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Abstract

Can machines reason like scientists? Scien-
tific hypothesis generation—the process of for-
mulating testable explanations for observed
phenomena—remains the most critical bottle-
neck in accelerating scientific discovery. While
recent advances in Large Language Models
(LLMs) show promise for automating hypothe-
sis generation, the field lacks a systematic un-
derstanding of their capabilities, limitations,
and optimal application strategies. In this sur-
vey, we explore the emerging landscape of
LLM-driven hypothesis generation. We present
a structured taxonomy of current approaches,
analyse domain-specific datasets and evalua-
tion strategies, and discuss open challenges.
We review 37 core LLM-based hypothesis/idea
generation papers spanning diverse scientific
domains from 2023 to 2025. Overall, our goal
is to clarify the state of the art, motivate further
interdisciplinary research, and provide practi-
cal guidance through a continuously updated
GitHub! repository of relevant papers and re-
sources.

1 Introduction

Large Language Models (LLMs) have been widely
adopted across numerous natural language process-
ing tasks, including information extraction (Wang
et al., 2025), question answering (Kamalloo et al.,
2023), summarisation (Ramprasad et al., 2024),
and machine translation (Zhu et al., 2024). Build-
ing on their success in these tasks, recent research
has begun to explore the potential of LLMs for
more complex reasoning tasks, particularly scien-
tific hypothesis generation, which requires creative,
abductive reasoning rather than pattern recognition.
From a philosophy of science perspective, a hypoth-
esis is a tentative explanation or prediction about
a phenomenon, formulated to allow for empirical
testing and potential falsification (Popper, 1959).
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Hypothesis generation plays a central role in the
scientific process, enabling researchers to propose
testable ideas that may lead to discoveries. Tradi-
tionally, this process has relied on human intuition,
expertise, and domain-specific knowledge.

However, as the volume of scientific literature
grows exponentially, researchers are increasingly
overwhelmed by the challenge of synthesising in-
formation between disciplines. This information
overload creates cognitive bottlenecks that hinder
the identification of novel insights and interdisci-
plinary connections. In this context, the question
arises: can LLMs assist in reasoning like scientists
and help generate novel hypotheses? This ques-
tion has sparked growing interest in the research
community. Since 2023, a rising number of stud-
ies have investigated the ability of LLMs to gen-
erate hypotheses in fields such as computational
chemistry (Sprueill et al., 2024), biomedicine (Qi
et al., 2024), astronomy (Ciuca et al., 2023) or
even in mathematics (Romera-Paredes et al., 2024).
Although hypothesis generation has been a long-
standing topic of interest with early computational
techniques (Karp, 1991; Voytek and Voytek, 2012),
recent advances in LLMs have rapidly transformed
the field. The pace of innovation in LLM-based
approaches has accelerated so quickly that keeping
up with emerging developments and challenges has
become increasingly complex. One of the central
challenges lies in evaluating the hypotheses gener-
ated by these models—a task that involves assess-
ing their novelty, feasibility, and clarity. Crucially,
it also raises another fundamental question: fo what
extent can LLMs produce genuinely original ideas,
rather than simply rephrasing or recombining ex-
isting knowledge?

This paper aims to survey the current state
of LLM-based hypothesis generation comprehen-
sively. Our main contributions are as follows:

* We introduce a structured taxonomy of LLM-



based approaches to hypothesis generation,
capturing key modelling paradigms and de-
sign choices;

* We compile and analyse a curated list of
domain-specific benchmarks and datasets
used for evaluating hypothesis generation sys-
tems;

* We outline the current limitations and open
challenges in the field, and propose directions
for future research to strengthen and guide the
development of this emerging area.

2 Traditional Hypothesis Generation

Before the advent of LLMs, researchers explored
hypothesis generation through human-driven and
computational methods. Although not exhaustive,
this section outlines key pre-LLM approaches to
contextualise current developments.

Human-Centric Approaches Historically, hy-
potheses emerged from expert intuition, collabora-
tive reasoning, and domain-specific insights (Swan-
son, 1986a; Nonaka, 2009). Researchers identified
trends or gaps through discourse and practical expe-
rience. However, this process was limited by cogni-
tive biases (e.g., confirmation bias) and scalability
issues, especially as scientific output increased.

Literature-Based Discovery Literature-Based
Discovery (LBD) aimed to surface implicit links
across publications to address these limits algorith-
mically. Swanson’s foundational work (Swanson,
1986b) demonstrated that previously unlinked liter-
ature (e.g., fish oil and Raynaud’s syndrome) could
yield novel insights. Tools like ARROWSMITH (Smal-
heiser and Swanson, 1998) formalised this through
the A-B-C model, identifying bridge terms across
disconnected concepts. Later systems improved
scalability and semantics: MOLIERE (Sybrandt et al.,
2017) combined topic modeling (Blei et al., 2003)
and phrase mining; KnIT (Spangler et al., 2014)
used factual networks and information diffusion;
and tools like DiseaseConnect (Liu et al., 2014)
and BrainSCANr (Voytek and Voytek, 2012) re-
lied on structured vocabularies such as MeSH (Lip-
scomb, 2000) to infer disease or gene associations.

Summary These early approaches established es-
sential foundations for automated hypothesis gen-
eration by highlighting latent connections in liter-
ature. Yet they often relied on predefined struc-
tures, lacked generalisation across domains, and

struggled with causal reasoning. Recent advances
in large language models promise to overcome
these limitations by enabling more flexible, context-
aware, and scalable hypothesis generation, an evo-
lution we explore in the next section.

3 LLM-Based Hypothesis Generation

The emergence of LLMs enables new capabilities
for scientific hypothesis generation that were barely
possible with earlier methods. This section surveys
key approaches, from simple prompting to complex
autonomous systems, and highlights their potential
and current limitations in supporting the scientific
discovery process.

3.1 Direct Prompting

Initial efforts to use LLMs for scientific hypothesis
generation relied on prompting-based approaches.
In that section, we categorise these methods into
three distinct types, which we describe in detail.

3.1.1 Iterative Feedback

These studies follow a standard iterative loop: gen-
erating hypotheses, evaluating them (via tools,
humans, or self-critique), and refining outputs
based on feedback. Across domains, mathemat-
ics (Romera-Paredes et al., 2024), biomedicine
(Abdel-Rehim et al., 2024), and the social sci-
ences (Zhou et al., 2024), iterative prompting im-
proved discovery: successful outputs were added
back to the search space, experimental results
helped refine drug hypotheses (with 3 of 4 new
combinations showing synergy), and maintaining
a "wrong example bank" boosted generalisation,
even outperforming supervised baselines. Other
approaches enhanced internal reasoning: Sprueill
et al. (2023) used Monte Carlo Tree Search to re-
fine LLM prompts for catalyst design without ex-
ternal data, while Nova (Hu et al., 2024) integrated
planning, retrieval, and self-correction to generate
more diverse and high-quality ideas—though gains
plateaued after three iterations. Finally, Qiu et al.
(2024) proposed a symbolic evaluation-refinement
loop, showing LLMs can produce valid hypotheses
across domains but struggle with internal consis-
tency under noise.

3.1.2 Search-Based and Combinatorial
Exploration

This category treats hypothesis generation as a

search problem over a vast knowledge space,

using structured or combinatorial prompting to



guide exploration. CHEMREASONER (Sprueill et al.,
2024) exemplifies this approach by coupling LLM-
generated catalyst hypotheses with feedback from
a GNN trained on quantum-chemical data. It iter-
atively generates and evaluates natural-language
queries using adsorption-energy and reaction-
barrier scores, refining prompts via a closed-loop
mechanism. Without human intervention, it steers
the search toward energetically favourable catalysts.
It matches or outperforms expert-designed base-
lines in key reaction benchmarks—demonstrating
how grounded, feedback-driven prompting can ac-
celerate reliable scientific discovery.

3.1.3 General Creativity and Idea Generation

These studies focus on broad idea generation, fol-
lowed by human or Al-driven evaluation to surface
the most novel or valuable outputs. Across do-
mains, from product ideation (Girotra et al., 2023)
to neuroscience and biology (O’Brien et al., 2024),
and NLP research (Si et al., 2024), prompting large
language models yields promising results. While
average LLLM outputs may be less novel or more
homogeneous, the top 10% consistently outper-
form baselines, with Al-generated ideas up to seven
times more likely to rank among the highest-quality.
Methods like retrieval-augmented prompting, cross-
domain transfer, and self-critique help surface di-
verse, plausible hypotheses. However, performance
plateaus and limited self-evaluation capacities point
to the need for external filtering. Creativity assess-
ments such as the AUT (Haase and Hanel, 2023)
found GPT-4’s originality comparable to humans,
and expert evaluations across domains (Park et al.,
2023) confirmed that prompt-driven ideation can
produce experimentally viable hypotheses. Still,
concerns about factual errors, computational cost,
and ethical oversight highlight the importance of
grounding these systems through robust evaluation
loops.

3.2 External Knowledge Integration

An emerging trend in LLM-based hypothesis gener-
ation is integrating structured external knowledge,
such as academic graphs, ontologies, or curated
corpora, to enhance factual consistency, novelty,
and contextual relevance. This section outlines sev-
eral approaches that operationalise this idea across
domains and methods.

3.2.1 Knowledge and Causal Graph-Based
Augmentation

These studies enhance hypothesis generation by
grounding LLMs in structured knowledge and
causal reasoning. ResearchAgent (Baek et al.,
2025) uses a multi-agent, iterative process to iden-
tify problems, propose methods, and design ex-
periments, leveraging academic knowledge graphs
and entity-centric stores. Human and automated
evaluations found it produced more creative and rel-
evant ideas than baselines, though scalability and
hallucination remain challenges. In psychology,
LLMCG (Tong et al., 2024) combined large-scale lit-
erature retrieval, GPT-4—-based causal extraction,
and link prediction to generate novel, conceptu-
ally rich hypotheses—outperforming both scholars
and LLMs alone—though some causal links mis-
aligned with expert judgment. To further improve
factual grounding, KG-CoI (Xiong et al., 2024) in-
tegrated knowledge graphs into idea generation
and hallucination detection, boosting consistency
and accuracy. However, its performance depended
heavily on the quality of the input KG and evalua-
tion dataset.

3.2.2 Literature-Based Inspiration

Wang et al. (2024a) introduced SCIMON, a frame-
work that retrieves "inspirations” from the literature
and iteratively optimises hypothesis generation for
novelty. Applied to AI/NLP and biomedical do-
mains, SCIMON outperformed baseline LLMs, al-
though the generated ideas still lacked the depth
and originality of expert-written papers.

3.3 Collaborative Multi-Agent Systems

Multi-agent systems built on LLMs have recently
emerged as powerful tools for automating com-
plex scientific workflows, including hypothesis gen-
eration. These systems distribute distinct roles,
such as ideation, critique, validation, and planning,
among specialised agents, enabling them to emu-
late the collaborative dynamics of real-world sci-
entific teams. Their ability to engage in interactive
dialogue, cooperative or adversarial, to refine ideas
and improve reasoning (Wu et al., 2023) is a central
strength.

3.3.1 Role-Based Multi-Agents

A growing line of work leverages multiple LLM-
based agents with specialised roles to emulate col-
laborative scientific workflows.



Qi et al. (2023) pioneered this direction by intro-
ducing a biomedical benchmark with temporally
split background—hypothesis pairs and systemati-
cally evaluating LL.Ms under zero-shot, few-shot,
and fine-tuning settings. Their cooperative frame-
work assigned structured roles—Analyst, Engineer,
Scientist, and Critic—with agents coordinating via
tool calls and chain-of-thought prompting. Outputs
were assessed using four complementary metrics
(novelty, relevance, significance, verifiability), and
zero-shot hypotheses were later corroborated by
real publications, demonstrating genuine genera-
tive generalisation.

Similarly, Qi et al. (2024) extended this setup to
unseen biomedical datasets, highlighting the bene-
fits of collaborative tool use and uncertainty mod-
elling while noting persistent issues like hallucina-
tions and external knowledge integration.

In a domain-specific adaptation, Ghafarollahi
and Buehler (2024) introduced SciAgents, a multi-
agent framework for materials biology. Combining
LLMs, ontologies, and data retrieval tools enables
agents such as an "Ontologist" and a "Novelty Assis-
tant" to build structured scientific concept graphs
and uncover non-obvious material properties.

Su et al. (2024) proposed Virtual Scientists
(VirSci), which instantiates GPT-4-based agents
with curated expertise profiles and simulates team
dynamics through asynchronous collaboration cy-
cles—spanning topic discussion, hypothesis draft-
ing, novelty assessment, and abstract writing. This
dual-layered interaction (internal critique + exter-
nal consultation) significantly improved novelty
and projected impact over single-agent baselines.

In biomedical research, Ghareeb et al. (2025)
introduced Robin, a lab-in-the-loop system that
iteratively proposes and tests hypotheses, bridging
LLM reasoning with empirical validation.

Lastly, the AI Co-Scientist system by Gottweis
et al. (2025), built on Gemini 2.0, features a "gener-
ate—debate—evolve" loop with dedicated agents for
generation, reflection, and ranking, coordinated by
a central supervisor. Its outputs, evaluated via the
GPQA benchmark, correlated strongly with expert-
rated quality and novelty, surpassing single-agent
LLMs.

3.3.2 Domain-Specific Scientific Agents

Some LLM-based systems are tailored to specific
scientific domains or datasets, enabling focused hy-
pothesis generation grounded in domain expertise.

In astrophysics, Ciuca et al. (2023) explored ad-

versarial prompting by immersing GPT-4 in a cor-
pus of 1,000 papers—agents engaged in critical ex-
changes, producing more robust and higher-quality
hypotheses than non-adversarial setups.

In the domain of scientific QA and literature anal-
ysis, Skarlinski et al. (2024) introduced PaperQA2,
an agentic LLM framework combining retrieval-
augmented generation with modules for literature
search, contradiction detection, and citation trac-
ing. It achieved superhuman performance in tasks
like scientific question answering and contradiction
identification, though at a higher computational
cost.

3.3.3 Mixed-Initiative and Human-Centred
Systems

These systems blend human input with LLM-
driven generation to support interactive, creative
scientific ideation. Scideator (Radensky et al.,
2024) exemplifies this approach by combining
LLM-based retrieval and in-context prompting to
recombine paper "facets" (e.g., purpose, mecha-
nism, evaluation) into novel hypotheses. A ded-
icated novelty checker flags overlaps and sug-
gests refinements, forming a closed idea generation
and validation loop. Wu et al. (2025) introduced
CollabLLM, a framework that encourages proac-
tive, multi-turn planning in LLMs. The system pro-
motes more interactive and goal-directed behaviour
by simulating future dialogue paths and optimis-
ing for a multiturn-aware reward signal. Empirical
results across tasks such as document editing and
code assistance show significant gains in accuracy,
interactivity, and user satisfaction compared to stan-
dard LLMs.

3.3.4 Autonomous Research Agents

These systems aim to automate the scientific dis-
covery process—from hypothesis generation to ex-
perimentation and reporting, with minimal human
intervention.

In the social sciences, MOOSE (Yang et al., 2024)
chains LLM-powered modules into a sequential
pipeline for open-domain discovery, incorporat-
ing past, present, and future feedback loops. It
outperforms baselines in novelty and helpfulness,
although its generalizability beyond the 50-paper
dataset remains untested.

Pushing toward full automation, Lu et al. (2024)
introduced The AI Scientist, a closed-loop sys-
tem that handles ideation, code generation, exper-
iment execution (via the Aider coding assistant),



result visualisation, LaTeX paper writing, and sim-
ulated peer review. Applied to three machine learn-
ing subfields, it generated low-cost, high-quality
manuscripts, some of which surpassed acceptance
thresholds at top venues. While promising, the
system still faces challenges in robustness, halluci-
nation control, and long-term autonomy.

In computational chemistry, MOOSE-Chem (Yang
et al., 2025b) and MOOSE-Chem2 (Yang et al.,
2025a) organise hypothesis generation into inspira-
tion, composition, and ranking phases. The latter
reframes the task as a combinatorial optimisation
problem using hierarchical search and finds that
homogeneous agent ensembles outperform hetero-
geneous ones in output quality.

Finally, the Chain-of-Ideas (Col) framework by
Li et al. (2024a) builds developmental chains from
prior work to generate and refine future-facing hy-
potheses. It incorporates trend analysis and in-
troduces the Idea Arena for evaluation, aligning
well with human judgment. While Col excels in
novelty and significance, its experimental designs
remain less feasible than those produced by human
researchers.

Summary Together, these works trace the evolu-
tion from single-agent prompting to sophisticated,
domain-specific multi-agent ecosystems that em-
ulate key steps of the scientific process. They un-
derscore the potential of mixed-initiative designs
to enhance creativity, collaboration, and engage-
ment—positioning LLMs as intelligent partners
in hypothesis generation, while also highlighting
persistent challenges such as cost, hallucination
control, and domain generalisation in real-world
scientific workflows.

3.4 Autonomous Scientific Discovery Systems

Recent efforts aim to automate the scientific dis-
covery pipeline—spanning hypothesis generation,
program synthesis, validation, and full-cycle au-
tonomous agents—Dby integrating prompting, rea-
soning, execution, and evaluation.

Wang et al. (2024b) introduced a pipeline that
enhances LLMs’ inductive reasoning by translat-
ing natural language hypotheses into executable
Python code, tested via feedback loops. Applied
to datasets like ARC, SyGusS, and List Functions,
it outperforms prompting-only baselines, though
it remains computationally intensive and strug-
gles with visual tasks and precise code generation.
From verification to simulation, Ma et al. (2024)

proposed the Scientific Generative Agent (SGA),
which combines LLM-guided hypothesis genera-
tion with differentiable physical simulations in a
bilevel optimisation loop. It achieves strong ma-
terial and molecular design results but raises con-
cerns about interpretability, differentiability, depen-
dence, and computational demands. Toward full au-
tonomy, Li et al. (2024c) presented MLR-Copilot,
a multi-agent system with dedicated components
for ideation, experimentation, and feedback. It
improves throughput in ML research using GPT-
4 and Claude, though its domain generalizability
and need for oversight remain open issues. Sim-
ilarly, Li et al. (2024b) developed BoxLM, where
LMs iteratively propose and refine probabilistic
programs using Box’s Loop. While it achieves
expert-level model discovery, it’s limited to static
datasets and lacks full critique automation. To
benchmark such agents, Jansen et al. (2024) cre-
ated DISCOVERYWORLD, a text-based environment
with 120 tasks across scientific domains. While it
simulates the discovery process, LLM-based agents
like ReAct and Plan+Exec struggle compared to hu-
mans, and the environment’s abstraction and com-
putational cost present challenges. These works
highlight progress in integrating LL.Ms with code
and simulation environments for autonomous dis-
covery. Yet, scalability, domain transfer, cost, and
human oversight persist, positioning current sys-
tems as powerful augmentations rather than com-
plete replacements for human researchers.

4 Hypothesis Validation Strategies

Evaluating systems for scientific hypothesis gen-
eration is a complex task. Unlike traditional
NLP evaluation, hypothesis generation aims to
produce novel, plausible, and testable scientific
ideas—often in domains where ground truth is in-
complete or non-existent. This open-endedness
renders standard evaluation metrics insufficient and
necessitates a multi-faceted approach combining
human expertise, automated metrics, multi-modal
integration, and domain-specific validation. In this
section, we first review established methodologies
before outlining promising directions for future
research.

4.1 Human Expert Evaluation

Evaluations conducted by domain experts remain
the most reliable method for assessing the rele-
vance, originality, and scientific merit of machine-



generated hypotheses. Over time, these assess-
ments have become more structured and method-
ologically rigorous. Recent protocols have in-
volved large panels of experts from diverse aca-
demic backgrounds to evaluate hypotheses along
dimensions such as clarity, innovation potential,
and expected impact. Comparative studies have
shown that, when supported by LLMs, researchers
can generate more compelling and diverse ideas
than with traditional search-based workflows. Such
findings suggest that expert-in-the-loop systems
not only support hypothesis refinement but can also
enhance ideation itself.

In highly specialised fields such as biomedicine,
structured evaluations have been designed to fo-
cus on clinical relevance and biological plausibil-
ity. Frameworks developed for this purpose often
involve expert reviews centred on real-world appli-
cability and potential translational impact. Some
benchmark efforts have incorporated expert assess-
ments across multiple research tasks, offering a
broader view of how LLMs contribute to domain-
specific scientific workflows.

Blind Review and Pairwise Comparison To re-
duce bias and ensure fair evaluation, blind review
protocols are increasingly employed. Experts are
unaware whether a human or an Al system has gen-
erated a hypothesis in these settings. This approach
has revealed that, in many cases, Al-generated
hypotheses can be as highly rated—or even sur-
pass—those written by human researchers regard-
ing novelty and scientific interest. Building on
this principle, some recent evaluation strategies
employ direct pairwise comparisons in tournament-
style formats, where hypotheses compete against
each other and are ranked based on expert prefer-
ence. These structured comparison schemes offer
a scalable and interpretable method for evaluating
generative systems.

Multi-Rater Reliability One of the persistent
challenges in expert-based evaluation is achieving
consistency across annotators. Scientific hypothe-
sis assessment often involves subjective judgment,
leading to variability in ratings. Earlier studies
have highlighted relatively low agreement levels
among reviewers, emphasising the complexity of
the task. However, newer frameworks are address-
ing this by introducing more formalised scoring
rubrics, multiple rounds of review, and collabora-
tive assessment protocols. These improvements
have contributed to more stable and reproducible

evaluation outcomes, reflecting a growing under-
standing of effectively integrating human judgment
into validating Al-generated scientific content.

4.2 Automated Evaluation

Text-based Relevance Initial efforts to evaluate
LLM outputs relied heavily on surface-level met-
rics such as BLEU and ROUGE, which measure
word overlap between generated and reference hy-
potheses. However, such metrics often fall short of
capturing an idea’s semantic depth and scientific
value. As a result, more sophisticated evaluation
tools have been developed that incorporate seman-
tic precision and recall and hybrid scores that com-
bine symbolic and neural representations. These
allow for a more meaningful assessment of whether
a hypothesis is contextually appropriate and scien-
tifically relevant. Some benchmarks now include
domain-specific metrics tailored to the complexity
and requirements of particular research tasks, such
as code execution or model reproducibility.

Model-Based Metrics Recent evaluation frame-
works have increasingly turned to large language
models as evaluators of generated hypotheses.
When fine-tuned or provided with structured
prompts, these models can approximate human-
level assessments across dimensions such as plau-
sibility, novelty, and relevance. Some systems now
rely on LLMs to score hypotheses using compos-
ite metrics that account for internal coherence and
broader scientific context. For instance, measures
have been developed to quantify how dissimilar
a proposed idea is from past knowledge and how
closely it aligns with emerging literature trends,
thus reflecting historical uniqueness and prospec-
tive impact.

Novelty Assessment Measuring novelty remains
one of the central goals in hypothesis evaluation.
Automated approaches have evolved to estimate
the originality of ideas by analysing their seman-
tic distance from existing publications. This often
involves embedding-based comparisons using pre-
trained scientific language models combined with
ranking strategies that assess the rarity or innova-
tion of proposed connections. Some systems build
structured citation graphs or ideation chains to con-
textualise a hypothesis within a broader intellectual
lineage, enabling more informed judgments about
its uniqueness.



Domain-Specific Evaluation Evaluation strate-
gies tailored to specific scientific fields are increas-
ingly recognised as essential due to the varied stan-
dards of evidence, feasibility, and validation across
disciplines. In biomedical research, hypothesis
evaluation often relies on alignment with curated
clinical databases or known gene-disease associa-
tions, enabling automated cross-referencing against
structured biomedical knowledge. In the chemical
sciences, evaluation protocols typically focus on
structural validity and chemical plausibility, incor-
porating molecular simulation or synthesis pathway
prediction techniques. Astronomy and astrophysics
present unique challenges, where hypothesis eval-
uation may involve the integration of large-scale
observational datasets or comparing generated hy-
potheses with complex knowledge graphs. On the
other hand, social science domains prioritise the-
oretical grounding and temporal context, often re-
quiring evaluation of whether a hypothesis is con-
sistent with existing paradigms or predictive of fu-
ture trends. These domain-specific practices under-
score the importance of aligning evaluation method-
ologies with disciplinary norms, highlighting the
need for adaptable frameworks to accommodate
modern science’s epistemological diversity.

4.3 Domain-Specific Benchmarks

We present a curated set of benchmarks organised
by scientific domain to facilitate comparison, focus-
ing on their tasks, evaluation metrics, and design
principles.

4.3.1 Computational Chemistry

Recent efforts have produced benchmarks to eval-
uate LLMs’ reasoning and hypothesis generation
in chemistry. BioFuelQR (Sprueill et al., 2023)
includes complex reasoning questions on cataly-
sis, with a set of 20 queries targeting CO, con-
version. It was later extended with the CO,-Fuel
subset (Sprueill et al., 2024), emphasizing struc-
tured catalyst discovery. TOMATO-Chem (Yang et al.,
2025b) features 51 high-impact post-2024 chem-
istry papers annotated by PhD-level students, span-
ning subfields such as Polymer, Organic, Inorganic,
and Analytical Chemistry. A forthcoming exten-
sion promises more fine-grained hypothesis annota-
tions and safeguards against training data contami-
nation(Yang et al., 2025a).

4.3.2 Biomedicine and Computational Biology

Qi et al. (2023, 2024) introduced a benchmark de-
signed to test LLMs’ zero-shot generalisation in
biomedical hypothesis generation. It uses tempo-
rally split literature (pre- vs. post-2023) to prevent
data leakage. It evaluates outputs with standard
metrics (BLEU, ROUGE) and four custom crite-
ria—Novelty, Relevance, Significance, and Verifi-
ability—assessed by humans and GPT-4. Results
demonstrate strong alignment between human and
model judgments, highlighting areas for improve-
ment, such as automated extraction bias, limited
tool integration, and the need for richer evaluation
protocols.

4.3.3 Social Sciences

The TOMATO benchmark (Yang et al., 2024) evalu-
ates LLMs on generating novel and valid hypothe-
ses from open-domain web corpora in the social sci-
ences. It includes 50 annotated papers and empha-
sises ideas new to humanity rather than common-
sense reasoning. Evaluation focuses on validity,
novelty, and helpfulness, using a mix of expert and
GPT-4 assessments. While it offers a realistic, high-
quality dataset and rigorous evaluation, its limited
size and disciplinary scope may constrain general-
izability to broader or interdisciplinary scientific
contexts.

5 Challenges and Future Research
Directions

This section identifies the challenges of leverag-
ing LL.Ms for scientific hypothesis generation and
validation. Building on the recommendations and
limitations highlighted across the literature, we pro-
pose a set of structured future research directions
for the community.

5.1 Challenges

Creativity There is an ongoing debate about
whether LLMs exhibit genuine creativity or recom-
bine existing knowledge. While its outputs may
resemble human free association, the underlying
mechanisms remain fundamentally derivative.

Hallucinations and Factual Accuracy LLMs
frequently produce plausible but incorrect informa-
tion hallucinations that pose serious risks in scien-
tific contexts demanding precision. Such errors are
especially problematic when mistaken for novel in-
sights and can be amplified in multi-agent systems
or combined with unreliable web content.



Limited Novelty and Idea Diversity LLMs of-
ten favour statistically likely outputs, resulting in
repetitive and conservative suggestions. This bias
can limit epistemic risk-taking and idea diversity
without specialised prompting or intervention, po-
tentially stifling innovation if broadly integrated
into scientific workflows.

5.2 Future Research Directions

Enhancing Novelty and Diversity Applying
data augmentation and debiasing techniques to di-
versify input datasets can help models generate
hypotheses beyond traditional paradigms. Increas-
ing uncertainty levels, for example, through col-
laborative multi-agent approaches, can diversify
candidate generation and potentially enhance zero-
shot hypothesis generation capabilities. Incorpo-
rating Dynamic Knowledge Graphs (DKGs) can
allow systems to adapt to evolving datasets and
uncover time-sensitive patterns, capturing trends
and insights that static systems often miss.

Feasibility and Practicality Integrating multi-
modal data, including experimental results and sen-
sor outputs, can improve feasibility assessments by
grounding hypotheses in empirical evidence and
domain-specific constraints. Developing founda-
tion models with physical interaction capabilities,
such as integrating robotic platforms in automated
laboratories, can bridge the gap between theoret-
ical predictions and experimental validation, en-
abling real-time feedback and refinement. Interdis-
ciplinary Collaboration: Fostering partnerships be-
tween computational and experimental researchers
can ground hypotheses in practical constraints and
leverage diverse expertise.

Human-AI Collaboration Existing benchmarks
focus on isolated model outputs rather than joint
outcomes from human-Al teams. This approach
fails to fully capture the limitations and capabilities
of Al as a scientific collaborator, particularly in
terms of the roles, expectations, and workflows en-
visioned by human researchers (Shao et al., 2025).
Unlike chess, where Al systems have taught grand-
masters novel strategies and reshaped expert prac-
tice (Schut et al., 2023), scientific discovery lacks
equivalent frameworks for studying and evaluating
human-AI collaboration. To move forward, eval-
uation protocols must include humans in the loop
as active participants, not merely as annotators or
evaluators. Automated metrics alone cannot ac-
count for scientific research’s complex, iterative,

and often exploratory nature. Human-AlI systems
require tailored evaluation strategies that reflect
this interdependence. In particular, we must ad-
dress three key challenges: (1) how Al systems
complement or augment human expertise at vari-
ous stages of the scientific process, (2) the system’s
responsiveness and adaptability to domain-specific
guidance and constraints, and (3) the system’s ro-
bustness in adversarial or ambiguous settings, such
as resistance to user deception or misalignment.
Despite increasing interest in collaborative intelli-
gence, current evaluations of human-AlI scientific
workflows remain limited. Recent work has be-
gun mapping what Al systems can and cannot do,
and what researchers want them to do (Shao et al.,
2025). However, there is still little methodological
guidance for evaluating such systems in end-to-
end scientific settings. In contrast to well-defined
games like chess—where human-AlI collaboration
can be measured through novel move generation
or improved win rates—we lack analogous met-
rics or interactive setups in science. Developing
robust human-Al evaluation protocols would en-
able systems design that empowers researchers to
explore novel directions rather than merely auto-
mate existing workflows. These protocols should
be co-designed with domain experts and tested lon-
gitudinally. Empirical studies tracking real-world
research outcomes from human-Al collaborations
could yield actionable insights into system design,
training strategies, and deployment best practices.
Ultimately, embracing this interactive perspective
will shift the focus from isolated performance to
collaborative potential.

6 Conclusion

We reviewed LLM-based hypothesis generation
to identify four major dimensions: direct prompt-
ing, multi-agent systems, external knowledge inte-
gration, and autonomous discovery systems. Our
analysis reveals significant progress, with LLMs
capable of generating hypotheses that experts judge
as novel and plausible, with some achieving exper-
imental validation. Multi-agent frameworks show
particular promise in modelling the collaborative
nature of the scientific process, while knowledge-
augmented approaches help ground outputs in fac-
tual information. However, key challenges persist,
including generating creative ideas, persistent hal-
lucination, limited diversity in generated ideas, and
difficulty evaluating scientific novelty and impact.



7 Limitations

While our survey offers a comprehensive overview
of LLM-based hypothesis generation, it has sev-
eral limitations. First, the fast-evolving nature
of the field means our taxonomy and evaluation
may quickly become outdated, despite efforts to
curate recent and relevant works. Second, our study
primarily focuses on English-language and high-
resource domains (e.g., biomedicine, chemistry,
and machine learning), which limits the general-
izability of our insights to underrepresented disci-
plines or low-resource settings. Finally, this work
adopts a technology-centric perspective. It does
not sufficiently address the socio-technical and eth-
ical implications of deploying LLMs as scientific
collaborators, such as research reproducibility or
bias amplification.
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