
Scalable Model Merging with Progressive Layer-wise Distillation

Jing Xu 1 2 Jiazheng Li 2 3 Jingzhao Zhang 1 2

Abstract
Model merging offers an effective way to in-
tegrate the capabilities of multiple fine-tuned
models. However, the performance degrada-
tion of the merged model remains a challenge,
particularly when none or few data are avail-
able. This paper first highlights the necessity
of domain-specific data for model merging by
proving that data-agnostic algorithms can have
arbitrarily bad worst-case performance. Build-
ing on this theoretical insight, we explore the
relationship between model merging and distil-
lation, introducing a novel few-shot merging al-
gorithm, ProDistill (Progressive Layer-wise
Distillation). Unlike common belief that layer-
wise training hurts performance, we show that
layer-wise teacher-student distillation not only en-
hances the scalability but also improves model
merging performance. We conduct extensive ex-
periments to show that compared to existing few-
shot merging methods, ProDistill achieves
state-of-the-art performance, with up to 6.14%
and 6.61% improvements in vision and NLU tasks.
Furthermore, we extend the experiments to mod-
els with over 10B parameters, showcasing the
exceptional scalability of ProDistill.

1. Introduction
Large-scale pre-trained models have revolutionized deep
learning, achieving remarkable success across various do-
mains such as language (Brown et al., 2020; Team et al.,
2023; Touvron et al., 2023a) and vision (Dosovitskiy, 2020;
Ramesh et al., 2021). Meanwhile, an increasing number
of fine-tuned checkpoints are being made publicly avail-

1Institute for Interdisciplinary Information Sciences, Ts-
inghua University 2Shanghai Qizhi Institute 3School of Com-
puter Science, Beijing Institute of Technology. Correspon-
dence to: Jing Xu <xujing21@mails.tsinghua.edu.cn>, Ji-
azheng Li <Foreverlasting1202@outlook.com>, Jingzhao Zhang
<jingzhaoz@mail.tsinghua.edu.cn>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. ProDistill consistently outperforms other meth-
ods across nearly all considered tasks. The performance metrics
for each task are normalized and then clipped at a minimum value
of 0.5 for better visualization.

able on platforms like Hugging Face. Depending on the
specific downstream datasets, fine-tuned models excel in
specialized abilities, such as mathematics or coding. How-
ever, complex tasks often require the integration of multiple
abilities. For example, solving an advanced math problem
may necessitate the assistance of computer programs to pro-
duce accurate solutions. While multi-task learning (Caruana,
1997; Misra et al., 2016; Sener & Koltun, 2018; Liu et al.,
2019) can address this challenge, it requires access to fine-
tuning data and incurs significant computational overhead
during retraining. On the other hand, model ensembling (Di-
etterich et al., 2002; Kurutach et al., 2018; Ganaie et al.,
2022) avoids retraining but introduces substantial storage
overhead due to the need to deploy multiple models.

Model merging (Yang et al., 2024a; Goddard et al., 2024;
Tang et al., 2024) offers an elegant solution to these chal-
lenges. The work of Ilharco et al. (2022) finds that the differ-
ence between fine-tuned and pre-trained weights, which they
name task vectors, exhibits arithmetic properties, such as ad-
dition and negation, which correspond to changes in model
capabilities. Therefore, model merging can be achieved by
taking a weighted average of the model weights, as illus-
trated in Figure 2. This is connected to the linear mode
connectivity (Frankle et al., 2020; Mirzadeh et al., 2020) of
neural networks.

Although model merging improves storage efficiency and
data protection, the performance of the merged model can
degrade, especially when the number of models scales up.

1

Scalable Model Merging with Progressive Layer-wise Distillation

Figure 2. Left: Overview of model merging. Each expert corresponds to a task vector θi − θ0, which is scaled by its corresponding
merging coefficient λi and summed to get the merged model. Right: Illustration of ProDistill. The merged model layer and each
fine-tuned model layer take as input the merged feature and the fine-tuned feature, respectively. The MSE loss between these outputs is
used to update the merged model layer. The output features serve as inputs for merging the subsequent layer.

Recent studies (Matena & Raffel, 2022; Jin et al., 2022;
Yang et al., 2023) propose various methods to handle this
issue, many of which require a few-shot validation dataset
that contains domain-specific information of downstream
tasks. This seems to contradict the data-free nature of task
arithmetic. In light of this, we raise the question:

Is domain-specific data necessary for model merging?

We provide an affirmative theoretical answer to this question.
We prove, for the first time, that the worst-case performance
of any data-agnostic model merging algorithm can be ar-
bitrarily bad, even for a simple linear model. Therefore,
although data-agnostic algorithm achieves great empirical
success, it is theoretically reasonable to assume access to at
least a few-shot dataset.

Building on these theoretical insights, we next address the
empirical challenge of few-shot model merging by exploring
the following question:

How to fully leverage the data and the fine-tuned models
to improve merging performance?

To this end, we frame model merging as a teacher-student
distillation problem, where the goal is to transfer the knowl-
edge from multiple fine-tuned models (teacher) into the
merged model (student). However, directly applying ex-
isting distillation algorithms often results in large training
memory overhead, particularly for large language models
with billions of parameters.

To address this challenge, we propose a novel model merg-
ing algorithm, ProDistill (Progressive Layer-wise Dis-
tillation). ProDistill implements distillation through
an activation matching strategy, where the merging coef-
ficients are trained to minimize the activation distance be-
tween teacher and student models. The training objective

in ProDistill is decomposed layer by layer (Bengio
et al., 2006; Kulkarni & Karande, 2017; Hettinger et al.,
2017; Karkar et al., 2024; Sakamoto & Sato, 2024), en-
abling the algorithm to avoid traditional end-to-end training
and instead progressively train each layer of the model. See
Figure 2 for an illustration.

We conduct extensive experiments to evaluate the perfor-
mance of ProDistill across various tasks, architectures,
and scales. 1 Compared to both training-based and training-
free baselines, ProDistill achieves a notable 6.14%
increase in absolute performance for vision tasks and 6.61%
increase for natural language understanding tasks.

Furthermore, ProDistill demonstrates improved data
and computation efficiency, and incurs significantly lower
memory costs. This makes ProDistill scalable to large
model sizes. We apply ProDistill to merge large lan-
guage models with over 10B parameters. To the best of our
knowledge, this is the first time a training-based merging
algorithm has been scaled to such a large model size.

We summarize our contribution as follows:

• We provide the first theoretical analysis on the necessity
of domain-specific data for model merging, proving its
critical role in ensuring effective merging performance.

• We propose ProDistill, a novel model merging
algorithm that leverages teacher-student distillation to
progressively merge model layers.

• We conduct comprehensive empirical analyses to
demonstrate the state-of-the-art performance of
ProDistill on a wide variety of tasks. Our exper-
iments highlight the data, computation, and memory
efficiency of the proposed method.

1Code is available at https://github.com/
JingXuTHU/Scalable_Model_Merging_with_
Progressive_Layerwise_Distillation.

2

https://github.com/JingXuTHU/Scalable_Model_Merging_with_Progressive_Layerwise_Distillation
https://github.com/JingXuTHU/Scalable_Model_Merging_with_Progressive_Layerwise_Distillation
https://github.com/JingXuTHU/Scalable_Model_Merging_with_Progressive_Layerwise_Distillation

Scalable Model Merging with Progressive Layer-wise Distillation

2. Preliminaries
We consider model merging in a pretrain-to-finetune setup.
Let θ0 denote the weights of a pre-trained model. Consider
a set of T tasks, each with a model θi fine-tuned from θ0.
Model merging aims to combine the knowledge learned
by task-specific models θi into a unified model θ̂, which
preserves the generalization ability of the pre-trained model
and incorporates the specialized knowledge from each task.

Task vectors. A key insight in this setup is the task vectors.
The task vector for the i-th task is defined as τi = θi − θ0.
An effective model merging method (Ilharco et al., 2022;
Zhang et al., 2023) is to compute a weighted average of task
vectors and add it back to the pre-trained model:

θ̂ = θ0 +

T∑
i=1

λi ◦ ϕ(τi),

where λi denotes the merging coefficients, and ϕ(·) is an
optional transformation function applied to the task vectors.

The merging coefficients λi can operate at different gran-
ularities. Common approaches include task-wise granular-
ity (Ilharco et al., 2022), which assigns a single merging
coefficient to each task, and layer-wise granularity (Yang
et al., 2023), which assigns a coefficient to each layer of the
models. In this paper, we take one step forward and con-
sider element-wise granularity.2 Specifically, the merging
coefficient λi has the same dimensionality as θi, and an
element-wise multiplication λi ◦ τi is performed for each
task. In this paper, we do not apply additional transforma-
tions ϕ(·) to the task vectors, as our method is parallel to
the transformation-based methods.

Notations. We use Di to denote a few-shot unlabeled vali-
dation dataset for each task that is possibly available. Define
φ(θ, ·) as the feature mapping of the model parameterized
by θ, which gives the vectorized embedding of all interme-
diate layers. Let L denote layer number. For model weights
θ and layer index l, we use θ(l) to denote the parameter of
the l-th layer and φ(l)(θ(l), ·) to denote the feature mapping
function defined by this layer.

3. Theoretical Limitations on Data-Agnostic
Model Merging

Model merging algorithms can be broadly classified into
two categories based on data availability: data-agnostic
algorithms, which only use the weights of pre-trained and
fine-tuned models (e.g., Ilharco et al. (2022); Yadav et al.
(2024); Yu et al. (2024b)), and data-dependent algorithms,
which require access to a validation set (e.g., Matena &
Raffel (2022); Jin et al. (2022)). While data-agnostic algo-

2The layer-wise in the title and algorithm name does not refer
to the granularity of λi, but instead refers to the training procedure.

rithms have shown significant empirical success, we prove
that their worst-case performance can be arbitrarily poor,
even for simple linear models.

3.1. Hardness Results for Fixed Models

Consider the following simplified setup for model merging.
Suppose we have two tasks with datasets D1,D2 and loss
function ℓ(·, ·). Let f1, f2 denote two models to merge, and
let M denote a data-agnostic model merging algorithm,
which we assume to be deterministic for simplicity.

The following hardness result states that for any such al-
gorithm M, one can always construct adversarial datasets
such that the merging performance is arbitrarily bad.

Theorem 3.1. There exist a task and loss function ℓ, such
that for any data-agnostic model merging algorithm M,
any pair of models f1 ̸= f2, and any ε, C > 0, there exists
two datasets D1,D2, such that f1, f2 have a near-zero loss
on D1 and D2, respectively:

ℓ(D1, f1) ≤ ε, ℓ(D2, f2) ≤ ε,

but the merged model f̂ = M(f1, f2) has a constant loss
on D1 ∪ D2:

ℓ(D1 ∪ D2, f̂) ≥ C.

On the other hand, there exists a ground truth model f∗ that
has near-zero loss on D1 and D2:

ℓ(D1 ∪ D2, f
∗) ≤ ε.

Theorem 3.1 is proved by adversarially constructing lin-
ear regression instances based on the merged model. The
complete proofs are deferred to Appendix A.

3.2. Hardness Results for Learned Models

Theorem 3.1 assumes fixed models f1 and f2, which can
deviate from real-world scenarios where models are trained
on datasets. To address this, we extend the analysis to
cases where models are learned using an algorithm L, with
f1 = L(D1), f2 = L(D2). We prove the following result.

Theorem 3.2. There exist a task, a loss function ℓ and a
learning algorithm L, such that for any data-agnostic model
merging algorithm M and any ε, C > 0, there exist two
adversarial datasets D1,D2, such that f1 = L(D1), f2 =
L(D2) have a near-zero loss on D1 and D2 respectively:

ℓ(D1, f1) ≤ ε, ℓ(D2, f2) ≤ ε,

but the merged model f̂ = M(f1, f2) has a constant loss
on D1 ∪ D2:

ℓ(D1 ∪ D2, f̂) ≥ C.

3

Scalable Model Merging with Progressive Layer-wise Distillation

Algorithm 1: ProDistill (Progressive Layer-wise
Distillation)
Input: Pre-trained model weights θ0, Fine-tuned model

weights θi, unlabeled validation sets {Di}Ti=1.
Output: Merging coefficients λ̂(l)

i , 1 ≤ i ≤ T , 1 ≤ l ≤ L.
Initialize D(0)

i = {(x,x) : x ∈ Di}, and τi = θi − θ0 for
i = 1, . . . , T .

for l = 1 to L do
Solve the objective function using gradient descent:

{λ̂(l)
i }Ti=1 = argmin

{λ(l)
i }Ti=1

T∑
i=1

1

2T |Di|
∑

(z1,z2)∈D(l−1)
i∥∥∥∥∥φ(l)

(
θ
(l)
0 +

T∑
j=1

λ
(l)
j ◦ τ (l)

j ,z1

)
− φ(l)

(
θ
(l)
i ,z2

)∥∥∥∥∥
2

for i = 1 to T do
Update D(l)

i using:

D(l)
i =

{(
φ(l)

(
θ
(l)
0 +

T∑
j=1

λ̂
(l)
j ◦ τ (l)

j ,z1

)
,

φ(l)
(
θ
(l)
i ,z2

))
: (z1,z2) ∈ D(l−1)

i

}
end

end
return λ̂

(l)
i for 1 ≤ i ≤ T , 1 ≤ l ≤ L.

On the other hand, the model learned on the merged dataset
f∗ = L(D1 ∪ D2) that has near-zero loss on D1 and D2:

ℓ(D1 ∪ D2, f
∗) ≤ ε.

The hard instance constructed in the proof involves solv-
ing a linear-separable classification problem with max-
margin classifiers. A broad range of algorithms fall into
this category, including traditional support vector machine
(SVM) (Cortes, 1995) and gradient descent algorithms that
have max-margin implicit bias (Nacson et al., 2019; Lyu &
Li, 2019). The key insight is that the learning process often
discards certain information, such as distant data points out-
side the margin. This enables adversarial manipulation of
the datasets to degrade merging performance.

Remark 3.3. Theorem 3.1 and 3.2 are both worst-case anal-
yses. They highlight the fundamental limitations of data-
agnostic model merging algorithms, but do not contradict
their empirical success. Instead, these results underscore
the importance of data availability in achieving robust and
consistent merging performance.

4. A Practical Algorithm for Few-Shot Model
Merging

In the previous section, we prove that data availability is
crucial for effective model merging. Next, we propose a
practical merging algorithm designed for such data-available
settings. We start with a naı̈ve distillation algorithm that
directly minimizes the embedding distance, and build upon
it to develop the main algorithm of this paper.

4.1. Model Merging as Knowledge Distillation

Model merging can be viewed through the lens of knowl-
edge distillation, a perspective that remains underexplored
within the community. In this context, the teacher models
correspond to fine-tuned models, and the goal is to create a
student model that integrates their knowledge and performs
well on the downstream tasks.

A common strategy in knowledge distillation is to align the
internal features of the teacher and student models (Young
et al., 2022; Jin et al., 2024). This coincides with recent
findings in the model merging community, which show that
the performance of the merged model θ̂ is positively cor-
related with the similarity between its embeddings φ(θ̂,x)
and those of the fine-tuned models φ(θi,x). (Zhou et al.,
2023; Yang et al., 2024b). Building on this insight, we pro-
pose to align the merged model and fine-tuned models in
the feature space by solving the following problem:

min
λ1,···λT

T∑
i=1

1

2T |Di|
∑
x∈Di∥∥∥∥∥∥φ

θ0 +

T∑
j=1

λi ◦ τi,x

− φ (θi,x)

∥∥∥∥∥∥
2

. (1)

The objective minimizes the ℓ2 distance between the inter-
nal embeddings of the merged model θ0 +

∑T
j=1 λi ◦ τi

and those of the fine-tuned model θi, over the unlabeled
validation set Di for each task. Intuitively, this encour-
ages the merged model to behave similarly to each fine-
tuned model, in its specific input domain. The objective can
be solved using standard optimization algorithms such as
Adam (Kingma, 2014) or AdamW (Loshchilov, 2017) on
the merging coefficients λi.

Throughout this paper, we refer to directly minimizing Ob-
jective 1 as DistillMerge. Despite its simplicity, it
offers several insights:

1. Adaptive Merging Coefficient. Gradient descent on λi

can be interpreted as selecting the appropriate merging co-
efficients, whose empirical importance has been repeatedly
highlighted in recent works (Jin et al., 2022; Yang et al.,
2023; Gauthier-Caron et al., 2024). Notably, the element-

4

Scalable Model Merging with Progressive Layer-wise Distillation

wise granularity of λi gives the merged model greater ex-
pressive power to fit the objective.

2. Fine-grained Model Merging via Distillation. Mini-
mizing 1 can also be viewed as a way to distill the knowl-
edge from the fine-tuned teacher models into a merged stu-
dent model. Unlike standard distillation algorithms (Hinton,
2015), Objective 1 leverages task vectors τi as a prior on
the trainable parameters. To justify this design choice, we
further show in Appendix C.3 that in the few-shot setup:

• Feature-based distillation loss provides a stronger su-
pervision compared with logit-based distillation;

• Optimizing the scaling coefficients yields better results,
compared with directly optimizing the model weights.

4.2. Efficient Implementation by Progressive Layer-wise
Distillation

While Equation 1 is a reasonable objective for training the
merging coefficients, directly optimizing this objective in-
curs significant memory overhead. This is because both the
task vectors and the trainable merging coefficients, which
have the same dimensionality as the model parameters, have
to be stored in memory. The memory cost scales linearly
with the number of tasks. Besides, the optimization process
requires to store the activations, gradients and optimizer
states, further exacerbating memory overhead. This chal-
lenge becomes particularly critical when merging large lan-
guage models, which often contain billions of parameters.

To mitigate this issue, we propose the following surrogate
to Objective 1. Instead of optimizing the global objective
across all layers simultaneously, we adopt a progressive,
layer-by-layer merging strategy. For each layer l (1 ≤
l ≤ L), we minimize the feature distance between layer
embeddings using the following objective:

min
λ
(l)
1 ,··· ,λ(l)

T

T∑
i=1

1

2T |Di|
∑

(z1,z2)∈D(l−1)
i∥∥∥∥∥φ(l)

(
θ
(l)
0 +

T∑
j=1

λ
(l)
i ◦ τ (l)

i ,z1

)
− φ(l)

(
θ
(l)
i ,z2

)∥∥∥∥∥
2

. (2)

Compared to Objective 1, this layer-wise formulation fo-
cuses only on minimizing the embedding distances in each
layer, instead of all intermediate embeddings simultane-
ously. Moreover, this objective introduces dual inputs by
feeding different intermediate embeddings to the fine-tuned
and merged models. Specifically, D(l)

i maintains pairs of
embeddings (z1, z2) after the l-th layer, where z1 is the em-
bedding of the merged model, while z2 is the embedding of
the fine-tuned model. These internal activations are cached
and updated using the trained coefficients for each layer by

the following rule:

D(0)
i = {(x,x) : x ∈ Di} ,

D(l)
i =

{(
φ(l)

(
θ
(l)
0 +

T∑
j=1

λ̂
(l)
i ◦ τ (l)

i

)
, z1

)
,

φ(l)
(
θ
(l)
i , z2

))
: (z1, z2) ∈ D(l−1)

i

}
, l ≥ 1.

This design better approximates the global distillation ob-
jective 1, distinguishing it from previous merging algo-
rithms based on feature alignment (Jin et al., 2022; Yang
et al., 2024b; Dai et al., 2025), which align the output of
merged model and fine-tuned model under the same input.
As demonstrated in Appendix C.4, the incorporation of dual
inputs is critical for achieving high performance in layer-
wise training.

We refer to this algorithm as ProDistill, short for
Progressive Layer-wise Distillation. The pseudocode for
ProDistill is given in Algorithm 1. Compared to
DistillMerge, ProDistill offers substantial effi-
ciency gains. When merging a specific layer, ProDistill
only requires memory for the task vector and merging co-
efficients of the current layer, rather than the entire model.
Furthermore, the forward and backward passes are also re-
stricted within individual layers. Interestingly, unlike the
common belief that layer-wise training leads to performance
degradation, we show in Appendix C.2 that ProDistill
outperforms its end-to-end counterpart DistillMerge.

5. Experiments
In this section, we present comprehensive experiment re-
sults to evaluate the effectiveness of ProDistill across
various settings.

5.1. Setup

We consider three main experimental setups: (1) Merging
Vision Transformers (Dosovitskiy, 2020) on image clas-
sification tasks; (2) Merging BERT (Devlin, 2018) and
RoBERTa (Liu, 2019) models on natural language under-
standing (NLU) tasks; (3) Merging LLAMA2 (Touvron
et al., 2023b) model on natural language generation (NLG)
tasks.

Tasks and Models: For image classification tasks, we fol-
low the setting in Ilharco et al. (2022) and use Vision Trans-
former (ViT) models pre-trained on the ImageNet dataset
and subsequently fine-tuned on 8 downstream datasets.
For NLU and NLG tasks, we merge the BERT-base and
RoBERTa-base models fine-tuned on 8 NLU tasks from
the GLUE (Wang, 2018) benchmark, and perform pairwise

5

Scalable Model Merging with Progressive Layer-wise Distillation

Table 1. Performance of merging ViT-B-32 models across eight downstream vision tasks. ProDistill consistently outperforms
the baselines under different data availability. The results for Localize-and-Stich are directly taken from He et al. (2024).

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg

Individual 75.34 77.73 95.98 99.89 97.46 98.73 99.69 79.36 90.52
Task Arithmetic 55.32 54.98 66.68 78.89 80.21 69.68 97.34 50.37 69.18

RegMean 67.47 66.63 81.75 93.33 86.68 79.92 97.30 60.16 79.15
Fisher merging 63.95 63.84 66.86 83.48 79.54 60.11 91.27 49.36 69.80
Localize-and-Stich 67.20 68.30 81.80 89.40 87.90 86.60 94.80 62.90 79.90
AdaMerging 63.69 65.74 77.65 91.00 82.48 93.12 98.27 62.29 79.28
ProDistill (Ours) 68.90 71.21 89.89 99.37 96.13 95.29 99.46 68.03 86.04

Figure 3. The t-SNE visualization of ViT-B-32 model trained by different merging algorithms, on the SVHN dataset. The features
given by ProDistill are the most separated, resembling those of fine-tuned models.

merging of WizardLM-13B, WizardMath-13B and llama-2-
13b-code-alpaca models, following the setting in (Yu et al.,
2024b). Detailed information on the models and datasets
can be found in Appendix B.1.

Baselines: For vision and NLU tasks, we compare
ProDistill with a wide range of baselines, includ-
ing Task Arithmetic (Ilharco et al., 2022), Fisher merg-
ing (Matena & Raffel, 2022), RegMean (Jin et al., 2022),
AdaMerging (Yang et al., 2023) and Localize-and-Stich (He
et al., 2024). All methods, except Task Arithmetic, require
a few-shot unlabeled validation dataset, which is randomly
sampled from the training set, with validation shot set to 64
per task. For NLG tasks, we compare ProDistill with
Task Arithmetic (Ilharco et al., 2022), TIES-Merging (Ya-
dav et al., 2024) and WIDEN (Yu et al., 2024a), due to scale
constraints. A detailed discussion of the baselines and their
implementations is provided in Appendix B.2 and B.3.

5.2. Results on Merging ViT models

Table 1 presents the performance of merging ViT-B-32 mod-
els across eight downstream vision tasks. The results for
ViT-B-16 and ViT-L-14 are provided in Appendix D.1.

Our method consistently outperforms all baselines, yielding
significant improvements in average performance. Specif-
ically, ProDistill achieves an average performance of
86.04%, surpassing the baselines by 6.14%. Notably, it is
only 4% below the average performance of the individual
fine-tuned models.

We also visualize the final-layer activations of the merged
model using t-SNE (Van der Maaten & Hinton, 2008). The
results are given in Figure 3 and Appendix D.4. The visual-
ization shows that the features given by ProDistill are
more separated compared to the baselines, closely resem-
bling those of the fine-tuned models.

5.3. Results on Merging Encoder-based Language
Models

Table 2 summarizes the results of merging RoBERTa models
fine-tuned on the NLU tasks. The results of BERT mod-
els are deferred to Appendix D.1. Similar to the vision
tasks, ProDistill achieves significant performance im-
provements of 6.61% on the NLU tasks, outperforming all
baselines across nearly all tasks.

Unlike vision tasks, the NLU tasks in the GLUE benchmark
have small class numbers. For example, SUN387 dataset
consists of 397 classes, while CoLA only has 2 classes.
This class size disparity limits the performance of meth-
ods that operate directly on the model output logits, such
as AdaMerging and Fisher merging. Our method, along
with RegMean, performs particularly well, emphasizing the
importance of leveraging internal feature embeddings for
effective model merging.

5.4. Results on Merging Large Language Models

We present the results of merging the WizardMath-13B
and Llama-2-13B-Code-Alpaca models in Table 3, with ad-

6

Scalable Model Merging with Progressive Layer-wise Distillation

Table 2. Performance of merging RoBERTa models on the NLU tasks. ProDistill achieves superior performance across almost
all tasks.

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

Individual 0.5458 0.9450 0.8858 0.9030 0.8999 0.8710 0.9244 0.7292 0.8380
Task Arithmetic 0.0804 0.8475 0.7865 0.4890 0.8133 0.7063 0.7558 0.6534 0.6415

RegMean 0.3022 0.9255 0.8183 0.5152 0.8176 0.7089 0.8503 0.6462 0.6980
Fisher merging 0.1633 0.7064 0.7264 0.1274 0.6962 0.4968 0.5599 0.5776 0.5068
Localize-and-Stich 0.0464 0.8922 0.7916 0.7232 0.7821 0.5709 0.7703 0.5632 0.6425
AdaMerging 0.000 0.8532 0.7875 0.5483 0.8086 0.7039 0.7247 0.6390 0.6332
ProDistill (Ours) 0.4442 0.9312 0.8464 0.6942 0.8134 0.7857 0.8900 0.7076 0.7641

ditional results provided in Appendix D.1 and generation
examples provided in Appendix D.5. These findings demon-
strate that our method effectively scales up to models with
over 10B parameters, and achieves superior performance
compared to baselines.

6. Further Analyses
In this section, we provide additional analyses on the effi-
ciency of ProDistill, in terms of data usage, computa-
tional cost, and memory requirements.

Additionally, we conduct a broad range of comparisons and
ablation studies to further evaluate ProDistill. The
results can be found in Appendix C, including:

• Analyses of merging coefficient granularity (Ap-
pendix C.1)

• Comparison with the end-to-end merging algorithm
DistillMerge (Appendix C.2)

• Comparison with standard supervised training and
knowledge distillation (Appendix C.3)

• Ablation studies on the design of dual inputs (Ap-
pendix C.4)

6.1. Data Efficiency

We first evaluate the data efficiency of ProDistill by
varying the number of validation samples, ranging from 1
to 256. The results are presented in Figure 4.

For vision tasks, ProDistill achieves a performance im-
provement of over 7% even with just 1-shot validation data
per task. As the number of validation shots increases, the
performance continues to improve, consistently surpassing
that of AdaMerging. With 256 validation shot, the accu-
racy reaches 88.05%, which is only 2% lower than that of
individual checkpoints.

6.2. Computation Efficiency

We evaluate the computational efficiency of ProDistill
by varying the training epochs from 1 to 100. We set the
validation shot to 64, and choose learning rate from {0.1,
0.01}.

The results, provided in Figure 4, highlight the rapid con-
vergence of ProDistill. With just one epoch, the av-
erage accuracy of the merged model has a significant im-
provement, rising from 69.8 to 80.6. After approximately
10 epochs, the accuracy is nearly identical to the final
results. Thus, despite being a training-based algorithm,
ProDistill demonstrates exceptional computational ef-
ficiency with fast convergence.

The computation efficiency can be partially attributed to
ProDistill’s ability to leverage large learning rates ef-
fectively, which we hypothesize is due to its layer-wise
training scheme. In contrast, algorithms such as AdaMerg-
ing exhibit unstable convergence at high learning rates, as
shown in the figure.

6.3. Memory Efficiency

Next, we evaluate the memory efficiency of ProDistill
by profiling the maximum GPU memory consumption dur-
ing training (excluding pre-processing and evaluation). The
batch size is set to 32 for vision tasks and 16 for NLU
tasks. The validation shot is set to 64. We compare
ProDistill with its unoptimized direct training version
DistillMerge and AdaMerging.

The results, shown in Figure 4, illustrate that ProDistill
has an almost negligible GPU memory footprint compared
to the baselines. This difference is particularly evident for
models with a large number of layers, such as ViT-L-14,
since the memory cost of our method remains independent
of the model’s depth. Therefore, ProDistill offers sub-
stantial advantages in memory efficiency and is scalable in
resource-constrained environments.

7

Scalable Model Merging with Progressive Layer-wise Distillation

Table 3. Performance of merging LLM models on Code and Math tasks. Our method demonstrates an improved performance and a
strong scalability. The results of TIES-Merging and WIDEN are directly taken from Yu et al. (2024a).

Method GSM8K MATH HumanEval MBPP Avg Norm Avg

WizardMath-13B 0.6361 0.1456 0.0671 0.0800 0.2322 0.6430
Llama-2-13b-code-alpaca 0.000 0.000 0.2378 0.2760 0.1285 0.5000

Task Arithmetic 0.6467 0.1462 0.0854 0.0840 0.2406 0.6711
TIES-Merging 0.6323 0.1356 0.0976 0.2240 0.2723 0.7868
WIDEN 0.6422 0.1358 0.0976 0.0980 0.2434 0.6769
ProDistill (Ours) 0.6279 0.1424 0.1280 0.2239 0.2806 0.8288

Figure 4. Analysis of Data, Computation and Memory Efficiency. Left: The average accuracy of ProDistill and AdaMerging
across 8 vision tasks, with different data availability. Our method demonstrates superior data efficiency. Middle: The average accuracy
of ProDistill with different training epochs. Our algorithm achieves a fast convergence. Right: The training GPU memory cost
of ProDistill, its unoptimized counterpart DistillMerge and AdaMerging. Our method has a significantly smaller memory
footprint.

7. Related Works
Model Merging via Weight Averaging. Weight averag-
ing is an effective and widely adopted approach in model
merging (Izmailov et al., 2018; Wortsman et al., 2022; Il-
harco et al., 2022). Researchers have developed various
methods to improve the averaging approach. One line
of work focuses on minimizing conflicts and promoting
disentanglement between task vectors, through sparsifica-
tion (Tang et al., 2023a; Yadav et al., 2024; Yu et al., 2024b;
He et al., 2024; Wang et al., 2024b; Bowen et al., 2024; Deng
et al., 2024; Zhu et al., 2024; Davari & Belilovsky, 2025) or
decomposition (Tam et al., 2023; Xiong et al., 2024; Stoica
et al., 2024; Wei et al., 2025; Gargiulo et al., 2024; Marczak
et al., 2025; Yang et al., 2025). Another line of work (Ortiz-
Jimenez et al., 2024; Tang et al., 2023b) employs linearized
training to explicitly enforce linearity. Some studies ex-
plore methods for selecting optimal merging coefficients,
using training-based (Yang et al., 2023; Gauthier-Caron
et al., 2024; Nishimoto et al., 2024) or training-free (Matena
& Raffel, 2022; Jin et al., 2022; Zhou et al., 2024; Wang
et al., 2024a; Liu et al., 2024; Tang et al., 2025) approaches.
Broadly speaking, our paper aligns with the former cate-
gory. Other works (Qi et al., 2024; Lu et al., 2024; Zheng &
Wang, 2024; Oh et al., 2024; Zhang et al., 2024b; Osial et al.,

2024; Huang et al., 2024) propose dynamic model merging
through task-specific routing and mixture-of-experts frame-
works. Our method differs from them by preserving the
original model architecture.

In addition to merging fine-tuned models, there is a broader
field of research exploring more general setups, such as
merging independently trained models (Singh & Jaggi,
2020; Ainsworth et al., 2022; Navon et al., 2023; Horoi
et al., 2024; Stoica et al., 2023; Xu et al., 2024) and merging
models with different architectures (Avrahami et al., 2022;
Wan et al., 2024a;b).

Distillation and Activation Alignment. Knowledge dis-
tillation (Hinton, 2015; Romero et al., 2014; Yim et al.,
2017) is a well-established topic in machine learning where
a student model is trained to mimic the behavior of teacher
models. Some works leverage teacher-student activation
matching to merge models and do multi-task learning (Li &
Bilen, 2020; Ghiasi et al., 2021; Yang et al., 2022; Jin et al.,
2022; Kong et al., 2024; Zhang et al., 2024a; Nasery et al.,
2024), which share similarities with our paper. For example,
the Surgery algorithm proposed in (Yang et al., 2024b;c)
introduces lightweight, task-specific modules to facilitate
post-merging activation matching. However, these methods
differ from ours as dynamic model merging approaches. A

8

Scalable Model Merging with Progressive Layer-wise Distillation

very recent work Dai et al. (2025) matches the activations
in each layer by solving linear equations of merging co-
efficient. Their approach differs from ours in several key
aspects. First, their merging coefficient granularity is layer-
wise, whereas we consider element-wise coefficients. This
distinction is crucial, as their method cannot be directly ex-
tended to element-wise merging without making the linear
equations under-determined. Additionally, their layer inputs
are generated by pretrained models, in contrast to the dual
inputs approach used in our approach. The training-free
algorithm RegMean (Jin et al., 2022) also shares similarity
with our method. We leave its discussion to Appendix B.2.

8. Conclusion
In this paper, we propose a novel model merging algorithm
ProDistill which uses progressive layer-wise distilla-
tion to efficiently merge large pre-trained models. Our theo-
retical analysis shows the necessity of domain-specific data
for effective merging. Empirical results demonstrate that
ProDistill outperforms existing methods across a vari-
ety of tasks, achieving significant performance gains with
reduced memory costs, which makes it a scalable solution
for merging large pre-trained models.

Impact Statement
This paper introduces ProDistill, a scalable and effi-
cient model merging algorithm. Its potential applications
could improve AI deployment in resource-constrained en-
vironments, enabling the integration of specialized models
across diverse tasks without significant retraining or compu-
tational overhead.

The broader societal impacts include reducing energy con-
sumption and computational costs of training large mod-
els, promoting more sustainable AI development. Addi-
tionally, by improving the accessibility of advanced mod-
els, ProDistill could help democratize AI capabilities,
making them more adaptable and widely available across
industries.

There are potential ethical considerations, such as ensuring
data privacy, mitigating biases, and preventing misuse of
increasingly powerful AI systems. We emphasize the im-
portance of responsibly managing the deployment of such
technologies to minimize unintended consequences while
maximizing their societal benefits.

References
Ainsworth, S. K., Hayase, J., and Srinivasa, S. Git re-basin:

Merging models modulo permutation symmetries. arXiv
preprint arXiv:2209.04836, 2022.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Avrahami, O., Lischinski, D., and Fried, O. Gan cocktail:
mixing gans without dataset access. In European Confer-
ence on Computer Vision, pp. 205–221. Springer, 2022.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B., and Szpektor, I. The second pascal recog-
nising textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on recognising
textual entailment, volume 1. Citeseer, 2006.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
Greedy layer-wise training of deep networks. Advances
in neural information processing systems, 19, 2006.

Bentivogli, L., Clark, P., Dagan, I., and Giampiccolo, D.
The fifth pascal recognizing textual entailment challenge.
TAC, 7(8):1, 2009.

Bowen, T., Songning, L., Jiemin, W., Zhihao, S., Shiming,
G., and Yutao, Y. Beyond task vectors: Selective task
arithmetic based on importance metrics. arXiv preprint
arXiv:2411.16139, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Caruana, R. Multitask learning. Machine learning, 28:
41–75, 1997.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. GitHub repository, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Cheng, G., Han, J., and Lu, X. Remote sensing image scene
classification: Benchmark and state of the art. Proceed-
ings of the IEEE, 105(10):1865–1883, 2017.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing textures in the wild. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

9

Scalable Model Merging with Progressive Layer-wise Distillation

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cortes, C. Support-vector networks. Machine Learning,
1995.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine learning
challenges workshop, pp. 177–190. Springer, 2005.

Dai, R., Hu, S., Shen, X., Zhang, Y., Tian, X., and Ye,
J. Leveraging submodule linearity enhances task arith-
metic performance in LLMs. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=irPcM6X5FV.

Davari, M. and Belilovsky, E. Model breadcrumbs: Scal-
ing multi-task model merging with sparse masks. In
European Conference on Computer Vision, pp. 270–287.
Springer, 2025.

Deng, W., Zhao, Y., Vakilian, V., Chen, M., Li, X., and
Thrampoulidis, C. Dare the extreme: Revisiting delta-
parameter pruning for fine-tuned models. arXiv preprint
arXiv:2410.09344, 2024.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dietterich, T. G. et al. Ensemble learning. The handbook of
brain theory and neural networks, 2(1):110–125, 2002.

Dolan, B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Third international
workshop on paraphrasing (IWP2005), 2005.

Dosovitskiy, A. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp. 3259–
3269. PMLR, 2020.

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., and
Suganthan, P. N. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence, 115:
105151, 2022.

Gargiulo, A. A., Crisostomi, D., Bucarelli, M. S., Scar-
dapane, S., Silvestri, F., and Rodolà, E. Task singular
vectors: Reducing task interference in model merging.
arXiv preprint arXiv:2412.00081, 2024.

Gauthier-Caron, T., Siriwardhana, S., Stein, E., Ehghaghi,
M., Goddard, C., McQuade, M., Solawetz, J., and
Labonne, M. Merging in a bottle: Differentiable adaptive
merging (dam) and the path from averaging to automation.
arXiv preprint arXiv:2410.08371, 2024.

Ghiasi, G., Zoph, B., Cubuk, E. D., Le, Q. V., and Lin, T.-Y.
Multi-task self-training for learning general representa-
tions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8856–8865, 2021.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, W. B.
The third pascal recognizing textual entailment challenge.
In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9, 2007.

Goddard, C., Siriwardhana, S., Ehghaghi, M., Meyers, L.,
Karpukhin, V., Benedict, B., McQuade, M., and Solawetz,
J. Arcee’s mergekit: A toolkit for merging large language
models. arXiv preprint arXiv:2403.13257, 2024.

He, Y., Hu, Y., Lin, Y., Zhang, T., and Zhao, H. Localize-
and-stitch: Efficient model merging via sparse task arith-
metic. arXiv preprint arXiv:2408.13656, 2024.

Helber, P., Bischke, B., Dengel, A., and Borth, D. Eurosat:
A novel dataset and deep learning benchmark for land
use and land cover classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, 12(7):2217–2226, 2019.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hettinger, C., Christensen, T., Ehlert, B., Humpherys, J.,
Jarvis, T., and Wade, S. Forward thinking: Building
and training neural networks one layer at a time. arXiv
preprint arXiv:1706.02480, 2017.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Horoi, S., Camacho, A. M. O., Belilovsky, E., and Wolf,
G. Harmony in diversity: Merging neural networks with
canonical correlation analysis. In Forty-first International
Conference on Machine Learning, 2024.

Huang, C., Ye, P., Chen, T., He, T., Yue, X., and Ouyang,
W. Emr-merging: Tuning-free high-performance model
merging. arXiv preprint arXiv:2405.17461, 2024.

10

https://openreview.net/forum?id=irPcM6X5FV
https://openreview.net/forum?id=irPcM6X5FV

Scalable Model Merging with Progressive Layer-wise Distillation

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022.

Iyer, S., Dandekar, N., Csernai, K., et al. First quora dataset
release: Question pairs. data. quora. com, 2017.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Jin, H., Son, S., Park, J., Kim, Y., Noh, H., and Lee, Y. Align-
to-distill: Trainable attention alignment for knowledge
distillation in neural machine translation. arXiv preprint
arXiv:2403.01479, 2024.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. arXiv preprint arXiv:2212.09849, 2022.

Karkar, S., Ayed, I., de Bézenac, E., and Gallinari, P.
Module-wise training of neural networks via the minimiz-
ing movement scheme. Advances in Neural Information
Processing Systems, 36, 2024.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kong, F., Zhang, R., Nie, Z., and Wang, Z. Rethink the
evaluation protocol of model merging on classification
task. arXiv preprint arXiv:2412.13526, 2024.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object rep-
resentations for fine-grained categorization. In Proceed-
ings of the IEEE international conference on computer
vision workshops, pp. 554–561, 2013.

Kulkarni, M. and Karande, S. Layer-wise training of
deep networks using kernel similarity. arXiv preprint
arXiv:1703.07115, 2017.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P.
Model-ensemble trust-region policy optimization. arXiv
preprint arXiv:1802.10592, 2018.

LeCun, Y., Cortes, C., Burges, C., et al. Mnist handwritten
digit database, 2010.

Li, W.-H. and Bilen, H. Knowledge distillation for multi-
task learning. In Computer Vision–ECCV 2020 Work-
shops: Glasgow, UK, August 23–28, 2020, Proceedings,
Part VI 16, pp. 163–176. Springer, 2020.

Liu, D., Wang, Z., Wang, B., Chen, W., Li, C., Tu, Z.,
Chu, D., Li, B., and Sui, D. Checkpoint merging via
bayesian optimization in llm pretraining. arXiv preprint
arXiv:2403.19390, 2024.

Liu, S., Johns, E., and Davison, A. J. End-to-end multi-task
learning with attention. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 1871–1880, 2019.

Liu, Y. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 364, 2019.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Lu, Z., Fan, C., Wei, W., Qu, X., Chen, D., and Cheng, Y.
Twin-merging: Dynamic integration of modular expertise
in model merging. arXiv preprint arXiv:2406.15479,
2024.

Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C.,
Geng, X., Lin, Q., Chen, S., and Zhang, D. Wizard-
math: Empowering mathematical reasoning for large lan-
guage models via reinforced evol-instruct. arXiv preprint
arXiv:2308.09583, 2023.

Lyu, K. and Li, J. Gradient descent maximizes the mar-
gin of homogeneous neural networks. arXiv preprint
arXiv:1906.05890, 2019.

Marczak, D., Magistri, S., Cygert, S., Twardowski, B., Bag-
danov, A. D., and van de Weijer, J. No task left behind:
Isotropic model merging with common and task-specific
subspaces. arXiv preprint arXiv:2502.04959, 2025.

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. Advances in Neural Information
Processing Systems, 35:17703–17716, 2022.

Mirzadeh, S. I., Farajtabar, M., Gorur, D., Pascanu, R., and
Ghasemzadeh, H. Linear mode connectivity in multitask
and continual learning. arXiv preprint arXiv:2010.04495,
2020.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. Cross-
stitch networks for multi-task learning. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 3994–4003, 2016.

Nacson, M. S., Lee, J., Gunasekar, S., Savarese, P. H. P.,
Srebro, N., and Soudry, D. Convergence of gradient
descent on separable data. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp.
3420–3428. PMLR, 2019.

Nasery, A., Hayase, J., Koh, P. W., and Oh, S. Pleas–
merging models with permutations and least squares.
arXiv preprint arXiv:2407.02447, 2024.

Navon, A., Shamsian, A., Fetaya, E., Chechik, G., Dym, N.,
and Maron, H. Equivariant deep weight space alignment.
arXiv preprint arXiv:2310.13397, 2023.

11

Scalable Model Merging with Progressive Layer-wise Distillation

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 4. Granada, 2011.

Nishimoto, T., Hirose, Y., Kudo, Y., Yoshinari, N., Akizuki,
R., Uchida, K., and Shirakawa, S. Differentiable dare-
ties for neurips 2024 llm merging competition. In LLM
Merging Competition at NeurIPS 2024, 2024.

Oh, C., Li, Y., Song, K., Yun, S., and Han, D. Adapting
foundation models via training-free dynamic weight in-
terpolation. In Adaptive Foundation Models: Evolving AI
for Personalized and Efficient Learning, 2024.

Ortiz-Jimenez, G., Favero, A., and Frossard, P. Task arith-
metic in the tangent space: Improved editing of pre-
trained models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Osial, M., Marczak, D., and Zieliński, B. Parameter-efficient
interventions for enhanced model merging. arXiv preprint
arXiv:2412.17023, 2024.

Qi, B., Li, F., Wang, Z., Gao, J., Li, D., Ye, P., and Zhou, B.
Less is more: Efficient model merging with binary task
switch. arXiv preprint arXiv:2412.00054, 2024.

Rajpurkar, P. Squad: 100,000+ questions for machine com-
prehension of text. arXiv preprint arXiv:1606.05250,
2016.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In International conference on ma-
chine learning, pp. 8821–8831. Pmlr, 2021.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

Sakamoto, K. and Sato, I. End-to-end training induces
information bottleneck through layer-role differentiation:
A comparative analysis with layer-wise training. arXiv
preprint arXiv:2402.09050, 2024.

Sener, O. and Koltun, V. Multi-task learning as multi-
objective optimization. Advances in neural information
processing systems, 31, 2018.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. Advances in Neural Information Processing Systems,
33:22045–22055, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In

Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. The
german traffic sign recognition benchmark: a multi-class
classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE,
2011.

Stoica, G., Bolya, D., Bjorner, J., Ramesh, P., Hearn, T., and
Hoffman, J. Zipit! merging models from different tasks
without training. arXiv preprint arXiv:2305.03053, 2023.

Stoica, G., Ramesh, P., Ecsedi, B., Choshen, L., and Hoff-
man, J. Model merging with svd to tie the knots. arXiv
preprint arXiv:2410.19735, 2024.

Tam, D., Bansal, M., and Raffel, C. Merging by
matching models in task subspaces. arXiv preprint
arXiv:2312.04339, 2023.

Tang, A., Shen, L., Luo, Y., Ding, L., Hu, H., Du, B., and
Tao, D. Concrete subspace learning based interference
elimination for multi-task model fusion. arXiv preprint
arXiv:2312.06173, 2023a.

Tang, A., Shen, L., Luo, Y., Zhan, Y., Hu, H., Du, B.,
Chen, Y., and Tao, D. Parameter efficient multi-task
model fusion with partial linearization. arXiv preprint
arXiv:2310.04742, 2023b.

Tang, A., Shen, L., Luo, Y., Hu, H., Du, B., and Tao, D. Fu-
sionbench: A comprehensive benchmark of deep model
fusion. arXiv preprint arXiv:2406.03280, 2024.

Tang, A., Yang, E., Shen, L., Luo, Y., Hu, H., Du, B., and
Tao, D. Merging models on the fly without retraining: A
sequential approach to scalable continual model merging.
arXiv e-prints, pp. arXiv–2501, 2025.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

12

Scalable Model Merging with Progressive Layer-wise Distillation

Wan, F., Huang, X., Cai, D., Quan, X., Bi, W., and Shi,
S. Knowledge fusion of large language models. arXiv
preprint arXiv:2401.10491, 2024a.

Wan, F., Zhong, L., Yang, Z., Chen, R., and Quan, X.
Fusechat: Knowledge fusion of chat models. arXiv
preprint arXiv:2408.07990, 2024b.

Wang, A. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Wang, K., Dimitriadis, N., Favero, A., Ortiz-Jimenez, G.,
Fleuret, F., and Frossard, P. Lines: Post-training layer
scaling prevents forgetting and enhances model merging.
arXiv preprint arXiv:2410.17146, 2024a.

Wang, K., Dimitriadis, N., Ortiz-Jimenez, G., Fleuret, F.,
and Frossard, P. Localizing task information for im-
proved model merging and compression. arXiv preprint
arXiv:2405.07813, 2024b.

Warstadt, A., Singh, A., and Bowman, S. R. Neu-
ral network acceptability judgments. arXiv preprint
arXiv:1805.12471, 2018.

Wei, Y., Tang, A., Shen, L., Xiong, F., Yuan, C., and Cao, X.
Modeling multi-task model merging as adaptive projec-
tive gradient descent. arXiv preprint arXiv:2501.01230,
2025.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International conference on machine learning, pp. 23965–
23998. PMLR, 2022.

Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva,
A. Sun database: Exploring a large collection of scene
categories. International Journal of Computer Vision,
119:3–22, 2016.

Xiong, F., Cheng, R., Chen, W., Zhang, Z., Guo, Y.,
Yuan, C., and Xu, R. Multi-task model merging
via adaptive weight disentanglement. arXiv preprint
arXiv:2411.18729, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Xu, Z., Yuan, K., Wang, H., Wang, Y., Song, M., and Song, J.
Training-free pretrained model merging. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5915–5925, 2024.

Yadav, P., Tam, D., Choshen, L., Raffel, C. A., and Bansal,
M. Ties-merging: Resolving interference when merging
models. Advances in Neural Information Processing
Systems, 36, 2024.

Yang, E., Wang, Z., Shen, L., Liu, S., Guo, G., Wang, X.,
and Tao, D. Adamerging: Adaptive model merging for
multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Yang, E., Shen, L., Guo, G., Wang, X., Cao, X., Zhang, J.,
and Tao, D. Model merging in llms, mllms, and beyond:
Methods, theories, applications and opportunities. arXiv
preprint arXiv:2408.07666, 2024a.

Yang, E., Shen, L., Wang, Z., Guo, G., Chen, X., Wang, X.,
and Tao, D. Representation surgery for multi-task model
merging. arXiv preprint arXiv:2402.02705, 2024b.

Yang, E., Shen, L., Wang, Z., Guo, G., Wang, X., Cao, X.,
Zhang, J., and Tao, D. Surgeryv2: Bridging the gap be-
tween model merging and multi-task learning with deep
representation surgery. arXiv preprint arXiv:2410.14389,
2024c.

Yang, J., Jin, D., Tang, A., Shen, L., Zhu, D., Chen, Z.,
Wang, D., Cui, Q., Zhang, Z., Zhou, J., et al. Mix data or
merge models? balancing the helpfulness, honesty, and
harmlessness of large language model via model merging.
arXiv preprint arXiv:2502.06876, 2025.

Yang, X., Ye, J., and Wang, X. Factorizing knowledge in
neural networks. In European Conference on Computer
Vision, pp. 73–91. Springer, 2022.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge
distillation: Fast optimization, network minimization and
transfer learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4133–
4141, 2017.

Young, L. D., Reda, F. A., Ranjan, R., Morton, J., Hu, J.,
Ling, Y., Xiang, X., Liu, D., and Chandra, V. Feature-
align network with knowledge distillation for efficient
denoising. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pp. 709–718,
2022.

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Extend
model merging from fine-tuned to pre-trained large lan-
guage models via weight disentanglement. arXiv preprint
arXiv:2408.03092, 2024a.

13

Scalable Model Merging with Progressive Layer-wise Distillation

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Language
models are super mario: Absorbing abilities from homol-
ogous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024b.

Zhang, F. Z., Albert, P., Rodriguez-Opazo, C., Hengel, A.
v. d., and Abbasnejad, E. Knowledge composition us-
ing task vectors with learned anisotropic scaling. arXiv
preprint arXiv:2407.02880, 2024a.

Zhang, J., Liu, J., He, J., et al. Composing parameter-
efficient modules with arithmetic operation. Advances
in Neural Information Processing Systems, 36:12589–
12610, 2023.

Zhang, M., Liu, J., Ding, G., Yu, X., Ou, L., and Zhuang, B.
Channel merging: Preserving specialization for merged
experts. arXiv preprint arXiv:2412.15283, 2024b.

Zheng, S. and Wang, H. Free-merging: Fourier transform for
model merging with lightweight experts. arXiv preprint
arXiv:2411.16815, 2024.

Zhou, Y., Song, L., Wang, B., and Chen, W. Metagpt:
Merging large language models using model exclusive
task arithmetic. arXiv preprint arXiv:2406.11385, 2024.

Zhou, Z., Yang, Y., Yang, X., Yan, J., and Hu, W. Going
beyond linear mode connectivity: The layerwise linear
feature connectivity. Advances in Neural Information
Processing Systems, 36:60853–60877, 2023.

Zhu, D., Sun, Z., Li, Z., Shen, T., Yan, K., Ding, S., Kuang,
K., and Wu, C. Model tailor: Mitigating catastrophic
forgetting in multi-modal large language models. arXiv
preprint arXiv:2402.12048, 2024.

14

Scalable Model Merging with Progressive Layer-wise Distillation

Appendix

A. Proofs
Theorem 3.1. There exist a task and loss function ℓ, such that for any data-agnostic model merging algorithm M, any pair
of models f1 ̸= f2, and any ε, C > 0, there exists two datasets D1,D2, such that f1, f2 have a near-zero loss on D1 and
D2, respectively:

ℓ(D1, f1) ≤ ε, ℓ(D2, f2) ≤ ε,

but the merged model f̂ = M(f1, f2) has a constant loss on D1 ∪ D2:

ℓ(D1 ∪ D2, f̂) ≥ C.

On the other hand, there exists a ground truth model f∗ that has near-zero loss on D1 and D2:

ℓ(D1 ∪ D2, f
∗) ≤ ε.

Proof. We construct a hard instance of linear regression to prove the theorem. Let d denote the dimension of the data
space. A data point has the form z = (x, y), where x ∈ Rd, y ∈ R, and the model is represented by a d-dimensional vector
w ∈ Rd. The loss function is the ℓ2 loss ℓ(z,w) = 1

2∥x
⊤w − y∥2, and ℓ(D,w) = Avg(ℓ(z,w)).

Let w1,w2, ŵ denote the weights of f1, f2, f̂ . Since f1 ̸= f2, we can assume, without loss of generality, that w1 ̸= ŵ.
Then we have the simple linear algebra fact that, for a large enough d, there exist (x1, y1) and (x2, y2), such that

1.
(
x1

y1

)
⊥

(
w1

−1

)
2.

〈(
x1

y1

)
,
(
ŵ
−1

)〉
≥ 2

√
C

3.
(
x2

y2

)
⊥

(
w2

−1

)
4. x1,x2 are not co-linear.

Let D1 = {(x1, y1)} and D2 = {(x2, y2)}. This construction ensures that

ℓ(D1, f1) =
1

2
∥x⊤

1 w1 − y1∥2 = 0,

ℓ(D2, f2) =
1

2
∥x⊤

2 w2 − y2∥2 = 0,

ℓ(D1 ∪ D2, f̂) ≥
1

4
∥x⊤

1 ŵ − y1∥2 = C.

On the other hand, since x1,x2 are not co-linear, one can find w∗ such that x⊤
1 w

∗ − y1 = x⊤
2 w

∗ − y2 = 0, as long as d is
large enough. That is, we have

ℓ(D1 ∪ D2, f
∗) = 0.

This completes the proof.

Theorem 3.2. There exist a task, a loss function ℓ and a learning algorithm L, such that for any data-agnostic model
merging algorithm M and any ε, C > 0, there exist two adversarial datasets D1,D2, such that f1 = L(D1), f2 = L(D2)
have a near-zero loss on D1 and D2 respectively:

ℓ(D1, f1) ≤ ε, ℓ(D2, f2) ≤ ε,

but the merged model f̂ = M(f1, f2) has a constant loss on D1 ∪ D2:

15

Scalable Model Merging with Progressive Layer-wise Distillation

ℓ(D1 ∪ D2, f̂) ≥ C.

On the other hand, the model learned on the merged dataset f∗ = L(D1 ∪ D2) that has near-zero loss on D1 and D2:

ℓ(D1 ∪ D2, f
∗) ≤ ε.

Proof. Consider a two-class linear-separable data classification problem in a d-dimensional space. Each data point z
consists of input x ∈ Rd, label y ∈ {1,−1}. The hypothesis class is linear models, F = {f = (w, b) : w ∈ Rd\{0}, b ∈
R, f(x) = w⊤x + b}, where we exclude w = 0 to avoid degeneracy. For linear model f = (w, b) and data point
z = (x, y), the loss function is defined as ℓ(z, f) = max{−y(w⊤x+ b), 0}. For a dataset D, the loss function is defined as
ℓ(D, f) = Avg(ℓ(z, f)). The algorithm L outputs the ℓ2 normalized max-margin classifier of training set with ∥w∥2 = 1,
which covers a wide range of practical algorithms including SVM and gradient descent algorithms that have max-margin
implicit bias.

Let d = 2. Consider four data points

z1 = (x1, y1) = ((1, 0), 1), z2 = (x2, y2) = ((−1, 0),−1),

z3 = (x3, y3) = ((0, 1), 1), z4 = (x4, y4) = ((0,−1),−1),

Let D1 = {z1, z2}, D2 = {z3, z4}.

It is easy to see that

L({z1, z2}) = f1 = ((1, 0), 0),

L({z3, z4}) = f2 = ((0, 1), 0),

Consider merging f1 and f2. Let f̂ = M(f1, f2) = ((ŵ1, ŵ2), b̂). Next we show that there exist p, q, such that

1. ŵ1p+ ŵ2q + b̂ < −5C,

2. p > 1 or q > 1.

We prove the fact by contradiction. If this claim does not hold, we know that for any p > 1, q ∈ R and any q > 1, p ∈ R,
we have ŵ1p+ ŵ2q + b̂ ≥ −5C. This will give ŵ1 = ŵ2 = 0, which contradicts the degeneracy of (ŵ1, ŵ2).

Let z5 = (x5, y5) = ((p, q), 1). If p > 1, we define

D1 = {z1, z2, z5},D2 = {z3, z4}.

If q > 1, we define

D1 = {z1, z2},D2 = {z3, z4, z5}.

This construction ensures that

1. L(D1) = f1, ℓ(D1, f1) = 0,

2. L(D2) = f2, ℓ(D2, f2) = 0,

3. ℓ(D1 ∪ D2, f̂) ≥ − 1
5

(
ŵ1p+ ŵ2q + b̂

)
> C.

On the other hand, it is easy to see that D1 ∪ D2 is linearly separable, due to the condition that p > 1 or q > 1. Therefore,
the max-margin classifier f∗ = L(D1 ∪ D2) satisfies

ℓ(D1 ∪ D2, f
∗) = 0.

This completes the proof.

Remark A.1. The loss function in the proof does not reflect the classification accuracy. To take this into consideration, we
can inject arbitrary number of adversarial data points like z5, to make the classification accurate arbitrarily low.

16

Scalable Model Merging with Progressive Layer-wise Distillation

B. Experimental Setup
B.1. Dataset Details

For vision tasks, we follow the initial practice of (Ilharco et al., 2022) and build a vision benchmark consisting of
eight datasets, including MNIST (LeCun et al., 2010), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011),
SVHN (Netzer et al., 2011), DTD (Cimpoi et al., 2014), RESISC45 (Cheng et al., 2017), Stanford Cars (Krause et al., 2013),
SUN397 (Xiao et al., 2016).

For natural language understanding (NLU) tasks, we follow the practice in Yu et al. (2024b) and use eight datasets from
the GLUE benchmark (Wang, 2018), including CoLA (Warstadt et al., 2018), SST-2 (Socher et al., 2013), MRPC (Dolan
& Brockett, 2005), STS-B (Cer et al., 2017), QQP (Iyer et al., 2017), MNLI (Williams et al., 2017), QNLI (Wang, 2018;
Rajpurkar, 2016), RTE (Wang, 2018; Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). We evaluate performance using accuracy for SST-2, QNLI, and RTE, matched accuracy for MNLI, the Matthews
correlation coefficient for CoLA, the average of accuracy and F1 score for MRPC and QQP, and the average of Pearson and
Spearman correlations for STS-B.

For natural language generation (NLG) tasks, we follow the practice in (Yu et al., 2024a) and use WizardLM-13B (Xu et al.,
2023), WizardMath-13B (Luo et al., 2023), llama-2-13b-code-alpaca (Chaudhary, 2023) as Instruct, Math and Code expert
models, respectively. Note that WizardLM-13B model also has code generation abilities, and we include code benchmarks
in its evaluation.

We use five datasets for evaluation, including AlpacaEval 2.0 (Dubois et al., 2024), GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2020), HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021). AlpacaEval 2.0
measures performance using the win rate, defined as the proportion of instances where a more advanced large language
model, specifically GPT-4 Turbo in this study, prefers the outputs of the target model over its own. GSM8K and MATH
use zero-shot accuracy as the metric. HumanEval and MBPP use pass@1 as the metric, representing the proportion of
individually generated code samples that successfully pass the unit tests. In addition to reporting a simple average metric,
we also provide the normalized average metric, calculated by dividing the metric of the merged model by the metric of
fine-tuned models, to ensure a fair and consistent comparison across datasets.

B.2. Descriptions of Baselines

We evaluate several baseline methods for merging Vision Transformers (ViT) and encoder-based language models, which
are outlined below:

• Task Arithmetic (Ilharco et al., 2022): This approach constructs task vectors from model weights and merges them
using arithmetic operations.

• Fisher Merging (Matena & Raffel, 2022): This method uses Fisher-weighted averaging of model parameters to merge
models.

• RegMean (Jin et al., 2022): RegMean determines merging coefficients by solving a linear equation to align internal
embeddings, which shares similarity with ProDistill. One of the key differences is that RegMean relies on the
linearity of the modules, and therefore can only be applied to linear modules. Our method is free of this limitation,
since it is a general distillation algorithm. Another primary difference from our method is that RegMean is training-free,
whereas ProDistill is training-based. This difference leads to several consequences.

– Performance: The training-free nature of RegMean limits its ability to fully leverage the expressive power of
neural network modules, resulting in lower performance compared to the training-based ProDistill.

– Computation: Although RegMean avoids the potential overhead of a lengthy training process, it still requires
solving linear equations, which can become computationally intensive as model sizes increase. As demonstrated in
Section 6.2, with just one epoch of training, ProDistill achieves better merging results than RegMean, without
incurring significant computational costs. Therefore, ProDistill does not suffer from high computational
burden despite being a training-based method.

• AdaMerging (Yang et al., 2023): This method adaptively selects merging coefficients by minimizing entropy on
unlabeled test data. Like ProDistill, it is both training-based and data-dependent.

17

Scalable Model Merging with Progressive Layer-wise Distillation

• Localize-and-Stitch (He et al., 2024): This approach identifies sparse masks to extract task-specific parameters from
fine-tuned models and merges them back into the pretrained model.

We consider the following additional baselines for merging decoder-based large language models.

1. TIES-Merging (Yadav et al., 2024): TIES-Merging first trims task vectors to retain only the most significant parameters,
then resolves the signs of the remaining parameters, and finally merges only those parameters that align with the
resolved signs.

2. WIDEN (Yu et al., 2024a): WIDEN disentangles model weights into magnitude and direction components and merges
them by considering their respective contributions. It is also applicable to merging independently trained models.

B.3. Implementation Details

We use the ViT checkpoints given by (Ilharco et al., 2022) for vision tasks. For NLU tasks, we fine-tune BERT-base-uncased
and RoBERTa-base models for 10 epochs. The weight decay is set to 0.01. We use a learning rate of 10−5 with a warm-up
strategy.

For ProDistill and AdaMerging, we train the merging coefficients using the Adam optimizer. The merging coefficients
are initialized to 0.3 when merging eight models, and searched from {0.5, 1.0} when merging two models. The learning rate
and training epochs are selected via grid search. For ViT models and LLMs, the learning rate is chosen from {0.1, 0.01}; for
Bert/RoBERTa models, the learning rate is chosen from {0.01, 0.001}. The number of epochs is chosen from {50, 100, 200}.

For Task Arithmetic, we use a fixed merging coefficient of 0.3 when merging eight models, and search the coefficient from
{0.5, 1.0} when merging 2 models. For RegMean, the scaling ratio to reduce its diagonal terms are selected from a grid of
{0.7, 0.8, 0.9, 1.0}. For Fisher Merging, the scaling coefficient is selected from a grid of {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. For
Localize-and-Stitch, we set sigmoid bias to 0.3, learning rate to 107, ℓ1 regularization factor to 10.0, sparsity level to 1%
and epochs to 10.

For Vision and NLU tasks, the few-shot validation set is randomly sampled from the training set. For NLG tasks, the
validation set is randomly sampled from the test set of AlpacaEval 2.0, GSM8K and MBPP, and we exclude these test data
points in evaluation.

C. Ablation studies
C.1. Analyses of Merging Coefficient Granularity

This section analyzes the impact of different granularities on the merging coefficients. We consider three types of
granularities:

1. Element-wise: Each element in the model’s weights corresponds to a merging coefficient. In other words, the merging
coefficients are tensors that have the same dimensions as the model parameters.

2. Layer-wise: Each layer of the model is assigned a scalar merging coefficient. The merging coefficient tensor, therefore,
has the same number of elements as the number of model layers. In this paper, we slightly deviate from this naming
convention by assigning a coefficient to each module in the network.

3. Task-wise: Each fine-tuned model has a scalar merging coefficient.

We conduct experiments using these three types of granularities, and present the results in Table 4. For our method, the
element-wise granularity yields the best performance, owing to its higher expressive power. In contrast, for AdaMerging,
the element-wise granularity performs worse than the layer-wise granularity. We hypothesize that this is due to the weak
supervision power of entropy-based objective function in AdaMerging, which may lead to overfitting when the number of
trainable parameters is increased.

C.2. Comparison with DistillMerge

In this section, we compare the ProDistill algorithm, which uses the progressive training approach, with its unoptimized
version DistillMerge, which uses the traditional end-to-end training approach and optimizes Objective 1 directly. To

18

Scalable Model Merging with Progressive Layer-wise Distillation

Val Shot Granularities Ours AdaMerging

16
Element-wise 82.79 72.35

Layer-wise 73.81 75.92
Task-wise – 71.38

32
Element-wise 84.49 72.49

Layer-wise 73.50 78.28
Task-wise – 71.76

64
Element-wise 86.04 73.11

Layer-wise 72.96 79.28
Task-wise – 71.69

Val Shot Granularities Ours AdaMerging

16
Element-wise 0.6980 0.5746

Layer-wise 0.6340 0.6398
Task-wise – 0.6406

32
Element-wise 0.7473 0.5465

Layer-wise 0.5996 0.6402
Task-wise – 0.6403

64
Element-wise 0.7641 0.5415

Layer-wise 0.5560 0.6332
Task-wise – 0.6379

Table 4. Impact of Granularity on Merging Methods. Left: Accuracy results on 8 vision benchmarks using ViT-B-32. Right:
Performance metrics on the NLU tasks using RoBERTa. The highlighted cells indicate the configurations used in this paper.

ensure a fair comparison, both approaches are evaluated using the same computational budget. The results, presented in
Figure 5, indicate that ProDistill achieves a better overall performance compared to DistillMerge. Therefore,
progressive training also has a performance advantage in the considered setup, in addition to its memory efficiency as shown
in Section 6.3.

Figure 5. Comparison between ProDistill and DistillMerge. Left: Accuracy results on 8 vision benchmarks using ViT-B-32.
Right: Performance metrics on the NLU tasks using RoBERTa. The results demonstrate the performance improvement of progressive
training in ProDistill, compared to end-to-end training in DistillMerge, despite the latter being more resource-intensive.

C.3. Comparisons with Standard Training and Standard Distillation

We consider two additional baselines. The first, referred to as DirectTrain, follows a standard supervised training
approach. It assumes access to class labels and minimizes the standard cross-entropy loss:

min
θ

T∑
i=1

1

2T |Di|
∑

(x,y)∈Di

LCE (ψ(θ, x), y) ,

where ψ(·, ·) is the model output logits.

The second baseline, DirectDistill, is conceptually similar to DistillMerge, but it does not utilize task vectors to
scale the model weights. Mathematically, it is expressed as:

19

Scalable Model Merging with Progressive Layer-wise Distillation

Figure 6. Ablation Results of DirectTrain and DirectDistill. Traditional supervised training in DirectTrain performs
poorly in the few-shot setup. The standard feature-based distillation method, DirectDistill, outperforms task arithmetic but still
lags behind ProDistill and DistillMerge, which incorporate task vector-based weight scaling.

Input Type ViT-B-32 RoBERTa

Dual (in Alg 1) 86.04 0.7641
Merged 85.20 (-1.0%) 0.7303 (-4.4%)

Fine-tuned 84.98 (-1.2%) 0.5895 (-22.8%)

Table 5. Performance of three different layer input configurations. The dual activations approach used in Algorithm 1 achieves the highest
performance, especially for NLU tasks.

min
θ

T∑
i=1

1

2T |Di|
∑
x∈Di

∥φ (θ, x)− φ (θi, x)∥2 .

The relationship between these algorithms can be visualized as follows:

DirectTrain
Distillation Loss−−−−−−−−→ DirectDistill

Task Vector Scaling−−−−−−−−−−→ DistillMerge
Layer-wise Training−−−−−−−−−−→ ProDistill

We evaluate DirectTrain and DirectDistill on vision tasks using ViT-B-32. Compared to the main experimental
setup, we use a smaller learning rate grid of {1× 10−5, 1× 10−6, 1× 10−7}. The results, summarized in Figure 6, reveal
several key findings:

1. Domain-specific data is crucial for model merging. With only 16-shot validation data, a vanilla distillation algorithm
like DirectDistill can outperform Task Arithmetic.

2. The internal embeddings of teacher models provide significantly richer supervision signals compared to class labels
alone, as reflected in the improved performance of DirectDistill over DirectTrain.

3. Scaling model weights using task vectors introduces an effective prior for model training, as reflected in the improved
performance of ProDistill over DirectDistill.

C.4. Ablation Studies on Layer Inputs

ProDistill maintains dual paths of internal activations as inputs to each layer: the activations from the merged models
and those from the fine-tuned models. In this section, we explore two alternative configurations: one using only fine-tuned
activations and the other using only merged activations. The goal in these two configurations is to align the layer output
under the same input, and can be viewed as direct adaptations of traditional distillation loss to the layer-wise setting.

20

Scalable Model Merging with Progressive Layer-wise Distillation

Figure 7. Three configurations of layer inputs. Left: Dual activations (ours). Middle: Merged Activations. Right: Fine-tuned Activations.
z1 is activation of merged model and z2 is the activation of fine-tuned model.

We conduct additional experiments on these three setups, and present the results in Table 5. The findings demonstrate a
significant performance advantage of using dual activations over the two alternatives, particularly on the NLU tasks.

The performance gap can be attributed to the limited expressive power of a single layer, which makes it impossible to
fully optimize Equation 4.2. Otherwise, if the loss in Equation 4.2 were zero, the three input configurations would become
equivalent. Therefore, the proposed dual input strategy facilitates the progressive alignment of layer features by distributing
the minimization of the distillation loss across all layers.

D. Additional Experiment Results
D.1. Additional Results on Vision, NLU, and NLG Tasks

This section presents the complete experimental results across various base models and tasks, including merging ViT-B-16
(Table 6), ViT-L-14 (Table 7) on vision tasks, merging BERT-Base (Table 8) on NLU tasks, merging LLMs on Instruct+Code
(Table 10) and Instruct+Math (Table 9) tasks. The results demonstrate the consistent performance improvements achieved
by our method across models of varying model sizes and different experiment setups.

Table 6. Performance of merging ViT-B-16 models across eight downstream vision tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg

Individual 78.56 87.08 96.92 99.78 97.86 99.17 99.76 82.07 92.65
Task Arithmetic 62.07 66.14 74.00 76.48 88.02 73.79 98.52 52.50 73.94

RegMean 70.84 75.18 83.13 94.44 90.80 82.43 98.66 60.74 82.03
Fisher merging 66.78 70.49 72.17 80.19 88.33 68.14 96.60 48.46 73.89
Localize-and-Stich 67.38 69.23 82.38 90.37 88.84 83.58 97.24 74.10 81.64
AdaMerging 64.30 74.37 74.63 94.89 91.19 94.94 97.95 69.63 82.74
ProDistill, 16 shot (Ours) 71.47 79.99 88.06 96.15 96.37 93.52 99.58 65.00 86.27
ProDistill, 32 shot (Ours) 71.77 80.86 89.48 99.07 96.86 96.29 99.63 68.40 87.80
ProDistill, 64 shot (Ours) 72.82 81.94 91.94 99.52 97.11 97.65 99.60 70.74 88.92

D.2. Additional Results on Data Efficiency

In this section, we provide further evaluations on the data efficiency of ProDistill.

The results for NLU tasks can be found in Figure 8, which show that ProDistill has a performance decline in data-scarce
settings. However, it still outperforms Task Arithmetic with as few as 4 data points per class. Overall, the results demonstrate
that ProDistill is highly data-efficient compared with the baselines.

21

Scalable Model Merging with Progressive Layer-wise Distillation

Table 7. Performance of merging ViT-L-14 models across eight downstream vision tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg

Individual 82.32 92.35 97.38 99.78 98.11 99.24 99.69 84.15 94.13
Task Arithmetic 74.16 82.09 86.67 94.07 87.91 86.77 98.94 65.69 84.54

RegMean 74.04 87.22 88.52 98.15 92.89 90.22 99.27 69.84 87.52
Fisher merging 71.28 85.18 81.59 89.67 81.51 83.39 96.31 65.48 81.80
Localize-and-Stich 74.37 78.03 86.02 94.56 93.44 92.52 98.45 74.89 86.53
AdaMerging 75.96 89.42 90.08 96.59 91.78 97.52 98.91 77.61 89.73
ProDistill, 16 shot (Ours) 76.71 89.23 92.63 98.15 97.12 95.28 99.60 75.00 90.47
ProDistill, 32 shot (Ours) 77.26 89.55 93.40 99.26 97.58 97.17 99.60 76.54 91.30
ProDistill, 64 shot (Ours) 77.73 90.04 94.43 99.48 97.71 98.26 99.63 78.24 91.94

Table 8. Performance of merging BERT models on the NLU tasks.

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

Individual 0.5600 0.9243 0.8171 0.8754 0.8900 0.8402 0.9103 0.6282 0.8057
Task Arithmetic 0.0900 0.8383 0.7960 0.4897 0.7017 0.4919 0.6883 0.6354 0.5914

RegMean 0.3840 0.8842 0.7857 0.3155 0.7772 0.4799 0.7847 0.6173 0.6286
Fisher merging 0.1288 0.6995 0.6568 -0.3899 0.6698 0.3830 0.7150 0.5632 0.4283
Localize-and-Stich 0.0968 0.7878 0.7982 0.5645 0.6115 0.4475 0.5418 0.5776 0.5532
AdaMerging 0.2935 0.8085 0.7877 0.6607 0.4020 0.4311 0.5065 0.5235 0.5517
ProDistill, 16 shot (Ours) 0.3055 0.8704 0.7853 0.5084 0.7788 0.5627 0.8212 0.6101 0.6553
ProDistill, 32 shot (Ours) 0.3369 0.8727 0.7858 0.5105 0.7782 0.6022 0.8320 0.6029 0.6652
ProDistill, 64 shot (Ours) 0.3881 0.8819 0.7951 0.5203 0.7811 0.6155 0.8413 0.6498 0.6841

Table 9. Performance of merging LLM models on Instruct and Math tasks. The result of TIES-Merging and WIDEN is directly taken
from Yu et al. (2024a).

Method AlpacaEval 2.0 GSM8K MATH HumanEval MBPP Avg Norm Avg

WizardLM-13B 0.1180 0.0220 0.0000 0.3659 0.3400 0.1692 0.6069
WizardMath-13B 0.0117 0.6361 0.1456 0.0671 0.0800 0.1881 0.5036

Task Arithmetic 0.1015 0.6649 0.1420 0.2561 0.2960 0.2921 0.8902
TIES-Merging 0.1007 0.1577 0.0204 0.3780 0.3560 0.2026 0.7419
WIDEN 0.0945 0.6634 0.1358 0.2866 0.3040 0.2968 0.8907
ProDistill, 16 shot (Ours) 0.1131 0.6485 0.1358 0.2561 0.3040 0.2915 0.9009
ProDistill, 32 shot (Ours) 0.1148 0.6441 0.1356 0.2805 0.2920 0.2934 0.9084
ProDistill, 64 shot (Ours) 0.1121 0.6518 0.1360 0.2683 0.3040 0.2944 0.9072

D.3. Analysis of Randomness

Although Algorithm 1 itself is not inherently random, the randomness introduced by the sampling of validation data can
influence the results, necessitating a careful analysis.

To evaluate the effect of randomness, we repeat the experiments on ViT-B-32 and RoBERTa using three different random
seeds and present the results in the box plot shown in Figure 9. As expected, the variance in the metrics decreases as the
number of validation shots increases. We also find that the ViT experiments show a small sensitivity to randomness. In
contrast, for RoBERTa experiments, the impact of randomness can be large in a data-scarce setting, but this effect diminishes
considerably once the number of validation shots exceeds a certain threshold (e.g., 16).

22

Scalable Model Merging with Progressive Layer-wise Distillation

Table 10. Performance of merging LLM models on Instruct and Code tasks. The result of TIES-Merging and WIDEN is directly
taken from Yu et al. (2024a).

Method AlpacaEval 2.0 HumanEval MBPP Avg Norm Avg

WizardLM-13B 0.1180 0.3659 0.3400 0.2746 1.0000
Llama-2-13b-code-alpaca 0.0290 0.2378 0.276 0.1809 0.5691

Task Arithmetic 0.1035 0.3110 0.3200 0.2448 0.8894
TIES-Merging 0.0727 0.000 0.000 0.0242 0.2053
WIDEN 0.0653 0.3170 0.3560 0.2461 0.8223
ProDistill, 16 shot (Ours) 0.1031 0.2929 0.3140 0.2367 0.8659
ProDistill, 32 shot (Ours) 0.1056 0.3049 0.3036 0.2380 0.8737
ProDistill, 64 shot (Ours) 0.1042 0.3213 0.3232 0.2496 0.9039

Figure 8. The average metric of ProDistill and RegMean on the NLU tasks, with different data availability. Our method
outperforms RegMean in data efficiency when more than 16 validation shots are available.

Figure 9. The randomness Analysis on Vision and NLU tasks. Left: Accuracy results of ProDistill on 8 vision benchmarks using
ViT-B-32. Right: Performance metrics of ProDistill on the NLU tasks using RoBERTa.

D.4. Additional Results on t-SNE Visualization

We provide the complete results of t-SNE visualization on all eight vision datasets in Figure 10.

D.5. LLM Generation Examples

We pick examples texts generated by merged model of WizardLM-13B and WizardMath-13B, using ProDistill and
Task Arithmetic. The results are provided in Figure D.5 (Math), Figure D.5 (Code) and Figure D.5 (Instruct).

23

Scalable Model Merging with Progressive Layer-wise Distillation

Figure 10. The t-SNE visualization of the last layer embedding of ViT-B-32.

24

Scalable Model Merging with Progressive Layer-wise Distillation

Prompt:
Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction: Given ∥v∥ = 5 and ∥w∥ = 8, find the largest possible value of ∥ projw v∥.

Response of ProDistill model:

Response: Let’s think step by step.

Step 1: Understand the problem We are
given two vectors v and w with norms
∥v∥ = 5 and ∥w∥ = 8, respectively. We
need to find the largest possible value of the
norm of the projection of v onto w.

Step 2: Define the projection The projection
of v onto w is a vector that is as close as
possible to w while still being a scalar multi-
ple of v. This vector is given by projw v =
v·w
∥w∥2w.

Step 3: Calculate the dot product The dot
product of v and w is v ·w = 5 · 8 = 40.

Step 4: Calculate the scalar multiple The
scalar multiple of v that is closest to w is
given by v·w

∥w∥2w = 40
8 w = 5w.

Step 5: Calculate the norm of the projection
The norm of the projection of v onto w is
given by ∥projw v∥ = ∥ 5

8w∥ = 5
8∥w∥ =

5
8 · 8 = 5.

Step 6: Find the largest possible value The
largest possible value of the norm of the pro-
jection of v onto w is ∥ projw v∥ = 5.

So, the largest possible value of the norm of
the projection of v onto w is 5 .

The answer is: 5. ✓

Response of Task Arithmetic model:

Response: Let’s think step by step.

Step 1: Understand the problem We are
given the magnitudes of two vectors, v and
w, and we need to find the largest possible
value of the magnitude of their projection.

Step 2: Recall the formula for projection The
projection of vector v onto vector w is given
by:

projw v =
v ·w
∥w∥2

w

Step 3: Calculate the dot product The dot
product of v and w is:

v ·w = ∥v∥∥w∥ cos θ

where θ is the angle between the two vectors.

Step 4: Substitute the given magnitudes We
know that ∥v∥ = 5 and ∥w∥ = 8. Sub-
stituting these values into the dot product
equation, we get:

v ·w = 5 · 8 · cos θ = 40 cos θ

Step 5: Find the maximum value of the dot
product The maximum value of the dot prod-
uct occurs when the angle θ between the two
vectors is 0, i.e., the vectors are aligned. In
this case, the dot product is:

v ·w = 40

Step 6: Calculate the projection Now, we can
find the magnitude of the projection:

∥ projw v∥ =
40

82
=

10

8
=

5

4

Step 7: State the final answer Therefore, the
largest possible value of ∥ projw v∥ is 5

4 .

The answer is: 5
4 . ✗

Figure 11. Comparison of LLM generation results on the MATH benchmark.

25

Scalable Model Merging with Progressive Layer-wise Distillation

Prompt:
Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction: Write a Python function to find the quotient of two numbers.
Test examples:
assert find(10, 3) == 3
assert find(4, 2) == 2
assert find(20, 5) == 4

Response of ProDistill model:

Response:
Here’s a Python function to find the quotient
of two numbers:

def find(dividend, divisor):
return dividend // divisor

Now, let’s test the function with the given
examples:

assert find(10,3) == 3
assert find(4,2) == 2
assert find(20,5) == 4

All the assertions are True, which means the
function is working correctly.✓

Response of Task Arithmetic model:

Response:
To find the quotient of two numbers, we
can use the division operator (/) in Python.
Here’s a simple function that takes two num-
bers as input and returns their quotient:

def find(dividend, divisor):
return dividend / divisor

Now, let’s test the function with the given
examples:

assert find(10,3) == 3
assert find(4,2) == 2
assert find(20,5) == 4

All three tests pass, which means the func-
tion is working correctly. The output of the
function for each test is:

3
2
4

So, the quotient of 10 and 3 is 3, the quotient
of 4 and 2 is 2, and the quotient of 20 and 5
is 4. ✗

Figure 12. Comparison of LLM generation results on the MBPP benchmark.

26

Scalable Model Merging with Progressive Layer-wise Distillation

Prompt:
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions.
USER: Who created the Superman cartoon character?

Response of ProDistill model:

ASSISTANT: The Superman cartoon char-
acter was created by two American comic
book writers, Jerry Siegel and Joe Shuster.
They first introduced the character in Action
Comics #1 in 1938. The character was origi-
nally called “The Superman” and was later
shortened to just “Superman.” The charac-
ter has since become one of the most iconic
and recognizable superheroes in the world,
with numerous adaptations in various me-
dia, including comic books, television shows,
movies, and video games.

Response of Task Arithmetic model:

ASSISTANT: The Superman cartoon char-
acter was created by two American comic
book artists, Jerry Siegel and Joe Shuster.
They first introduced the character in Action
Comics #1 in 1938. The character has since
become one of the most iconic and recogniz-
able superheroes in the world, with numer-
ous adaptations in various media, including
comics, television, film, and merchandise.

Figure 13. Comparison of LLM generation results on the AlpacaEval 2.0 benchmark.

27

