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ABSTRACT

We introduce OLMOE,1 a fully open, state-of-the-art language model leveraging
sparse Mixture-of-Experts (MoE). OLMOE-1B-7B has 7 billion (B) parameters
but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt
it to create OLMOE-1B-7B-INSTRUCT. Our models outperform all available
models with similar active parameters, even surpassing larger ones like Llama2-
13B-Chat and DeepSeekMoE-16B. We present novel findings on MoE training,
define and analyze new routing properties showing high specialization in our model,
and open-source all our work: model weights, training data, code, and logs.

Weights https://hf.co/allenai/OLMoE-1B-7B-0924
Data https://hf.co/datasets/allenai/OLMoE-mix-0924
Code https://github.com/allenai/OLMoE

Logs https://wandb.ai/ai2-llm/olmoe/reports/
OLMoE-1B-7B-0924--Vmlldzo4OTcyMjU3

How open are open MoEs?
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Figure 1: Performance, cost, and degree of openness of open MoE and dense LMs. Model names
contain rounded parameter counts: model-active-total for MoEs and model-total for
dense LMs. #ckpts is the number of intermediate checkpoints available. We highlight MMLU as a
summary of overall performance; see §3 for more results. OLMOE-1B-7B performs best among
models with similar active parameter counts and is the most open MoE.

1 INTRODUCTION

Despite significant advances in Large Language Models (LMs) on various tasks, there remains a clear
trade-off between performance and cost in both training and inference. High-performing LMs are
inaccessible for many academics and open-source developers as they are prohibitively expensive to

1This paper describes the first OLMOE from 09/2024. See Appendix L for an overview of a newer version.
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build and deploy.2 One approach to improve the cost-performance trade-off lies in using sparsely-
activated Mixture-of-Experts (MoEs) (Shazeer et al., 2017). MoEs have several experts in each layer,
only a subset of which is activated at a time (see Figure C1). This makes MoEs significantly more
efficient than dense models with a similar number of total parameters, which activate all parameters
for every input (Yun et al., 2024). For this reason, industry frontier models use MoEs including
Gemini-1.5 (Team et al., 2024a) and reportedly GPT-4 (Chintala, 2024).

Most MoE models, however, are closed-source: While some have publicly released model
weights (DeepSeek-AI et al., 2024b; Jiang et al., 2024; Shen et al., 2024; Team et al., 2024d;
Team, 2024b), they offer limited to no information about their training data, code, or recipes (see
Figure 1). While there have been prior efforts to make language modeling research fully accessi-
ble (Biderman et al., 2023; Groeneveld et al., 2024; Li et al., 2024a; Liu et al., 2023; Workshop
et al., 2023; Zhang et al., 2024a) discussed in detail in Appendix A, they have been largely limited
to dense LMs. This comes despite MoEs requiring more openness as they add complex new design
questions to LMs, such as how many total versus active parameters to use, whether to use many small
or few large experts, if experts should be shared, and what routing algorithm to use. The lack of open
resources and findings about these details prevents the field from building cost-efficient open MoEs
that approach the capabilities of closed-source frontier models.

To address these issues, we introduce OLMOE, a fully open Mixture-of-Experts language model
with state-of-the-art performance among similarly-sized models. In particular, we pretrain OLMOE-
1B-7B for 5.1 trillion tokens with 6.9B total parameters, of which only 1.3B are activated for
each input token. This leads to a similar inference cost as using dense models with around 1B
parameters, such as OLMo 1B (Groeneveld et al., 2024) or TinyLlama 1B (Zhang et al., 2024b),
but requires more GPU memory to store its 7B total parameters. Our experiments show that MoEs
train ∼2× faster than dense LMs with equivalent active parameters (Figure 2). In Figure 1, we
show that OLMOE-1B-7B significantly outperforms all open 1B models and displays competitive
performance to dense models with significantly higher inference costs and memory storage (e.g.,
similar MMLU scores to Llama2-13B, which is ∼10× more costly). Via instruction- and preference
tuning, we create OLMOE-1B-7B-INSTRUCT, which we find exceeds various larger instruct models
including Llama2-13B-Chat (Touvron et al., 2023b), OLMo-7B-Instruct (0724), and DeepSeekMoE-
16B (DeepSeek-AI et al., 2024a) on common benchmarks (MMLU, GSM8k, HumanEval, etc.).

Our comprehensive set of controlled experiments highlights key design choices for MoEs (see
Table 1) and LMs in general. One critical design decision for making MoEs performant is using
fine-grained routing with granular experts (DeepSeek-AI et al., 2024a): we employ 64 small experts
in each layer with 8 being activated. The choice of routing algorithm is also important: we find
dropless (Gale et al., 2022) token-based routing (Shazeer et al., 2017) outperforms expert-based
routing (Zhou et al., 2022). Our findings also include those that challenge prior work, such as the
ineffectiveness of shared experts (DeepSeek-AI et al., 2024a) and the limited benefits of sparsely
upcycling a pretrained dense LM into an MoE (Komatsuzaki et al., 2023) unless under small compute
budgets. Finally, we present novel ways to analyze routing behavior in Mixture-of-Experts finding
that for OLMOE-1B-7B routing saturates early in pretraining, experts are rarely co-activated, and
experts exhibit domain and vocabulary specialization. We intend our fully open MoE to facilitate
more research and analysis to improve our understanding of these models. We release training
code, intermediate checkpoints (every 5000 steps), training logs, and training data under open-
source licenses (Apache 2.0 http://www.apache.org/licenses/LICENSE-2.0 or ODC-
By 1.0 https://opendatacommons.org/licenses/by/1-0/).

2 PRETRAINING AND ADAPTATION

Pretraining OLMOE is a decoder-only LM consisting of NL transformer (Vaswani et al., 2023)
layers. The feedforward network (FFN) in dense models like OLMo (Groeneveld et al., 2024) is
replaced with an MoE module consisting of NE smaller FFN modules called experts, of which a
subset of k experts is activated for each processed input token x (also see Figure C1):

MoE module(x) = ∑
i∈Top−k(r(x))

softmax (r(x))i Ei(x) (1)

2For example, even with 16 H100 GPUs and several optimizations, Llama 3 405B only achieves a decoding
throughput of around 100 tokens per second (Dubey et al., 2024).
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Table 1: Key MoE design choices and our setup for OLMOE-1B-7B based on our experiments.
Full configuration for OLMOE-1B-7B is in Appendix C.
Design choice Description Exper-

iment
OLMOE-1B-7B

Active params # active parameters per input token §4.1 1.3B active

Total params Total # of parameters in the model §4.1 6.9B total

Expert granularity Using fine-grained small experts vs. a few large
experts (Dai et al., 2024)

§4.2 64 small experts
with 8 activated

Routing algorithm How inputs are assigned to experts, e.g., a per token
basis (e.g., 2 experts per token) or per expert basis
(e.g., 2 tokens per expert), and if all tokens get
assigned or some get dropped

§4.3 Dropless (Gale et al.,
2022) MoE with to-
ken choice

Expert sharing Whether to share experts (Dai et al., 2024) §B.1.1 No shared expert

Sparse upcycling Whether to start from a dense model (Komatsuzaki
et al., 2023; Zhang et al., 2024c)

§B.1.2 Not used

Load balancing loss Auxiliary loss to penalize unequal assignment to
experts harming performance (Shazeer et al., 2017)

§B.1.3 Used with weight
0.01

Router z-loss Auxiliary loss to penalize large router logits that
may cause instabilities (Zoph et al., 2022)

§B.1.4 Used with weight
0.001

where r, called the router, is a learned linear layer mapping from the input logits to the chosen
k experts. A softmax is applied to the router outputs to compute routing probabilities for all NE

experts. Each selected expert Ei processes the input x, the output of which is then multiplied with
its respective routing probability. The results are then summed across all chosen Top-k experts to
constitute the output of the MoE module for a single layer of the model out of its NL total layers.
Key decisions in designing an MoE model include determining the number of activated and total
parameters, the design of the experts (e.g., granularity, whether or not to include shared experts), and
the choice of the routing algorithm. Moreover, training an MoE model can involve initializing from
a dense model (sparse upcycling) and changing the training objective, such as including auxiliary
load balancing and router z-losses. We run experiments to investigate each of these design choices in
isolation in §4 and §B.1. We summarize our final decisions in Table 1: We use 1.3B active parameters
out of a total of 6.9B, with 8 activated experts out of 64 per layer. We use dropless token choice
routing (Gale et al., 2022): For each input token, the learned router network determines 8 experts
to process it. We train OLMOE-1B-7B from scratch with two auxiliary losses: load balancing
loss (LLB) (Shazeer et al., 2017) and router z-loss (LRZ) (Zoph et al., 2022), which we define and
experiment with in §B.1.3 and §B.1.4, respectively. We multiply them with respective loss weights,
α and β, and sum them linearly with the cross entropy loss (LCE) to arrive at our final training loss:

L = LCE + αLLB + βLRZ (2)

For our pretraining data, we mix data from DCLM (Li et al., 2024a) and Dolma 1.7 (Soldaini et al.,
2024), which includes: (1) a quality-filtered subset of Common Crawl, referred to as DCLM-Baseline,
(2) StarCoder, Algebraic Stack and arXiv, used in both DCLM and Dolma 1.7, and (3) peS2o and
Wikipedia from Dolma 1.7. We refer to our pretraining dataset as OLMOE-MIX. We train for a total
of 5.133T tokens (1.3 epochs following Muennighoff et al. (2023b)) and provide data statistics in
Table C1. Our full pretraining configuration for OLMOE-1B-7B is in Appendix C.

Adaptation We create OLMOE-1B-7B-INSTRUCT by following a standard adaptation recipe
split into instruction tuning (Mishra et al., 2022; Wei et al., 2022; Sanh et al., 2022; Shen et al.,
2023a; Zadouri et al., 2023) followed by preference tuning (Christiano et al., 2023; Bai et al., 2022;
Rafailov et al., 2023) building on prior open models (Tunstall et al., 2023; Ivison et al., 2023; Wang
et al., 2023). In our instruction tuning dataset, we add more code and math data to boost performance
on downstream coding and math applications. Other models, such as GPT-4 (OpenAI et al., 2023)
and Llama 3 (Dubey et al., 2024) similarly include samples from math datasets like GSM8k (Cobbe
et al., 2021) or MATH (Hendrycks et al., 2021b) during pretraining. We also include No Robots and a
subset of Daring Anteater as they are of high quality and add diversity, two key factors for successful
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adaptation (Wang et al., 2023; Zhou et al., 2023a; Longpre et al., 2023a; Muennighoff et al., 2023a).
We describe our adaptation datasets in Table C2 and hyperparameters in Appendix C.

3 RESULTS

Our evaluation procedure consists of three parts: During pretraining (Appendix F), After pretrain-
ing, and After adaptation. We detail the setup for each in Appendix D.

Table 2: OLMOE-1B-7B after pretraining. We compare with LMs of similar active parameters
(1B, approximating speed and cost) or total parameters (7B, approximating memory). Model names
include rounded parameter counts: model-active-total for MoEs and model-total for
dense LMs (leading to differences from official names, e.g., “Gemma2-2B” has 2.6B active and total
parameters (Team et al., 2024c)). We run all evaluations ourselves with 5 few-shots (Appendix D).

Active Open MMLU Hella- ARC- ARC- PIQA Wino-
params Data Swag Chall. Easy Grande

LMs with ∼7-9B active parameters

Llama2-7B 6.7B 46.2 78.9 54.2 84.0 77.5 71.7
OLMo-7B (0724) 6.9B 54.9 80.5 68.0 85.7 79.3 73.2
Mistral-7B 7.3B 64.0 83.0 78.6 90.8 82.8 77.9
DCLM-7B 6.9B 64.4 82.3 79.8 92.3 80.1 77.3
Llama3.1-8B 8.0B 66.9 81.6 79.5 91.7 81.1 76.6
Gemma2-9B 9.2B 70.6 87.3 89.5 95.5 86.1 78.8

LMs with ∼2-3B active parameters

OpenMoE-3B-9B 2.6B 27.4 44.4 29.3 50.6 63.3 51.9
StableLM-2B 1.6B 40.4 70.3 50.6 75.3 75.6 65.8
DeepSeek-3B-16B 2.9B 45.5 80.4 53.4 82.7 80.1 73.2
JetMoE-2B-9B 2.2B 49.1 81.7 61.4 81.9 80.3 70.7
Gemma2-3B 2.6B 53.3 74.6 67.5 84.3 78.5 71.8
Qwen1.5-3B-14B 2.7B 62.4 80.0 77.4 91.6 81.0 72.3

LMs with ∼1B active parameters

Pythia-1B 1.1B 31.1 48.0 31.4 63.4 68.9 52.7
OLMo-1B (0724) 1.3B 32.1 67.5 36.4 53.5 74.0 62.9
TinyLlama-1B 1.1B 33.6 60.8 38.1 69.5 71.7 60.1
Llama3.2-1B 1.2B 38.2 67.3 43.5 71.6 73.7 62.5
DCLM-1B 1.4B 48.5 75.1 57.6 79.5 76.6 68.1
OLMOE-1B-7B 1.3B 54.1 80.0 62.1 84.2 79.8 70.2

After pretraining In Table 2 we benchmark OLMOE-1B-7B on common downstream tasks. We
find that OLMOE-1B-7B performs best among models that use less than 2B active parameters,
making it the most economical option for many use cases of LMs. For larger budgets, Qwen1.5-3B-
14B has stronger performance but has more than double the active and total parameters than OLMOE-
1B-7B. We find that despite requiring ∼6–7× less compute per forward pass, OLMOE-1B-7B
outperforms some dense LMs with 7B parameters such as Llama2-7B (Touvron et al., 2023b), but
falls short of others like Llama3.1-8B (Dubey et al., 2024). Figure 1 compares MMLU performance
with active parameters, a proxy for the value of a model given its cost, of OLMOE-1B-7B and other
LMs. OLMOE-1B-7B is the state of the art in its cost regime.

After adaptation In Table 3, we benchmark our instruction (SFT) and preference (DPO) tuning
of OLMOE-1B-7B. SFT improves our model on all tasks measured. We observe a >10× gain
on GSM8k, likely due to our inclusion of additional math data to account for the relatively small
amounts of math data during pretraining (§2). DPO helps on most tasks, especially AlpacaEval. Our
DPO model, which we refer to as OLMOE-1B-7B-INSTRUCT, has the highest average among all
models benchmarked. We find it to outperform the chat version of Qwen1.5-3B-14B despite Qwen
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Table 3: OLMOE-1B-7B after adaptation. Model names contain rounded parameter counts:
model-active-total for MoEs and model-total for dense LMs. We run all evaluations
ourselves (Appendix D). Models use different data mixes and setups for adaptation.

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 3-shot 0-shot 0-shot 0-shot 0-shot
Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

OLMo-1B (0724) 25.0 7.0 22.5 16.0 - 67.6 20.5 -
+SFT 36.0 12.5 27.2 21.2 41.5 81.9 26.1 35.9
+DPO 36.7 12.5 30.6 22.0 50.9 79.8 24.2 37.4

OLMo-7B (0724) 50.8 32.5 36.9 32.3 - 80.8 19.6 -
+SFT 54.2 25.0 35.7 38.5 70.9 86.1 39.7 49.3
+DPO 52.8 9.0 16.6 35.0 83.5 87.5 37.9 49.1

JetMoE-2B-9B 45.6 43.0 37.2 54.6 - 68.2 20.0 -
+SFT 46.1 53.5 35.6 64.8 69.3 55.6 30.5 50.4

DeepSeek-3B-16B 37.7 18.5 39.4 48.3 - 65.9 13.5 -
+Chat 48.5 46.5 40.8 70.1 74.8 85.6 32.3 57.0

Qwen1.5-3B-14B 60.4 13.5 27.2 60.2 - 73.4 20.9 -
+Chat 58.9 55.5 21.3 59.7 83.9 85.6 36.2 57.3

OLMOE-1B-7B 49.8 3.0 33.6 22.4 - 59.7 16.6 -
+SFT 51.4 40.5 38.0 51.6 69.2 84.1 43.3 54.0
+DPO 51.9 45.5 37.0 54.8 84.0 82.6 48.1 57.7

having >2× more parameters and its pretrained model outperforming OLMOE-1B-7B in Table 2.
The 84% score on AlpacaEval also outperforms much larger dense models on the leaderboard (Li
et al., 2023b), such as Llama2-13B-Chat (Touvron et al., 2023b).
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Figure 2: MoE vs. Dense. We train a 1.3B parameter dense model and a 1.3B active, 6.9B total
parameter MoE model, each on 128 H100 GPUs. Apart from MoE-related changes, we train both
with the same configuration for 130B tokens. The MoE has 64 experts per layer, 8 of which are
activated with an FFN dimension of 1,024. The dense model has an FFN dimension of 8,192. Thus
both have the same number of active parameters. Top: The MoE reaches the final dense performance
with ∼3× fewer tokens (or FLOPs, as both have the same active parameters ignoring the trivial
router parameters). Bottom: Due to some memory overhead, this equates to ∼2× faster training.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-MoE-vs-Dense--Vmlldzo4OTM0Mjkx
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4 EXPERIMENTING WITH ALTERNATIVE DESIGN CHOICES

This section contains some experiments that led to OLMOE-1B-7B with many more in Appendix B.

4.1 MIXTURE-OF-EXPERTS VS. DENSE

Prior work reports various speed-ups of MoEs over dense models: Artetxe et al. (2022) state MoEs
require 2–4× less compute to match dense models, MoMa (Lin et al., 2024b) exhibits 2.6× FLOP
savings for language tasks, Arctic (Snowflake, 2024b) yields 4× FLOP savings but for very different
dense and MoE configurations, and Switch Transformer MoEs (Fedus et al., 2022) train 2-7× faster
but for encoder-decoder models while the other works study decoder-only LMs (Radford et al., 2019).

In Figure 2, we compare MoEs and dense models in a controlled setup. We find that our MoE
reaches the performance of the dense model with ∼3× fewer tokens equivalent to ∼3× less compute
measured in FLOPs. However, due to the additional memory overhead of training the MoE with
its 7B total parameters, it processes fewer tokens per second than the dense model (23,600 tokens
per second per GPU for the MoE vs. 37,500 for dense). Thus, in terms of training time, it reaches
the performance of the dense model only ∼2× faster. There are likely optimizations possible that
would bring the speed-up closer to the 3× token speed-up, which we leave to future work. Based on
these results, we select an MoE configuration with 6.9B total and 1.3B active parameters matching
OLMo-7B in total and OLMo-1B in active parameter count, respectively (Groeneveld et al., 2024).
We provide more reasons for this configuration in Appendix J.

4.2 EXPERT GRANULARITY

Dai et al. (2024) propose to use small fine-grained experts to allow more combinations of experts
and thus make the model more flexible. For example, the Mixtral model (Jiang et al., 2024) uses the
common configuration of 8 experts per layer, 2 of which are activated. This allows for (8

2
) = 28 com-

binations per layer. By halving the size of each expert and therefore doubling the number of experts
to maintain the same compute and parameter budget, we can increase the possible combinations to
(16
4
) = 1, 820. Krajewski et al. (2024) investigate compute-optimal granularity configurations finding

that higher compute budgets warrant more granular experts.
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Figure 3: Expert granularity. We vary the number of experts in tandem with the FFN dimension to
ensure that active and total parameters and thus compute cost remain the same. For example, for 64
experts, the FFN dimension is 1,024 and 8 experts are active, while for 32 experts it is 2,048 with 4
active experts. More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/
reports/Plot-Granularity--Vmlldzo4OTIxOTE4

In Figure 3, we observe that more granular experts improve training loss, validation loss, and
downstream performance. The 8-expert configuration uses 1 active expert, which yields (8

1
) = 8

combinations. By quartering the size of each expert but increasing the number to 32 with 4 active
ones ((32

4
) = 35, 960 combinations), we observe an improvement of around 10% on HellaSwag

and MMLU at around 130 billion tokens. However, we find that there are diminishing returns
to granularity. The additional increase to 64 experts with 8 active ones ((64

8
) = 4, 426, 165, 368

combinations) improves downstream metrics by a smaller amount of 1–2%. For our OLMOE-1B-
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7B compute budget3 of 3 × 10
22, Krajewski et al. (2024) predict an optimal number of experts of

256 (G = 32 in their paper). However, their predictions are for compute-optimal models (Hoffmann
et al., 2022; Clark et al., 2022), while we train for 5T tokens, which is orders of magnitude beyond
what would be conventionally considered optimal for our model size. Thus, their predictions may not
extend to our setup, and we stick with 64 experts for OLMOE-1B-7B , also due to the diminishing
returns in Figure 3.

4.3 EXPERT CHOICE VS. TOKEN CHOICE
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Figure 4: Expert choice (EC) vs. token choice (TC). Both models have an 8-expert MoE in every
2nd layer. For TC, 2 experts are activated per token, while for EC the capacity factor is 2. Thus, both
models use the same number of active parameters. More results, logs, and configurations: https:
//wandb.ai/ai2-llm/olmoe/reports/Plot-EC-vs-TC--Vmlldzo4MzkzMDM3

The MoE router determines which experts process each input token (§2). There are two common
types (Liu et al., 2024b): expert choice (EC) (Zhou et al., 2022) and token choice (TC) (Shazeer
et al., 2017). For EC, each expert selects a fixed number of tokens per sequence. By design, this
leads to each expert processing the same number of tokens. This is the main benefit of EC as it
ensures perfect load balance, which improves training throughput and removes the need for a load
balancing loss. The main issue of EC is that it is impractical for autoregressive generation where a
single token is processed at each step rather than the entire sequence in one (Raposo et al., 2024).
Another potential downside is EC can lead to token dropping, where some tokens are not selected by
any expert, which can hurt performance (Gale et al., 2022). At the same time, it can lead to some
tokens being processed by multiple experts, which could also be beneficial as it allows the model to
allocate more compute to some tokens (Zhou et al., 2022). For TC, each token selects a fixed number
of experts. This can lead to many tokens choosing the same expert, hurting training efficiency. Thus,
TC is often used with a load balancing loss (Shazeer et al., 2017) to encourage equal distribution.

In Figure 4, we benchmark EC and TC. We find that TC outperforms EC for the same token budget
for all tasks depicted. While Zhou et al. (2022) find EC to be better, our configuration slightly differs
in that we use dropless MoEs (Gale et al., 2022) with a load balancing loss. Thus, our TC variant is
expected to perform better than the TC variant in Zhou et al. (2022). We confirm findings that EC runs
around 20% faster at 29,400 tokens per second per device versus 24,400 for TC (Zhou et al., 2022).
EC may be more beneficial in a multimodal setup (Lin et al., 2024b) as dropping noisy image tokens
is likely less harmful than text tokens. Thus, while we stick with TC for this release of OLMOE ,
we may revisit EC for future multimodal models.

5 MOE ANALYSIS

By advancing open and cost-efficient models (§1), OLMOE-1B-7B enables new research into
LMs and MoEs. Making use of our released intermediate checkpoints, data, and code, we define
and analyze four properties specific to MoEs: Router saturation (§5.1), Expert co-activation (§5.2),
Domain specialization (§5.3), and Vocabulary specialization (§5.4).

5.1 ROUTER SATURATION

Router saturation, as a function of time t, represents the proportion of overlapping activated experts
between the final checkpoint and an intermediary checkpoint at time t. Router saturation thus

3Approximated via 6 ∗N ∗D (Kaplan et al., 2020) with active parameters N (1B) and tokens D (5T).
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Figure 5: Router saturation during pretraining measured on a random 0.5% of the C4 validation
data. We compute saturation by comparing the routing to the top-k experts at four intermediate
checkpoints (1, 10, 20, and 40% of pretraining) to the final pretraining checkpoint (Equation 5).

corresponds to whether the router weights are still learning which expert will process certain data. A
value of 100% indicates that the router at the intermediate checkpoint will route to the same experts
as the final checkpoint router. See §H.1 for the detailed formula used to calculate the value.

Figure 5 shows that, after 1% of pretraining, up to ∼60% of routing to the top-8 activated experts
has already saturated (right). Thus the model already uses the same 8 experts for given input data
as it will at the end of pretraining. This early saturation aligns with prior work (Xue et al., 2024).
At 40% of pretraining, saturation reaches up to ∼80%. However, which top-1 expert has the highest
routing probability saturates slower (left). We find that routing in later layers saturates earlier during
pretraining. Layer 0 is an outlier saturating significantly more slowly than other layers. Dai et al.
(2024) do not use an MoE in the first layer as they find that load balancing converges more slowly for
the first layer. This is likely linked to our findings on saturation. Because routing in the first layer
saturates slower, the experts that certain input data get routed to frequently change. These changes
may lead to one expert suddenly getting significantly more data than others thereby impairing load
balancing. We are excited about future work further investigating what happens in the first layer by
building on our open release.

5.2 EXPERT CO-ACTIVATION
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Figure 6: Co-activation of
OLMOE-1B-7B experts on a
random 0.5% of the C4 validation
data. We display the 32 experts with
the highest maximum co-activation
score via their expert IDs on the x-
and y-axis. See Figure H1 for Layer
0 and 15.

We define expert co-activation as the proportion of times two
specific experts, Ei and Ej , are simultaneously activated out of
the total number of activations of one of them. A co-activation
of 100% indicates that if Ei is activated, Ej is also always
activated. A value of 0% indicates that the experts never co-
occur. See §H.1 for the formula used to calculate the value.

Figure 6 shows there is no strong co-activation among experts
in layer 7, with only few exceptions. This may indicate that
there is little redundancy across different experts. Layers 7 and
15 (Figure H1) show similar co-activation patterns with several
groups of 3 or 2 experts that tend to get activated together. We
investigate tokens that activate these experts in §5.4. Further,
in §H.2 (Figure H8), we investigate whether experts across
layers, rather than within one layer, tend to process tokens
together.

5.3 DOMAIN SPECIALIZATION

We define domain specialization as the specialization of expert Ei to domain D, specifically the
proportion of tokens from a particular domain D that get routed to a particular expert Ei (see §H.1
for the formula). A value of 100% indicates that all data from that domain is routed to Ei, whereas

8



0

100 OLMoE Layer 0 OLMoE Layer 7

0

100

0

100

0 8 16 24 32 40 48 56
0

100

0 8 16 24 32 40 48 56

D
om

ai
n 

sp
ec

ia
liz

at
io

n 
(%

)

Expert ID

GitHub arXiv

0

100 Mixtral Layer 0 Mixtral Layer 7

0

100

0

100

0 2 4 6
0

100

0 2 4 6

D
om

ai
n 

sp
ec

ia
liz

at
io

n 
(%

)

Expert ID

Books C4

Figure 7: Domain specialization of OLMOE-1B-7B (left) vs. Mixtral-8x7B (right). We visualize
how often tokens from different domains get routed to the 64 (OLMOE) or 8 (Mixtral) experts after
pretraining. We consider tokens routed to any of the k = 8 (OLMOE) or k = 2 (Mixtral) active
experts (Equation 7). Horizontal gray lines are random chance or uniform routing (8/64=12.5% per
expert for OLMOE-1B-7B with 8 active out of 64 total experts per layer and 2/8=25% for Mixtral
with 2 active out of 8 total experts per layer). See Figure H7 for k = 1 results.

0% indicates the expert is never used for that domain and can be removed from the model without
affecting performance in that domain.

Figure 7 (left) shows many examples of experts that are activated significantly above or below random
chance for specific domains. E.g., for arXiv, which has a very specific distribution with lots of
scientific text, the first expert in layer 0 is nearly 100% specialized. This suggests that there is little
redundancy in the knowledge of the experts in OLMOE-1B-7B, as they specialize in different
kinds of data. GitHub and arXiv are often activated together in layer 7, which we explore further in
§5.4. For generic domains, such as C4 (Raffel et al., 2023), which is a web crawl containing various
kinds of data, expert activations in OLMOE-1B-7B are much more balanced. This highlights that
the load balancing (§B.1.3) works as intended and the model makes proper use of all experts for
generic data. Mixtral-8x7B (Jiang et al., 2024) in Figure 7 (right), however, exhibits little domain
specialization across both unique and generic domains. Experts are activated close to the uniform
routing baseline for all layers and domains. Thus, there may be more redundancy across experts in
Mixtral, as they likely contain similar knowledge. We hypothesize that this is due to Mixtral being
upcycled from Mistral (Cai, 2023). The initialization from a dense model may limit the amount of
possible specialization in the experts as they all start from the same local optimum. This is likely why
training from scratch eventually outperforms upcycling in our pretraining experiments (§B.1.2).

5.4 VOCABULARY SPECIALIZATION

Vocabulary specialization refers to how specialized a particular expert is on a token ID x (also called
a vocabulary element), defined as the proportion of tokens with a token ID x that are routed to
one particular expert Ei out of all experts in that layer. We distinguish input and output variants
of this specialization, where x is either the input token ID or the next output token ID (either the
ground-truth next token ID or the token ID predicted by the model). A value of 100% indicates that
for all occurrences of that vocabulary element, input data is routed to Ei, whereas 0% indicates an
expert that is fully irrelevant for that vocabulary element and can be effectively removed from the
model without affecting performance whenever the token ID appears.

In Figure H2 we find that vocabulary specialization is higher in later layers, similar to how later layers
saturate earlier (§5.1). Later layers also specialize more on predicted output token IDs rather than
input token IDs, i.e., the routing is decided more by the token the model is about to predict rather than
the original input token. This is intuitive as in earlier layers there is more uncertainty about which
token the model will predict. At ∼90%, expert 27 specializes the most, which we find in Table 4 to
activate for many non-alphabetic tokens, such as Cyrillic and Devanagari letters. Expert 43 shows
specialization on geographic terms in both input and output tokens. Experts 48 and 23 both focus on
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Table 4: Vocabulary specialization in the 7th layer of OLMOE-1B-7B. We use k = 1 (Equation 8)
and a random 0.5% of the C4 validation data excluding token IDs with <10 appearances.
Expert ID Input token IDs Predicted output token IDs

27 (100%) (100%) 3 (100%) (100%)

(100%) (100%) (100%) (100%)

(100%) (100%) (100%)

(100%) § (100%) (100%) (100%)

(100%) (100%) (100%) (100%)

(100%) (100%) (100%)

43 Armenian (100%) ijan (100%) enia (96%)

Iraq (95%) Iranian (92%) Iran (92%)

Saudi (90%) northern (90%) Lebanon
(90%) Singapore (88%) Turkey (88%)

enia (90%) invasion (80%) Arabia (76%)
irregular (66%) regions (64%) border

(63%) Kong (61%) ians (61%) bases

(60%) Republic (59%) Ireland (58%)

4 sq (89%) Main (70%) reversal (69%)

YR (63%) GC (56%) Overall (50%) 79
(50%) main (50%) RE (46%) PCR (46%)

YR (90%) Character (88%) sq (77%) Os

(76%) GHz (71%) fluence (60%) amycin

(60%) pixels (56%) = (53%)

48 compared (42%) !) (41%) Then (41%) ’,

(40%) ), (35%) ”, (35%) instead (33%)

except (60%) tennis (41%) Marks (40%)

Dunn (33%) tears (30%) Arizona (30%)

23 .... (58%) Therefore (55%) So (46%) !!!
(46%) And (44%) According (41%) .”

(41%) !! (40%) ?” (38%) But (38%)

(53%) Republican (50%) Jack

(47%) THIS (40%) Democratic (40%)
according (39%) So (38%) Step (33%)

3 grandmother (92%) brother (91%) Daisy

(83%) daughter (78%) mum (75%)

hood (36%) mother (35%) inde (31%)
boy (29%) girl (28%) married (27%)

connector words, such as Then and Therefore . This is likely because they commonly process
tokens together with a high co-activation of 60% in Figure 6. Based on our findings in §5.3 that for
GitHub and arXiv often the same experts in layer 7 activate, we display one such expert (expert ID 4)
in Table 4. It seems to specialize in measurements, such as sq , YR (year), and GHz . These are
common terms in scientific papers corresponding to the arXiv domain and likely also in GitHub code
for computations related to measurements. They are less likely to appear in books, which explains the
low activation of expert ID 4 in layer 7 for book data in Figure 7. Expert 3 is among the three most
active experts of layer 7 for book data in Figure 7 (fourth yellow bar for layer 7). This resonates when
looking at its specialization on family terms in Table 4 (final row), which are far more common in
books than scientific papers or code. Overall, domain specialization and vocabulary specialization are
closely linked to one another, as domains are usually characterized by their distinct word distribution.
In Figure H5, we link them more closely by comparing the extent of vocabulary specialization across
domains and expert IDs. In Figure H3 and Figure H4 we also find that OLMOE-1B-7B exhibits
stronger vocabulary specialization than Mixtral-8x7B.

6 CONCLUSION

We open-source OLMOE-1B-7B and OLMOE-1B-7B-INSTRUCT including model, data, code,
and logs. At 1B active and 7B total parameters, our models yield state-of-the-art performance among
models with a similar amount of active parameters even outperforming larger models including
DeepSeekMoE-16B and Llama2-13B-Chat. We share ∼20 training experiments yielding novel
insights into Mixture-of-Experts. Further, we define and analyze new properties of MoEs showing
that OLMOE-1B-7B exhibits early router saturation, weak expert co-activation, and some evidence
of domain and vocabulary specialization. We intend our fully open release to serve as a basis for
more research into MoEs given their critical importance (§1). We are excited about more iterations of
OLMOE to close the gap between frontier models and fully open models.
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A RELATED WORK

Advances in MoEs Current LMs still largely follow the transformer architecture (Vaswani et al.,
2023) with only few architectural changes that have been widely adopted, such as decoder-only
training (Radford et al., 2019), SwiGLU activations (Shazeer, 2020; Dauphin et al., 2017), RoPE (Su
et al., 2023), MQA/GQA (Shazeer, 2019; Ainslie et al., 2023) and RMSNorm (Zhang & Sennrich,
2019). Model sparsity via Mixture-of-Experts is one modification still under active exploration with
some early adoption but most LMs, including Llama 3 (Dubey et al., 2024), still rely on a dense
architecture. There has been a lot of progress in improving the sparsely-gated MoE layer since
its introduction (Shazeer et al., 2017): New routing techniques (Lewis et al., 2021; Roller et al.,
2021; Zuo et al., 2022; Gross et al., 2017; Jaszczur et al., 2021; Dua et al., 2021; Zhong et al., 2024;
Wu et al., 2024b; Muqeeth et al., 2024), fine-grained expert segmentation (Dai et al., 2024; He,
2024), stability (Zoph et al., 2022) and efficiency (Lepikhin et al., 2020; Rajbhandari et al., 2022; Du
et al., 2022; Zhou et al., 2024; Li et al., 2022; Sukhbaatar et al., 2024; Pan et al., 2024; Ren et al.,
2023) improvements. In this work, we perform many experiments to provide insights into training
Mixture-of-Experts LMs. Subsequently, we train OLMOE-1B-7B for 5T tokens. No prior MoE has
been overtrained (Gadre et al., 2024) to this extent to our knowledge making OLMOE-1B-7B the
best testbed to research performance saturation of MoEs vs. dense models. With OLMOE we hope
to facilitate such and other research to help the field uncover whether MoEs should make it into all
future LMs and with what precise configuration.

Open LMs A variety of model families have been proposed under varying degrees of openness
commonly categorized based on whether model weights are available. Closed-weight models include
GPT (Brown et al., 2020; OpenAI et al., 2023), Gemini (Team et al., 2023; 2024a), PaLM (Chowdhery
et al., 2022; Anil et al., 2023), Reka (Team et al., 2024e), and open-weight ones include Llama (Tou-
vron et al., 2023a;b; Dubey et al., 2024), Mistral (Jiang et al., 2023; 2024), Gemma (Team et al.,
2024b;c), Falcon (Almazrouei et al., 2023; Penedo et al., 2023), MPT (Team, 2023), Qwen (Bai et al.,
2023a; Yang et al., 2024a), GLM (GLM et al., 2024), Yi (AI et al., 2024), DeepSeek (DeepSeek-AI
et al., 2024a;b; Dai et al., 2024), Nemotron (Parmar et al., 2024; Nvidia et al., 2024; Wang et al.,
2024b), InternLM (Cai et al., 2024), Baichuan (Yang et al., 2023), Phi (Gunasekar et al., 2023; Li
et al., 2023c; Abdin et al., 2024), StableLM (Bellagente et al., 2024), OPT (Zhang et al., 2022),
Zamba (Glorioso et al., 2024). However, besides model weights, training data and code are key
to enabling scientific research of these models (Longpre et al., 2023b; 2024) and distributing their
benefits broadly (Bommasani et al., 2023). There have been few releases also including data and
code in addition to model weights which we refer to as “fully open-source”: BLOOM (Workshop
et al., 2023; Scao et al., 2022; Muennighoff et al., 2023c; Yong et al., 2023), GPT-NeoX (Black
et al., 2022; 2021; Wang & Komatsuzaki, 2021), StarCoder (Li et al., 2023a; Lozhkov et al., 2024;
Allal et al., 2023; Muennighoff et al., 2023a; Zhuo et al., 2024), Pythia (Biderman et al., 2023),
OLMo (Groeneveld et al., 2024), LLM360 (Liu et al., 2023), Cerebras-GPT (Dey et al., 2023),
DCLM (Li et al., 2024a), MAP-Neo (Zhang et al., 2024a), RWKV (Peng et al., 2023; 2024), and
SmolLM (Allal et al., 2024). For Mixture-of-Experts only OpenMoE (Xue et al., 2024) aims to be
fully open-source, however, its poor performance limits its usefulness. We release OLMOE-1B-7B
as the first state-of-the-art Mixture-of-Experts LM that is fully open-source: model weights, data,
code, and logs.
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B ADDITIONAL EXPERIMENTS ON ALTERNATIVE DESIGN CHOICES

In this section, we present an extension of pretraining and adaptation experiments that have led to
OLMOE-1B-7B (also see §4). We group them into experiments on settings specific to Mixture-
of-Experts (§B.1), experiments on settings applicable to both dense LMs and MoEs (§B.2), and
adaptation experiments (§B.3). In pretraining experiments, we often use MMLU Var, a version of
MMLU (Hendrycks et al., 2021a) with varying few-shots and a different format that provides signal
earlier during training. We describe our full evaluation setup in Appendix D and provide additional
experiments in Appendix G. Each experiment links to a Weights & Biases report with more validation
and downstream results, and the full configurations of the runs. To isolate the impact of changes and
minimize confounders, we vary only one hyperparameter for each experiment. Nevertheless, due to
the large number of hyperparameters, some results may change under different configurations and we
cannot guarantee the correctness of each of our hyperparameter choices. Models are not comparable
across different experiments, as we vary the base model to incorporate successful findings.

B.1 MOE-SPECIFIC PRETRAINING SETTINGS

B.1.1 SHARED EXPERTS
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Figure B1: Shared experts. Both setups have the same number of active and total param-
eters and use the same number of FLOPs. 4 of the 32 routed experts are activated, while
it is 3 for the 31 routed experts of the other model, as it has 1 always-active shared expert.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Expert-sharing--Vmlldzo4OTIyMjQz

Dai et al. (2024) propose training with a shared/fixed expert that is always used in addition to the
routed experts. The intuition is to encourage the shared expert to learn common information and
allow the other routed experts to learn more specialized knowledge. This should reduce redundancy
among experts and thus lead to a better model as it can store more total information.

In Figure B1, we benchmark having a single shared and a single routed expert versus two routed
experts. While both settings lead to similar performance, sharing an expert performs slightly worse.
Sharing an expert removes flexibility from the model and thus goes against the findings in §4.2
suggesting that allowing for more expert combinations improves performance. Specifically, the two
models in Figure B1 have (32

4
) = 35, 960 and (31

3
) = 4, 495 possible combinations per layer. Thus,

removing one of the routed experts and turning it into a shared one eliminates almost 90% of possible
combinations. This likely acts as a counterforce to the potential benefits of isolating common knowl-
edge in a shared expert. Based on these results, we do not use shared experts in OLMOE-1B-7B ,
but we do think that there is merit to the idea of experts that are activated more often or even always.
However, rather than enforcing this behavior via a shared expert, we believe that it should be learned
by the model. This is difficult with current setups due to the necessity of a load balancing loss (§B.1.3)
penalizing the model if tokens are not distributed equally among experts. Potential future work can
explore removing the load balancing loss to allow for more flexible usage of experts.

B.1.2 SPARSE UPCYCLING

Komatsuzaki et al. (2023) propose turning a dense model into a Mixture-of-Experts model via sparse
upcycling: (1) The dense MLP is cloned for each desired expert to constitute MoE layers. (2) A newly
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Figure B2: Sparse upcycling. We upcycle OLMo-1B (0724) at 2T tokens into an MoE with
8 total experts of which 2 are activated and train it for an additional 610 billion tokens. We
compare it to a model trained from scratch for 610 billion tokens. Except for this differ-
ence, both models use the same config, which includes some suboptimal settings that con-
tribute to the instability, such as no QK-Norm (§B.2.5) and no truncated normal init (§B.2.2).
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Scratch-vs-Upcycle--Vmlldzo4NDIyOTc4

initialized router is added in front of each MoE layer. (3) Pretraining continues with the new model so
that the cloned MLPs can gradually specialize in different things and the router can be learned. They
find that the upcycling approach maintains a performance advantage over a language model trained
from scratch for up to 120% of the compute budget of the original dense checkpoint that the sparse
model was upcycled from. For example, if sparsely upcycling a 1.3B parameter model at 2 trillion
tokens then only at 2.4 trillion tokens should an MoE trained from scratch catch up with the upcycled
model. That is, the sparsely upcycled model would have been trained for another 400 billion tokens,
thereby saving the equivalent of up to 2T tokens of compute. Other works such as MiniCPM (Hu
et al., 2024), Qwen2 (Yang et al., 2024a) and reportedly Mixtral (Cai, 2023; Jiang et al., 2024) have
adopted sparse upcycling but only share limited information about their configuration.

In Figure B2, we compare sparse upcycling OLMo-1B (0724) (Groeneveld et al., 2024) with
training an MoE from scratch. We find that after 500B tokens, an otherwise equivalent MoE
trained from scratch already catches up with the upcycled model both on the metrics in Fig-
ure B2 and our additional metrics at https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Scratch-vs-Upcycle--Vmlldzo4NDIyOTc4. At around 600B tokens, the MoE
from scratch starts outperforming the upcycled MoE. Thus, it only requires 25% of the compute
budget of the original dense model to catch up as opposed to the 120% reported in Komatsuzaki
et al. (2023). However, they use expert choice routing and study encoder-decoder models (Raffel
et al., 2023). Meanwhile, we use token choice routing (§4.3) and decoder-only models (§2). Further,
we upcycle a model that has already been significantly overtrained (Gadre et al., 2024), i.e., a 1B
model trained for 2T tokens. Its parameters are likely already in a very optimal range for a dense
model, which may limit the amount of additional exploration possible after upcycling. This motivates
us to experiment with adding noise to the upcycled weights outlined in Appendix G, but we do not
find it to lead to better performance. A large disadvantage of upcycling is that the upcycled MoE
is constrained by some hyperparameters of the dense model. Specifically, OLMo-1B (0724) was
trained without QK-Norm and normal initialization, both of which hurt stability in our experiments
(§B.2.5, §B.2.2). While it may be possible to simply add new QK-Norms and train them from scratch
similar to the new router layer trained from scratch, it is impossible to change the initialization of
the original dense model when upcycling it. Thus, as we want to change these hyperparameters and
also train OLMOE-1B-7B for around 250% of the compute budget of the dense model (5T vs. 2T
tokens), we do not use upcycling.

B.1.3 LOAD BALANCING LOSS

Shazeer et al. (2017) propose the load balancing loss to penalize the model if it is unbalanced, i.e., if
it routes all tokens to only a few experts. This is based on the observation that without such penalty,
models tend to update only a select few experts in each layer (Eigen et al., 2014; Bengio et al., 2016).
To compute the load balancing loss (LLB) we multiply the fraction of tokens fi routed to one expert
Ei with the total routing probability Pi allocated to Ei for one batch and sum it across the number of
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Figure B3: Impact of applying a load balancing loss (LBL). The training loss plot excludes the
load balancing loss for both models. More results, logs, and configurations: https://wandb.
ai/ai2-llm/olmoe/reports/Plot-LBL-vs-No-LBL--Vmlldzo4OTkyNDg4
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Figure B4: Expert assignment during training when using or not using a load balancing loss for
the first MoE layer. More results, logs, and configurations: https://wandb.ai/ai2-llm/
olmoe/reports/Plot-LBL-vs-No-LBL--Vmlldzo4OTkyNDg4

experts NE :

LLB = NE ⋅
NE

∑
i=1

fi ⋅ Pi (3)

The loss is further scaled by NE and a loss weight α (see Equation 2), which is an optional weight to
determine the magnitude of the loss commonly set to 0.01 (Zoph et al., 2022; Xue et al., 2024). We
do not experiment with changing the weight of 0.01.

In Figure B3 we investigate the performance impact of using the auxiliary load balancing loss. We
find that across training loss and validation losses, using the load balancing loss leads to better
performance even after only a few billion tokens. We still measure the load balancing loss even
when it is not used (“No LBL”) and find that while it spikes initially, it slowly decreases over
the next few billion tokens. This behavior is also visible in Figure B4 (left), where initially all
tokens in the first layer are assigned to the 6th expert (pink). Eventually, the model also starts
assigning some tokens to the 1st expert (yellow). However, all other experts remain largely flat
and are thus “dead weights” that take up GPU memory but are not used. Given these results,
we use the auxiliary load balancing loss with a weight of 0.01 following prior work (Shazeer et al.,

2017; Shen et al., 2024). However, getting rid of the load balancing loss is an important direction for
future research as it constrains the flexibility of the model by forcing it to use all experts approximately
equally. This could prevent the experts from specializing in certain data domains and may be a reason
prior work has failed to find strong evidence of expert specialization (Jiang et al., 2024; Zoph et al.,
2022).

B.1.4 ROUTER Z-LOSS

Zoph et al. (2022) propose the router z-loss to improve both the stability and quality of MoE models.
This auxiliary loss penalizes large logits coming into the gating network. Such large logits can lead
to numeric overflows in the large matrix multiplications happening in the MoE layer. It is computed
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Figure B5: Router z-loss. We compare adding router z-loss with a loss weight of 0.001 versus
no additional z-loss. More results, logs, and configurations: https://wandb.ai/ai2-llm/
olmoe/reports/Plot-Zloss-vs-none--Vmlldzo4NDM4NjUz

by exponentiating the logits xj right before the router layer summed across the number of experts
NE and averaged across the batch B, thereby making larger logits lead to a larger loss:

LRZ(x) =
1

B
⋅

B

∑
i=1

(log
NE

∑
j=1

exp(x(i)
j ))

2

(4)

The loss is further multiplied with an optional loss weight, β (see Equation 2), to determine the
magnitude of the loss commonly set to 0.001 (Zoph et al., 2022; Shen et al., 2024). We do not
experiment with changing the weight of 0.001.

In Figure B5, we confirm that across training loss, validation loss, and downstream per-
formance adding the router z-loss improves stability (less spikes) and quality (lower loss
and higher downstream performance). Thus, despite it reducing throughput by ∼2%
we use the router z-loss for OLMOE-1B-7B with a weight of 0.001 as in Zoph et al. (2022).

B.2 GENERAL PRETRAINING SETTINGS

B.2.1 DATASET EXPERIMENTS
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Figure B6: OLMOE-MIX vs. Dolma 1.7. We compare our data mix described in §2
with Dolma 1.7 used to train prior OLMo models. Lower training loss does not mean
that one dataset is better, but rather suggests which dataset is easier for the model to learn.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Dolma-1-7-vs-Dolma-OLMoE--Vmlldzo4OTIxNTg5

Li et al. (2024a) release the DCLM-Baseline dataset and establish that it leads to better language mod-
els than Dolma 1.7 and other datasets as measured on common benchmarks like MMLU (Hendrycks
et al., 2021a). This motivates us to mix their DCLM dataset with some components from Dolma 1.7
that we deem to be high-quality; see §2. In Figure B6, we compare our mix, OLMOE-MIX, with
Dolma 1.7 in a controlled setup. We find that OLMOE-MIX leads to clear gains on all three down-
stream metrics, especially MMLU. DCLM-Baseline has been created through a series of dataset abla-
tions targeting MMLU and other downstream metrics, which explains these results. We also compare
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adding Reddit and FLAN to our mix as detailed in Appendix G, but do not find consistent performance
gains. We do not have a strong intuition for why adding these datasets does not help and a more auto-
matic approach to dataset mixing may be desirable for future iterations (Liu et al., 2024a; Albalak et al.,
2024). We pretrain using our mix of DCLM-Baseline and Dolma 1.7 dubbed OLMOE-MIX.

B.2.2 INITIALIZATION
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Figure B7: Initialization. We compare a normal initialization with a standard deviation (std) of
0.02 with a truncated normal initialization with a maximum (minimum) cut-off of 0.06 (–0.06)
corresponding to three stds (3×0.02). More results, logs, and configurations: https://wandb.
ai/ai2-llm/olmoe/reports/Plot-Init--Vmlldzo4NDIzMzM5

Few prior works on Mixture-of-Experts share their initialization strategy. Even the most open MoEs
prior to this work, JetMoE (Shen et al., 2024) and OpenMoE (Xue et al., 2024), do not mention their
initialization scheme. For DeepSeekMoE (Dai et al., 2024) and DeepSeekV2 (DeepSeek-AI et al.,
2024b), the authors share that they use a normal initialization with a standard deviation (std) of 0.006.
For dense language models, a normal initialization with an std of 0.02 has been commonly used as
popularized by Shoeybi et al. (2020).

In Figure B7, we find a truncated normal initialization leads to more stable training and bet-
ter performance than a regular normal initialization. The difference between the two initializa-
tions only becomes clear at around 450 billion tokens, where the model with the normal initial-
ization starts to diverge. This is despite both models using the same configuration except for
the difference in weight initialization. Having to train for hundreds of billions of tokens un-
til an experiment provides a clear signal is one of the key challenges of pretraining ablations.
We use the truncated normal initialization for OLMOE-1B-7B.

B.2.3 RMSNORM
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Figure B10: Total norm of the gra-
dients when training with RMS
or non-parametric normalization.
We increase the logging interval of
the RMS run at 75B tokens, hence
its change in thickness.

OLMo (Groeneveld et al., 2024) uses non-parametric layer nor-
malization (Ba et al., 2016), mainly as it is significantly faster
than the commonly used RMSNorm (Zhang & Sennrich, 2019;
Mehta et al., 2024). This is an unusual choice as most LMs use
RMSNorm, such as the Llama (Touvron et al., 2023a;b; Dubey
et al., 2024), Gemma (Team et al., 2024b;c), and Qwen (Bai
et al., 2023a; Yang et al., 2024a) model families.

In Figure B8, we observe that replacing the non-parametric
layer normalization in OLMo with a parametric RMSNorm
leads to better performance. This is likely because the non-
parametric layer normalization leads to a large number of
spikes in the gradients as seen in Figure B10. We clip gra-
dients at 1.0, which prevents these spikes from leading to very
large and potentially disruptive parameter updates. However,
the clipped gradients may still harm the performance of the
model as they are no longer the true gradients. Thus, de-
spite RMSNorm lowering our training throughput by 15%,
we train our final model with RMSNorm. We include the RMSNorm parameters in weight decay
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Figure B8: Non-parametric layer normalization vs. RMSNorm. More results,
logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-LN--Vmlldzo4NDQyMTAz
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Figure B9: Decaying the RMSNorm parameters. More results, logs, and configurations: https:
//wandb.ai/ai2-llm/olmoe/reports/Plot-Decay-LN--Vmlldzo4NDQ1NDYy

as we find that it performs slightly better (Figure B9) even though it is common practice to exclude
them.4

B.2.4 DECAYING EMBEDDING PARAMETERS

Similar to the RMSNorm parameters (§B.2.3), embedding parameters are commonly excluded
from weight decay.5 In Figure B11 we find that whether or not they are decayed has only
a minor impact on performance, with decaying being slightly better. Thus for simplicity,
we weight decay all parameters in OLMOE-1B-7B including embedding and RMSNorm.

B.2.5 QK-NORM

Some works have reported stability improvements from adding layer normalization after the query and
key projections (“QK-Norm”) (Team, 2024a; Mehta et al., 2024; Dehghani et al., 2023). QK-Norm
can prevent the subsequent attention operation from leading to very large logits that may lead to
numeric overflows and destabilize the network, especially when training in low precision. Like
layer normalization at other places in the model, the QK-Norm could be non-parametric or use the
parametric RMSNorm (§B.2.3).

In Figure B12, we compare using QK-Norm with no normalization after the query and key pro-
jections. We find that QK-Norm leads to some stability and performance improvements. We
perform this experiment with non-parametric layer normalization as used in OLMo (Groeneveld
et al., 2024), while we used parametric RMS layer normalization (Zhang & Sennrich, 2019) for
OLMOE-1B-7B (§B.2.3). To ensure the benefit of QK-Norm is not an artifact of comparing with
non-parametric layer normalization, we run another experiment with RMS layer normalization and

4https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025
5https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025
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Figure B11: Decaying the embedding parameters. More results, logs, and configurations: https:
//api.wandb.ai/links/ai2-llm/3h22onp5
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Figure B12: Query-Key layer normalization (QK-Norm). Both models use non-parametric
layer normalization. QK-Norm corresponds to additional layer normalization of the query and key
projections. More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/
reports/Plot-QKNorm-vs-none--Vmlldzo4NDIzMzE2

still find QK-Norm to lead to slightly better training loss and to prevent a large grad norm spike.6

Thus, we use QK-Norm for OLMOE-1B-7B despite it reducing throughput by almost 10%.

B.2.6 ADAMW EPSILON
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Figure B13: AdamW epsilon. More results, logs, and configurations: https://wandb.ai/
ai2-llm/olmoe/reports/Plot-AdamW-eps--Vmlldzo4NDc5MDg0

Groeneveld et al. (2024) use an epsilon (“eps”) value of 1E-05 in the AdamW optimizer for training
OLMo. A larger eps value leads to smaller steps of the optimizer but can be more stable (Kingma &
Ba, 2017).

In Figure B13, we find that decreasing eps to the recommended default of 1E-08 (Kingma & Ba,
2017) significantly improves performance while the run remains stable. Thus, we set eps to 1E-08
for our final run.

6https://wandb.ai/ai2-llm/olmoe/reports/Plot-QKNorm-revisited--Vmlldzo4NTc2NTIz
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B.3 ADAPTATION SETTINGS

Table B1: Adaptation experiments of OLMOE-1B-7B. We compare using the pretrained check-
point prior to annealing for adaptation, using the checkpoint after the additional 100B tokens of
annealing, and using the checkpoint after the additional 100B tokens of annealing and with load
balancing loss (§B.1.3) during adaptation. We apply DPO/KTO to the respective SFT model.

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 0-shot 0-shot 0-shot 0-shot 0-shot 0-shot

Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

OLMOE-1B-7B
w/o annealing 49.0 2.0 31.5 18.9 - 62.1 18.5 -

+SFT 50.2 43.0 35.6 55.5 68.9 83.8 39.7 53.8
+DPO 50.9 36.0 35.8 58.8 81.7 83.2 47.9 56.3

OLMOE-1B-7B 49.8 3.0 33.6 22.4 - 59.7 16.6 -
+SFT 51.4 40.5 38.0 51.6 69.2 84.1 43.3 54.0
+DPO 51.9 45.5 37.0 54.8 84.0 82.6 48.1 57.7
+KTO 51.2 45.5 34.1 57.1 81.6 86.6 47.5 57.7
+SFT
(load balancing) 50.9 36.5 35.7 52.4 66.9 84.8 42.3 52.8

+DPO
(load balancing) 51.1 42.5 39.3 55.6 82.9 82.1 46.0 57.1

Table B2: Load balancing loss (Equation 3) over
a subset of the respective corpora prior to scal-
ing with the load balancing loss weight α. While
we use load balancing loss during pretraining, we
do not use it during SFT.

Data (↓) OLMOE-1B-7B
After pretraining After SFT

Wikipedia 8.331 8.367
C4 8.073 8.076
SFT data 8.249 8.250

We experiment with small design choices for
adaptation using our evaluation setup described
in Appendix D. (1) Auxiliary losses: Zoph et al.
(2022) find that using the auxiliary load balanc-
ing loss (§B.1.3) during regular finetuning leads
to small performance gains. For instruction tun-
ing, however, Shen et al. (2023a) do not find
conclusive evidence in favor of using the load
balancing or router z-loss with only small dif-
ferences in performance, both in support of and
against the auxiliary losses. In Table B1 we dis-
play experiments with the load balancing loss
during adaptation and find that not using it leads
to better performance (54.0 vs. 52.8 after in-
struction tuning (SFT) and 57.7 vs. 57.1 after
preference tuning (DPO)). One potential problem of deactivating the load balancing loss is that it may
harm balance among experts and turn some into dead weights as observed during pretraining in §B.1.3.
However, when measuring the load balancing loss in Table B2 on our SFT data (§2), we find that the
loss only increases by around 0.01% after SFT (8.250 vs. 8.249). This is likely because which experts
certain tokens get routed to is determined early during pretraining, as we find later in the analysis
section (§5.1). We also visualize the activation patterns of experts of the model after pretraining, and
the models after SFT and DPO trained without load balancing in §H.2 (Figure H6) finding that the dis-
tribution remains around the same. Thus, as our models adapted without load balancing perform better
and we find it not to impact routing substantially, we do not use load balancing during adaptation .
(2) Annealing checkpoint: We also experiment with using the checkpoint pre-annealing (§2) for
adaptation and find the checkpoint post-annealing leads to better performance (53.8 vs. 54.0 af-
ter SFT and 56.3 vs 57.7 after DPO), thus we use the post-annealing checkpoint. (3) Preference
algorithm: Since the release of DPO (Direct Preference Optimization) (Rafailov et al., 2023), a
variety of preference algorithms have been proposed (Ethayarajh et al., 2024; Hong et al., 2024;
Meng et al., 2024). We experiment with KTO (Ethayarajh et al., 2024) and find that it matches DPO
in Table B1 for our setup (Appendix C). While we release both models, we use DPO for our final
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OLMOE-1B-7B-INSTRUCT model, as it scores higher on AlpacaEval, which has a smaller chance
of data contamination than our other benchmarks (Xu et al., 2024).

C TRAINING CONFIGURATION
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Figure C1: Comparison of the architecture of dense LMs and MoE models like OLMOE. The
figure excludes some details, e.g., OLMOE-1B-7B also uses QK-Norm (§B.2.5).

Table C1: Composition of the pretraining data for OLMOE-1B-7B. StarCoder (Li et al., 2023a;
Kocetkov et al., 2022), peS2o (Soldaini & Lo, 2023), and Wiki come from Dolma 1.7 (Soldaini et al.,
2024). arXiv from Red-Pajama (Computer, 2023), OpenWebMath (Paster et al., 2023) and Algebraic
Stack from ProofPile II (Azerbayev et al., 2023). Links to our data are in Appendix I.

Source Doc Type
GPT-NeoX Words

(billions)

UTF-8 Documents
(millions)tokens bytes

(billions) (GB)

DCLM-Baseline web pages 3,860 3,380 16,700 2,950
StarCoder code 101 63.9 325 78.7
peS2o STEM papers 57.2 51.3 268 38.8
arXiv STEM papers 21.1 23.5 88.8 1.55
OpenWebMath math web pages 12.7 10.2 42.4 2.91
Algebraic Stack math proofs code 12.6 9.6 39.3 2.83
English Wikipedia

& Wikibooks encyclopedic 3.69 3.16 16.2 6.17

Total 4,060 3,530 17,400 3,080

Pretraining We display the pretraining hyperparameter configuration of OLMOE-1B-7B in
Appendix C comparing with other relevant models. We follow Groeneveld et al. (2024) using the
AdamW optimizer (Loshchilov & Hutter, 2019) with ZeRO (Rajbhandari et al., 2020) via PyTorch
FSDP (Zhao et al., 2023) and mixed-precision training (Micikevicius et al., 2018). Our main model
settings differing from Groeneveld et al. (2024) are: (1) MoE-related changes: OLMOE-1B-7B
is a sparsely activated decoder-only transformer (Vaswani et al., 2023) using dropless Mixture-of-
Experts (Gale et al., 2022). Unlike most prior MoEs, we use a high granularity (Dai et al., 2024;
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Table C2: Adaptation training data for OLMOE-1B-7B. We mix Tulu 2 (Ivison et al., 2023), No
Robots (Rajani et al., 2023), CodeFeedback (Zheng et al., 2024), MetaMathQA (Yu et al., 2024) and
Daring Anteater (Wang et al., 2024b) for SFT and use a filtered UltraFeedback (Cui et al., 2023; Lin
et al., 2022) for preference tuning. Links to our data are in Appendix I.

Source Domain Samples
Instruction Tuning

Tulu 2 SFT Mix Various 326,154
No Robots Various 9,500
CodeFeedback-Filtered-Instruction Coding 156,526
MetaMathQA Math 98,750
Advanced (non-chat) subset of Daring Anteater Various 17,082

Preference Tuning (DPO (Rafailov et al., 2023))

UltraFeedback binarized and filtered for TruthfulQA contamination Various 60,800

Krajewski et al., 2024) with 64 small experts with an FFN dimension of just 1,024 rather than a
few large experts. We further use two auxiliary losses: router z-loss (Zoph et al., 2022) and load
balancing loss (Shazeer et al., 2017). (2) Stability improvements: (a) We use a truncated normal
initialization with a standard deviation of 0.02 and a minimum (maximum) cut-off of -0.06 (0.06)
corresponding to three standard deviations. (b) We use QK normalization (Team, 2024a; Mehta et al.,
2024; Dehghani et al., 2023). (c) We use RMSNorm (Zhang & Sennrich, 2019) instead of the non-
parametric LayerNorm used in Groeneveld et al. (2024). (3) Performance improvements: Besides
some of the stability improvements which also impact performance, we also reduce the AdamW
epsilon to 1.0E-08 from the 1.0E-05 used in Groeneveld et al. (2024) to speed up convergence.
Finally, we train OLMOE-1B-7B for significantly longer than all prior OLMo models amounting to
5T tokens and thus more than one epoch (1.3) following Muennighoff et al. (2023b). We shuffle the
pretraining dataset before starting the second epoch. To all data sources (Table C1), we apply a filter
that removes all documents with a sequence of 32 or more repeated n-grams, where an n-gram is any
span of 1 to 13 tokens. For the StarCoder subset, we also remove any document from a repository
with fewer than 2 stars on GitHub, whose most frequent word constitutes over 30% of the document,
or whose top-2 most frequent words constitute over 50% of the document. We shuffle all samples
randomly at the beginning of each epoch and train for a total of 5.133T tokens. During our annealing
phase (final 100B tokens), we reshuffle the entire dataset and then linearly decay the learning rate
from 5.0E-04 to 0, following prior work (Groeneveld et al., 2024; Li et al., 2024a).

Adaptation For finetuning we use Open Instruct (Wang et al., 2023; Ivison et al., 2023).7 We
filter all SFT samples to a length of fewer than 4096 tokens to match the sequence length of the
model. Following Muennighoff et al. (2024), we aggregate loss at the token level during SFT to
improve performance on long generative tasks, such as AlpacaEval. We finetune in BF16 with a
global batch size of 128 (4 H100 nodes with 8 GPUs each, a per device batch size of 2, and 2 gradient
accumulation steps). We train for 2 epochs with a constant learning rate of 2.0E-5. For DPO (Rafailov
et al., 2023), we reduce the global batch size to 32 (4 H100 nodes with 8 GPUs each and a per device
batch size of 1). We train for 3 epochs with a learning rate of 5.0E-7 and a DPO beta of 0.1. Our
adapted models are built on top of our annealed checkpoint, and we include the load balancing loss
during both SFT and DPO based on our experiments in §B.3. Our preference tuning recipe is heavily
optimized for DPO based on extensive experiments by Ivison et al. (2023), thus for KTO (Ethayarajh
et al., 2024) we experiment with a few settings in Appendix G. Our final KTO adaptation uses the
same hyperparameters as DPO, except that we use the RMSProp optimizer instead of Adam, which
we use for SFT and DPO, and that we reduce the training duration to 1.3 epochs (5,000 steps) for
KTO instead of the 3 epochs used for DPO.

Hardware We pretrain OLMOE-1B-7B on 256 H100 GPUs for approximately 10 days with
NV-link interconnect across GPUs and InfiniBand interconnect across nodes. We also use H100
GPUs for all our experiments but some use a cluster with GCP TCPx interconnect across nodes

7Code: https://github.com/allenai/open-instruct
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Table C3: Pretraining hyperparameters of OLMOE-1B-7B and comparable models trained
from scratch. We highlight rows where OLMOE-1B-7B differs from OLMo-1B. Active params
include vocab params. “?” = undisclosed settings, FFN = feed-forward network, Attn = Attention,
LR = learning rate, WSD = Weight-Stable-Decay (Hu et al., 2024), LBL = load balancing loss, Inv
Sq Root = Inverse Square Root decay (Shazeer & Stern, 2018), trunc = truncation, std = standard
deviation, “varies” = stds that are layer or weight-dependent.

OLMOE-1B-7B JetMoE OpenMoE OLMo-1B (0724)
Dimension 2,048 2,048 2,048 2,048
Activation SwiGLU SwiGLU SwiGLU SwiGLU
FFN dimension 1,024 5,632 8,192 8,192
Vocab size 50,304 32,000 256,384 50,304
Attn heads 16 16 24 16
Num layers 16 24 32 16
Layer norm type RMSNorm RMSNorm RMSNorm non-parametric
Layer norm eps 1.0E-05 1.0E-05 1.0E-06 1.0E-05
QK-Norm yes no no no
Pos emb. RoPE RoPE RoPE RoPE
RoPE θ 10,000 10,000 10,000 10,000
Attention variant full MoA full full
Biases - MLP & Attn - -
Weight tying no yes no no
Init dist trunc normal ? ? normal
Init std 0.02 0.02 varies varies
Init trunc 3×std - - -
MoE layers Every Every Every 6th -
MoE layer type dMoE dMoE ST-MoE -
# Experts 64 8 32 1
# Activated 8 2 2 1

# Vocab params 103M 66M 525M 103M
# Active params 1.3B 2.2B 2.6B 1.3B
# Total params 6.9B 8.5B 8.7B 1.3B

Sequence length 4,096 4,096 2,048 4,096
Batch size (samples) 1,024 1,024 2,048 512
Batch size (tokens) ∼4M ∼4M ∼4M ∼2M
warmup steps 2,500 2,500 10,000 2,000
peak LR 4.0E-04 5.0E-04 0.01 4.0E-04
minimum LR 4.0E-05 5.0E-05 - 4.0E-05
optimizer AdamW AdamW Adafactor AdamW
weight decay 0.1 0.1 0.0 0.1
beta1 0.9 ? 0.9 0.9
beta2 0.95 ? - 0.95
AdamW epsilon 1.0E-08 ? - 1.0E-05
LR schedule cosine WSD Inv Sq Root cosine
gradient clipping global 1.0 global 1.0 global 1.0 global 1.0
gradient reduce dtype FP32 ? ? FP32
optimizer state dtype FP32 ? ? FP32
LBL weight 0.01 0.01 0.01 -
Router z-loss weight 0.001 0.001 0.0001 -
Pretraining tokens 5,033B 1,000B 1,100B 2,000B
Annealing tokens 100B 250B - 50B
Annealing schedule linear - - linear
Annealing min LR 0 - - 0
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instead. For adaptation, we use 32 H100 GPUs for 33 hours to instruction tune and for another 14
hours to preference tune via DPO. For KTO adaptation we use 8 H100 GPUs for 30 hours instead.

D EVALUATION SETUP

Table D1: Summary of downstream evaluation during and after pretraining (OLMES). ARC-C
and ARC-E refer to ARC-Challenge and -Easy (Clark et al., 2018), CSQA=CommonsenseQA (Talmor
et al., 2019), OBQA=OpenBookQA (Mihaylov et al., 2018), other benchmarks are named as in their
original works (Clark et al., 2019; Gordon et al., 2012; Zellers et al., 2019; Hendrycks et al., 2021a;
Bisk et al., 2019; Welbl et al., 2017; Sap et al., 2019; Sakaguchi et al., 2019). CF=Completion/Cloze
formulation, MCF=Multiple-choice formulation, pmi=pointwise-mutual-information, Var=variants
referring to the use of few-shots varying from 0-5.

Dataset (↓)
During pretraining After pretraining (OLMES)

Format Shot Norm Split Format Shot CF Norm Split

ARC-C CF 0 token val max(MCF,CF) 5 pmi test
ARC-E CF 0 none val max(MCF,CF) 5 character test
BoolQ CF 0 none val max(MCF,CF) 5 none val
COPA CF 0 none val - - - -
CSQA CF 0 token val max(MCF,CF) 5 pmi val
HellaSwag CF 0 token val max(MCF,CF) 5 character val
MMLU MCF 5 none val max(MCF,CF) 5 character test
MMLU Var CF 0-5 token val - - - -
OBQA CF 0 token val max(MCF,CF) 5 pmi test
PIQA CF 0 token val max(MCF,CF) 5 character val
SciQ CF 0 none val - - - -
SocialIQA CF 0 token val max(MCF,CF) 5 character val
Winogrande CF 0 none val max(MCF,CF) 5 none val

During pretraining We evaluate using a similar in-loop evaluation setup as Groeneveld et al. (2024),
with the addition of more tasks such as CommonsenseQA, PIQA, and different implementations
of MMLU. Following Groeneveld et al. (2024), for the majority of the tasks, we perform 0-shot
evaluation using the Completion/Cloze formulation (CF), ranking each answer string using language
model probabilities. In terms of probability normalization, there is either no normalization (none) or
normalization by the number of tokens in the answer (token) when ranking solely based on probability
may heavily favor shorter answers (Brown et al., 2020). For MMLU, the in-loop evaluation also
includes a setup where we increase the total number of instances by including a range of 0-shot to
5-shot setups together as we found this provides smoother trends as the training proceeds (“MMLU
Var”). We also include the Multiple-choice formulation (MCF) version of MMLU, scoring prediction
of answer labels like A/B/C/D, which generally starts to rise only later in training as models only
gain the multiple-choice capability later (at around 1T tokens for OLMOE-1B-7B in Figure F3).
We also evaluate perplexity on selected validation sets from Paloma (Magnusson et al., 2023; Reid
et al., 2022; Gao et al., 2020; Soldaini et al., 2024; Liang et al., 2023; Merity et al., 2016). All code
used for evaluation during pretraining is at https://github.com/allenai/OLMo/tree/
61ac104d616ec5435db225796e5c7532c9abd95a/olmo/eval..

After pretraining - OLMES We perform evaluations following the OLMES evaluation stan-
dard (Gu et al., 2024), with the suite of tasks in the original paper. OLMES (Open Language Model
Evaluation Standard) is a standard for reproducible LM evaluations that is open, practical, and docu-
mented, providing recommendations guided by experiments and results from the literature (Biderman
et al., 2024; Gao et al., 2021; Groeneveld et al., 2023). It is designed to support comparisons between
smaller base models that require the Cloze formulation of multiple-choice questions against larger
models that can utilize the Multiple-choice formulation. To make our evaluations reproducible, we
follow OLMES in prompt formatting, choice of in-context examples, probability normalization, task
formulation, as well as all other details. We summarize this setup in Table 2 and refer to Gu et al.
(2024) for more details.
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After pretraining - DCLM For results on the DCLM tasks (Li et al., 2024a) in Table F2, we
precisely follow their setup using the evaluation code released by the authors at https://github.
com/mlfoundations/dclm. “Core” results are the low variance tasks in their evaluation
code, while “Extended” corresponds to the heavy tasks.

After adaptation After supervised finetuning and direct preference optimization, we evaluate
models using a subset of the evaluations and the same overall setup used in Ivison et al. (2023) and
Wang et al. (2023). We cover a wide range of model capabilities in our evaluation suite including
coding (HumanEval Chen et al. (2021)), general and mathematical reasoning (Big Bench Hard
Suzgun et al. (2022), GSM8k Cobbe et al. (2021)), world knowledge (MMLU), general instruction
following (AlpacaEval 1.0 Li et al. (2023b), not the length-controlled variant (Dubois et al., 2024)),
precise instruction following (IFEval Zhou et al. (2023b)) and safety (XSTest Röttger et al. (2024)).
We refer to Wang et al. (2023) for more details on each benchmark.

E OPENNESS OF MODELS

We list the openness of various models summarized in Figure 1. We exclude Switch Transform-
ers (Fedus et al., 2022), as it was published over three years ago and is very different from more
recent MoE models (MLM objective, Encoder-decoder, etc.).

Grok-86B-314B (xAI, 2024)

• Model: Their model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

Mixtral-39B-141B and Mixtral-13B-42B (Jiang et al., 2024)

• Model: Their model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

DBRX-36B-132B (Databricks, 2024)

• Model: The model is licensed under a custom non-open-source license8 with additional
use-case restrictions.9

• Data: Unavailable.
• Code: They use closed-source custom adaptations of their public libraries LLM-foundry,

composer, and megablocks.10

• Logs: Unavailable.

Skywork-MoE-22B-146B (Wei et al., 2024)

• Model: The model is licensed under a custom non-open-source license.11

• Data: Unavailable.
8https://www.databricks.com/legal/open-model-license
9https://www.databricks.com/legal/acceptable-use-policy-open-model

10https://github.com/databricks/dbrx
11https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%

20License.pdf
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• Code: Unavailable.
• Logs: Unavailable.

DeepSeekV2-21B-236B (DeepSeek-AI et al., 2024b) and DeepSeekMoE-3B-14B (Dai et al., 2024)

• Model: The models are licensed under custom non-open-source licenses.12

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

Arctic-17B-480B (Snowflake, 2024a)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They describe their mixture but do not release it.13

• Code: Unavailable.
• Logs: Unavailable.

Qwen2-14B-57B (Team, 2024b)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

Jamba-12B-52B (Lieber et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

Qwen1.5-3B-14B (Team, 2024b)

• Model: The model is licensed under a custom non-open-source license.14

• Data: Unavailable.
• Code: Unavailable.
• Logs: Unavailable.

JetMoE-2B-9B (Shen et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They describe their mixture but do not release it.

• Code: They make their fork of megablocks publicly available,15 however, their Megatron-
LM training code is not available.16

• Logs: Unavailable.
12https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL and

https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
13https://medium.com/snowflake/snowflake-arctic-cookbook-series-arctics-approach-to-data-b81a8a0958bd
14https://hf.co/Qwen/Qwen1.5-MoE-A2.7B/blob/main/LICENSE
15https://github.com/yikangshen/megablocks
16https://hf.co/jetmoe/jetmoe-8b/discussions/5#661ee52c03251697a0b155cc
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OpenMoE-2B-9B (Xue et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They make scripts for recreating their data available.

• Code: They make their code available.17

• Logs: Unavailable.

OLMOE-1B-7B

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: The data is licensed under the open-source ODC-By 1.0 license.

• Code: The code is licensed under the open-source Apache 2.0 license.

• Logs: Logs are available with the same open-source license as the code (Apache 2.0).
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Figure F1: Evaluation of OLMOE-1B-7B and the current best OLMo models dur-
ing pretraining. OLMOE-1B-7B differs from the OLMo models in its MoE architec-
ture, several training hyperparameters, and its training dataset, see §2. A version of
this plot with tokens as the x-axis and markers where annealing starts is in Appendix F.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-OLMoE-1B-7B-vs-OLMo-7B-vs-OLMo-1B--Vmlldzo4OTcyMjEz

During pretraining In Figure F1 we benchmark the performance of OLMOE-1B-7B during pre-
training with the current best OLMo models (Groeneveld et al., 2024) on commonly used downstream
tasks. We find that across all tasks OLMOE-1B-7B reaches better performance with less compute
(FLOPs) than the dense OLMo models. OLMOE-1B-7B matches or outperforms OLMo-7B at
the end of training despite OLMOE-1B-7B having used less than half as many FLOPs for training
and using only 1B active parameters. This is likely a result of the dataset and modeling changes we
make to the OLMo setup including MoE-related changes, stability, and performance improvements,
outlined in Appendix C. Appendix F contains training and validation loss plots showing very smooth
loss curves without major loss spikes during the 5T tokens of our pretraining.

17https://github.com/XueFuzhao/OpenMoE/tree/main?tab=readme-ov-file#
training-with-tpugpu
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Figure F2: Losses of OLMOE-1B-7B during training. The Books, Reddit, and Stack (Kocetkov
et al., 2022) datasets are from Dolma 1.7 (Soldaini et al., 2024) via Paloma (Magnusson et al., 2023).
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-OLMoE-1B-7B--Vmlldzo4OTcyMjU3
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Figure F3: Evaluation of OLMOE-1B-7B and the current best OLMo models dur-
ing pretraining. Grey vertical lines correspond to where the respective run enters an-
nealing with the 1st line being for OLMo-7B, the 2nd for OLMo-1B, and the third for
OLMOE-1B-7B. Figure F1 is a version of this plot with training FLOPs as the x-axis.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-OLMoE-1B-7B-vs-OLMo-7B-vs-OLMo-1B--Vmlldzo4OTcyMjEz
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Table F1: More results on OLMES. † indicates use of the MCF score, see Appendix D. See Table 2
for details on naming and a summary of these results.
Model ARC C ARC E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA WinoG Avg

LMs with ∼7-9B active parameters

Mistral-7B 78.6† 90.8† 89.3 72.4† 83.0 64.0† 80.6† 82.8 71.3† 77.9 79.1
OLMo-7B (0724) 68.0† 85.7† 85.3 85.4† 80.5 54.9† 67.6† 79.3 76.1† 73.2 75.6
DCLM-7B 79.8† 92.3† 87.0 77.0 82.3 64.4† 79.6† 80.1 71.2

† 77.3 79.1
Llama2-7B 54.2 84.0 86.1 74.2 78.9 46.2† 57.8 77.5 59.6 71.7 69.0
Llama3.1-8B 79.5† 91.7† 88.5 74.3† 81.6 66.9† 78.6† 81.1 71.4† 76.6 79.0
Gemma2-9B 89.5† 95.5† 89.4 78.8† 87.3† 70.6† 88.4† 86.1† 76.0† 78.8 84.0

LMs with ∼2-3B active parameters

StableLM-2B 50.6† 75.3 82.3 70.4† 70.3 40.4† 56.6† 75.6 64.3† 65.8 65.1
Gemma2-3B 67.5† 84.3† 83.6 66.4† 74.6 53.3† 68.8† 78.5 64.7† 71.8 71.4
JetMoE-2B-9B 61.4† 81.9† 85.7 75.3† 81.7 49.1† 68.0† 80.3 71.3† 70.7 72.5
OpenMoE-3B-9B 29.3 50.6 63.2 21.5 44.4 27.4 34.6 63.3 42.9 51.9† 42.9
DeepSeek-3B-16B 53.4 82.7 81.9 72.7 80.4 45.5† 58.4 80.1 59.9 73.2 68.8
Llama3.2-3B 69.6† 85.1† 78.3 69.0 77.0 57.8† 67.2† 77.4 64.9† 69.9 71.6
Qwen1.5-3B-14B 77.4† 91.6† 85.0 81.4† 80.0 62.4

† 80.6† 81.0 74.1† 72.3 78.6

LMs with ∼1B active parameters

OLMo-1B (0724) 36.4 53.5 66.8 42.4 67.5 32.1 44.2 74.0 45.2 62.9 52.5
TinyLlama-1B 38.1 69.5 63.6 61.1 60.8 33.6 45.0 71.7 50.4 60.1 55.4
Pythia-1B 31.4 63.4 56.8† 50.9 48.0 31.1 40.4 68.9 46.4 52.7 49.0
Llama3.2-1B 43.5 71.6 69.4 59.6 67.3 38.2 42.0 73.7 52.0 62.5 58.0
Zamba2-1B 55.0† 85.4 76.1 70.1 73.4 44.73† 59.8† 76.6 58.4 67.2 66.7
DCLM-1B 57.6† 79.5 80.9 71.3 75.1 48.5† 60.0† 76.6 60.5† 68.1 67.8
OLMOE-1B-7B 62.1† 84.2 79.2 72.9 80.0 54.1† 65.4† 79.8 63.0† 70.2 71.1
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Table F2: DCLM evaluation metrics on the Core and Extended task subsets (Li et al., 2024a).
∗=Core tasks. “annealed” is the final pretraining checkpoint we use for OLMOE-1B-7B and was
annealed from the checkpoint at step 1,200,000. We left the non-annealing pretraining run train a
little longer resulting in the 1,220,000 checkpoint.

OLMOE-1B-7B checkpoint (→) step 1,200,000 step 1,220,000 annealed OLMo-1B OLMo-7B

AGI Eval LSAT-AR∗ 24.3 26.5 28.7 28.3 28.3
AGI Eval LSAT-LR 40.2 38.6 37.3 30.2 42.9
AGI Eval LSAT-RC 47.4 43.7 46.6 23.5 61.6
AGI Eval SAT-En 55.3 54.9 52.9 28.2 73.8
AGI Eval SAT-Math CoT 5.5 4.1 6.4 1.8 6.8
AQuA CoT 2.4 2.9 2.0 2.9 6.1
ARC Challenge∗ 53.3 53.4 53.8 34.6 48.1
ARC Easy∗ 77.1 78.5 77.7 64.4 75.9
BBQ 49.8 48.3 50.6 45.8 67.2
BigBench CS Algorithms∗ 47.1 50.2 47.2 47.5 53.6
BigBench Conceptual Combinations 51.5 50.5 56.3 31.1 68.0
BigBench Conlang Translation 3.7 6.1 7.3 4.3 7.3
BigBench Dyck Languages∗ 19.3 15.9 21.5 26.6 22.2
BigBench Elementary Math QA 26.2 27.0 26.9 26.2 30.4
BigBench Language Identification∗ 31.9 34.0 31.0 27.0 39.1
BigBench Logical Deduction 26.6 25.3 24.6 23.6 27.3
BigBench Misconceptions 59.8 55.3 62.6 55.7 58.0
BigBench Novel Concepts 62.5 62.5 65.6 43.8 53.1
BigBench Operators∗ 36.2 34.3 33.8 23.8 45.2
BigBench QA Wikidata∗ 68.2 68.8 69.2 67.0 69.9
BigBench Repeat Copy Logic∗ 15.6 15.6 18.8 3.1 9.4
BigBench Strange Stories 66.7 68.4 69.5 53.4 66.1
BigBench Strategy QA 56.2 58.1 57.0 51.5 68.6
BigBench Understanding Fables 47.1 44.4 47.6 28.0 61.4
BoolQ∗ 73.3 72.8 73.2 63.7 83.9
COPA∗ 81.0 80.0 78.0 75.0 77.0
CoQA∗ 43.7 44.4 43.7 3.4 45.4
CommonsenseQA∗ 67.2 67.0 69.3 19.6 86.0
Enterprise PII Classification 52.3 53.7 52.2 57.3 50.6
GPQA Diamond 22.2 21.2 19.7 19.7 20.2
GPQA Main 24.8 22.3 22.5 20.3 23.0
GSM8K CoT 6.4 7.4 7.4 4.9 30.6
HellaSwag 0-shot∗ 76.0 76.0 77.0 65.8 76.7
HellaSwag 10-shot∗ 77.6 77.5 78.6 66.3 78.9
Jeopardy∗ 48.8 48.7 50.3 22.6 46.5
LAMBADA∗ 72.7 72.2 73.3 61.1 71.8
LogiQA 34.9 34.3 34.6 28.7 31.0
MMLU Few-shot 52.2 51.9 53.3 28.4 55.1
MMLU Zero-shot 41.6 42.7 43.3 26.2 50.0
Math QA 26.4 27.1 27.5 24.1 29.8
OpenBookQA∗ 41.4 44.0 44.8 36.6 43.4
PIQA∗ 81.3 81.2 82.0 76.4 81.7
PubMedQA 56.1 46.6 57.9 0.2 57.9
SQuAD∗ 52.9 52.4 52.4 0.0 65.5
SVAMP CoT 30.0 28.0 33.0 14.3 44.7
Simple Arithmetic, no spaces 17.6 18.1 20.1 1.2 15.3
Simple Arithmetic, with spaces 19.5 20.6 22.1 1.8 16.0
Social IQA 71.5 70.7 69.3 69.5 84.4
Trivia QA 54.2 53.0 55.9 25.1 51.8
Winogender Female 50.0 46.7 50.0 41.7 58.3
Winogender Male 55.0 58.3 60.0 63.3 58.3
Winograd∗ 82.8 83.2 84.6 79.9 83.2
Winogrande∗ 68.0 68.5 69.0 61.8 67.6

Core 46.3 46.5 47.2 30.2 49.8
Extended 31.3 30.9 32.5 16.9 37.0
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Figure G1: Adding Reddit or FLAN to OLMOE-MIX. More results,
logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Adding-Reddit-FLAN--Vmlldzo4OTg1NTg4

Adding Reddit or FLAN to OLMOE-MIX In Figure G1 we benchmark adding the Reddit or
FLAN (Wei et al., 2022) subsets of Dolma 1.7 (Soldaini et al., 2024) to our pretraining data mix (§2).
Overall, we do not find either one to lead to consistent gains, thus we do not use them in our final
data mix.

Load balancing precision Fedus et al. (2022) selectively perform operations related to routing
in full precision (FP32) to improve stability. In Figure G2, we test whether computing the load
balancing loss in full precision improves stability, but do not find it to reduce spikes. Thus, we stick
with bfloat16 (BF16).

Noise upcycling For the creation of Qwen2-MoE (Yang et al., 2024a; Team, 2024b; Bai et al.,
2023a), the authors add 50% of gaussian noise to feedforward networks before continuing training
in an upcycled setup (Komatsuzaki et al., 2023). Komatsuzaki et al. (2023) also report that they
experimented with adding noise but did not find it beneficial. In Figure G3, we experiment with
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ai/ai2-llm/olmoe/reports/Plot-FP32-LBL--Vmlldzo4NDMxNDA4
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Figure G3: Adding noise to the upcycled checkpoint. More results,
logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Noise-upcycle---Vmlldzo4NDA3MzI2

regular upcycling versus adding noise by randomly replacing 50% of each MLP with numbers drawn
from a normal distribution with a standard deviation of 0.02 following. We find that after 700 billion
tokens, the no noise variant still performs slightly better but both appear to converge to the same
performance. If training further, it is possible that the noise variant eventually outperforms the no
noise variant, but at that point, it may make more sense to just train the MoE from scratch (§B.1.2).
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Figure G4: Sharing the same MoE across layers versus a regular dense LM. The num-
ber of experts in the MoE is equivalent to its number of layers. Thus, because the MoE is
shared across layers, it has the same number of total and active parameters as the dense model.
More results, logs, and configurations: https://wandb.ai/ai2-llm/olmoe/reports/
Plot-Shared-vs-Dense--Vmlldzo4NDI0MTc5

Shared Layer Some work has investigated Mixture-of-Experts with weights shared across layers in
the context of Universal Transformers (Tan et al., 2023; Csordás et al., 2024; Dehghani et al., 2019).
We test whether layer-shared Mixture-of-Experts can beat non-shared dense models in Figure G4.
The layer-shared MoE uses a load balancing loss that is applied at the model level rather than at
the layer level. This gives the model more flexibility by allowing it to completely deactivate certain
experts for some layers and even emulate a dense model by always activating one separate expert for
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each layer. This makes it a generalization of the dense model which motivated our hypothesis that it
may perform better than the dense model. However, in practice, we find that both perform similarly
with the regular dense models even maintaining a small advantage on validation loss and HellaSwag.
One possible advantage of layer-shared MoEs is that they can allow for better load balancing at
inference. If prompts come in continuously, then newly incoming prompts can be batched with
previous prompts that have already passed through several layers and sent through the MoE module
together, as the MoE module is the same regardless of whether it is the first or last layer. Sharing also
reduces throughput by around 20% during training, which further motivates our decision not to use it
for OLMOE-1B-7B.

KTO experiments In Table G1 we experiment with the number of steps (5,000 vs. 10,000) and the
optimizer (Adam (Kingma & Ba, 2017) vs. RMS) used for KTO (Ethayarajh et al., 2024). Based on
these experiments we use the RMS optimizer and the checkpoint at 5,000 steps in §B.3.

Table G1: KTO adaptation experiments. 5,000 and 10,000 steps correspond to 1.3 and 2.6 epochs
on our adaptation dataset (§2), respectively.

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 0-shot 0-shot 0-shot 0-shot 0-shot 0-shot

Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

KTO, 5,000 steps, RMS 51.2 45.5 34.1 57.1 81.6 86.6 47.5 57.7
KTO, 10,000 steps, RMS 51.0 41.0 34.7 53.8 81.0 62.3 47.5 54.2

KTO, 5,000 steps, Adam 51.2 42.0 35.3 55.6 81.0 84.5 46.6 56.0
KTO, 10,000 steps, Adam 51.0 43.0 34.1 54.9 79.7 62.7 47.5 53.3

H ANALYSIS

H.1 DETAILS OF ANALYSIS IN §5

Router saturation We define router saturation as the proportion of expert activations at some
intermediary checkpoint at time t that matches the expert IDs activated at some final checkpoint over
the same dataset:

Router Saturation(t) = 1

N

N

∑
i=1

∣E(t)
i ∩ E(T )

i ∣
k

, (5)

where:

• N : The total number of tokens in the dataset.

• k: The number of top-k experts activated per input token. While we train with k = 8 (§2),
we also analyze k = 1 by only looking at the expert with the highest routing probability.

• E(t)
i : The set of k experts activated for the ith token at the tth checkpoint.

• E(T )
i : The set of k experts activated for the ith token at the final checkpoint T .

• ∣E(t)
i ∩ E(T )

i ∣: The number of common experts activated for the ith token between the tth
and final checkpoints.

Router saturation thus corresponds to whether the router weights are still learning which expert will
process certain data. A value of 100% indicates that the router at the intermediate checkpoint will
route to the same experts as the final checkpoint router. However, even at 100% saturation the router
weight can still change and adapt the exact router probability for each expert. These probabilities
are used to scale the output of the respective expert in the model. For OLMOE-1B-7B with its 64
experts, random routing equals a saturation of 1/64 = 1.6% for k = 1 and 8/64 = 12.5% for k = 8.
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Expert co-activation We define expert co-activation as the proportion of times two specific experts,
Ei and Ej , are simultaneously activated out of the total number of activations of one of those experts:

Expert co-activation(Ei, Ej) =
NEi,Ej

NEi

, (6)

where:

• Ei: The first expert.

• Ej : The second expert.

• NEi,Ej
: The number of times experts Ei and Ej are activated together.

• NEi
: The total number of times expert Ei is activated.

A co-activation of 100% indicates that if Ei is activated, Ej is also always activated. A value
of 0% indicates that the experts never co-occur. If multiple expert pairs have high co-activation,
it may suggest that these experts could be merged, benefiting less from keeping them separate.
In a distributed setup, we could place highly co-activated experts on the same device to reduce
communication costs during model inference.

Domain specialization We define domain specialization as the proportion of tokens from a particu-
lar domain D that get routed to a particular expert Ei:

Domain specialization(Ei, D) =
N

(k)
Ei,D

ND
, (7)

where:

• Ei: The ith expert in the model.

• D: The domain from which the data originates.

• k: The number of experts considered (e.g., k = 8 means considering the top 8 experts with
the highest routing probabilities).

• N
(k)
Ei,D

: The number of tokens from domain D for which Ei is among the top-k selected
experts.

• ND: The total number of tokens from domain D processed by the MoE.

Domain specialization thus refers to the specialization of expert Ei to domain D. A value of 100%
indicates that all data from that domain is routed to Ei, whereas 0% indicates the expert is never used
for that domain and can be removed from the model without affecting performance in that domain.

Vocabulary specialization We define vocabulary specialization as the proportion of tokens with
a token ID x (also called vocabulary element) that are routed to one particular expert Ei out of all
experts in that layer:

Vocabulary specialization(Ei, x) =
N

(k)
x,Ei

Nx
, (8)

where:

• Ei: The ith expert in the model.

• x: The token ID being analyzed.

• k: The number of experts considered (e.g., k = 8 means considering the top 8 experts with
the highest routing probabilities).

• Nx,Ei
: The number of times input data is routed to Ei for x.

• Nx: The total number of times input data is routed across all experts for x.
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Vocabulary specialization thus refers to how specialized a particular expert is on some vocabulary
item. We distinguish input and output variants of this specialization, where x is either the input token
ID or the next output token ID (either the ground-truth next token ID or the token ID predicted by the
model). A value of 100% indicates that for all occurrences of that vocabulary element, input data is
routed to Ei, whereas 0% indicates an expert that is fully irrelevant for that vocabulary element and
can be effectively removed from the model without affecting performance whenever the token ID
appears.

H.2 ADDITIONAL ANALYSIS
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Figure H1: Co-activation among experts of OLMOE-1B-7B on a random 0.5% of the C4
validation data. We display the 32 experts with the highest maximum co-activation score via their
expert IDs on the x- and y-axis. See Figure 6 for layer 7.
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Figure H2: Vocabulary specialization of OLMOE-1B-7B across layers and experts. To compute
vocabulary specialization per layer (left) we average the specialization of each expert in that layer.
Dashed lines (right) correspond to the average of layer 7 as depicted left. We display the first 32
experts out of 64. This plot is when k = 1 in Equation 8.
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Figure H3: Vocabulary specialization for OLMOE-1B-7B when considering all 8 activated
experts. Equivalent to k = 8 in Equation 8.
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Table H1: Vocabulary specialization in the 7th layer of OLMOE-1B-7B. We use k = 1 (Equa-
tion 8) and a random 0.5% of the C4 validation data excluding token IDs with <10 appearances. See
Table 4 for more.
Expert ID Input token IDs Predicted output token IDs

58 (“ (100%) (” (100%) ‘ (94%) ’ (92%)

“ (92%) ( (92%) ” (90%) ’ (89%) “

(88%) $ (87%) [ (87%) £ (86%)

such (100%) 486 (100%) see (95%)
which (91%) driving (91%) UK (90%)

who (88%) including (88%) normal (88%)

7 Him (100%) inde (100%) Jesus (98%)
God (90%) pray (81%) Holy (80%)

Quran (80%) God (77%) Lord (76%)

glory (75%) Spirit (66%) Christ (65%)

rella (100%) Him (94%) sin (90%)
prince (80%) glory (72%) Jesus (69%)

Lord (68%) Christ (65%) Spirit (55%)

Holy (53%) God (50%) Prayer (50%)

37 Sunday (100%) Tuesday (100%)

Thursday (100%) Olympic (100%)

Christmas (100%) rugby (100%)

Championship (100%) weekends (100%)

days (91%) anniversary (90%) month

(88%) week (84%) mpi (83%) semester

(81%) mand (80%) Olympics (78%) cent
(76%) season (76%) perm (75%)

0 ESM (100%) icillin (100%) agra (98%)

aust (96%) asa (93%) pills (92%) mg

(85%) uk (82%) login (82%) doc (81%)

generic (81%) cd (81%) Essay (81%)

password (81%) Content (80%)

*, (100%) sil (96%) pills (91%) vi

(90%) xen (87%) pharmacy (87%) gener

(85%) aust (82%) mg (75%) Content

(75%) uk (73%) THAT (73%) dispens

(68%) icillin (68%) generic (66%)

3 grandmother (92%) brother (91%) Daisy

(83%) daughter (78%) mum (75%) father

(72%) wife (70%) husband (70%) lady

(63%) dad (62%) boy (61%)

hood (36%) mother (35%) inde (31%)
boy (29%) girl (28%) married (27%)

tri (21%) Gab (20%) died (18%) taught

(14%) lived (13%) knew (10%)
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Figure H4: Vocabulary specialization for Mixtral-8x7B when considering all 2 activated experts.
Equivalent to k = 2 in Equation 8.
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Figure H5: Vocabulary specialization across domains of OLMOE-1B-7B (top) and Mixtral-
8x7B (bottom). We visualize how often token IDs get routed to specific experts. We only include
IDs that appear at least 8 times in the various corpora. Vertical gray lines correspond to uniform
routing (8/64=12.5% for OLMOE-1B-7B as it has 64 experts, 8 of which are activated; 2/8=25%
for Mixtral as it has 8 experts, 2 of which are activated). For example, among all token IDs in GitHub
that get routed to Expert 0 at least 8 times for OLMOE-1B-7B, ∼40% of them get routed to Expert
0 with a probability of ∼100% (upper left) indicating that Expert 0 is specialized on those token IDs.
For OLMOE-1B-7B there is much frequency at the routing probability extremes (0% or 100%)
indicating that these experts exclusively focus on certain token IDs, especially for specific domains
(§5.3) like GitHub and arXiv.

53



0

100 Layer 0 Layer 7 Layer 15

0

100

0 8 16 24 32 40 48 56
0

100

0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56

D
om

ai
n 

sp
ec

ia
liz

at
io

n 
(%

)

Expert ID

OLMoE OLMoE-SFT OLMoE-DPO

Figure H6: Load imbalances in selective layers after adaptation. We visualize how often tokens
from our instruction tuning dataset (§2) get routed to the 8 active experts out of the 64 total experts
(k = 1 in Equation 7). Horizontal gray lines correspond to uniform routing (8/64=12.5% per
expert). Although we run SFT and DPO without loss balancing loss (§B.3), we observe that the load
distribution does not change substantially.
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Figure H7: Domain specialization of OLMOE-1B-7B (top) vs. Mixtral-8x7B (bottom) of the
top-1 routed expert. We visualize how often tokens from different domains get routed to the 64
(OLMOE) or 8 (Mixtral) experts at the end of pretraining. Unlike in Figure 7, here we only consider
tokens routed to the top-1 expert (k = 1 in Equation 7). Horizontal gray lines correspond to uniform
routing (1/64=1.56% per expert for OLMOE-1B-7B and 1/8=12.5% for Mixtral).
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Figure H8: OLMOE-1B-7B token routing across layers. We visualize how often tokens from
different domains get routed to a pair of experts across layers under top-1 routing, corresponding to
Figure H7. The size of each rectangle is proportional to the total number of tokens an expert receives,
while the flow between two experts shows the proportion of tokens routed to both experts. We only
show experts that receive tokens 50% above random chance and use stronger coloring for larger flows.
We observe some instances of cross-layer coordination between pairs of experts, e.g., expert 27 in
layer 7 and expert 57 in layer 15 process a substantial fraction of Wikipedia tokens together. The
flows between layers 0 → 7 and 7 → 15 are independent in this visualization.
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Figure H9: Mixtral-8x7B token routing across layers. We visualize how often tokens from different
domains get routed to a pair of experts across layers under top-1 routing, corresponding to Figure H7.
The size of each rectangle is proportional to the total number of tokens an expert receives, while the
flow between two experts shows the proportion of tokens routed to both experts. The flows between
layers 0 → 7 and 7 → 15 are independent in this visualization.
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I ARTIFACTS

Table I1: All artifacts released and used in this work. We point from the name used for a given
artifact in this work (e.g. Figure 1) to the URL where it can be obtained.

Artifact Public link
OLMOE-1B-7B https://hf.co/allenai/OLMoE-1B-7B-0924
OLMOE-1B-7B-INSTRUCT https://hf.co/allenai/OLMoE-1B-7B-0924-Instruct
OLMOE-1B-7B-SFT https://hf.co/allenai/OLMoE-1B-7B-0924-SFT
OLMOE-MIX https://hf.co/datasets/allenai/OLMoE-mix-0924

SFT data https://hf.co/datasets/allenai/
tulu-v3.1-mix-preview-4096-OLMoE

KTO/DPO data https://hf.co/datasets/allenai/
ultrafeedback binarized cleaned

Code https://github.com/allenai/OLMoE

Logs https://wandb.ai/ai2-llm/olmoe/reports/
OLMoE-1B-7B-0924--Vmlldzo4OTcyMjU3

BLOOM-7B https://hf.co/bigscience/bloom-7b1
DeepSeekMoE-3B-16B https://hf.co/deepseek-ai/deepseek-moe-16b-base
DeepSeekMoE-3B-16B+chat https://hf.co/deepseek-ai/deepseek-moe-16b-chat
DCLM-1B https://hf.co/TRI-ML/DCLM-1B
DCLM-7B https://hf.co/TRI-ML/DCLM-7B
Falcon-7B https://hf.co/tiiuae/falcon-7b
Gemma2-3B https://hf.co/google/gemma-2-2b
Gemma2-9B https://hf.co/google/gemma-2-9b
JetMoE-2B-9B https://hf.co/jetmoe/jetmoe-8b
JetMoE-2B-9B+SFT https://hf.co/jetmoe/jetmoe-8b-sft
JetMoE-2B-9B+Chat https://hf.co/jetmoe/jetmoe-8b-chat
Llama-7B https://hf.co/huggyllama/llama-7b
Llama2-7B https://hf.co/meta-llama/Llama-2-7b-hf
Llama3.1-8B https://hf.co/meta-llama/Meta-Llama-3.1-8B
MPT-7B https://hf.co/mosaicml/mpt-7b
Mistral-7B https://hf.co/mistralai/Mistral-7B-v0.1
Mixtral-8x7B https://hf.co/mistralai/Mixtral-8x7B-v0.1
OLMo-1B (0724) https://hf.co/allenai/OLMo-1B-0724-hf
OLMo-7B (0724) https://hf.co/allenai/OLMo-7B-0724-hf
OpenMoE-3B-9B https://hf.co/OrionZheng/openmoe-8b
Pythia-7B https://hf.co/EleutherAI/pythia-6.9b
Qwen1.5-3B-14B https://hf.co/Qwen/Qwen1.5-MoE-A2.7B
Qwen1.5-3B-14B+Chat https://hf.co/Qwen/Qwen1.5-MoE-A2.7B-Chat
StableLM2-2B https://hf.co/stabilityai/stablelm-2-1_6b
TinyLlama-1B https://hf.co/TinyLlama/TinyLlama_v1.1

J SELECTING THE NUMBER OF TOTAL AND ACTIVE PARAMETERS

In addition to what we mention in §4.1, there are three key reasons we select a configuration of 1B
active parameters and 7B total parameters for OLMOE-1B-7B.

Model training 7B total parameters allow for full-parameter training on a single GPU. Specifically,
our model can be trained on one 80GB VRAM GPU (e.g. A100 or H100) as it requires around 70GB
of memory for training the model in 16-bit with an 8-bit optimizer (Anthony et al., 2023). This makes
the model significantly more accessible to researchers who are often constrained by a single GPU and
also bypasses the need for more complicated distributed training across multiple GPUs. A slightly
larger model (e.g. JetMoE-2B-9B) may no longer fit under this setup.
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Model usage on laptops Laptops commonly have around 16GB of RAM, thus 7B parameters
corresponding to 14GB in 16-bit precision perfectly fit into most laptop’s RAM. With the speed of
1B parameters, the configuration of OLMOE-1B-7B could make it an ideal local assistant.

Model usage on phones We have been able to run OLMOE-1B-7B on an iPhone by quantizing
the model to 4-bit after which it requires around 3.5GB (0.5 ∗ 7) of RAM. This is just below the
5GB RAM limit that is commonly imposed for an iOS app18 leaving 1.5GB of RAM for other
functionalities of the app. Thanks to the 1B active params OLMOE-1B-7B runs very fast on
smartphones; we were able to run it at 110 tokens/second on an iPhone 16. This enables applications
that might not make sense with larger and slower models, such as having the model quickly read
multiple long files and summarize them.

K LIMITATIONS AND FUTURE WORK

We highlight four key limitations with this release of OLMOE-1B-7B. We look forward to addressing
these issues in future iterations of OLMOE.

More parameters OLMOE-1B-7B has 7B total parameters out of which 1B are activated for each
input token. This small size makes OLMOE-1B-7B very cheap to use, yet we demonstrate in this
work that it outperforms much more expensive models (Figure 1). We provide further reasons for this
precise configuration in Appendix J. However, using only 1B parameters for each input token also
limits the capabilities of OLMOE-1B-7B as seen by its performance compared to models that use
>7× more parameters, such as Llama3.1-8B in §3. While it may be possible that more parameters are
not needed to match 8B models and beyond (Karpathy, 2024), in the short-term adding parameters is
an easy way to improve the performance of OLMOE. Significantly adding parameters may, however,
make dropless routing (Gale et al., 2022) as used in this work more challenging and may require
expert parallelism (Lepikhin et al., 2020) with token dropping. We note that the DBRX model also
uses dropless routing (Databricks, 2024; Gale et al., 2022) at a scale of 36B active and 132B total
parameters. A different approach to more parameters could be allowing the model to utilize more than
1B parameters per input, possibly via recursion (Dehghani et al., 2019) or agentic workflows (Wang
et al., 2024a; Yang et al., 2024b). Relatedly, changing the allocation of parameters to e.g. vocabulary
versus non-vocabulary parameters is another avenue for improvement (Tao et al., 2024).

More data We train OLMOE-1B-7B for 5 trillion tokens, however, some recent dense models
train significantly longer, such as Llama 3 with 15 trillion tokens (Dubey et al., 2024). To the best
of our knowledge, there has been no large MoE that has been overtrained (Gadre et al., 2024) as
much as OLMOE-1B-7B. Specifically, taking the active parameters of OLMOE-1B-7B, our token
multiplier (Gadre et al., 2024) is around 5,000 (5T / 1B). There are likely benefits to training even
longer, but to what degree overtraining is effective for MoEs and how it differs from dense models
still requires more research (Allen-Zhu & Li, 2024).

Multimodal OLMOE-1B-7B is a text-only large language model, thus it cannot take inputs or
produce outputs in other modalities like images or audio. This limits its utility for the large variety of
multimodal use cases of such models (Huang et al., 2018; Su et al., 2020; Chen et al., 2020; Kiela
et al., 2021; Muennighoff, 2020; Radford et al., 2022; Bai et al., 2023b; Driess et al., 2023; Dubey
et al., 2024). There has been early work on open multimodal MoEs (Mustafa et al., 2022; Lin et al.,
2024a; Li et al., 2024b; Shen et al., 2023b; McKinzie et al., 2024; Wu et al., 2024a) and we look
forward to making future versions of OLMOE a part of that.

Multilingual We pretrain OLMOE-1B-7B on a predominantly English corpus and exclusively
evaluate on English tasks. This may severely limit the usefulness of our model for research on
non-English language models (Lovenia et al., 2024; Singh et al., 2024; Üstün et al., 2024; Enevoldsen
et al., 2024; Son et al., 2024; Xiao et al., 2023). While there has been work on training language-
specific LMs (Luukkonen et al., 2023; Faysse et al., 2024), it is more likely that as we add more
data to build better future iterations of OLMOE we will mix in more non-English data due to data

18https://github.com/thebaselab/codeapp/issues/259
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constraints (Muennighoff et al., 2023b). This may make future OLMOE models perform better in
non-English languages.

L OLMOE-1B-7B-0125

We introduced OLMOE-1B-7B in September 2024. In January 2025, we released a better model,
OLMOE-1B-7B-0125, which we discuss here.

Table L1: DOLMINO composition and sampling distribution used for OLMOE-1B-7B-0125.
Source Total tokens Source % Mix %
Filtered DCLM 752B 6.85 50.2
Decontaminated FLAN 17.0B 100 16.7
StackExchange Q&A 1.26B 200 2.47
peS2o 58.6B 16.7 9.52
Wikipedia/Wikibooks 3.70B 100 3.57
Dolmino Math 10.7B 200 17.5

For pretraining, OLMOE-1B-7B-0125 uses the same data mix for the first stage of training.
Following OLMo 2 (OLMo et al., 2024), we anneal this new model on a curated mix of high-quality
sources. We sample this mix from the DOLMINO dataset,19 a collection of high-quality web pages,
academic content, question answering pairs, instruction data, and math problems. We use the same
100B tokens sample of DOLMINO used to anneal OLMo 2 13B; a summary of this dataset is in
Table L1.

Table L2: OLMOE-1B-7B-0924 and OLMOE-1B-7B-0125 on OLMES. We bold the best
performance. † indicates use of the MCF score, see Appendix D for evaluation details.
OLMOE release ARC C ARC E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA WinoG Avg

Sep 2024 (0924) 62.1† 84.2 79.2 72.9 80.0 54.1† 65.4† 79.8 63.0† 70.2 71.1
Jan 2025 (0125) 67.5† 84.4† 80.6 70.8 81.7 56.3† 69.6† 78.7 66.8† 70.6 72.7

We compare OLMOE-1B-7B-0125 with OLMOE-1B-7B In Table L2. Overall, the new model is
a notable improvement over the previous iteration being better on average (+1.6) and notable datasets
like MMLU (+2.1).

Following this improved annealing setup, we adapt OLMOE-1B-7B-0125 using the post-training
from Tülu 3 (Lambert et al., 2025). This recipe represents an updated version of the one originally
used for OLMOE. It features an improved SFT mix, better sampled DPO data, and a PPO step that
leverages verifiers as for the model reward. We compare this new iteration using the evaluation setup
from Tülu (which differs from other evaluations in this paper) in Table L3. After adaptation, the new
model is significantly better, with a 10-point gain on the benchmark average.

The new models and datasets are freely available on the Hugging Face hub.20 For more information
about this release, we refer to its announcement on Ai2’s website.21

19huggingface.co/datasets/allenai/dolmino-mix-1124
20hf.co/collections/allenai/olmoe-january-2025-67992134f9ebea0a941706ca
21allenai.org/blog/olmoe-app
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Table L3: OLMOE-1B-7B-0924 and OLMOE-1B-7B-0125 after adaptation. We bold the best
performance.

Skill Benchmark(eval)
OLMOE-1B-7B-0924 OLMOE-1B-7B-0125
+SFT +DPO +SFT +DPO +RLVR

Avg. 39.7 39.8 46.6 49.3 49.8
Knowledge MMLU(0 shot, CoT) 54.3 54.6 55.3 54.9 55.1

PopQA(15 shot) 21.0 20.6 20.1 19.7 19.8
TruthfulQA(6 shot) 44.7 49.1 45.5 50.0 50.6

Reasoning BigBenchHard(3 shot, CoT) 36.6 36.8 37.3 37.4 38.6
DROP(3 shot) 34.7 34.5 48.6 48.4 47.9

Math MATH(4 shot CoT, Flex) 8.2 8.2 21.4 20.4 21.4
GSM8K(8 shot, CoT) 42.5 47.4 55.7 64.6 72.4

Coding HumanEval(pass@10) 63.7 63.0 62.6 61.9 62.3
HumanEval+(pass@10) 57.4 58.9 55.7 57.6 54.4

IF & chat IFEval(prompt loose) 41.2 45.3 56.6 65.6 66.4
AlpacaEval 2(LC % win) 6.4 7.5 5.8 19.5 18.0

Safety Safety(6 task avg.) 65.8 51.4 94.5 91.4 90.4
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