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Abstract001

Can machines reason like scientists? Scien-002
tific hypothesis generation—the process of for-003
mulating testable explanations for observed004
phenomena—remains the most critical bottle-005
neck in accelerating scientific discovery. While006
recent advances in Large Language Models007
(LLMs) show promise for automating hypothe-008
sis generation, the field lacks a systematic un-009
derstanding of their capabilities, limitations,010
and optimal application strategies. In this sur-011
vey, we explore the emerging landscape of012
LLM-driven hypothesis generation. We present013
a structured taxonomy of current approaches,014
analyse domain-specific datasets and evalua-015
tion strategies, and discuss open challenges.016
We review 37 core LLM-based hypothesis/idea017
generation papers spanning diverse scientific018
domains from 2023 to 2025. Overall, our goal019
is to clarify the state of the art, motivate further020
interdisciplinary research, and provide practi-021
cal guidance through a continuously updated022
GitHub1 repository of relevant papers and re-023
sources.024

1 Introduction025

Large Language Models (LLMs) have been widely026

adopted across numerous natural language process-027

ing tasks, including information extraction (Wang028

et al., 2025), question answering (Kamalloo et al.,029

2023), summarisation (Ramprasad et al., 2024),030

and machine translation (Zhu et al., 2024). Build-031

ing on their success in these tasks, recent research032

has begun to explore the potential of LLMs for033

more complex reasoning tasks, particularly scien-034

tific hypothesis generation, which requires creative,035

abductive reasoning rather than pattern recognition.036

From a philosophy of science perspective, a hypoth-037

esis is a tentative explanation or prediction about038

a phenomenon, formulated to allow for empirical039

testing and potential falsification (Popper, 1959).040

1URL disclosed upon acceptance.

Hypothesis generation plays a central role in the 041

scientific process, enabling researchers to propose 042

testable ideas that may lead to discoveries. Tradi- 043

tionally, this process has relied on human intuition, 044

expertise, and domain-specific knowledge. 045

However, as the volume of scientific literature 046

grows exponentially, researchers are increasingly 047

overwhelmed by the challenge of synthesising in- 048

formation between disciplines. This information 049

overload creates cognitive bottlenecks that hinder 050

the identification of novel insights and interdisci- 051

plinary connections. In this context, the question 052

arises: can LLMs assist in reasoning like scientists 053

and help generate novel hypotheses? This ques- 054

tion has sparked growing interest in the research 055

community. Since 2023, a rising number of stud- 056

ies have investigated the ability of LLMs to gen- 057

erate hypotheses in fields such as computational 058

chemistry (Sprueill et al., 2024), biomedicine (Qi 059

et al., 2024), astronomy (Ciucă et al., 2023) or 060

even in mathematics (Romera-Paredes et al., 2024). 061

Although hypothesis generation has been a long- 062

standing topic of interest with early computational 063

techniques (Karp, 1991; Voytek and Voytek, 2012), 064

recent advances in LLMs have rapidly transformed 065

the field. The pace of innovation in LLM-based 066

approaches has accelerated so quickly that keeping 067

up with emerging developments and challenges has 068

become increasingly complex. One of the central 069

challenges lies in evaluating the hypotheses gener- 070

ated by these models—a task that involves assess- 071

ing their novelty, feasibility, and clarity. Crucially, 072

it also raises another fundamental question: to what 073

extent can LLMs produce genuinely original ideas, 074

rather than simply rephrasing or recombining ex- 075

isting knowledge? 076

This paper aims to survey the current state 077

of LLM-based hypothesis generation comprehen- 078

sively. Our main contributions are as follows: 079

• We introduce a structured taxonomy of LLM- 080
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based approaches to hypothesis generation,081

capturing key modelling paradigms and de-082

sign choices;083

• We compile and analyse a curated list of084

domain-specific benchmarks and datasets085

used for evaluating hypothesis generation sys-086

tems;087

• We outline the current limitations and open088

challenges in the field, and propose directions089

for future research to strengthen and guide the090

development of this emerging area.091

2 Traditional Hypothesis Generation092

Before the advent of LLMs, researchers explored093

hypothesis generation through human-driven and094

computational methods. Although not exhaustive,095

this section outlines key pre-LLM approaches to096

contextualise current developments.097

Human-Centric Approaches Historically, hy-098

potheses emerged from expert intuition, collabora-099

tive reasoning, and domain-specific insights (Swan-100

son, 1986a; Nonaka, 2009). Researchers identified101

trends or gaps through discourse and practical expe-102

rience. However, this process was limited by cogni-103

tive biases (e.g., confirmation bias) and scalability104

issues, especially as scientific output increased.105

Literature-Based Discovery Literature-Based106

Discovery (LBD) aimed to surface implicit links107

across publications to address these limits algorith-108

mically. Swanson’s foundational work (Swanson,109

1986b) demonstrated that previously unlinked liter-110

ature (e.g., fish oil and Raynaud’s syndrome) could111

yield novel insights. Tools like ARROWSMITH (Smal-112

heiser and Swanson, 1998) formalised this through113

the A-B-C model, identifying bridge terms across114

disconnected concepts. Later systems improved115

scalability and semantics: MOLIERE (Sybrandt et al.,116

2017) combined topic modeling (Blei et al., 2003)117

and phrase mining; KnIT (Spangler et al., 2014)118

used factual networks and information diffusion;119

and tools like DiseaseConnect (Liu et al., 2014)120

and BrainSCANr (Voytek and Voytek, 2012) re-121

lied on structured vocabularies such as MeSH (Lip-122

scomb, 2000) to infer disease or gene associations.123

Summary These early approaches established es-124

sential foundations for automated hypothesis gen-125

eration by highlighting latent connections in liter-126

ature. Yet they often relied on predefined struc-127

tures, lacked generalisation across domains, and128

struggled with causal reasoning. Recent advances 129

in large language models promise to overcome 130

these limitations by enabling more flexible, context- 131

aware, and scalable hypothesis generation, an evo- 132

lution we explore in the next section. 133

3 LLM-Based Hypothesis Generation 134

The emergence of LLMs enables new capabilities 135

for scientific hypothesis generation that were barely 136

possible with earlier methods. This section surveys 137

key approaches, from simple prompting to complex 138

autonomous systems, and highlights their potential 139

and current limitations in supporting the scientific 140

discovery process. 141

3.1 Direct Prompting 142

Initial efforts to use LLMs for scientific hypothesis 143

generation relied on prompting-based approaches. 144

In that section, we categorise these methods into 145

three distinct types, which we describe in detail. 146

3.1.1 Iterative Feedback 147

These studies follow a standard iterative loop: gen- 148

erating hypotheses, evaluating them (via tools, 149

humans, or self-critique), and refining outputs 150

based on feedback. Across domains, mathemat- 151

ics (Romera-Paredes et al., 2024), biomedicine 152

(Abdel-Rehim et al., 2024), and the social sci- 153

ences (Zhou et al., 2024), iterative prompting im- 154

proved discovery: successful outputs were added 155

back to the search space, experimental results 156

helped refine drug hypotheses (with 3 of 4 new 157

combinations showing synergy), and maintaining 158

a "wrong example bank" boosted generalisation, 159

even outperforming supervised baselines. Other 160

approaches enhanced internal reasoning: Sprueill 161

et al. (2023) used Monte Carlo Tree Search to re- 162

fine LLM prompts for catalyst design without ex- 163

ternal data, while Nova (Hu et al., 2024) integrated 164

planning, retrieval, and self-correction to generate 165

more diverse and high-quality ideas—though gains 166

plateaued after three iterations. Finally, Qiu et al. 167

(2024) proposed a symbolic evaluation-refinement 168

loop, showing LLMs can produce valid hypotheses 169

across domains but struggle with internal consis- 170

tency under noise. 171

3.1.2 Search-Based and Combinatorial 172

Exploration 173

This category treats hypothesis generation as a 174

search problem over a vast knowledge space, 175

using structured or combinatorial prompting to 176
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guide exploration. CHEMREASONER (Sprueill et al.,177

2024) exemplifies this approach by coupling LLM-178

generated catalyst hypotheses with feedback from179

a GNN trained on quantum-chemical data. It iter-180

atively generates and evaluates natural-language181

queries using adsorption-energy and reaction-182

barrier scores, refining prompts via a closed-loop183

mechanism. Without human intervention, it steers184

the search toward energetically favourable catalysts.185

It matches or outperforms expert-designed base-186

lines in key reaction benchmarks—demonstrating187

how grounded, feedback-driven prompting can ac-188

celerate reliable scientific discovery.189

3.1.3 General Creativity and Idea Generation190

These studies focus on broad idea generation, fol-191

lowed by human or AI-driven evaluation to surface192

the most novel or valuable outputs. Across do-193

mains, from product ideation (Girotra et al., 2023)194

to neuroscience and biology (O’Brien et al., 2024),195

and NLP research (Si et al., 2024), prompting large196

language models yields promising results. While197

average LLM outputs may be less novel or more198

homogeneous, the top 10% consistently outper-199

form baselines, with AI-generated ideas up to seven200

times more likely to rank among the highest-quality.201

Methods like retrieval-augmented prompting, cross-202

domain transfer, and self-critique help surface di-203

verse, plausible hypotheses. However, performance204

plateaus and limited self-evaluation capacities point205

to the need for external filtering. Creativity assess-206

ments such as the AUT (Haase and Hanel, 2023)207

found GPT-4’s originality comparable to humans,208

and expert evaluations across domains (Park et al.,209

2023) confirmed that prompt-driven ideation can210

produce experimentally viable hypotheses. Still,211

concerns about factual errors, computational cost,212

and ethical oversight highlight the importance of213

grounding these systems through robust evaluation214

loops.215

3.2 External Knowledge Integration216

An emerging trend in LLM-based hypothesis gener-217

ation is integrating structured external knowledge,218

such as academic graphs, ontologies, or curated219

corpora, to enhance factual consistency, novelty,220

and contextual relevance. This section outlines sev-221

eral approaches that operationalise this idea across222

domains and methods.223

3.2.1 Knowledge and Causal Graph–Based 224

Augmentation 225

These studies enhance hypothesis generation by 226

grounding LLMs in structured knowledge and 227

causal reasoning. ResearchAgent (Baek et al., 228

2025) uses a multi-agent, iterative process to iden- 229

tify problems, propose methods, and design ex- 230

periments, leveraging academic knowledge graphs 231

and entity-centric stores. Human and automated 232

evaluations found it produced more creative and rel- 233

evant ideas than baselines, though scalability and 234

hallucination remain challenges. In psychology, 235

LLMCG (Tong et al., 2024) combined large-scale lit- 236

erature retrieval, GPT-4–based causal extraction, 237

and link prediction to generate novel, conceptu- 238

ally rich hypotheses—outperforming both scholars 239

and LLMs alone—though some causal links mis- 240

aligned with expert judgment. To further improve 241

factual grounding, KG-CoI (Xiong et al., 2024) in- 242

tegrated knowledge graphs into idea generation 243

and hallucination detection, boosting consistency 244

and accuracy. However, its performance depended 245

heavily on the quality of the input KG and evalua- 246

tion dataset. 247

3.2.2 Literature-Based Inspiration 248

Wang et al. (2024a) introduced SCIMON, a frame- 249

work that retrieves "inspirations" from the literature 250

and iteratively optimises hypothesis generation for 251

novelty. Applied to AI/NLP and biomedical do- 252

mains, SCIMON outperformed baseline LLMs, al- 253

though the generated ideas still lacked the depth 254

and originality of expert-written papers. 255

3.3 Collaborative Multi-Agent Systems 256

Multi-agent systems built on LLMs have recently 257

emerged as powerful tools for automating com- 258

plex scientific workflows, including hypothesis gen- 259

eration. These systems distribute distinct roles, 260

such as ideation, critique, validation, and planning, 261

among specialised agents, enabling them to emu- 262

late the collaborative dynamics of real-world sci- 263

entific teams. Their ability to engage in interactive 264

dialogue, cooperative or adversarial, to refine ideas 265

and improve reasoning (Wu et al., 2023) is a central 266

strength. 267

3.3.1 Role-Based Multi-Agents 268

A growing line of work leverages multiple LLM- 269

based agents with specialised roles to emulate col- 270

laborative scientific workflows. 271
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Qi et al. (2023) pioneered this direction by intro-272

ducing a biomedical benchmark with temporally273

split background–hypothesis pairs and systemati-274

cally evaluating LLMs under zero-shot, few-shot,275

and fine-tuning settings. Their cooperative frame-276

work assigned structured roles—Analyst, Engineer,277

Scientist, and Critic—with agents coordinating via278

tool calls and chain-of-thought prompting. Outputs279

were assessed using four complementary metrics280

(novelty, relevance, significance, verifiability), and281

zero-shot hypotheses were later corroborated by282

real publications, demonstrating genuine genera-283

tive generalisation.284

Similarly, Qi et al. (2024) extended this setup to285

unseen biomedical datasets, highlighting the bene-286

fits of collaborative tool use and uncertainty mod-287

elling while noting persistent issues like hallucina-288

tions and external knowledge integration.289

In a domain-specific adaptation, Ghafarollahi290

and Buehler (2024) introduced SciAgents, a multi-291

agent framework for materials biology. Combining292

LLMs, ontologies, and data retrieval tools enables293

agents such as an "Ontologist" and a "Novelty Assis-294

tant" to build structured scientific concept graphs295

and uncover non-obvious material properties.296

Su et al. (2024) proposed Virtual Scientists297

(VirSci), which instantiates GPT-4-based agents298

with curated expertise profiles and simulates team299

dynamics through asynchronous collaboration cy-300

cles—spanning topic discussion, hypothesis draft-301

ing, novelty assessment, and abstract writing. This302

dual-layered interaction (internal critique + exter-303

nal consultation) significantly improved novelty304

and projected impact over single-agent baselines.305

In biomedical research, Ghareeb et al. (2025)306

introduced Robin, a lab-in-the-loop system that307

iteratively proposes and tests hypotheses, bridging308

LLM reasoning with empirical validation.309

Lastly, the AI Co-Scientist system by Gottweis310

et al. (2025), built on Gemini 2.0, features a "gener-311

ate–debate–evolve" loop with dedicated agents for312

generation, reflection, and ranking, coordinated by313

a central supervisor. Its outputs, evaluated via the314

GPQA benchmark, correlated strongly with expert-315

rated quality and novelty, surpassing single-agent316

LLMs.317

3.3.2 Domain-Specific Scientific Agents318

Some LLM-based systems are tailored to specific319

scientific domains or datasets, enabling focused hy-320

pothesis generation grounded in domain expertise.321

In astrophysics, Ciucă et al. (2023) explored ad-322

versarial prompting by immersing GPT-4 in a cor- 323

pus of 1,000 papers—agents engaged in critical ex- 324

changes, producing more robust and higher-quality 325

hypotheses than non-adversarial setups. 326

In the domain of scientific QA and literature anal- 327

ysis, Skarlinski et al. (2024) introduced PaperQA2, 328

an agentic LLM framework combining retrieval- 329

augmented generation with modules for literature 330

search, contradiction detection, and citation trac- 331

ing. It achieved superhuman performance in tasks 332

like scientific question answering and contradiction 333

identification, though at a higher computational 334

cost. 335

3.3.3 Mixed-Initiative and Human-Centred 336

Systems 337

These systems blend human input with LLM- 338

driven generation to support interactive, creative 339

scientific ideation. Scideator (Radensky et al., 340

2024) exemplifies this approach by combining 341

LLM-based retrieval and in-context prompting to 342

recombine paper "facets" (e.g., purpose, mecha- 343

nism, evaluation) into novel hypotheses. A ded- 344

icated novelty checker flags overlaps and sug- 345

gests refinements, forming a closed idea generation 346

and validation loop. Wu et al. (2025) introduced 347

CollabLLM, a framework that encourages proac- 348

tive, multi-turn planning in LLMs. The system pro- 349

motes more interactive and goal-directed behaviour 350

by simulating future dialogue paths and optimis- 351

ing for a multiturn-aware reward signal. Empirical 352

results across tasks such as document editing and 353

code assistance show significant gains in accuracy, 354

interactivity, and user satisfaction compared to stan- 355

dard LLMs. 356

3.3.4 Autonomous Research Agents 357

These systems aim to automate the scientific dis- 358

covery process—from hypothesis generation to ex- 359

perimentation and reporting, with minimal human 360

intervention. 361

In the social sciences, MOOSE (Yang et al., 2024) 362

chains LLM-powered modules into a sequential 363

pipeline for open-domain discovery, incorporat- 364

ing past, present, and future feedback loops. It 365

outperforms baselines in novelty and helpfulness, 366

although its generalizability beyond the 50-paper 367

dataset remains untested. 368

Pushing toward full automation, Lu et al. (2024) 369

introduced The AI Scientist, a closed-loop sys- 370

tem that handles ideation, code generation, exper- 371

iment execution (via the Aider coding assistant), 372
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result visualisation, LaTeX paper writing, and sim-373

ulated peer review. Applied to three machine learn-374

ing subfields, it generated low-cost, high-quality375

manuscripts, some of which surpassed acceptance376

thresholds at top venues. While promising, the377

system still faces challenges in robustness, halluci-378

nation control, and long-term autonomy.379

In computational chemistry, MOOSE-Chem (Yang380

et al., 2025b) and MOOSE-Chem2 (Yang et al.,381

2025a) organise hypothesis generation into inspira-382

tion, composition, and ranking phases. The latter383

reframes the task as a combinatorial optimisation384

problem using hierarchical search and finds that385

homogeneous agent ensembles outperform hetero-386

geneous ones in output quality.387

Finally, the Chain-of-Ideas (CoI) framework by388

Li et al. (2024a) builds developmental chains from389

prior work to generate and refine future-facing hy-390

potheses. It incorporates trend analysis and in-391

troduces the Idea Arena for evaluation, aligning392

well with human judgment. While CoI excels in393

novelty and significance, its experimental designs394

remain less feasible than those produced by human395

researchers.396

Summary Together, these works trace the evolu-397

tion from single-agent prompting to sophisticated,398

domain-specific multi-agent ecosystems that em-399

ulate key steps of the scientific process. They un-400

derscore the potential of mixed-initiative designs401

to enhance creativity, collaboration, and engage-402

ment—positioning LLMs as intelligent partners403

in hypothesis generation, while also highlighting404

persistent challenges such as cost, hallucination405

control, and domain generalisation in real-world406

scientific workflows.407

3.4 Autonomous Scientific Discovery Systems408

Recent efforts aim to automate the scientific dis-409

covery pipeline—spanning hypothesis generation,410

program synthesis, validation, and full-cycle au-411

tonomous agents—by integrating prompting, rea-412

soning, execution, and evaluation.413

Wang et al. (2024b) introduced a pipeline that414

enhances LLMs’ inductive reasoning by translat-415

ing natural language hypotheses into executable416

Python code, tested via feedback loops. Applied417

to datasets like ARC, SyGuS, and List Functions,418

it outperforms prompting-only baselines, though419

it remains computationally intensive and strug-420

gles with visual tasks and precise code generation.421

From verification to simulation, Ma et al. (2024)422

proposed the Scientific Generative Agent (SGA), 423

which combines LLM-guided hypothesis genera- 424

tion with differentiable physical simulations in a 425

bilevel optimisation loop. It achieves strong ma- 426

terial and molecular design results but raises con- 427

cerns about interpretability, differentiability, depen- 428

dence, and computational demands. Toward full au- 429

tonomy, Li et al. (2024c) presented MLR-Copilot, 430

a multi-agent system with dedicated components 431

for ideation, experimentation, and feedback. It 432

improves throughput in ML research using GPT- 433

4 and Claude, though its domain generalizability 434

and need for oversight remain open issues. Sim- 435

ilarly, Li et al. (2024b) developed BoxLM, where 436

LMs iteratively propose and refine probabilistic 437

programs using Box’s Loop. While it achieves 438

expert-level model discovery, it’s limited to static 439

datasets and lacks full critique automation. To 440

benchmark such agents, Jansen et al. (2024) cre- 441

ated DISCOVERYWORLD, a text-based environment 442

with 120 tasks across scientific domains. While it 443

simulates the discovery process, LLM-based agents 444

like ReAct and Plan+Exec struggle compared to hu- 445

mans, and the environment’s abstraction and com- 446

putational cost present challenges. These works 447

highlight progress in integrating LLMs with code 448

and simulation environments for autonomous dis- 449

covery. Yet, scalability, domain transfer, cost, and 450

human oversight persist, positioning current sys- 451

tems as powerful augmentations rather than com- 452

plete replacements for human researchers. 453

4 Hypothesis Validation Strategies 454

Evaluating systems for scientific hypothesis gen- 455

eration is a complex task. Unlike traditional 456

NLP evaluation, hypothesis generation aims to 457

produce novel, plausible, and testable scientific 458

ideas—often in domains where ground truth is in- 459

complete or non-existent. This open-endedness 460

renders standard evaluation metrics insufficient and 461

necessitates a multi-faceted approach combining 462

human expertise, automated metrics, multi-modal 463

integration, and domain-specific validation. In this 464

section, we first review established methodologies 465

before outlining promising directions for future 466

research. 467

4.1 Human Expert Evaluation 468

Evaluations conducted by domain experts remain 469

the most reliable method for assessing the rele- 470

vance, originality, and scientific merit of machine- 471
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generated hypotheses. Over time, these assess-472

ments have become more structured and method-473

ologically rigorous. Recent protocols have in-474

volved large panels of experts from diverse aca-475

demic backgrounds to evaluate hypotheses along476

dimensions such as clarity, innovation potential,477

and expected impact. Comparative studies have478

shown that, when supported by LLMs, researchers479

can generate more compelling and diverse ideas480

than with traditional search-based workflows. Such481

findings suggest that expert-in-the-loop systems482

not only support hypothesis refinement but can also483

enhance ideation itself.484

In highly specialised fields such as biomedicine,485

structured evaluations have been designed to fo-486

cus on clinical relevance and biological plausibil-487

ity. Frameworks developed for this purpose often488

involve expert reviews centred on real-world appli-489

cability and potential translational impact. Some490

benchmark efforts have incorporated expert assess-491

ments across multiple research tasks, offering a492

broader view of how LLMs contribute to domain-493

specific scientific workflows.494

Blind Review and Pairwise Comparison To re-495

duce bias and ensure fair evaluation, blind review496

protocols are increasingly employed. Experts are497

unaware whether a human or an AI system has gen-498

erated a hypothesis in these settings. This approach499

has revealed that, in many cases, AI-generated500

hypotheses can be as highly rated—or even sur-501

pass—those written by human researchers regard-502

ing novelty and scientific interest. Building on503

this principle, some recent evaluation strategies504

employ direct pairwise comparisons in tournament-505

style formats, where hypotheses compete against506

each other and are ranked based on expert prefer-507

ence. These structured comparison schemes offer508

a scalable and interpretable method for evaluating509

generative systems.510

Multi-Rater Reliability One of the persistent511

challenges in expert-based evaluation is achieving512

consistency across annotators. Scientific hypothe-513

sis assessment often involves subjective judgment,514

leading to variability in ratings. Earlier studies515

have highlighted relatively low agreement levels516

among reviewers, emphasising the complexity of517

the task. However, newer frameworks are address-518

ing this by introducing more formalised scoring519

rubrics, multiple rounds of review, and collabora-520

tive assessment protocols. These improvements521

have contributed to more stable and reproducible522

evaluation outcomes, reflecting a growing under- 523

standing of effectively integrating human judgment 524

into validating AI-generated scientific content. 525

4.2 Automated Evaluation 526

Text-based Relevance Initial efforts to evaluate 527

LLM outputs relied heavily on surface-level met- 528

rics such as BLEU and ROUGE, which measure 529

word overlap between generated and reference hy- 530

potheses. However, such metrics often fall short of 531

capturing an idea’s semantic depth and scientific 532

value. As a result, more sophisticated evaluation 533

tools have been developed that incorporate seman- 534

tic precision and recall and hybrid scores that com- 535

bine symbolic and neural representations. These 536

allow for a more meaningful assessment of whether 537

a hypothesis is contextually appropriate and scien- 538

tifically relevant. Some benchmarks now include 539

domain-specific metrics tailored to the complexity 540

and requirements of particular research tasks, such 541

as code execution or model reproducibility. 542

Model-Based Metrics Recent evaluation frame- 543

works have increasingly turned to large language 544

models as evaluators of generated hypotheses. 545

When fine-tuned or provided with structured 546

prompts, these models can approximate human- 547

level assessments across dimensions such as plau- 548

sibility, novelty, and relevance. Some systems now 549

rely on LLMs to score hypotheses using compos- 550

ite metrics that account for internal coherence and 551

broader scientific context. For instance, measures 552

have been developed to quantify how dissimilar 553

a proposed idea is from past knowledge and how 554

closely it aligns with emerging literature trends, 555

thus reflecting historical uniqueness and prospec- 556

tive impact. 557

Novelty Assessment Measuring novelty remains 558

one of the central goals in hypothesis evaluation. 559

Automated approaches have evolved to estimate 560

the originality of ideas by analysing their seman- 561

tic distance from existing publications. This often 562

involves embedding-based comparisons using pre- 563

trained scientific language models combined with 564

ranking strategies that assess the rarity or innova- 565

tion of proposed connections. Some systems build 566

structured citation graphs or ideation chains to con- 567

textualise a hypothesis within a broader intellectual 568

lineage, enabling more informed judgments about 569

its uniqueness. 570
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Domain-Specific Evaluation Evaluation strate-571

gies tailored to specific scientific fields are increas-572

ingly recognised as essential due to the varied stan-573

dards of evidence, feasibility, and validation across574

disciplines. In biomedical research, hypothesis575

evaluation often relies on alignment with curated576

clinical databases or known gene-disease associa-577

tions, enabling automated cross-referencing against578

structured biomedical knowledge. In the chemical579

sciences, evaluation protocols typically focus on580

structural validity and chemical plausibility, incor-581

porating molecular simulation or synthesis pathway582

prediction techniques. Astronomy and astrophysics583

present unique challenges, where hypothesis eval-584

uation may involve the integration of large-scale585

observational datasets or comparing generated hy-586

potheses with complex knowledge graphs. On the587

other hand, social science domains prioritise the-588

oretical grounding and temporal context, often re-589

quiring evaluation of whether a hypothesis is con-590

sistent with existing paradigms or predictive of fu-591

ture trends. These domain-specific practices under-592

score the importance of aligning evaluation method-593

ologies with disciplinary norms, highlighting the594

need for adaptable frameworks to accommodate595

modern science’s epistemological diversity.596

4.3 Domain-Specific Benchmarks597

We present a curated set of benchmarks organised598

by scientific domain to facilitate comparison, focus-599

ing on their tasks, evaluation metrics, and design600

principles.601

4.3.1 Computational Chemistry602

Recent efforts have produced benchmarks to eval-603

uate LLMs’ reasoning and hypothesis generation604

in chemistry. BioFuelQR (Sprueill et al., 2023)605

includes complex reasoning questions on cataly-606

sis, with a set of 20 queries targeting CO2 con-607

version. It was later extended with the CO2-Fuel608

subset (Sprueill et al., 2024), emphasizing struc-609

tured catalyst discovery. TOMATO-Chem (Yang et al.,610

2025b) features 51 high-impact post-2024 chem-611

istry papers annotated by PhD-level students, span-612

ning subfields such as Polymer, Organic, Inorganic,613

and Analytical Chemistry. A forthcoming exten-614

sion promises more fine-grained hypothesis annota-615

tions and safeguards against training data contami-616

nation(Yang et al., 2025a).617

4.3.2 Biomedicine and Computational Biology 618

Qi et al. (2023, 2024) introduced a benchmark de- 619

signed to test LLMs’ zero-shot generalisation in 620

biomedical hypothesis generation. It uses tempo- 621

rally split literature (pre- vs. post-2023) to prevent 622

data leakage. It evaluates outputs with standard 623

metrics (BLEU, ROUGE) and four custom crite- 624

ria—Novelty, Relevance, Significance, and Verifi- 625

ability—assessed by humans and GPT-4. Results 626

demonstrate strong alignment between human and 627

model judgments, highlighting areas for improve- 628

ment, such as automated extraction bias, limited 629

tool integration, and the need for richer evaluation 630

protocols. 631

4.3.3 Social Sciences 632

The TOMATO benchmark (Yang et al., 2024) evalu- 633

ates LLMs on generating novel and valid hypothe- 634

ses from open-domain web corpora in the social sci- 635

ences. It includes 50 annotated papers and empha- 636

sises ideas new to humanity rather than common- 637

sense reasoning. Evaluation focuses on validity, 638

novelty, and helpfulness, using a mix of expert and 639

GPT-4 assessments. While it offers a realistic, high- 640

quality dataset and rigorous evaluation, its limited 641

size and disciplinary scope may constrain general- 642

izability to broader or interdisciplinary scientific 643

contexts. 644

5 Challenges and Future Research 645

Directions 646

This section identifies the challenges of leverag- 647

ing LLMs for scientific hypothesis generation and 648

validation. Building on the recommendations and 649

limitations highlighted across the literature, we pro- 650

pose a set of structured future research directions 651

for the community. 652

5.1 Challenges 653

Creativity There is an ongoing debate about 654

whether LLMs exhibit genuine creativity or recom- 655

bine existing knowledge. While its outputs may 656

resemble human free association, the underlying 657

mechanisms remain fundamentally derivative. 658

Hallucinations and Factual Accuracy LLMs 659

frequently produce plausible but incorrect informa- 660

tion hallucinations that pose serious risks in scien- 661

tific contexts demanding precision. Such errors are 662

especially problematic when mistaken for novel in- 663

sights and can be amplified in multi-agent systems 664

or combined with unreliable web content. 665
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Limited Novelty and Idea Diversity LLMs of-666

ten favour statistically likely outputs, resulting in667

repetitive and conservative suggestions. This bias668

can limit epistemic risk-taking and idea diversity669

without specialised prompting or intervention, po-670

tentially stifling innovation if broadly integrated671

into scientific workflows.672

5.2 Future Research Directions673

Enhancing Novelty and Diversity Applying674

data augmentation and debiasing techniques to di-675

versify input datasets can help models generate676

hypotheses beyond traditional paradigms. Increas-677

ing uncertainty levels, for example, through col-678

laborative multi-agent approaches, can diversify679

candidate generation and potentially enhance zero-680

shot hypothesis generation capabilities. Incorpo-681

rating Dynamic Knowledge Graphs (DKGs) can682

allow systems to adapt to evolving datasets and683

uncover time-sensitive patterns, capturing trends684

and insights that static systems often miss.685

Feasibility and Practicality Integrating multi-686

modal data, including experimental results and sen-687

sor outputs, can improve feasibility assessments by688

grounding hypotheses in empirical evidence and689

domain-specific constraints. Developing founda-690

tion models with physical interaction capabilities,691

such as integrating robotic platforms in automated692

laboratories, can bridge the gap between theoret-693

ical predictions and experimental validation, en-694

abling real-time feedback and refinement. Interdis-695

ciplinary Collaboration: Fostering partnerships be-696

tween computational and experimental researchers697

can ground hypotheses in practical constraints and698

leverage diverse expertise.699

Human-AI Collaboration Existing benchmarks700

focus on isolated model outputs rather than joint701

outcomes from human-AI teams. This approach702

fails to fully capture the limitations and capabilities703

of AI as a scientific collaborator, particularly in704

terms of the roles, expectations, and workflows en-705

visioned by human researchers (Shao et al., 2025).706

Unlike chess, where AI systems have taught grand-707

masters novel strategies and reshaped expert prac-708

tice (Schut et al., 2023), scientific discovery lacks709

equivalent frameworks for studying and evaluating710

human-AI collaboration. To move forward, eval-711

uation protocols must include humans in the loop712

as active participants, not merely as annotators or713

evaluators. Automated metrics alone cannot ac-714

count for scientific research’s complex, iterative,715

and often exploratory nature. Human-AI systems 716

require tailored evaluation strategies that reflect 717

this interdependence. In particular, we must ad- 718

dress three key challenges: (1) how AI systems 719

complement or augment human expertise at vari- 720

ous stages of the scientific process, (2) the system’s 721

responsiveness and adaptability to domain-specific 722

guidance and constraints, and (3) the system’s ro- 723

bustness in adversarial or ambiguous settings, such 724

as resistance to user deception or misalignment. 725

Despite increasing interest in collaborative intelli- 726

gence, current evaluations of human-AI scientific 727

workflows remain limited. Recent work has be- 728

gun mapping what AI systems can and cannot do, 729

and what researchers want them to do (Shao et al., 730

2025). However, there is still little methodological 731

guidance for evaluating such systems in end-to- 732

end scientific settings. In contrast to well-defined 733

games like chess—where human-AI collaboration 734

can be measured through novel move generation 735

or improved win rates—we lack analogous met- 736

rics or interactive setups in science. Developing 737

robust human-AI evaluation protocols would en- 738

able systems design that empowers researchers to 739

explore novel directions rather than merely auto- 740

mate existing workflows. These protocols should 741

be co-designed with domain experts and tested lon- 742

gitudinally. Empirical studies tracking real-world 743

research outcomes from human-AI collaborations 744

could yield actionable insights into system design, 745

training strategies, and deployment best practices. 746

Ultimately, embracing this interactive perspective 747

will shift the focus from isolated performance to 748

collaborative potential. 749

6 Conclusion 750

We reviewed LLM-based hypothesis generation 751

to identify four major dimensions: direct prompt- 752

ing, multi-agent systems, external knowledge inte- 753

gration, and autonomous discovery systems. Our 754

analysis reveals significant progress, with LLMs 755

capable of generating hypotheses that experts judge 756

as novel and plausible, with some achieving exper- 757

imental validation. Multi-agent frameworks show 758

particular promise in modelling the collaborative 759

nature of the scientific process, while knowledge- 760

augmented approaches help ground outputs in fac- 761

tual information. However, key challenges persist, 762

including generating creative ideas, persistent hal- 763

lucination, limited diversity in generated ideas, and 764

difficulty evaluating scientific novelty and impact. 765
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7 Limitations766

While our survey offers a comprehensive overview767

of LLM-based hypothesis generation, it has sev-768

eral limitations. First, the fast-evolving nature769

of the field means our taxonomy and evaluation770

may quickly become outdated, despite efforts to771

curate recent and relevant works. Second, our study772

primarily focuses on English-language and high-773

resource domains (e.g., biomedicine, chemistry,774

and machine learning), which limits the general-775

izability of our insights to underrepresented disci-776

plines or low-resource settings. Finally, this work777

adopts a technology-centric perspective. It does778

not sufficiently address the socio-technical and eth-779

ical implications of deploying LLMs as scientific780

collaborators, such as research reproducibility or781

bias amplification.782
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Ioana Ciucă, Yuan-Sen Ting, Sandor Kruk, and Kartheik798
Iyer. 2023. Harnessing the power of adversar-799
ial prompting and large language models for ro-800
bust hypothesis generation in astronomy. Preprint,801
arXiv:2306.11648.802

Alireza Ghafarollahi and Markus J. Buehler. 2024. Sci-803
Agents: Automating scientific discovery through804
multi-agent intelligent graph reasoning. arXiv e-805
prints, arXiv:2409.05556.806

Ali Essam Ghareeb, Benjamin Chang, Ludovico Mitch-807
ener, Angela Yiu, Caralyn J. Szostkiewicz, Jon M.808
Laurent, Muhammed T. Razzak, Andrew D. White,809
Michaela M. Hinks, and Samuel G. Rodriques. 2025.810
Robin: A multi-agent system for automating scien-811
tific discovery. Preprint, arXiv:2505.13400.812

Karan Girotra, Lennart Meincke, Christian Terwiesch,813
and Karl Ulrich. 2023. Ideas are dimes a dozen:814
Large language models for idea generation in innova-815
tion. SSRN Electronic Journal.816

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, 817
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom 818
Myaskovsky, Felix Weissenberger, Keran Rong, Ryu- 819
taro Tanno, Khaled Saab, Dan Popovici, Jacob Blum, 820
Fan Zhang, Katherine Chou, Avinatan Hassidim, Bu- 821
rak Gokturk, Amin Vahdat, Pushmeet Kohli, and 15 822
others. 2025. Towards an ai co-scientist. Preprint, 823
arXiv:2502.18864. 824

Jennifer Haase and Paul H.P. Hanel. 2023. Artificial 825
muses: Generative artificial intelligence chatbots 826
have risen to human-level creativity. Journal of Cre- 827
ativity, 33(3):100066. 828

Xiang Hu, Hongyu Fu, Jinge Wang, Yifeng Wang, 829
Zhikun Li, Renjun Xu, Yu Lu, Yaochu Jin, Lili 830
Pan, and Zhenzhong Lan. 2024. Nova: An itera- 831
tive planning and search approach to enhance nov- 832
elty and diversity of llm generated ideas. Preprint, 833
arXiv:2410.14255. 834

Peter Jansen, Marc-Alexandre Côté, Tushar Khot, 835
Erin Bransom, Bhavana Dalvi Mishra, Bod- 836
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter 837
Clark. 2024. Discoveryworld: A virtual environment 838
for developing and evaluating automated scientific 839
discovery agents. Preprint, arXiv:2406.06769. 840

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and 841
Davood Rafiei. 2023. Evaluating open-domain ques- 842
tion answering in the era of large language models. 843
In Proceedings of the 61st Annual Meeting of the 844
Association for Computational Linguistics (Volume 845
1: Long Papers), pages 5591–5606, Toronto, Canada. 846
Association for Computational Linguistics. 847

Peter D. Karp. 1991. Artificial intelligence methods 848
for theory representation and hypothesis formation. 849
Bioinformatics, 7(3):301–308. 850

Long Li, Weiwen Xu, Jiayan Guo, Ruochen Zhao, 851
Xingxuan Li, Yuqian Yuan, Boqiang Zhang, Yuming 852
Jiang, Yifei Xin, Ronghao Dang, Deli Zhao, Yu Rong, 853
Tian Feng, and Lidong Bing. 2024a. Chain of ideas: 854
Revolutionizing research via novel idea development 855
with llm agents. Preprint, arXiv:2410.13185. 856

Michael Y. Li, Emily B. Fox, and Noah D. Goodman. 857
2024b. Automated statistical model discovery with 858
language models. Preprint, arXiv:2402.17879. 859

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya 860
Du. 2024c. Mlr-copilot: Autonomous machine learn- 861
ing research based on large language models agents. 862
Preprint, arXiv:2408.14033. 863

C.E. Lipscomb. 2000. Medical Subject Headings 864
(MeSH). Bulletin of the Medical Library Association, 865
88(3):265. 866

Chun-Chi Liu, Yu-Ting Tseng, Wenyuan Li, Chia-Yu 867
Wu, Ilya Mayzus, Andrey Rzhetsky, Fengzhu Sun, 868
Michael Waterman, Jeremy J. W. Chen, Preet M. 869
Chaudhary, Joseph Loscalzo, Edward Crandall, and 870
Xianghong Jasmine Zhou. 2014. Diseaseconnect: a 871

9

https://doi.org/10.48550/arXiv.2405.12258
https://doi.org/10.48550/arXiv.2405.12258
https://doi.org/10.48550/arXiv.2405.12258
https://doi.org/10.48550/arXiv.2405.12258
https://doi.org/10.48550/arXiv.2405.12258
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://doi.org/10.48550/arXiv.2409.05556
https://doi.org/10.48550/arXiv.2409.05556
https://doi.org/10.48550/arXiv.2409.05556
https://doi.org/10.48550/arXiv.2409.05556
https://doi.org/10.48550/arXiv.2409.05556
https://arxiv.org/abs/2505.13400
https://arxiv.org/abs/2505.13400
https://arxiv.org/abs/2505.13400
https://doi.org/10.2139/ssrn.4526071
https://doi.org/10.2139/ssrn.4526071
https://doi.org/10.2139/ssrn.4526071
https://doi.org/10.2139/ssrn.4526071
https://doi.org/10.2139/ssrn.4526071
https://arxiv.org/abs/2502.18864
https://doi.org/10.1016/j.yjoc.2023.100066
https://doi.org/10.1016/j.yjoc.2023.100066
https://doi.org/10.1016/j.yjoc.2023.100066
https://doi.org/10.1016/j.yjoc.2023.100066
https://doi.org/10.1016/j.yjoc.2023.100066
https://arxiv.org/abs/2410.14255
https://arxiv.org/abs/2410.14255
https://arxiv.org/abs/2410.14255
https://arxiv.org/abs/2410.14255
https://arxiv.org/abs/2410.14255
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.1093/bioinformatics/7.3.301
https://doi.org/10.1093/bioinformatics/7.3.301
https://doi.org/10.1093/bioinformatics/7.3.301
https://arxiv.org/abs/2410.13185
https://arxiv.org/abs/2410.13185
https://arxiv.org/abs/2410.13185
https://arxiv.org/abs/2410.13185
https://arxiv.org/abs/2410.13185
https://arxiv.org/abs/2402.17879
https://arxiv.org/abs/2402.17879
https://arxiv.org/abs/2402.17879
https://arxiv.org/abs/2408.14033
https://arxiv.org/abs/2408.14033
https://arxiv.org/abs/2408.14033
https://doi.org/10.1093/nar/gku412
https://doi.org/10.1093/nar/gku412


comprehensive web server for mechanism-based dis-872
ease–disease connections. Nucleic Acids Research,873
42(W1):W137–W146.874

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer-875
ster, Jeff Clune, and David Ha. 2024. The AI Scien-876
tist: Towards Fully Automated Open-Ended Scien-877
tific Discovery. arXiv e-prints, arXiv:2408.06292.878

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo,879
Zhiqing Sun, Joshua B. Tenenbaum, Daniela Rus,880
Chuang Gan, and Wojciech Matusik. 2024. Llm and881
simulation as bilevel optimizers: A new paradigm882
to advance physical scientific discovery. Preprint,883
arXiv:2405.09783.884

Ikujiro Nonaka. 2009. The knowledge-creating com-885
pany. In The economic impact of knowledge, pages886
175–187. Routledge.887

Thomas O’Brien, Joel Stremmel, Léo Pio-Lopez,888
Patrick McMillen, Cody Rasmussen-Ivey, and889
Michael Levin. 2024. Machine learning for hypoth-890
esis generation in biology and medicine: exploring891
the latent space of neuroscience and developmental892
bioelectricity. Digital Discovery, 3:249–263.893

Yang Jeong Park, Daniel Kaplan, Zhichu Ren, Chia-Wei894
Hsu, Changhao Li, Haowei Xu, Sipei Li, and Ju Li.895
2023. Can chatgpt be used to generate scientific896
hypotheses? Preprint, arXiv:2304.12208.897

Karl R. Popper. 1959. The Logic of Scientific Discovery.898
Routledge, London.899

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Si-900
hang Zeng, Zhang-Ren Chen, and Bowen Zhou. 2023.901
Large Language Models are Zero Shot Hypothesis902
Proposers. arXiv e-prints, arXiv:2311.05965.903

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Si-904
hang Zeng, Zhang-Ren Chen, and Bowen Zhou. 2023.905
Large language models are zero shot hypothesis pro-906
posers. Preprint, arXiv:2311.05965.907

Biqing Qi, Kaiyan Zhang, Kai Tian, Haoxiang Li,908
Zhang-Ren Chen, Sihang Zeng, Ermo Hua, Hu Jin-909
fang, and Bowen Zhou. 2024. Large language mod-910
els as biomedical hypothesis generators: A compre-911
hensive evaluation. Preprint, arXiv:2407.08940.912

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,913
Valentina Pyatkin, Chandra Bhagavatula, Bailin914
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and915
Xiang Ren. 2024. Phenomenal yet puzzling: Test-916
ing inductive reasoning capabilities of language917
models with hypothesis refinement. Preprint,918
arXiv:2310.08559.919

Marissa Radensky, Simra Shahid, Raymond Fok, Pao920
Siangliulue, Tom Hope, and Daniel S. Weld. 2024.921
Scideator: Human-LLM Scientific Idea Generation922
Grounded in Research-Paper Facet Recombination.923
arXiv e-prints, arXiv:2409.14634.924

Sanjana Ramprasad, Elisa Ferracane, and Zachary Lip- 925
ton. 2024. Analyzing LLM behavior in dialogue sum- 926
marization: Unveiling circumstantial hallucination 927
trends. In Proceedings of the 62nd Annual Meeting 928
of the Association for Computational Linguistics (Vol- 929
ume 1: Long Papers), pages 12549–12561, Bangkok, 930
Thailand. Association for Computational Linguistics. 931

Bernardino Romera-Paredes, Mohammadamin 932
Barekatain, Alexander Novikov, Matej Balog, 933
M. Pawan Kumar, Emilien Dupont, Francisco J. R. 934
Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar 935
Fawzi, Pushmeet Kohli, and Alhussein Fawzi. 2024. 936
Mathematical discoveries from program search with 937
large language models. Nat., 625(7995):468–475. 938

Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Has- 939
sabis, Ulrich Paquet, and Been Kim. 2023. Bridging 940
the human-ai knowledge gap: Concept discovery and 941
transfer in alphazero. Preprint, arXiv:2310.16410. 942

Yijia Shao, Humishka Zope, Yucheng Jiang, Jiaxin Pei, 943
David Nguyen, Erik Brynjolfsson, and Diyi Yang. 944
2025. Future of Work with AI Agents: Auditing 945
Automation and Augmentation Potential across the 946
U.S. Workforce. arXiv e-prints, arXiv:2506.06576. 947

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. 2024. 948
Can LLMs Generate Novel Research Ideas? A Large- 949
Scale Human Study with 100+ NLP Researchers. 950
arXiv e-prints, arXiv:2409.04109. 951

Michael D. Skarlinski, Sam Cox, Jon M. Laurent, 952
James D. Braza, Michaela Hinks, Michael J. Ham- 953
merling, Manvitha Ponnapati, Samuel G. Rodriques, 954
and Andrew D. White. 2024. Language agents 955
achieve superhuman synthesis of scientific knowl- 956
edge. Preprint, arXiv:2409.13740. 957

Neil R Smalheiser and Don R Swanson. 1998. Using 958
arrowsmith: a computer-assisted approach to formu- 959
lating and assessing scientific hypotheses. Computer 960
Methods and Programs in Biomedicine, 57(3):149– 961
153. 962

Scott Spangler, Angela D. Wilkins, Benjamin J. Bach- 963
man, Meena Nagarajan, Tajhal Dayaram, Peter 964
Haas, Sam Regenbogen, Curtis R. Pickering, Austin 965
Comer, Jeffrey N. Myers, Ioana Stanoi, Linda Kato, 966
Ana Lelescu, Jacques J. Labrie, Neha Parikh, An- 967
dreas Martin Lisewski, Lawrence Donehower, Ying 968
Chen, and Olivier Lichtarge. 2014. Automated hy- 969
pothesis generation based on mining scientific liter- 970
ature. In Proceedings of the 20th ACM SIGKDD 971
International Conference on Knowledge Discovery 972
and Data Mining, KDD ’14, page 1877–1886, New 973
York, NY, USA. Association for Computing Machin- 974
ery. 975

Henry W. Sprueill, Carl Edwards, Khushbu Agarwal, 976
Mariefel V. Olarte, Udishnu Sanyal, Conrad John- 977
ston, Hongbin Liu, Heng Ji, and Sutanay Choudhury. 978
2024. Chemreasoner: Heuristic search over a large 979
language model’s knowledge space using quantum- 980
chemical feedback. Preprint, arXiv:2402.10980. 981

10

https://doi.org/10.1093/nar/gku412
https://doi.org/10.1093/nar/gku412
https://doi.org/10.1093/nar/gku412
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2408.06292
https://arxiv.org/abs/2405.09783
https://arxiv.org/abs/2405.09783
https://arxiv.org/abs/2405.09783
https://arxiv.org/abs/2405.09783
https://arxiv.org/abs/2405.09783
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://arxiv.org/abs/2304.12208
https://arxiv.org/abs/2304.12208
https://arxiv.org/abs/2304.12208
https://doi.org/10.48550/arXiv.2311.05965
https://doi.org/10.48550/arXiv.2311.05965
https://doi.org/10.48550/arXiv.2311.05965
https://arxiv.org/abs/2311.05965
https://arxiv.org/abs/2311.05965
https://arxiv.org/abs/2311.05965
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2310.08559
https://doi.org/10.48550/arXiv.2409.14634
https://doi.org/10.48550/arXiv.2409.14634
https://doi.org/10.48550/arXiv.2409.14634
https://doi.org/10.18653/v1/2024.acl-long.677
https://doi.org/10.18653/v1/2024.acl-long.677
https://doi.org/10.18653/v1/2024.acl-long.677
https://doi.org/10.18653/v1/2024.acl-long.677
https://doi.org/10.18653/v1/2024.acl-long.677
http://dblp.uni-trier.de/db/journals/nature/nature625.html#RomeraParedesBNBKDREWFKF24
http://dblp.uni-trier.de/db/journals/nature/nature625.html#RomeraParedesBNBKDREWFKF24
http://dblp.uni-trier.de/db/journals/nature/nature625.html#RomeraParedesBNBKDREWFKF24
https://arxiv.org/abs/2310.16410
https://arxiv.org/abs/2310.16410
https://arxiv.org/abs/2310.16410
https://arxiv.org/abs/2310.16410
https://arxiv.org/abs/2310.16410
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2409.04109
https://doi.org/10.48550/arXiv.2409.04109
https://doi.org/10.48550/arXiv.2409.04109
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2409.13740
https://doi.org/10.1016/S0169-2607(98)00033-9
https://doi.org/10.1016/S0169-2607(98)00033-9
https://doi.org/10.1016/S0169-2607(98)00033-9
https://doi.org/10.1016/S0169-2607(98)00033-9
https://doi.org/10.1016/S0169-2607(98)00033-9
https://doi.org/10.1145/2623330.2623667
https://doi.org/10.1145/2623330.2623667
https://doi.org/10.1145/2623330.2623667
https://doi.org/10.1145/2623330.2623667
https://doi.org/10.1145/2623330.2623667
https://arxiv.org/abs/2402.10980
https://arxiv.org/abs/2402.10980
https://arxiv.org/abs/2402.10980
https://arxiv.org/abs/2402.10980
https://arxiv.org/abs/2402.10980


Henry W. Sprueill, Carl Edwards, Khushbu Agarwal,982
Mariefel V. Olarte, Udishnu Sanyal, Conrad John-983
ston, Hongbin Liu, Heng Ji, and Sutanay Choud-984
hury. 2024. ChemReasoner: Heuristic Search over985
a Large Language Model’s Knowledge Space us-986
ing Quantum-Chemical Feedback. arXiv e-prints,987
arXiv:2402.10980.988

Henry W. Sprueill, Carl Edwards, Mariefel V. Olarte,989
Udishnu Sanyal, Heng Ji, and Sutanay Choudhury.990
2023. Monte carlo thought search: Large language991
model querying for complex scientific reasoning in992
catalyst design. Preprint, arXiv:2310.14420.993

Haoyang Su, Renqi Chen, Shixiang Tang, Zhenfei Yin,994
Xinzhe Zheng, Jinzhe Li, Biqing Qi, Qi Wu, Hui Li,995
Wanli Ouyang, Philip Torr, Bowen Zhou, and Nan-996
qing Dong. 2024. Many Heads Are Better Than997
One: Improved Scientific Idea Generation by A998
LLM-Based Multi-Agent System. arXiv e-prints,999
arXiv:2410.09403.1000

Don R Swanson. 1986a. Fish oil, raynaud’s syndrome,1001
and undiscovered public knowledge. Perspectives in1002
biology and medicine, 30(1):7–18.1003

Don R Swanson. 1986b. Undiscovered public knowl-1004
edge. The Library Quarterly, 56(2):103–118.1005

Justin Sybrandt, Michael Shtutman, and Ilya Safro.1006
2017. Moliere: Automatic biomedical hypothesis1007
generation system. Preprint, arXiv:1702.06176.1008

Song Tong, Kai Mao, Zhen Huang, Yukun Zhao, and1009
Kaiping Peng. 2024. Automating psychological hy-1010
pothesis generation with ai: when large language1011
models meet causal graph. Humanities and Social1012
Sciences Communications, 11(1).1013

Jessica B. Voytek and Bradley Voytek. 2012. Auto-1014
mated cognome construction and semi-automated hy-1015
pothesis generation. Journal of Neuroscience Meth-1016
ods, 208(1):92–100.1017

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope.1018
2024a. Scimon: Scientific inspiration machines op-1019
timized for novelty. In Proceedings of the 62nd An-1020
nual Meeting of the Association for Computational1021
Linguistics (Volume 1: Long Papers), page 279–299.1022
Association for Computational Linguistics.1023

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen1024
Pu, Nick Haber, and Noah D. Goodman. 2024b. Hy-1025
pothesis search: Inductive reasoning with language1026
models. Preprint, arXiv:2309.05660.1027

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,1028
Fei Wu, Tianwei Zhang, Jiwei Li, Guoyin Wang, and1029
Chen Guo. 2025. GPT-NER: Named entity recogni-1030
tion via large language models. In Findings of the1031
Association for Computational Linguistics: NAACL1032
2025, pages 4257–4275, Albuquerque, New Mexico.1033
Association for Computational Linguistics.1034

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran 1035
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun 1036
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan 1037
Awadallah, Ryen W White, Doug Burger, and Chi 1038
Wang. 2023. Autogen: Enabling next-gen llm ap- 1039
plications via multi-agent conversation. Preprint, 1040
arXiv:2308.08155. 1041

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, 1042
Gavin Li, Yao Dou, Weixin Cai, James Zou, Jure 1043
Leskovec, and Jianfeng Gao. 2025. CollabLLM: 1044
From Passive Responders to Active Collaborators. 1045
arXiv e-prints, arXiv:2502.00640. 1046

Guangzhi Xiong, Eric Xie, Amir Hassan Shariatmadari, 1047
Sikun Guo, Stefan Bekiranov, and Aidong Zhang. 1048
2024. Improving scientific hypothesis generation 1049
with knowledge grounded large language models. 1050
Preprint, arXiv:2411.02382. 1051

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Sou- 1052
janya Poria, and Erik Cambria. 2024. Large lan- 1053
guage models for automated open-domain scientific 1054
hypotheses discovery. Preprint, arXiv:2309.02726. 1055

Zonglin Yang, Wanhao Liu, Ben Gao, Yujie Liu, Wei Li, 1056
Tong Xie, Lidong Bing, Wanli Ouyang, Erik Cam- 1057
bria, and Dongzhan Zhou. 2025a. Moose-chem2: 1058
Exploring llm limits in fine-grained scientific hy- 1059
pothesis discovery via hierarchical search. Preprint, 1060
arXiv:2505.19209. 1061

Zonglin Yang, Wanhao Liu, Ben Gao, Tong Xie, 1062
Yuqiang Li, Wanli Ouyang, Soujanya Poria, Erik 1063
Cambria, and Dongzhan Zhou. 2025b. Moose- 1064
chem: Large language models for rediscovering 1065
unseen chemistry scientific hypotheses. Preprint, 1066
arXiv:2410.07076. 1067

Yangqiaoyu Zhou, Haokun Liu, Tejes Srivastava, 1068
Hongyuan Mei, and Chenhao Tan. 2024. Hypoth- 1069
esis generation with large language models. In Pro- 1070
ceedings of the 1st Workshop on NLP for Science 1071
(NLP4Science), page 117–139. Association for Com- 1072
putational Linguistics. 1073

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, 1074
Shujian Huang, Lingpeng Kong, Jiajun Chen, and 1075
Lei Li. 2024. Multilingual machine translation with 1076
large language models: Empirical results and anal- 1077
ysis. In Findings of the Association for Computa- 1078
tional Linguistics: NAACL 2024, pages 2765–2781, 1079
Mexico City, Mexico. Association for Computational 1080
Linguistics. 1081

11

https://doi.org/10.48550/arXiv.2402.10980
https://doi.org/10.48550/arXiv.2402.10980
https://doi.org/10.48550/arXiv.2402.10980
https://doi.org/10.48550/arXiv.2402.10980
https://doi.org/10.48550/arXiv.2402.10980
https://arxiv.org/abs/2310.14420
https://arxiv.org/abs/2310.14420
https://arxiv.org/abs/2310.14420
https://arxiv.org/abs/2310.14420
https://arxiv.org/abs/2310.14420
https://doi.org/10.48550/arXiv.2410.09403
https://doi.org/10.48550/arXiv.2410.09403
https://doi.org/10.48550/arXiv.2410.09403
https://doi.org/10.48550/arXiv.2410.09403
https://doi.org/10.48550/arXiv.2410.09403
https://arxiv.org/abs/1702.06176
https://arxiv.org/abs/1702.06176
https://arxiv.org/abs/1702.06176
https://doi.org/10.1057/s41599-024-03407-5
https://doi.org/10.1057/s41599-024-03407-5
https://doi.org/10.1057/s41599-024-03407-5
https://doi.org/10.1057/s41599-024-03407-5
https://doi.org/10.1057/s41599-024-03407-5
https://doi.org/10.1016/j.jneumeth.2012.04.019
https://doi.org/10.1016/j.jneumeth.2012.04.019
https://doi.org/10.1016/j.jneumeth.2012.04.019
https://doi.org/10.1016/j.jneumeth.2012.04.019
https://doi.org/10.1016/j.jneumeth.2012.04.019
https://doi.org/10.18653/v1/2024.acl-long.18
https://doi.org/10.18653/v1/2024.acl-long.18
https://doi.org/10.18653/v1/2024.acl-long.18
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.48550/arXiv.2502.00640
https://doi.org/10.48550/arXiv.2502.00640
https://doi.org/10.48550/arXiv.2502.00640
https://arxiv.org/abs/2411.02382
https://arxiv.org/abs/2411.02382
https://arxiv.org/abs/2411.02382
https://arxiv.org/abs/2309.02726
https://arxiv.org/abs/2309.02726
https://arxiv.org/abs/2309.02726
https://arxiv.org/abs/2309.02726
https://arxiv.org/abs/2309.02726
https://arxiv.org/abs/2505.19209
https://arxiv.org/abs/2505.19209
https://arxiv.org/abs/2505.19209
https://arxiv.org/abs/2505.19209
https://arxiv.org/abs/2505.19209
https://arxiv.org/abs/2410.07076
https://arxiv.org/abs/2410.07076
https://arxiv.org/abs/2410.07076
https://arxiv.org/abs/2410.07076
https://arxiv.org/abs/2410.07076
https://doi.org/10.18653/v1/2024.nlp4science-1.10
https://doi.org/10.18653/v1/2024.nlp4science-1.10
https://doi.org/10.18653/v1/2024.nlp4science-1.10
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176

	Introduction
	Traditional Hypothesis Generation
	LLM-Based Hypothesis Generation
	Direct Prompting
	Iterative Feedback
	Search-Based and Combinatorial Exploration
	General Creativity and Idea Generation

	External Knowledge Integration
	Knowledge and Causal Graph–Based Augmentation
	Literature-Based Inspiration

	Collaborative Multi-Agent Systems
	Role-Based Multi-Agents
	Domain-Specific Scientific Agents
	Mixed-Initiative and Human-Centred Systems
	Autonomous Research Agents

	Autonomous Scientific Discovery Systems

	Hypothesis Validation Strategies
	Human Expert Evaluation
	Automated Evaluation
	Domain-Specific Benchmarks
	Computational Chemistry
	Biomedicine and Computational Biology
	Social Sciences


	Challenges and Future Research Directions
	Challenges
	Future Research Directions

	Conclusion
	Limitations

