensors. Typically, forward projection (LSS[33]) and backward pro-
jection (BEVFormer[18]) is widely used among their models, where
2D features of images are transformed into 3D features in BEV
space by 2D-3D projection. The core of LSS is depth estimation,
which is tough only using monocular images, especially for dis-
tant and small objects. Incorrect estimations of depth could lead
to the wrong projection of 2D-3D, resulting in poor prediction[24].
Besides, encoding the image features directly into flattened BEV
features is not feasible, causing the loss of geometry information.

Other works using LiDAR or fusing LiDAR with camera may eas-
ily introduce LiDAR-to-camera’s distortion and camera-to-LiDAR’s
sparsity, which have been illustrated by BEVFusion[24]. Besides,
geometry distortion by projecting LiDAR to camera becomes sev-
erer when the scene is dynamic [15], and point clouds are much
more sparse when compared with dense voxels in OCC task. Thus,
it is not feasible to model the occupancy state of the scene solely
by temporally accumulating the point clouds.

In this paper, we propose a new network named FusionOcc to
unify camera and LiDAR features in the shared 3D representation
space for 3D occupancy prediction. The model fuses features of
these two modals in 2D and 3D space, respectively. We design a
cross-modal fusion module supervised by both sparse point clouds
and image semantics, which provide an accurate depth estimation
for the transition of 2D image features into 3D space. In addition,
features of LiDAR point clouds are aligned and merged with image
features converted by a view-transformer in 3D space. Finally, the
fused features are fed into a specific occupancy head to predict the
occupancy state of 3D space. Validated by extensive experiments,
our model has great ability to reconstruct smaller objects and dis-
tant scenes. Besides, the model is less vulnerable to harsh weather
conditions and insufficient lighting, achieving higher scores than
all previous methods.

In summary, our main contributions are:
1. A newmulti-modal fusionmodel is proposed for 3D occupancy

prediction.
2. Our model, named FusionOcc, realizes a cross-modal fusion

module that incorporates camera images and LiDAR point clouds
to obtain an accurate depth estimation, enabling a better transition
of 2D features into the 3D space.

3. FusionOcc achieves state-of-the-art performance on theOCC3D-
nuScenes dataset and sets up a new baseline for 3D occupancy
prediction based on multi-modal fusion.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 RELATEDWORK
2.1 Vision-based Occupancy Prediction
Occupancy Networks were originally proposed by Mescheder et
al.[26, 32], focusing on continuously representing objects in 3D
space. Recent variations in occupancy networks have shifted their
focus to reconstructing 3D space and predicting voxel-level seman-
tic information from image inputs. SurroundOcc[42] proposes a
coarse-to-fine architecture for occupancy prediction. OccNet[39]
exploits applying universal occupancy features to various down-
stream tasks and introduces the OpenOcc benchmark.

With the release of OCC-3d nuScenes[38] dataset, many ex-
cellent methods emerged in the CVPR 2023 occupancy challenge.
FB-OCC[19] adopts a unified design that leverages both forward
projection (represented by List-Splat-Shoot[33]) and backward pro-
jection (represented by BEVFormer[18]), promoting the benefits
from each method with improved perception results while overcom-
ing their limitations. UniOCC[31] approached the 3D occupancy
task as a rendering problem, attempting to solve it using NeRF’s[41]
methodology. They also employed a Teacher-Student training ap-
proach to train the model.

2.2 Semantic Scene Completion
Another related task is Semantic Scene Completion (SSC)[8, 21, 43],
and the main difference between SSC and 3D Occupancy Prediction
(OCC) is that SSC usually deals with static scenes while OCC focus
on dynamic ones. Though these two tasks differ a little, there are
still many excellent works on SSC worthy of reference.

SSCNet[36] was the first to address SSC using both image and
depth map data, utilizing a 3D convolutional network to gener-
ate occupancy and labels within a voxel grid. MonoScene[5] de-
signed a unified camera-based approach for indoor and outdoor
scenarios, leveraging line-of-sight projection and an innovative
frustum proportion loss. OccDepth[27] utilizes stereo images and
corresponding depth supervision. Other approaches incorporate
the bird-eye-view (BEV) and temporal information for predicting
3D occupancy. This concept has been further expanded with the
Tri-Perspective View[35].

Notably, LiDAR-based methods have shown superior perfor-
mance compared to camera-based approaches in outdoor scenes.
Christoph et al.[34] propose a scene segmentation model for scene
completion. A global scene completion function is subsequently
assembled from the localized function patches. S3cnet[7] utilizes a
sparse convolution based neural network to fuse 2D and 3D point
features. Apart from these methods, datasets such as SSCBench[16]
and SemanticKITTI[21], providing annotated ground truth for SSC
evaluation, facilitating a more comprehensive assessment of SSC
methods.

2.3 Multi-modal Fusion
Recently, multi-modal fusion has aroused increased interest in
the 3D perception and scene understanding community. Early ap-
proaches can be classified into proposal-level fusion and point-level
fusion. Proposal-level fusion methods are object-centric and cannot
trivially generalize to other tasks such as BEV map segmentation.
Point-level fusion methods, on the other hand, usually paint image

semantic features onto foreground LiDAR points and then perform
LiDAR-based detection on the decorated point cloud inputs, such
as Deep Continuous Fusion [20], DeepFusion[17] and so on.

Besides, BEVFusion[24] unifies multi-modal features in a shared
bird’s-eye view representation space for task-agnostic learning,
where both geometric structure and semantic density are main-
tained. ObjectFusion[4] learns three kinds of modality-specific fea-
ture maps (i.e. voxel, BEV, and image features) from the LiDAR
point cloud and its BEV projections for 3D object detection, where
features of three modalities are further fused at the object level and
finally fed into the detection head.

3 METHODOLOGY
The overview of our model is in Fig. 1. FusionOcc is composed
of three main components: (1) A points branch that generates 3D
point clouds features through a voxelization of point clouds and
a voxel encoder. (2) A images branch that generates 3D image
features through a cross-modal fusion of 2D semantics and depth
maps, and a 2D-to-3D transformation. (3) An occupancy head that
merges the 3D features of images and point clouds, then encodes
the fused features to produce occupancy prediction. Specifically,
the input of multiple frames of point clouds are merged to obtain
relatively dense point clouds. After voxelization, sparse convolution
is employed to generate the 3D features of point clouds. Along with
the LiDAR branch, the camera branch utilizes images from camera
and depth information from LiDAR. A cross-modal fusion module
is adopted to fuse features of these two modals. Then, a view-
transformation is adopted to obtain image features that are aligned
with features of point clouds in common 3D space. Finally, features
of two branches are merged and encoded by a 3D convolution
network and then produce a prediction for the 3D occupancy state.

3.1 Points Branch
Given the multi-modal inputs of point clouds and image data, two
modality-specific encoders extract point cloud features and image
features respectively. Formally, for the points branch, the input
point clouds consist of a set of points and each point is represented
as a 5-dimensional vector 𝑝 = (𝑥,𝑦, 𝑧, 𝑖, 𝑟 ), where 𝑥,𝑦, 𝑧 is the co-
ordinates in 3D space, 𝑖 is the reflection intensity and 𝑟 is the ring
index.

The voxel encoder encodes the input LiDAR point cloud. Due to
the sparsity of the original point cloud, the voxel encoder, corre-
spondingly, utilizes sparse convolution and sparse down-sampling
module rather than common 3d convolution to reduce computa-
tion. We use VoxelNet[6] as our backbone. As the final occupancy
task requires the voxel feature map to be consistent with the size
and range of feature maps of images in the shared 3D space, we
voxelize the LiDAR point cloud with 0.05m and apply a 8x down-
sampling in the voxel encoder. The feature of point cloud in 3D
space 𝐵𝑙 ∈ 𝑅𝐶×𝐷×𝐻×𝑊 is generated by a dense convert operation
followed sparse convolution.

3.2 Images Branch
Along with the points branch, the images branch is set to extract
3D features of multi-view images. The architecture of the camera
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Figure 1: The overall network architecture of this paper. The images branch and the points branch extract features of images
and point cloud, then an occupancy head predicts the 3D occupancy state of the scene.

branch is more complex compared with the LiDAR branch, and
could be divided into three sub-parts.

Image Encoder. The input multi-view images of the branch rep-
resents a set of RGB images 𝑅𝐻×𝑊 ×3, where 𝐻 and𝑊 is the height
and width of the image. To exploit the power of multi-resolution fea-
tures, the image encoder includes a backbone for high-level feature
extraction and a neck for multi-resolution feature fusion. Besides,
we utilize the temporal-fusion of multiple camera frames proposed
by BEVDet4D[12]. Specifically, SwinTransformer[23] is utilized to
extract 2D image feature maps and FPN-LSS[13] is adopted to fuse
all feature maps of different scales into a single feature map. The
module down-samples the feature to 1/16 input size.

Cross-modal Fusion. Modern methods unify multi-modal fea-
ture maps via BEV-based fusion where image features are projected
into BEV space through camera-to-BEV transformation. However,
the camera-to-BEV transformation hinges on pre-learned depth
estimator to obtain the inherently ambiguous depth estimation of
each pixel. Any inaccurate depth estimation can potentially result
in spatial misalignment between the image feature maps and point
feature maps. Besides, it is worth noting that semantic-level su-
pervision from 2D images could enhance the prediction for 3D
occupancy.

Based on that, a cross-modal fusion module is designed to unify
images and sparse depth maps generated by corresponding point
cloud at various levels. Dense depth map of RGB images is predicted
by the module. Besides, a segmentation branch is adopted to predict

the 2D semantic masks alongside the depth prediction task and
two branches’ features are interacted with each other via a cross-
attention mechanism. Details are shown in Fig. 2, the inputs of
the cross-modal fusion module are the feature map of RGB images
𝐹𝑐 ∈ 𝑅𝐻×𝑊 ×𝐶 and the features 𝐹𝑑 ∈ 𝑅𝐻×𝑊 ×𝐶 of 2D depth map
from point clouds. The 2D depth map is down-sampled x16 to keep
the same resolution as image feature map and encoded using one-
hot. Then, global average pooling is applied to 𝐹𝑐 and 𝐹𝑑 along the
channel to obtain 𝐹𝑑 and 𝐹𝑐 ∈ 𝑅𝐶 . An MLP layer with a sigmoid
function is followed to obtain𝑊𝑐 and𝑊𝑑 :

𝑊𝑑 = 𝜎 (𝑓𝑚𝑙𝑝 (𝐹𝑑 )) (1)

Similar to SE-Net[11], we use𝑊𝑐 and𝑊𝑑 as the excitationmodule
and a fused feature is obtained by element-wise multiplication along
channel:

𝐹𝑑2𝑐 =𝑊𝑐 ∗ 𝐹𝑑
𝐹𝑐2𝑑 =𝑊𝑑 ∗ 𝐹𝑐 (2)

Followed by concatenating, fusing and splitting 𝐹𝑐2𝑑 and 𝐹𝑑2𝑐 .
Another average pooling along spatial level is applied to obtain
𝐹𝑑 and 𝐹𝑐 ∈ 𝑅𝐻×𝑊 . Then, an 1 × 1 convolution layer with Relu
function is followed to obtain 𝑍𝑐 and 𝑍𝑑 :

𝑍𝑑 = 𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣1×1 (𝐹𝑑 )) (3)
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Figure 2: Details of the cross-modal fusion module. 𝐹𝑐 and 𝐹𝑑 represent the image features and depth features, respectively. 𝐹𝐶
𝑐2𝑑

and 𝐹𝐶
𝑑2𝑐 are the output of the module generated by channel-wise fusion(colored by yellow) and spatial-wise fusion(colored by

green) of 𝐹𝑐 and 𝐹𝑑 .

Likewise, we use 𝑍𝑐 and 𝑍𝑑 to obtain fused features by the
element-wise multiplication and the original feature is added up to
it:

𝐹𝐶
𝑑2𝑐 = 𝛼𝑍𝑐 ∗ 𝐹𝑑 + 𝐹𝑑

𝐹𝐶
𝑐2𝑑 = 𝛼𝑍𝑑 ∗ 𝐹𝑐 + 𝐹𝑐 (4)

𝛼 is a hyper-parameter and the default value of them is set as 1 in
Section 4. Features 𝐹𝐶

𝑐2𝑑 and 𝐹𝐶
𝑑2𝑐 are further concatenated for depth

estimation and 2D semantic segmentation task, and the feature of
segmentation branch is fed into the view transformation module
to be projected into 3D space. The training strategy is designed to
let the module to reconstruct the original depth maps generated by
point clouds via randomly masked ones, then it could produce a
dense depth map during the inference phase (see Fig. 3 ).

Also, dataset such as Occ3D-nuScenes[38] does not provide se-
mantic segmentation labels for 2D images. To ensure consistency
in semantic label categories and do not leverage other pre-trained
models to generate pseudo labels, we use nuSences-lidarSeg[9] and
3D voxel labels to get the 2D semantic label via projection and
up-sampling (see Fig. 4). We quantize the depth values of the point
clouds to a fixed range, and classification loss is used to train the
depth estimation and semantics segmentation branch. The total
loss 𝐿𝑓 𝑢𝑠𝑒 is the sum of depth loss 𝐿𝑑𝑒𝑝𝑡ℎ and segmentation loss
𝐿𝑠𝑒𝑔 :

𝐿𝑠𝑒𝑔 = −
∑︁
𝐻,𝑊

(
𝑦𝑠𝑒𝑔𝑙𝑜𝑔𝑝𝑠𝑒𝑔

)
𝐿𝑑𝑒𝑝𝑡ℎ = −

∑︁
𝐻,𝑊

(
𝑦𝑑𝑒𝑝𝑡ℎ𝑙𝑜𝑔𝑝𝑑𝑒𝑝𝑡ℎ

)
𝐿𝑓 𝑢𝑠𝑒 = 𝐿𝑑𝑒𝑝𝑡ℎ + 𝐿𝑠𝑒𝑔 (5)

(a) 2D camera image (b) Sampled depth map

(d)  Dense depth map(c) Sparse depth map

Figure 3: The strategy of generating a dense depth map of
images. (a) The original 2D image (b) During the training
phase, a randomly sampled depth map is fed to reconstruct
the sparse depth map generated by point clouds. (c) During
the inference phase, a dense depthmap can be obtained when
a sparse point clouds is provided as input.

(a) 2D camera image (b) LiDAR to camera (c) 2D segmentation

Figure 4: Using the projection of point clouds to image to
generate pseudo-labels for 2D image segmentation.(a) The
original 2D image. (b) Projection of point clouds to 2D image.
(c) Pseudo-labels generated by up-sampling.
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where 𝐻 and𝑊 are the height and width of the feature map
which is down-sampled x16 compared to the input. 𝑦 denotes the
label and 𝑝 denotes the prediction.

2D-to-3D. To obtain 3D image features, a view transformer [33]
is utilized to transform the feature from image view to 3D space.
The dense depth map predicted by cross-modal fusion module could
assist in projecting the image feature into 3D space to obtain feature
𝐵𝑐 ∈ 𝑅𝐶×𝐷×𝐻×𝑊 .

3.3 Occupancy Head
Finally, 3D features of images and point clouds are merged along
channel 𝐶 to produce a unified 3D feature. The unified feature is
furtherly encoded in 3D space and fed into an occupancy head to
predict the 3D occupancy state. We utilize ResNet[10] with clas-
sical residual block to construct the module and combine the fea-
tures with different resolutions by applying FPN-LSS[13]. A cross-
entropy loss funtion 𝐿𝑜𝑐𝑐 is used to train the occupancy prediction
and the final loss is a weighted sum of 𝐿𝑜𝑐𝑐 and 𝐿𝑓 𝑢𝑠𝑒 :

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑐𝑐 + 𝜆 ∗ 𝐿𝑓 𝑢𝑠𝑒 (6)
where 𝜆 is a hyper-parameter and is set as 0.1 in our model.

4 EXPERIMENTS
Our model is evaluated on the Occ3D-nuScenes[38] dataset. Occ3D-
nuScenes is based on the nuScenes[3] dataset, which consists of
large-scale multi-modal data collected from 6 surrounding cam-
eras, 1 top LiDAR and 5 radars. The dataset is split into train-
ing/validation parts including 700/150 clips. The occupancy scope
in the dataset is defined as -40m to 40m for X and Y axis, -1m to 5.4m
for the Z axis, and 0.4m for the voxel size. Thus, the shape of the
occupancy block is [200, 200, 16]. For 3D occupancy prediction task,
the official evaluation metric uses mean Intersection over Union
(mIoU) to evaluate models’ performance:

𝑚𝐼𝑜𝑈 =
1
𝑁

𝑁∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
(7)

where 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖 represent the number of voxels that are
predicted as true-positive, false-positive and false-negative of the
class 𝑖 , 𝑁 is the number of classes.

4.1 Implementation
We implement the proposed FunsionOcc in the PyTorch framework,
based on the MMdetection3D and BEVDet[12] codebases. For the
image encoder, we use the SwinTransformer[23] network as the
backbone and FPN-LSS[13] to fuse multi-scale feature maps. Input
images are cropped to remove invalid parts. The image backbone is
pretrained on the nuImage[3] dataset for the 2D detection task. For
the voxel encoder, we use VoxelNet[6] as the backbone to obtain
point clouds features and down-sample the original point clouds
by 8x. The voxel size of lidar is set as [0.05m, 0.05m, 0.05m], and
the point clouds range is [-40m, -40m, -1m, 40m, 40m, 5.4m] in X,
Y, and Z-axis, respectively.

During training, we utilize random flip, and random sample
to augment the LiDAR data. Following common practice[1], we
align the previous nine LiDAR sweeps into the current frame for

a denser point cloud. For images, we additionally use random flip,
random rotation in and random resizing in to augment the images.
AdamW[25] is used as the optimizer to train the model with a
global batch size of 8. The initial learning rate is set as 1e-4 and is
decayed with cosine annealing policy. For all experiments, we train
our models for 20 epochs on 8 NVIDIA Tesla V100 GPUs.

4.2 Comparison with the State-of-the-arts
In Table 1, we compare FusionOcc with previous state-of-the-art
methods on the validation split of Occ3D-nuScenes dataset. In order
to make a fair comparison of the performance of these methods,
we divide these methods into two groups based on whether they
use the visibility mask or not, and the group where the visibility
mask is used are marked with ∗.

Methods that do not use the visibility mask include OccFormer
(camera-based method), VoxelNet (LiDAR-based method), BEV-
Fusion (multi-sensor method) and so on. The input of VoxelNet
is a fused point cloud of 8 adjacent frames and the output is en-
coded by the same encoder used in FusionOcc. 2DPASS-acc denotes
the outstanding point cloud segmentation method, we accumulate
the segmentation results of multi-frame point clouds to generate
dense occupancy blocks. It is shown that although 2DPASS-acc has
achieved good performance in point cloud segmentation tasks, the
occupancy prediction based on the accumulated segmentation of
multi-frame point clouds is relatively poor. Also, BEVFusion shares
the same backbone, input size and OCC head with FusionOcc to
keep fair. FusionOcc achieves the highest mIoU score of 35.94%
among methods that do not use the visibility mask. As for methods
that use the visibility mask including FB-OCC, UniOcc and so on,
which have all achieved top scores in CVPR 2023 OCC competition,
our model still outperforms them with a mIoU score of 56.62%.

4.3 Ablation Studies
Effect of Cross-modal Fusion. We employ a cross-modal fu-
sion module to incorporate dense depth estimation and 2D image
semantic segmentation. To testify its effectiveness, we conduct
experiments in Table 2. Column 1 represents whether the model
utilizes an additional learning branch where 4 different settings
are adopted. Column 2 represents the fusion method used by the
model.

From the table, it is observed that both the semantic branch
and the depth branch have a positive impact on the accuracy of
the model. The model with the two learning branches achieves
the highest mIoU of 56.62%, which is a 2.56% improvement com-
pared to the method without fusion and any additional learning
branches. Besides, the designed cross-modal module has a more
significant improvement (0.79%) in model accuracy compared to
simply concatenating the features of the two modalities.

Effect of Merging Multi-frames. Since the point cloud at a
single timestamp is sparse, we attempt to merge multiple frames to
obtain a relatively dense point cloud. In Table 3, the mIoU, mAcc
and F1 score of our model(with the visibility mask) is observed
along different numbers of frames to be merged. From rows 1-4
of the table, it can be proved that the merging of point clouds of
multiple frames is very effective. The performance of our model
steadily improves as the number of frames increases, and the model



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: 3D occupancy prediction performance on the Occ3D-nuScenes validation set. ∗ denotes using the visibility mask. Our
method achieves a higher performance than previous methods.
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MonoScene[5] C 1.8 7.2 4.3 4.9 9.4 5.7 4.0 3.0 5.9 4.5 7.2 14.9 6.3 7.9 7.4 1.0 7.7 6.1
OccFormer[46] C 5.9 30.3 12.3 34.4 39.2 14.4 16.5 17.2 9.3 13.9 26.4 51.0 31.0 34.7 22.7 6.8 7.0 21.9
BEVFormer[18] C 5.9 37.8 17.9 40.4 42.4 7.4 23.9 21.8 21.0 22.4 30.7 55.4 28.4 36.0 28.1 20.0 17.7 26.9
TPVFormer[35] C 7.2 38.9 13.7 40.8 45.9 17.2 20.0 18.9 14.3 26.7 34.2 55.7 35.5 37.6 30.7 19.4 16.8 27.8
CTF-Occ[38] C 8.1 39.3 20.6 38.3 42.2 16.9 24.5 22.7 21.1 23.0 31.1 53.3 33.8 38.0 33.2 20.8 18.0 28.5
SparseOcc[22] C 10.6 39.2 20.2 32.9 43.3 19.4 23.8 23.4 29.3 21.4 29.3 67.7 36.3 44.6 40.9 22.0 21.9 30.9
2DPASS-acc[44] L - 32.66 8.83 12.46 15.74 15.35 11.45 8.48 19.55 20.76 17.01 27.21 18.24 18.8 16.62 39.78 37.5 20.03
VoxelNet[6] L 5.24 36.96 11.15 25.6 26.42 18.97 15.02 9.69 7.82 22.48 23.69 46.59 21.83 30.97 28.85 45.73 45.97 24.88

BEVFusion[24] C + L 7.27 42.69 22.2 38.88 43.79 23.86 27.58 22.24 22.83 28.38 35.79 46.5 27.82 32.14 29.31 45.04 43.62 31.76
FusionOcc (Ours) C + L 8.5 45.68 28.81 44.34 47.67 25.55 35.37 37.01 32.21 31.23 40.32 47.84 29.71 33.98 31.13 46.39 45.26 35.94

FB-Occ∗[19] C 14.30 49.71 30.0 46.62 51.54 29.3 29.13 29.35 30.48 34.97 39.36 83.07 47.16 55.62 59.88 44.89 39.58 42.06
MiLO∗[30] C - - - - - - - - - - - - - - - - - 43.95
UniOcc∗[31] C - - - - - - - - - - - - - - - - - 45.2

BEVDet4d-occ∗[12] C 12.13 49.58 24.98 51.94 54.36 27.77 27.9 28.91 27.21 36.38 42.2 82.32 43.34 54.59 57.88 48.56 43.5 41.97
2DPASS-acc∗[44] L - 39.67 11.09 16.65 19.72 21.41 13.01 9.88 23.03 29.31 22.39 34.0 23.23 23.49 21.79 50.92 45.79 25.34
VoxelNet∗[6] L 11.46 49.41 16.83 36.92 43.9 31.37 21.12 26.78 28.88 41.56 39.08 82.8 44.0 57.49 60.76 73.17 72.5 43.41

BEVFusion∗[24] C + L 16.2 61.94 39.34 58.22 62.51 38.13 41.62 46.68 47.65 50.55 52.72 85.72 49.38 60.68 64.25 71.72 70.24 53.97
FusionOcc∗ (Ours) C + L 17.06 62.56 43.13 63.78 66.21 37.89 49.66 53.71 49.77 53.11 49.77 53.11 57.52 86.17 49.79 61.63 65.03 56.62

Table 2: Ablation of cross-modal fusion. The first column
indicates whether we use the semantics branch, depth branch
or the combination of two to train the model. The second
column indicates the method of fusing two modals.

Supervised Fusion method mIoU mAcc F1

𝐿𝑜𝑐𝑐 w/o fusion 53.97 78.08 70.32
𝐿𝑜𝑐𝑐 + 𝐿𝑠𝑒𝑔 w/o fusion 54.12 78.33 70.96

𝐿𝑜𝑐𝑐 + 𝐿𝑑𝑒𝑝𝑡ℎ w/o fusion 54.27 78.56 71.45

𝐿𝑡𝑜𝑡𝑎𝑙

w/o fusion 55.12 78.62 72.10
linear 55.83 79.02 72.34

cross-modal 56.62 79.30 72.47

Table 3: Ablation of merging multiple frames. The first col-
umn C-Frames indicates the number of merged frames of
cameras, while the second one L-Frames represents the num-
ber of merged frames of point clouds we use in the model.

C-Frames L-Frames mIoU mAcc F1

2

1 51.43 71.80 68.31
2 53.48 78.71 70.02
4 55.87 78.82 71.80
8 56.62 79.30 72.47

1 8 55.32 78.76 71.72
3 8 56.16 78.71 72.13
4 8 56.68 79.12 72.49

achieves the highest performance and obtains a 5.21% improvement
on mIoU when the number of fused frames is 8.

From rows 5-6 of the table, the number of camera frames fused
in the model is set as 1, 3 and 4. The result shows that even if more
image features from previous timestamps are fused, there will not

Table 4: Parameter amounts comparison of differentmethods.
The original resolution of input images is all set as 1600 ×
900. ∗means using the visibility mask.

Method Modality Params(M) mIoU(%)

InverMatrixVT3D[28] C 67.18 27.94
SurroundOcc[42] C 180.51 31.49

OccFusion[29] C+L 92.71 33.24
C+L+R 114.97 34.35

FusionOcc C+L 111.70 35.94

FB-Occ∗[19] C 67.8 42.06
FB-Occ(large)∗ C 1200.0 52.79

FusionOcc(tiny)∗ C+L 67.31 52.78
FusionOcc∗ C+L 111.70 56.62

be a significant change in the performance of the model (less than
1% point fluctuation).

4.4 Parameter Amounts Analysis
In addition, the number of parameters of our model is compared.
Results are still divided into two groups (with and without visibility
mask) for a fair comparison. We can see that in Tab. 4, even with a
relatively small model size, FusionOcc can achieve a higher score
on mIoU. To lighten the model, we adopt MobileSAM[45] as our
backbone in the image branch(marked as tiny). MobileSAM is the
ultra-lightweight version of SAM(Segment Anything Model)[14],
which has been pre-trained on various open-domain datasets. As
shown in the table, the model’s size could be reduced to half without
much accuracy loss.
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4.5 Robustness Analysis
Performance in Different Scenarios. The accuracy of scene
understanding and modeling is often greatly influenced by envi-
ronmental conditions, such as rainy days and at night. Multi-modal
fusion helps to improve the model’s robustness in different scenar-
ios. As seen in Fig. 5, our model FusionOcc achieves the top scores
in three different scenarios. Even in rainy days when LiDAR is
likely to be interfered, the accuracy of our model remains relatively
stable with little change.

Performance Varies with Different Perception Distances.
Multi-modal fusion not only improves the final model’s robustness
to different illumination and weather conditions but also extends
the model’s perception range. We take the vehicle as the center
and define 𝑅 as the distance from the center. By setting different
𝑅 = [15𝑚, 20𝑚, 25𝑚, 30𝑚, 35𝑚, 40𝑚] (with the maximum value of R
is 40), we study the performances of different models and modal
fusion methods under different perception ranges.

As seen in Fig. 6, by fusing modals of cameras and LiDAR point
clouds, the model’s ability to perceive objects at extended distances
is significantly improved. This phenomenon can be attributed to Li-
DAR data having a longer detection range and providing the modal
of images with accurate depth information. Although features of
point clouds are sparse, they can be combined to nearby features
from other modalities, thereby enhancing the ability of the final
merged feature to model the 3D scene.

PerformanceVarieswithRandomCameras Loss.Wedemon-
strate the robustness of our proposed modal against inferior camera
conditions on the dataset. As shown in Fig. 7, we can see that even
with a camera input lost, themodel could still achieve a 53.66%mIoU
score. With 3 camera inputs lost, the model achieves a 47.40% mIoU
score. As expected, when the number of lost cameras increases,
the gap between the performance of models that uses multi-modal
fusion and single visual modality gradually widens. The reason is
that when information from one modality is lost, the other modality
can compensate for it.

4.6 Qualitative Results
In addition, we visualize the occupancy prediction of FusionOcc
compared with VoxelNet, BEVdet4d-occ, and BEVFusion (see Fig
8). BEVFusion is a multi-sensor fusion method designed for the 3D
object detection task and map segmentation, we modify it to be
suitable for occupancy prediction task based on its architecture.
VoxelNet and BEVdet4d-occ are chosen to represent the OCCmodel
that only uses LiDAR or cameras.

In Fig. 8, three different scenarios are chosen (daytime, rainy day,
and nighttime from the top to the bottom). In the daytime scene,
we can see that BEVFusion misclassified the road surface and fence
in the distance, while our model still predicts them correctly. In the
rainy day scene, VoxelNet which uses only LiDAR as the input is
the worst, and the prediction is badly influenced by motion blur
of the vehicle. FusionOcc is the best compared to BEVDet4d-occ
and BEVFusion, proved by its modeling of fine fences and bushes
in close proximity. In the nighttime scene, models misclassify small
subsections of the scene while our FusionOcc is still the one closest
to the GT.

Figure 5:Models’ performances of different scenarios.Models
are trained with visibility mask (left) and without visibility
mask (right), respectively. Better viewed when zoomed in.

Figure 6: Models’ performance variation across distances.
Models are trained with visibility mask (left) and without vis-
ibility mask (right), respectively. Better viewed when zoomed
in.

Figure 7: Ablating the impact of malfunction of cameras.
The model was evaluated in scenarios involving the random
loss of one, two, or three camera data. Models are trained
with visibility mask (left) and without visibility mask (right),
respectively. Better viewed when zoomed in.

5 CONCLUSION
This paper proposes a new 3D occupancy network, named Fu-
sionOcc, which is based on the fusion of camera and LiDAR features.
FusionOcc realizes a cross-modal fusion module that incorporates
images and point clouds to obtain an accurate depth estimation, en-
abling a better transition of 2D features into 3D space. Additionally,
a new baseline for 3D occupancy prediction based on multi-modal
fusion is established. Experiments show that FusionOcc achieves
the state-of-the-art performance on Occ3D-nuScenes for mIoU. We
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Figure 8: Qualitative results of occupancy prediction on the validation set of Occ3D-nuScenes. Three different scenarios are
chosen (daytime, rainy day, and nighttime from the top to the bottom), and our model achieved the best results in all of them.

hope this result will attract more attention to the multi-task multi-
modal fusion for 3D occupancy prediction.
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