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Abstract

Multilingual neural machine translation models001
support fine-tuning hundreds of languages si-002
multaneously. However, fine-tuning on full pa-003
rameters solely is inefficient potentially leading004
to negative interactions among languages. In005
this work, we demonstrate that the fine-tuning006
for a language occurs in its intrinsic language-007
specific subspace with a tiny fraction of en-008
tire parameters. Thus, we propose language-009
specific LoRA to isolate intrinsic language-010
specific subspaces. Furthermore, we propose011
architecture learning techniques and introduce012
a gradual pruning schedule during fine-tuning013
to exhaustively explore the optimal setting and014
the minimal intrinsic subspaces for each lan-015
guage, resulting in a lightweight yet effec-016
tive fine-tuning procedure. The experimen-017
tal results on a 12-language subset and a 30-018
language subset of FLORES-101 show that our019
methods not only outperform full-parameter020
fine-tuning up to 2.25 spBLEU scores but also021
reduce trainable parameters to 0.4% for high022
and medium-resource languages and 1.6% for023
low-resource ones.024

1 Introduction025

Multilingual Neural Machine Translation (MNMT)026

aims to use a single model to translate among dif-027

ferent languages (Ha et al., 2016; Johnson et al.,028

2017). Recent studies of MNMT (Fan et al., 2020;029

Team et al., 2022) achieved significant progress030

in training large-scale pre-trained models support-031

ing hundreds of languages. Benefiting from cross-032

language learning, these pre-trained models offer033

the possibility of fine-tuning with limited data and034

show better performance in low-resource languages035

and non-English directions. However, multilingual036

fine-tuning still suffers from two limitations: (1)037

full-parameter fine-tuning becomes inefficient as038

the model size increases; (2) negative interactions039

among languages (Duh et al., 2012; Mohammad-040

shahi et al., 2022; He et al., 2023; Chen et al., 2023;041

Huang et al., 2023) lower the performance of high- 042

resource languages. 043

Recent studies have shown that the fine-tuning 044

of pre-trained models can be re-parameterized in 045

an intrinsic subspace, i.e., a low-rank subspace 046

with tiny parameters (Li et al., 2018; Qin et al., 047

2022; Zhang et al., 2023b). This insight implies 048

that language-specific fine-tuning in pre-trained 049

MNMT models happens within intrinsic language- 050

specific subspaces, thus overcoming the aforemen- 051

tioned limitations: (1) intrinsic subspaces signifi- 052

cantly reduce the required trainable parameters; (2) 053

isolating the intrinsic subspaces among languages 054

alleviates the negative interference in the multilin- 055

gual representations. Therefore, in this work, we 056

propose Language-Specific LoRA (LSLo), consist- 057

ing of multiple LoRA (Hu et al., 2021) modules 058

with sparse language-specific activation, to model 059

such intrinsic subspaces. 060

Moreover, prior works (Qu and Watanabe, 2022; 061

Pfeiffer et al., 2022; Pires et al., 2023) allocate 062

the same number of parameters to different lan- 063

guages, which can yield sub-optimal setup because 064

pre-trained models have already learned a substan- 065

tial amount of knowledge from high-resource lan- 066

guages given the imbalance distribution of train- 067

ing data. We hypothesize that fine-tuning of high- 068

resource languages can be done in a smaller sub- 069

space compared to low-resource languages. To ex- 070

haustively explore the minimal intrinsic subspaces 071

for each language, we first reduce the rank for high- 072

resource languages and then introduce unstructured 073

pruning with a Gradual Pruning Schedule (He et al., 074

2023) during fine-tuning. 075

However, determining the optimal structure of 076

LSLo remains challenging. First, there are 2 cases 077

when selecting the language-specific sub-module 078

of each LSLo: selected by source language (source- 079

indexed) and selected by target language (target- 080

indexed). Furthermore, although we intuitively ex- 081

pect that high-resource languages require smaller 082
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subspaces, it’s still insufficient for the complex083

multilingual setting. These lead to the exponential084

increase in the possible architectures with the in-085

crease of the number of model layers and supported086

languages. Therefore, in this work, we use two ar-087

chitecture Learning techniques to avoid the tedious088

manual trial-and-error. We applied Weight Learn-089

ing (Elsken et al., 2019; Pires et al., 2023) to deter-090

mine whether each LSLo module should be source-091

indexed or target-indexed, given its interpretability092

and ease of visualization. We also propose a Layer-093

wise Cross-Language Pruning method, which com-094

bines the LoRA modules of all languages at every095

layer for pruning to estimate the required subspace096

size for each language.097

We conduct our experiments on a 12-language098

subset of FLORES-101 (Goyal et al., 2021). Re-099

sults show that in a pre-trained MNMT model,100

the size of intrinsic language-specific subspace101

is highly correlated with the language’s resource102

type. Specifically, High-resource languages can be103

fine-tuned within a very small parameter subspace.104

Our fine-tuning method outperforms full parame-105

ter fine-tuning by 1.3 spBLEU while only using106

0.4% trainable parameters for high and medium107

languages, and 1.6% for low-resource ones. We108

further evaluate our method on a 30-language sub-109

set, achieving a 2.25 spBLEU improvement over110

full parameter fine-tuning with only 7% trainable111

parameters, which demonstrates the efficiency and112

effectiveness of our method.113

2 Background114

Given a set of n languages L = {l1, l2, · · · , ln},115

the multilingual translation task is defined as trans-116

lating an input in source language src ∈ L into117

an output in target language tgt ∈ L. To train118

an MNMT model, we need a parallel corpus in-119

cluding translations aligned at the sentence level120

for creating MNMT datasets. For instance, con-121

sider a collection with m sets of sentences S =122

{S1,S2, · · · ,Sm}, each sentence set includes sen-123

tences in different languages sharing the same se-124

mantics, Sk = {skl1 , s
k
l2
, · · · , skln}. With a paral-125

lel corpus, we can conveniently construct MNMT126

datasets including different translation directions127

src → tgt by choosing source and target sentences128

pairs from S, e.g., sksrc as the input x and sktgt129

as the output y of a single translation pair (x,y).130

Given a MNMT dataset with N translation pairs131

D = {(xi,yi), i ∈ 1 · · ·N}, the training loss is132

defined as: 133

LMNMT = −
∑

x,y∈D

J∑
j=1

log pθ(yj |y<j ,x) (1) 134

where x = x1, x2, · · · , xI is a source sentence 135

with length I and y = y1, y2, · · · , yJ is the corre- 136

sponding target sentence with length J . We say 137

an MNMT model is English-centric if all language 138

pairs in its training data include English. Models 139

without this limitation are classified as many-to- 140

many models. In this work, we conduct experi- 141

ments in a many-to-many setting. 142

3 Methodology 143

3.1 Language-specific LoRA 144

LoRA (Hu et al., 2021) is widely used in Parameter- 145

efficient Fine-tuning (PEFT) for Large Language 146

Models where fine-tuning is re-parameterized in a 147

low-rank intrinsic subspace. For a weight matrix 148

in a pre-trained model W ∈ Rd×k, LoRA forward 149

pass can be calculated as: 150

h = Wx+BAx (2) 151

where B ∈ Rd×r and A ∈ Rr×d. During training, 152

W will be frozen and the trainable parameters, i.e., 153

A and B, will be reduced from d×k to d×r+r×k, 154

where r ≪ min(d, k). 155

In this work, we propose Language Specific 156

LoRA (LSLo), an instance of Mixture-of-LoRAs 157

(Feng et al., 2024) but with a hard language-specific 158

routing. Specifically, Each LSLo module contains 159

multiple sparsely activated LoRA modules with dif- 160

ferent rank rli for each language, instead of sharing 161

a unified parameter space across all languages. The 162

forward pass of LSLo is calculated as: 163

h = Wx+ LSLo(x, li)

= Wx+BliAlix
(3) 164

where li ∈ L is the selected language for this LSLo. 165

Only the LoRA module of the selected language 166

will be activated each time. Similar to LoRA, LSLo 167

can be added to any weight matrices, e.g., pro- 168

jections for attention and fully connected layers. 169

The number of trainable parameters for each LSLo 170

module is
∑n

i=1(d × rli + rli × k), where rli is 171

the reduced dimension for each language li. We 172

are allowed to flexibly adjust the size of intrin- 173

sic language-specific subspaces through rli , thus 174

achieving higher parameter efficiency. 175
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3.2 Unstructured Pruning176

The assumption that higher-resource languages177

have smaller intrinsic subspaces naturally leads178

to the following question: How small can these179

subspaces be? Therefore, we adopt unstructured180

pruning 1 to explore the minimal intrinsic language-181

specific subspaces exhaustively. Compared with182

structured pruning which directly removes entire183

rows or columns from a weight matrix, we choose184

unstructured pruning without the above limitation185

to achieve a higher pruning ratio. We also intro-186

duce a Gradual Pruning Schedule (Zhu and Gupta,187

2017; He et al., 2023) during fine-tuning to avoid188

huge performance loss caused by pruning. We pro-189

vide more details about Gradual Pruning Schedule190

(GPS) in Appendix A.191

4 Architecture Learning192

LSLo introduces additional hyperparameters: (1)193

each LSLo module can be selected by either the194

source or the target language; (2) each language can195

have a different rank rli , leading to an exponential196

increase in possible architectures with the number197

of layers and languages. Therefore, we propose198

two architecture learning techniques in this section199

to avoid manual selection.200

4.1 Weight Learning201

Consider a translation from a source language202

li ∈ L to a target language lj ∈ L. We say an203

LSLo module is source-indexed if activated by the204

source language li and is target-indexed if activated205

by the target language lj . Intuitively, we expect that206

the language information is transformed from the207

source side to the target side near the top layers of208

the encoder and the bottom layers of the decoder209

(Kudugunta et al., 2019), which motivates the as-210

sumption that a layer in an encoder or decoder211

might prefer either source or target language, e.g.,212

top layers of the encoder require target-indexed213

LSLo for more target side information while bot-214

tom layers of the encoder require source-indexed215

LSLo for more source side information. However,216

finding an optimal setting remains tedious work. In-217

spired by Neural Architecture Search (Elsken et al.,218

2019; Pires et al., 2023), we introduce a weight219

learning method here to determine the activation220

strategy for each layer’s LSLo modules. Given an221

1We directly use the implementation from PyTorch.
https://pytorch.org/docs/stable/generated/torch.
nn.utils.prune.l1_unstructured.html

LSLo module added to a pre-trained weight matrix 222

W , let the layer index W located is i, and the mod- 223

ule W belongs to is mo, we calculate weighted 224

sum during forward pass as follows: 225

himo =W i
mox +

wi
src · LSLoimo(x, lsrc) +

wi
tgt · LSLoimo(x, ltgt) .

(4) 226

where wi
src , wi

tgt are shared among all LSLo mod- 227

ules in the same layer, and we use softmax to make 228

sure the weights are non-negative and sum up to 1. 229

We will simply choose the index strategy with the 230

one having a larger weight. 231

4.2 Intrinsic Subspace Estimation 232

Intuitively, high-resource languages can be fine- 233

tuned in smaller subspaces owing to the extensive 234

knowledge learned during pre-training, while low- 235

resource ones should preserve larger subspaces due 236

to the limited resources. However, in practice, 237

some medium-resource languages, such as Dutch, 238

have data scales similar to high-resource languages, 239

thus it is possible to reduce the size of subspaces. 240

Additionally, some low-resource languages would 241

benefit more from cross-lingual transfer thanks to 242

their similarity to high-resource languages, e.g., 243

the same language family, effectively allowing the 244

reduction in the fine-tuning subspaces. Therefore, 245

we propose an intrinsic subspace estimation tech- 246

nique using layer-wise cross-language pruning2 to 247

comprehensively analyze the fine-tuning space de- 248

mands for each language. 249

We apply LSLo to all possible weight matrices 250

and group B matrices from LSLo modules of all 251

languages in the same layer for pruning. We use the 252

same unstructured pruning in Section 3.2. Let #B 253

be the number of parameters in matrix B, PISE is 254

the predefined pruning ratio, and #prunedB
repre- 255

sents the actual number of parameters pruned from 256

matrix B. We measure the intrinsic subspace using 257

the importance score: 258

Score(B) = #prunedB
− PISE ·#B (5) 259

If Score(B) is positive, it means that matrix B 260

was pruned more than the target rate, thus the fine- 261

tuning can be done in a smaller subspace. Con- 262

versely, a negative one indicates the need for a 263

2We also use the implementation from PyTorch.
https://pytorch.org/docs/stable/generated/torch.
nn.utils.prune.global_unstructured.html
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larger parameter space. By grouping all languages264

for pruning in each layer, we can estimate the size265

of each language’s intrinsic subspace in different266

layers respectively.267

We only focus our comparison among B matri-268

ces because, while the A matrices are randomly269

Gaussian initialized, B matrices are initialized by270

zero in LoRA, allowing us to compare more fairly.271

5 Experimental Setup272

Dataset FLORES-101 (Goyal et al., 2021) is a273

high-quality parallel dataset, including 3,001 sen-274

tences from English Wikipedia which are trans-275

lated into 101 languages by human translators. Sen-276

tences are divided into three splits: dev (997 sen-277

tences), devtest (1,012 sentences), and test (992278

sentences). Since the test set is not publicly avail-279

able, we use the dev set for training and devtest280

set for evaluation. Languages are divided into four281

resource types: High (H), Medium (M), Low (L),282

and Very-Low (V), based on the available bitext283

data with English.284

We first randomly selected four languages from285

each of the three resource types (high, medium,286

very-low) to form a small subset lang12 of 12 lan-287

guages. We conducted comprehensive analyses288

and tests on lang12 to verify our proposed method.289

Then, we extend our method to a larger subset290

lang30 to measure the impact when introducing291

more languages. Details for lang12 and lang30292

are provided in Appendix B.293

Model Setting We choose M2M-124 615M294

(Goyal et al., 2021) as our base model. This is295

a special version of M2M-100 (Fan et al., 2020)296

extended by supplementing OPUS data to support297

all languages in the FLORES-101 dataset.298

Training We implemented LSLo using fairseq299

(Ott et al., 2019) based on Transformer architecture.300

All experiments were trained in a many-to-many301

setting in a single run. For full parameter fine-302

tuning, we trained the model for 15 epochs with303

a learning rate of 0.0001. For LSLo, we froze the304

parameters of the original model and trained for305

15 epochs with a learning rate of 0.003. All mod-306

els were trained on 4 RTX A6000 with automatic307

mixed precision.308

Evaluation We choose the results of full parame-309

ter fine-tuning as the baseline to compare with the310

beam size of 5. We use the dev and devtest set men-311

tioned above as our training and test sets respec-312
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Figure 1: Source (src) and target (tgt) weights learned
across layers in encoder (enc) and decoder (dec). The
model’s focus shifted from the source side to the target
side near the top of the encoder.

tively and report spBLEU score (SentencePiece 313

BLEU) (Goyal et al., 2021) with the FLORES-101 314

tokenizer3. 315

6 Results 316

6.1 Weight Learning 317

As described in Section 4.1, we apply weight learn- 318

ing to the training data of lang12 before conduct- 319

ing subsequent experiments to determine whether 320

each LSLo module should be source-indexed or 321

target-indexed. We build both source-indexed and 322

target-indexed LSLo modules with the same rank 323

rli = 8 for all languages to all weight matrices in 324

both encoder and decoder, including q, k, v, c-q, 325

c-k, c-v, i.e., query, key and value matrices of atten- 326

tion and cross-attention respectively, and fc1, fc2, 327

i.e., down and up matrices of MLP, respectively. In 328

forward pass, we calculated the weighted sum of 329

these two different indexed modules. 330

Figure 1 shows a clear tendency that the model’s 331

focus moves from the source side to the target 332

side near the top of encoder, and in decoder, the 333

model only focuses on target information. This 334

is also mentioned by Tenney et al. (2019); Pires 335

et al. (2023), where the bottom layers of encoder 336

only learn some lower-level representation, and the 337

top layers capture more output-related higher-level 338

representation. 339

For the following experiments, we choose the 340

indexed modules with the larger weights, which 341

means the LSLo modules in the first 9 layers of 342

encoder will be source-indexed and in other layers 343

3https://github.com/facebookresearch/flores/
tree/main/previous_releases/flores101
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Figure 2: Illustration of the parameter space demands
for each language, averaged across all layers. Color
indicates the demands from low (blue) to high (red).
Rows are organized by language resource type: high-
resource (green), medium-resource (blue), and very-
low-resource (red). Columns are organized by weight
matrices in the encoder and decoder: query, key, and
value matrices of attention (q, k, v) and cross-attention
(c-q, c-k, c-v); down and up matrices of MLP (fc1, fc2).

of encoder and decoder will be target-indexed. We344

also analyze the impact of different index strategies345

in Appendix C.346

6.2 Intrinsic Subspace Estimation347

We performed layer-wise cross-language pruning348

as described in Section 4.2 on the training data of349

lang12 to estimate the required parameter subspace350

(intrinsic subspace) for each language. We added351

LSLo with rli for all languages to all weight matri-352

ces, allowing us to assess the parameter demands353

of different languages in each layer of encoder354

and decoder. See Appendix A for more details of355

layer-wise cross-language pruning. Figure 2 shows356

the demands of each language, averaged across357

all layers. 12 languages are organized by three358

resource types: high-resource (green), medium-359

resource (blue) and very-low-resource (red).360

The results indicate that the intrinsic subspace361

for each language is highly correlated with the re-362

source type. Very-low-resource languages need363

more parameters to learn the language-specific364

knowledge compared to high and medium-resource365

ones. This suggests there is no need to use the same366

architecture for all languages during fine-tuning.367

We observed similar tendencies in all layers, and368

the details are provided in Appendix D. Addition-369

ally, we also notice that compared to other lan-370

guages in the same group, Dutch (nl) and Occitan371

(oc) require smaller parameter spaces. For Dutch372

(nl), it has much more bitext resources (82.4M)373

compared with the other three languages in the 374

same group: Chinese (zh) (37.9M), Japanese (ja) 375

(23.2M), Korean (ko) (7.46M). We think the re- 376

source type, which is close to high-resource lan- 377

guages, allows Dutch (nl) to have a smaller intrin- 378

sic subspace. For Occitan (oc), although it has 379

only 5.11K bitext resources, it is the only language 380

in the group that belongs to the same Language 381

Family (Romance) as two high-resource languages, 382

French (fr) and Italian (it). This suggests that simi- 383

lar languages can benefit more from cross-language 384

learning, in line with Ma et al. (2023)’s approach of 385

integrating similar languages into a single module. 386

For the following experiments, we further reduce 387

the subspace size for high and medium-resource 388

languages by lowering their rank and applying un- 389

structured pruning with Gradual Pruning Schedule 390

to further explore the minimal possible intrinsic 391

subspace. 392

6.3 Main Results 393

In Table 1, we report the spBLEU scores of lang12 , 394

organized by languages’ resource types: High (H), 395

Medium (M), and Very-low (V). The first column 396

shows the experimental settings. We use the format 397

{H;M;V} to show the rank in LSLo for languages 398

with different resource types. The notation WL 399

means we use the architecture learned from Weight 400

Learning in Section 6.1 and GPS(Pr) means we use 401

the Gradual Pruning Schedule mentioned in Sec- 402

tion 3.2 for high and medium-resource languages 403

with the Pruning Ratio Pr. See Appendix A for 404

more details of GPS. We choose the zero-shot (Pre- 405

train) and full-parameter fine-tuning (Ft-all) results 406

as our baselines. As shown in the first two rows, 407

although the spBLEU of very-low-resource lan- 408

guages improved after full parameter fine-tuning 409

(Ft-all), high-resource languages performed poorly 410

due to the negative interference among languages, 411

even worse than the zero-shot results (Pretrain). 412

We first experimented with the same sub- 413

space size for every language but varied ranks 414

r ∈ {4, 8, 16, 64}. Results (LSLo+WL) show a 415

trade-off between high-resource and low-resource 416

languages, i.e., a smaller rank can alleviate 417

the degradation of high-resource languages, e.g., 418

4;4;4+WL, but limits the performance of low- 419

resource ones compared with higher rank settings, 420

e.g., 64;64;64+WL. This indicates that sharing the 421

same rank among languages with different resource 422

types is suboptimal, improving low-resource per- 423

formance requires a larger rank, which leads to 424
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Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Baselines
Pretrain - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43

LSLo
+WL

4;4;4+WL 15.35M 30.15 20.35 11.76 19.49 17.04 8.13 14.58 10.02 5.66 15.03
8;8;8+WL 30.7M 28.49 19.26 13.01 18.39 16.05 9.21 14.28 9.86 6.94 14.86
16;16;16+WL 61.4M 25.90 17.82 14.32 16.86 14.93 10.57 13.80 9.71 8.46 14.55
64;64;64+WL 245.6M 21.91 14.94 14.91 14.44 12.43 11.47 12.55 8.98 9.96 13.40

LSLo
+WL
+GPS

2;2;8+WL 15.3M 31.33 21.07 13.07 20.16 17.58 9.3 15.95 10.89 7.01 16.05
2;2;8+WL+GPS(0.1) 15.3M 31.37 21.21 12.90 20.22 17.63 9.18 15.93 10.90 6.96 16.04
2;2;8+WL+GPS(0.3) 15.3M 31.53 21.33 12.88 20.32 17.67 9.18 15.93 10.84 6.99 16.08
2;2;8+WL+GPS(0.5) 15.3M 31.76 21.5 12.96 20.49 17.94 9.25 16.08 10.98 7.1 16.23
2;2;8+WL+GPS(0.7) 15.3M 32.22 21.81 12.86 20.92 18.10 9.22 16.28 11.12 6.94 16.38
2;2;8+WL+GPS(0.9) 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;16+WL+GPS(0.9) 25.6M 33.06 22.27 14.24 21.44 18.58 10.49 17.44 12.02 8.42 17.33
2;2;64+WL+GPS(0.9) 86.9M 33.02 22.27 13.96 21.47 18.56 10.92 18.67 12.98 9.48 17.70

Table 1: The spBLEU scores on lang12 organized by language resource type: High-resource (H), Medium-resource
(M) and Very-low-resource (V), with the format {H;M;V} to show the rank we use for different languages in LSLo.
WL means we follow the learned architecture of Weight Learning mentioned in Section 4.1. GPS(Pr) means we use
the Gradual Pruning Schedule mentioned in Section 3.2 for High and Medium languages with the Pruning Ratio
Pr. Our most efficient structure (2;2;8+WL+GPS(0.9)) outperforms full parameter fine-tuning across all language
directions with a much smaller number of trainable parameters #Params.

greater degradation of high-resource performance.425

Although LSLo with r = 64 achieves the best per-426

formance on very-low-resource directions, it incurs427

a large number of trainable parameters and sacri-428

fices high-resource performance.429

Based on the findings of Section 6.2 that high430

and medium-resource languages can be fine-tuned431

in smaller subspaces, we set a lower rank r = 2 for432

high and medium-resource languages and r = 8 for433

very-low-resource languages (2;2;8+WL). Com-434

pared with the setting of 8;8;8+WL, reducing pa-435

rameter space for high and medium-resource lan-436

guages can effectively alleviate the degradation437

without compromising the performance of very-438

low-resource directions.439

To further explore the minimal intrinsic sub-440

space, we implemented the Gradual Pruning Sched-441

ule during fine-tuning mentioned in Section 3.2 for442

high and medium-resource languages. Based on443

the setting of 2;2;8+WL, we further reduce the444

parameter space for high and medium-resource lan-445

guages by increasing Pr. We surprisingly find446

that, even after pruning 90% of the LSLo pa-447

rameters for high and medium-resource languages448

(2;2;8+WL+GPS(0.9)), our method still achieves449

a 1.3 spBLEU improvement over the full parame-450

ter fine-tuning baseline, with only 2.5% trainable451

parameters. Furthermore, the degradation in high-452

resource languages has also been solved, with H2H453

performance improved from a decline of -2.47 sp-454

BLEU to an increase of +1.37 spBLEU. This sug-455

gests that language-specific fine-tuning for high 456

and medium-resource languages actually occurs 457

within tiny subspaces. Therefore, we can save more 458

space for low-resource language learning. Sim- 459

ply increasing the rank for very-low-resource lan- 460

guages to 64 (2;2;64+WL+GPS(0.9)) can achieve a 461

2.26 spBLEU improvement and is more parameter- 462

efficient. 463

We also expand our experiments to 30 languages 464

lang30 in Table 2 to assess our method’s scalabil- 465

ity. Languages are divided into four resource types: 466

High (H), Medium (M), Low (L), and Very-low (V). 467

Similar to Table 4, we use the format {H;M;L;V} 468

to represent the rank setting in LSLo. Although 469

the number of trainable parameters increases with 470

the additional introduction of language-specific 471

modules, our method (2;2;8;8+WL+GPS(0.9)) still 472

achieved a 2.25 spBLEU improvement over full 473

parameter fine-tuning with only 7% trainable pa- 474

rameters. This demonstrates our method’s potential 475

to support hundreds of languages while still keep- 476

ing the number of trainable parameters near the 477

original model. 478

7 Analysis and Discussion 479

7.1 What Causes the Degradation of 480

High-resource Languages? 481

In previous experiments of Section 6.3, we discov- 482

ered that merely isolating each language represen- 483

tation into different parameter spaces via LSLo did 484
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Language Direction
Methods #Params H2H H2M H2L H2V M2H M2M M2L M2V L2H L2M L2L L2V V2H V2M V2L V2V AVG

Pretrain - 28.93 20.77 6.29 3.60 22.94 17.26 4.82 2.73 11.28 8.01 3.03 1.51 7.04 4.34 1.68 0.55 9.53
Ft-all 615M 24.48 19.80 9.76 7.94 19.44 16.72 8.55 6.72 12.53 11.17 6.76 5.15 11.11 9.72 6.05 4.04 11.61
8;8;8;8+WL 76.7M 22.94 17.91 11.15 10.24 18.07 15.00 9.64 8.74 12.33 10.46 8.15 7.34 11.07 9.30 7.47 6.11 11.83
16;16;16;16+WL 153.4M 19.58 15.29 11.08 10.47 15.53 12.95 9.64 9.10 11.18 9.56 8.29 7.83 10.10 8.59 7.62 6.74 10.98
2;2;8;8+WL+GPS(0.9) 46M 29.92 22.90 11.11 10.06 23.60 19.20 9.53 8.61 15.34 12.70 8.05 7.25 13.75 11.31 7.37 6.11 13.86

Table 2: The spBLEU scores on lang30 organized by languages’ resource type: High-resource (H), Medium-
resource (M), Low-resource (L) and Very-low-resource (V), with the format {H;M;L;V} to show the rank we use
for different languages in LSLo. Our most efficient structure (2;2;8;8+WL+GPS(0.9)) outperforms full parameter
fine-tuning, demonstrating the effectiveness and scalability of our proposed method.

not mitigate the performance degradation of high-485

resource languages. This indicates that the trading486

or competing language representation might not be487

the only factor causing the decline.488

We examined the spBLEU of H2H and V2V489

directions per epoch, as shown in Figure 3. We ob-490

served that the spBLEU of low-resource languages491

continuously improved during training, whereas492

high-resource languages’ performance increased in493

the first epoch and then gradually declined. This494

suggests the pre-trained model has already acquired495

substantial knowledge of high-resource languages,496

making their subspace smaller compared to low-497

resource ones. When allocating same-sized pa-498

rameter spaces for languages of different resource499

types, high-resource languages are more suscep-500

tible to over-fitting, which contributes to an over-501

fitting phenomenon leading to degradation.502

This also explains why reducing the trainable503

parameter of high-resource languages can achieve504

better performance. As shown in Figure 3a, over-505

fitting is mitigated by continuously reducing the506

subspace size (2;2;8+WL+GPS(0.9)), without com-507

promising the performance of low-resource lan-508

guages.509

7.2 Where Should We Apply LSLo to?510

In this section, we want to discuss which weight511

matrices in the Transformer architecture are more512

crucial for LSLo. Similar to Section 4.2, we em-513

ploy language-specific pruning on the training data514

of lang12 to measure the demands for different515

weight matrices using Equation 5. Specifically, we516

add LSLos with a rank of 8 to all possible weight517

matrices and group the B matrix from all LoRA518

modules for each language into respective prun-519

ing groups. See Appendix A for more details of520

language-specific pruning. In this setting, we aim521

to examine which weight matrices are more im-522

portant for different languages. The results aver-523

aged across all 12 languages are shown in Figure524
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29
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31

32

33

sp
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EU 8;8;8+WL
2;2;8+WL
2;2;8+WL+GPS(0.5)
2;2;8+WL+GPS(0.9)
Ft-all
Pretrain

(a) H2H Performance per epoch
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(b) V2V Performance per epoch

Figure 3: We examined the performance of H2H and
V2V directions per epoch. H2H performance declined
during training.

4. Further details for each language respectively 525

are shown in Appendix E. We observed a clear 526

trend across all 12 languages: fc1 and fc2 play a 527

more important role in both encoder and decoder 528

compared to other weight matrices. This is in line 529

with the observation by Geva et al. (2021) that feed- 530

forward layers in Transformer architecture function 531

as key-value memories for refining the final output, 532

thus more crucial than other weight matrices. We 533

empirically prove this in Appendix E, showing that 534

placing LSLo in the fully connected layers is more 535
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Figure 4: Illustration of the parameter space demands
for each weight matrix, averaged across all languages.
Color indicates the demands from low (blue) to high
(red). Columns are organized by weight matrices in the
encoder and decoder: query, key, and value matrices
of attention (q, k, v) and cross-attention (c-q, c-k, c-v);
down and up matrices of MLP (fc1, fc2).

efficient, given a similar parameter budget.536

8 Related work537

Intrinsic Subspace Intrinsic Subspace is the min-538

imal parameter subspace required for models to539

learn new tasks. Li et al. (2018) first showed that540

intrinsic structures exist in deep neural networks541

through random subspace projection. Aghajanyan542

et al. (2021) further used this concept to explain543

the fine-tuning of Pre-trained Models. Following544

their works, Qin et al. (2022) found a universal task545

subspace that only includes hundreds of parame-546

ters through prompt-tuning (Brown et al., 2020;547

Li and Liang, 2021; Liu et al., 2022), and Zhang548

et al. (2023b) observe outlier dimensions during549

fine-tuning. However, their experiments do not in-550

clude natural language generation (NLG) tasks. To551

bridge this gap, our work focuses on Multilingual552

Neural Machine Translation, a particularly chal-553

lenging NLG task.554

Low-Rank Adaptation (LoRA) LoRA (Hu555

et al., 2021) employs the product of two low-rank556

matrices to replace the original parameter matrix557

for fine-tuning. This method is parameter-efficient558

and widely used in Large Language Models. Re-559

cent works (Zhang et al., 2023a; Kopiczko et al.,560

2024) have focused on how to further enhance the561

efficiency of LoRA. Zhang et al. (2023a) modeled562

LoRA in the form of singular value decomposition563

and improved efficiency by pruning less important564

singular values. Kopiczko et al. (2024) reduced565

trainable parameters of LoRA by only leaning scal-566

ing vectors during training, fixed low-rank matrices 567

are randomly initialized and shared for each layer. 568

Inspired by these works, we propose LSLo, a LoRA 569

based method, to model the intrinsic subspace of 570

language-specific learning. 571

Language-specific Learning Multilingual mod- 572

els suffer from the negative interaction among lan- 573

guages (Duh et al., 2012; Chen et al., 2023; Huang 574

et al., 2023). Introducing language-specific struc- 575

tures is a common strategy to address this issue. 576

Sachan and Neubig (2018); Escolano et al. (2021); 577

Pires et al. (2023) built language-specific encoder 578

or decoder layers. Despite its effectiveness, a large 579

number of trainable parameters are required for 580

such architecture. Another line of work (Lin et al., 581

2021; Wang and Zhang, 2022; He et al., 2023) tried 582

to extract sub-networks by first fine-tuning on all 583

language pairs separately and then jointly training 584

these sub-networks. However, the number for fine- 585

tuning will increase quadratically with the number 586

of languages, consuming significant computational 587

resources. In this work, we propose a parameter- 588

efficient method that maximizes the utilization of 589

the substantial knowledge learned by Pre-trained 590

Multilingual Models to improve the performance 591

of all language pairs. 592

9 Conclusion 593

In this work, we studied the imbalance size dis- 594

tribution of intrinsic language-specific subspaces 595

in a Pre-trained Multilingual Model. We mod- 596

eled the intrinsic language-specific subspaces using 597

LSLo. We further proposed an intrinsic subspace 598

estimation method and found that the size of the 599

intrinsic subspace for each language is highly corre- 600

lated with its resource type. The required subspace 601

size for higher-resource languages is much smaller 602

than for lower-resource ones. Therefore, there is 603

no need to set the same parameter budget for all 604

languages when fine-tuning multilingual models. 605

By fine-tuning languages in their respective intrin- 606

sic subspaces with different sizes using LSLo, we 607

achieved significant improvements compared to 608

full parameter fine-tuning while greatly reducing 609

the number of trainable parameters. We also pro- 610

posed methods to search for the optimal placement 611

of LSLo. We showed that the model completes the 612

transformation from the source side to the target 613

side in the top layers of the encoder and that plac- 614

ing the LSLo module in the fully connected layers 615

is most effective in the Transformer architecture. 616

8



Limitations617

Despite the insights gained from our work, our618

research still has some limitations.619

During the experiments, we categorized lan-620

guages based on resource types, which is still a621

relatively coarse classification. We believe that set-622

ting individual ranks and pruning ratios for each623

language could further improve performance and624

efficiency. Although we did not conduct experi-625

ments for all the languages due to time constraints,626

our proposed optimal architecture search methods627

can support analysis for each language respectively.628

Our experiments only used M2M124-615M629

Model. We believe that introducing more lan-630

guages and larger-scale models would yield more631

interesting findings. However, due to resource and632

time constraints, it is challenging to use large lan-633

guage models for many-to-many training and con-634

duct comprehensive analysis.635
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A Gradual Pruning Schedule878

We introduce a Gradual Pruning Schedule (Zhu879

and Gupta, 2017; He et al., 2023) during fine-880

tuning to exhaustively explore the minimal intrinsic881

language-specific subspaces. The entire training882

process is divided into three stages as denoted in883

Equation 6. Given a predefined pruning ratio P and884

the total training process has T epochs. E is the885

starting epoch for pruning, and the pruning process886

will last for k epochs.887

P =


0 e ≤ E

P − P (1− e−E
k )

3
E < e ≤ (E + k)

P (E + k) < e ≤ T
(6)888

During the first E epochs (e ≤ E), no prun-889

ing is applied denoted by P = 0; for stage 2, the890

pruning ratio of the current e epoch is gradually in-891

creased until reaching the target ratio P for the next892

k epochs; for stage 3, the pruning ratio P is kept to893

the end. We use the L1 unstructured pruning.4

Experiments P E k T

ISE 0.7 2 8 15
LSP 0.7 2 8 15
LSLo {0.1,0.3,0.5,0.7,0.9} 2 8 15

Table 3: Settings of Gradual Pruning Schedule in differ-
ent experiments.

894
In Table 3, we show the settings of Gradual Prun-895

ing Schedule in different experiments, where ISE896

denotes Intrinsic Subspace Estimation mentioned897

in Section 6.2, LSP denotes Language-specific898

Pruning mentioned in Section 7.2 and LSLo de-899

notes the Language-specific LoRA in Section 6.3.900

We empirically set the same E, k, and T for all901

experiments and the same P for ISE and LSP. For902

LSLo, as shown in Table 1, we experimented with903

different values of P to explore the possible mini-904

mal intrinsic subspace.905

B Dataset Setting906

The details of lang12 and lang30 are reported907

in Table 4 and Table 5. We follow the resource908

type classification from FLORES-101 (Goyal et al.,909

2021) based on available Bitext data through En-910

glish (Bitext w/En). We use the language code of911

4We directly use the implementation from PyTorch.
https://pytorch.org/docs/stable/generated/torch.
nn.utils.prune.l1_unstructured.html

M2M-124 model. The Language Family informa- 912

tion and available Bitext data through English are 913

all from FLORES-101.

Resource Type Language Code Family Bitext w/ En

High

English en Germanic -
French fr Romance 289M
German de Germanic 216M
Italian it Romance 116M

Medium

Chinese zh Sino-Tibetan 37.9M
Dutch nl Germanic 82.4M
Japanese ja Japonic 23.2M
Korean ko Koreanic 7.46M

Very Low

Occitan oc Romance 5.11K
Oriya or Indo-Aryan 5K
Sindhi sd Indo-Aryan 21.8K
Wolof wo Nilotic+Other AC 86.9K

Table 4: Details for each language in lang12 .
914

Resource Type Language Code Family Bitext w/ En

High

English en Germanic -
French fr Romance 289M
German de Germanic 216M
Italian it Romance 116M
Portuguese pt Romance 137M
Russian ru Balto-Slavic 127M
Spanish es Romance 315M

Medium

Arabic ar Afro-Asiatic 25.2M
Chinese zh Sino-Tibetan 37.9M
Dutch nl Germanic 82.4M
Hebrew he Afro-Asiatic 6.64M
Hindi hi Indo-Aryan 3.3M
Japanese ja Japonic 23.2M
Korean ko Koreanic 7.46M
Maltese mt Afro-Asiatic 5.82M
Norwegian no Germanic 10.9M

Low

Afrikaans af Germanic 570K
Amharic am Afro-Asiatic 339K
Armenian hy Other IE 977K
Hausa ha Afro-Asiatic 335K
Nyanja ny Bantu 932K
Shona sn Bantu 877K
Yoruba yo Nilotic+Other AC 171K
Zulu zu Bantu 123K

Very Low

Fula ff Nilotic+Other AC 71K
Kamba kam Bantu 50K
Occitan oc Romance 5.11K
Oriya or Indo-Aryan 5K
Sindhi sd Indo-Aryan 21.8K
Wolof wo Nilotic+Other AC 86.9K

Table 5: Details for each language in lang30 .

C Weight Learning 915

In this section, we analyze the improvements 916

brought by the structure learned via Weight Learn- 917

ing from Section 6.1. Given the results in Fig- 918

ure 1 that the decoder always focuses on the tar- 919

get side information, we concentrate on compar- 920

ing different encoder settings. We compared three 921

different encoder settings in Table 6: (1) Weight 922

Learning (WL) as described in Section 6.1, where 923

LSLo modules in the first 9 layers of encoder 924

are source-indexed and in the last 3 layers are 925

12

https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.l1_unstructured.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.l1_unstructured.html


Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Pre-trained - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43
2;2;8+WL+GPS(0.9) 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;8+SRC+GPS(0.9) 15.3M 33.06 22.40 12.42 21.41 18.59 8.76 16.41 11.24 6.59 16.52
2;2;8+TGT+GPS(0.9) 15.3M 32.97 22.34 13.05 21.40 18.53 9.23 11.91 7.69 5.05 15.52

Table 6: We compare the spBLEU of different index strategies on lang12 .

target-indexed; (2) Source Encoder (SRC), where926

all LSLo modules in encoder are source-indexed;927

(3) Target Encoder (TGT), where all LSLo mod-928

ules in encoder are target-indexed. We found929

that the structure selected through Weight Learn-930

ing (2;2;8+WL+GPS(0.9) exhibited better overall931

performance, especially for very-low-resource lan-932

guages.933

D Intrinsic Subspace Estimation934

We present the results of Intrinsic Subspace Esti-935

mation in all 12 layers of encoder and decoder in936

Figure 5. The results show a clear tendency that937

the required subspace size for each language is938

highly correlated with its resource type. Very-low-939

resource languages require more parameters for940

fine-tuning compared to high and medium-resource941

languages.942

E Language-specific Pruning943

Language-specific pruning is applied to analyze the944

importance of different weight matrices for each945

language. We add LSLo with a rank of 8 to all946

weight matrices. Given n languages, each LSLo947

module will have n language-specific LoRA mod-948

ules. All B matrices of LoRA are divided into n949

groups by language. By applying global pruning to950

each group, we can analyze which weight matrices951

are most important for each language. As shown952

in Figure 6, we can see a clear tendency among all953

languages that fc1 and fc2 play a more important954

role than other weight matrices.955

In Table 7, we compared the results on lang12956

of applying LSLo to all weight matrices versus only957

applying it to fc1 and fc2, given a similar parame-958

ter budget. We found that applying LSLo only to959

fc1 and fc2 consistently yields better results. This960

suggests that, under a limited parameter budget,961

concentrating parameters in the feed-forward lay-962

ers are more effective than distributing them across963

all possible weight matrices.964
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Figure 5: The parameter space demands for each language in all 12 layers of encoder and decoder respectively.
Red color means a higher demand. We can see a clear tendency that very-low-resource languages require more
parameters during fine-tuning.

Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Pre-trained - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43
2;2;8+WL+GPS(0.9)* 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;16+WL+GPS(0.9)* 25.6M 33.06 22.27 14.24 21.44 18.58 10.49 17.44 12.02 8.42 17.33
2;2;16+WL+GPS(0.9) 7.7M 33.29 22.19 12.64 21.60 18.56 8.83 17.33 11.65 6.90 16.76
2;2;32+WL+GPS(0.9) 14.1M 33.24 22.31 14.11 21.50 18.46 10.12 18.19 12.47 8.19 17.44
2;2;64+WL+GPS(0.9) 26.7M 33.27 22.26 14.86 21.59 18.48 10.95 18.97 12.97 9.79 17.91

Table 7: We compare the performance on lang12 of adding LSLo to all modules (with *) versus only adding it to
fully connected layers. We found that, given a similar parameter budget, adding LSLo to fc1 and fc2 results in better
performance.
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Figure 6: Parameter space demands of different languages in encoder and decoder respectively. Red color means a
higher demand. We can see a clear trend across all languages that fc1 and fc2 in the top layers of the encoder are
more important than other weight matrices.
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