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Abstract

Existing NAS methods for semantic segmentation typically apply uniform opti-
mization to all candidate networks (paths) within a one-shot supernet. However,
the concurrent existence of both promising and suboptimal paths often results in
inefficient weight updates and gradient conflicts. This issue is particularly severe
in semantic segmentation due to its complex multi-branch architectures and large
search space, which further degrade the supernet’s ability to accurately evaluate
individual paths and identify high-quality candidates. To address this issue, we
propose Dynamic Path Selection (DPS), a selective training strategy that leverages
multiple performance proxies to guide path optimization. DPS follows a stage-
wise paradigm, where each phase emphasizes a different objective: early stages
prioritize convergence, the middle stage focuses on expressiveness, and the final
stage emphasizes a balanced combination of expressiveness and generalization. At
each stage, paths are selected based on these criteria, concentrating optimization
efforts on promising paths, thus facilitating targeted and efficient model updates.
Additionally, DPS integrates a dynamic stage scheduler and a diversity-driven
exploration strategy, which jointly enable adaptive stage transitions and maintain
structural diversity among selected paths. Extensive experiments demonstrate
that, under the same search space, DPS can discover efficient models with strong
generalization and superior performance.

1 Introduction

Semantic segmentation is a fundamental task in computer vision which focuses on pixel-level
classification of images. In recent years, deep neural networks have achieved impressive success
in semantic segmentation [I, 2, 3]. A critical factor behind this progress is the design of network
architectures, which greatly impact overall performance. However, designing architectures that are
both accurate and efficient often require substantial expertise and iterative experimentation.

To address this challenge, neural architecture search (NAS) has been proposed to automatically
discover optimal architectures and reduce the need for manual effort. Current NAS methods [4, 5,
, 7, 8, 9] typically embed the search space into a one-shot supernet and optimize it through weight
sharing. Compared to traditional NAS methods, which usually require training thousands of networks,
one-shot NAS significantly reduces the computational cost while having superior performance.

Nevertheless, the search space in NAS is enormous, especially for multi-branch segmentation
networks (e.g., FasterSeg [8], with a search space of 10°®). Such space makes it difficult for the
supernet’s parameters to adapt to different subnets (paths) [10], leading to gradient oscillations [11].
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Figure 1: Comparison of different performance proxies on a fixed path during the initial stage of
supernet training. (a) Validation loss. (b) Angle score.

Additionally, the simultaneous presence of suboptimal and promising paths in the supernet further
complicates the optimization process, as weak paths interfere with the highly shared weights [12].

To avoid these issues, some methods [13, 14] introduce a multi-path sampler, which samples multiple
paths simultaneously during supernet training and filters out poor-performing ones, prioritizing
training on paths with higher quality. These approaches solely rely on the validation loss to determine
whether a path is promising. For example, GreedyNAS [13] computes the loss on only 2% of the
validation set and use it as an evaluation metric. However, the limited sample size leads to high
variance in performance estimates, making this metric unreliable—especially during the early stages
of training. As shown in Fig. 1a, we randomly sampled a path during supernet training and observed
significant fluctuations in its validation loss in the early stage, a pattern consistently found across
other paths. While using a larger portion of the validation set could help reduce this variance, it
would also incur substantial computational costs. Furthermore, relying solely on validation loss fails
to capture a network’s full potential from multiple perspectives. As suggested by recent study [15],
the design of effective proxies should account for three key factors: expressiveness, generalization
performance, and convergence.

In this paper, we have proposed corresponding proxies to quantify these three factors. For convergence,
inspired by ease-of-convergence hypothesis®, we adopt the angle score [ 17, 18], a metric that measures
the distance between initialized and trained weights, to indicate the convergence behavior of a given
path. As shown in Fig. 1b, this metric provides a more stable signal than validation loss, exhibiting a
steady increase throughout training. For expressiveness estimation, an accuracy predictor is employed
to generate relevant scores. Finally, leveraging insights from information bottleneck (IB) theory [19],
we design a multi-scale IB (MS-IB) objective function tailored for segmentation models to assess
their generalization capacities.

However, all three proxies cannot be uniformly utilized
throughout supernet training, as their importance and re-
liability evolve across different training phases. For instance,
the angle score tends stabilizes in the mid-to-late stages, as
most paths have already converged by then, making it less
discriminative for evaluating path quality. Similarly, the ac-
curacy predictor used for expressiveness estimation must be
trained on representative path samples. Nevertheless, in early
training stages, the supernet produces unstable and noisy
paths, which lead to unreliable training data for the predictor. 0
As aresult, accurate expressiveness estimation only becomes
feasible once the supernet has reached a more stable phase.
(Experimental evidence can be found in Appendix).

Moreover, according to the IB theory [19], a well-generalized model should compress the input
while preserving only the task-relevant features necessary for accurate prediction. To characterize
this process, we monitor the mutual information between the input and intermediate representations
(i.e., feature maps), denoted as I(X; Z), and between the representations and the output, denoted
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Figure 2: Changes in mutual information
during supernet training.

3A strong correlation exists between rapidly converging architectures and high-performing ones [16].



as I(Z;Y). As shown in Fig. 2, I(X; Z) first increases and then declines during early training,
suggesting that the model first retains input information to fit the data, and subsequently compresses
irrelevant features to improve generalization. At this point, the model has not started compressing
redundant information, making MS-IB a relatively less accurate proxy for evaluating generalization.

Building on these empirical observations, we present a novel dynamic path selection (DPS) strategy
that progressively shifts focus across these proxies throughout different stages of supernet training.
Specifically, our method emphasizes convergence in the first stage, expressiveness in the middle stage,
and a balanced combination of expressiveness and generalization in the final stage. As an additional
practical consideration, FLOPs is included as a model complexity proxy across all training stages.

To realize this multi-stage, multi-objective framework, DPS integrates three key components. First,
path selection is based on Pareto optimality, identifying non-dominated paths that achieve favorable
trade-offs among multiple objectives. Second, a dynamic stage scheduler adaptively transitions
between stages based on improvement trends and dynamic thresholds, eliminating the need for
manual scheduling. Finally, to prevent the path search from collapsing into a narrow search space, we
propose a diversity-driven exploration strategy that encourages sampling of structurally diverse paths.

Our main contributions are summarized as follows:

* We propose DPS, a selective training strategy for one-shot NAS in semantic segmentation,
which dynamically shifts the selection focus across convergence, expressiveness, and gener-
alization throughout supernet training. This stage-wise design enables comprehensive path
evaluation and focuses optimization on high-quality paths in an adaptive manner.

» Three distinct proxies are proposed to evaluate path quality from multiple perspectives,
aligning with the three stages of DPS. These metrics provide explicit feedback signals that
guide the supernet training, helping to identify and optimize for promising paths during the
search process.

» Extensive experiments demonstrate that DPS achieves state-of-the-art results within the
same search space. The architectures discovered by DPS exhibit strong generalization,
deliver superior performance, and maintain high efficiency.

2 Related Work and Background

In one-shot NAS, the architecture search space A is encoded into an over-parameterized supernet
N (A, W), where W denotes the set of shared weights across all candidate paths. The supernet is
trained using a weight-sharing strategy and the corresponding training objective can be formulated as:

W4 = argmin Liin (N (A, W)), )]
w

where Ly, is the loss function on the training set. Once the supernet has converged, the optimal
path a* can be obtained from the supernet:

a* = arg max Accyy (N (a,w,)), @
ac A

where w, is the weight inherits from W4 and Acc,, denotes the performance evaluated on the
validation set.

As summarized in [20], one-shot NAS approaches mainly fall into two categories, distinguished by
the way supernets are represented and optimized. The following provides an overview of each.

Gradient-based. Gradient-based NAS methods, such as DARTS [4], perform joint optimization of
supernet parameters and weights through gradient descent within a differentiable search space. Due
to their efficiency and end-to-end nature, most NAS approaches for semantic segmentation [7, 21,

, 8,9, 23] adopt this gradient-based paradigm. However, such joint optimization complicates the
training of the supernet and inevitably introduces biases that may mislead the architecture search [6].
Moreover, these methods suffer from high GPU memory consumption [13] and struggle to incorporate
different architecture constraints (e.g., FLOPs, latency and energy consumption) during the search
process [0]. Instead, they often turn to relaxed regularization terms [24, 5], which offer limited
efficacy in ensuring strict compliance with various constraints.



Sampling-based. Sampling-based NAS typically search on a discrete search space, and decouple
the supernet training and architecture search into two separate stages. In the first stage, supernet
was trained using different sampling strategies, such as uniform sampling [0, 25] or multi-path
sampling [26, 27, 13, 14, 12] with different priorities. During this process, each sampled path
is optimized individually, which alleviates the weight coupling issue observed in gradient-based
NAS. In the second stage, typical search algorithms (e.g., evolutionary algorithms) are applied
to identify the optimal path. Unlike gradient-based NAS, where hard constraints are difficult to
enforce, sampling-based NAS can flexibly incorporate various resource constraints into different
search algorithms.

3 Method

In this section, we will present our sampling-based NAS method named DPS. First, we begin with
introducing different proxies to evaluating convergence, expressiveness, and generalization capacity
of a candidate path. Then we discuss the path selection process in detail, which includes three
main components: (1) a pareto optimality-based selection strategy, (2) a diversity-driven exploration
mechanism, and (3) a dynamic stage scheduling approach for supernet training. Finally, the search
pipeline based on evolution algorithm will be explained in short.

3.1 Proxies for Path Evaluation

Angle Score. To ensure a steady path selection in the early stage of supernet training, inspired by the

ease-of-convergence hypothesis, we introduce an angle score [17, 18] to evaluate path convergence.
Specifically, we compute the angle between the initial weights wq and the trained weights w for path
a:

3

angle(a) = arccos ( (V(a, wo), V(a, w)) ) . 1

IV (a,wo)ll2 - [V (a,w)ll2 ) (1+A) - na)®’

where V (a,wp) and V (a,w) are the concatenated weight vectors, obtained by flattening and
stacking all weights along the path from input to output. However, in the early stages of training,
certain paths may be sampled more frequently due to the stochastic nature of the search algorithm.
This imbalance leads to overestimated angle scores for those paths—not because they converge
better, but simply because they are updated more often. Such unfair comparisons can mislead the
search process and favor paths with initialization advantages or those sampled more frequently due to
randomness.

To mitigate this effect, we incorporate a sampling penalty term that decays with training steps,
thereby reducing the impact of early-stage randomness and sampling imbalance on the convergence
assessment. Here, n, denotes the sum of sampling counts for all individual components (e.g.,
operations, connections) along path a, rather than the number of times the entire path is sampled—
which is practically negligible due to the enormous search space (e.g., 10°®). The decay factor ()
is a function of training step ¢, and it follows a linear decay schedule. The parametera controls the
overall penalty intensity.

Performance Predictor. To achieve accurate assessment of 10 . epocn 200 (c=0.76, 5=092) e
path expressiveness while avoiding the high computational L et R =8
cost of validation set evaluation, we train a performance pre-

dictor once the search process enters the second stage (e.g.,
200th epoch). The following are the training details: (1)
we begin by randomly sampling 1000 paths and measuring
their actual accuracy through the current supernet. (2) we
then split these samples into training and test sets at an 8:2
ratio. (3) Finally, we train a random forest regressor [28] on o o " o o .
the training set and evaluate its performance on the test set. True Values (normalized)

The regressor is configured with 100 decision trees and no  Figure 3: Rank correlation between the pre-
maximum depth limitation. dicted values and the true values.

Predicted Values(normalized)

To evaluate the reliability of the performance predictor, we report Kendall’s 7 and Spearman’s p
computed on the test set. Furthermore, to ensure that the regressor maintains strong predictive
capability in later stages, we randomly sample 200 paths at the 850th training epoch of the supernet



and measure their actual accuracy. The previously trained regressor (from the 200th epoch) is then
used to predict their performance. As shown in Fig. 3, the random forest regressor achieves high rank
correlation in both early and late stages (e.g., K=0.76 /S = 0.92 at epoch 200; K=0.73 /S =0.90 at
epoch 850), indicating consistent and reliable performance throughout the search process.

Information Bottleneck. Generalization is a fundamental property of deep neural networks (DNNs),
as it determines how well a model performs on unseen data. According to the IB theory [19], DNNs
achieve strong generalization by progressively compressing the input information and discarding
task-irrelevant redundancy. This compression encourages the learning of compact and informative
representations, which are less prone to overfitting and more likely to generalize well. To explicitly
model this trade-off between information compression and task relevance preservation, the 1B
framework introduces a formal objective function:

Liplp(z|x)] = I(Z;Y) - BI(X; Z), “)

where I(X; Z) measures the mutual information between the input X and the learned representation
Z,and I(Z;Y) captures the informativeness of Z with respect to the target output Y. The parameter
B controls the trade-off between compression and prediction. Mutual information I(X;Y") can be
defined as the Kullback-Leibler divergence between the joint distribution px y and the product of
marginal distributions px ® py:

pPx)y (CU, y)
px(x)py (y)"

This theoretical foundation motivates us to leverage the IB principle as a measure of generalization in
our DPS framework. Specifically, by calculating the mutual information between input images X
and feature maps Z, as well as between feature maps Z and output label Y, we construct an IB-based
proxy that can select paths with better generalization capabilities. However, it is impossible to acquire
exact distribution of X, Y and Z.

I(X;Y) = Drr(px,ylpx ®@py) =Epy  [log (5)

Inspired by [29, 30], we approximate L;p[p(z|z)] by estimating a lower bound of I(X; Z) and an
upper bound of I(Z;Y). This choice aligns with the IB objective: the lower bound on I(X; Z)
avoids overestimating compression and losing informative input features, while the upper bound on
I(Z;Y) prevents overestimating task relevance, ensuring sufficient predictive information is retained.
As mentioned in [29], KL divergence has a dual representation known as the Donsker-Varadhan
representation:

Dk (P|Q) = sup (Ep[T] — log(Eqle™])) (6)

where 7' is any function from the space (2 to R such that the expectations are finite. To make the
problem tractable, we parametrize the function 7" using a neural network, denoted as 7. Thus,
I(Z;Y) can be estimated as:

I(Z; Y) > Epz,y [T9] - log(EPZ ®py [eTe]). (7N

The network parameter 6 are optimized by maximizing the objective function using gradient ascent
(see Appendix A for details).

Having estimated the dependency between feature maps and labels, we now turn to the second term of
the IB objective function. Since the direct computation of mutual information is generally intractable
due to the unknown joint distribution px, 7z, we adopt a variational approach known as variational
Contrastive Log-ratio Upper Bound (vCLUB) [30], which provides a tractable upper bound of the
mutual information. Specifically, it introduces a variational distribution g4(z|x) to approximate the
true conditional distribution p(z|z), and derives the following inequality:

I(Xv Z) < ]EPX,Z [IOg q¢(z\x)] - EPX@QDZ [IOg q¢(2|$)] @

In this formulation, the first expectation is taken over the true joint distribution p x 7, while the second
is over the product of marginals px ® pz. The variational estimator ¢,4(z|z) is implemented as a
neural network parameterized by ¢, and is trained to tighten the bound by maximizing the right-hand
side of Eq. 8 (see Appendix A for details).

Multi-Scale Information Bottleneck (MS-IB). Based on Eq. (7) and Eq. (8), we implement an
effective estimation of the Information Bottleneck (IB) objective. Nevertheless, this estimation is
performed on a single-scale feature representation, often extracted from the final layer before the
segmentation head.



For dense prediction tasks such as semantic segmentation, relying solely on the final representation Z
may be suboptimal. This task requires capturing both fine-grained local details and high-level global
context. Modern segmentation architectures [31, 32, 2, 33] typically exploit multi-scale feature maps
extracted from different stages of the backbone network. Only using the final representation Z will
neglects the potential redundancy or relevance encoded in other features with different scales.

To address this limitation, we propose the MS-IB, which extends the IB estimation to multiple stages
of the segmentation network:

S
Lusw =y (I(ZsY) = BI(X; Z,)), ©)

s=1

where .S denotes the total number of stages considered. This formulation enables a more comprehen-
sive evaluation of the generalization capacity of different paths.

3.2 Dynamic Path Selection

Path Selection with Pareto Optimality. We formulate path selection as a multi-objective optimiza-
tion problem and adopt Pareto optimality to identify non-dominated candidates. At every selection
step (every k iterations), we randomly sample m candidate paths from the supernet and evaluate them
across multiple objectives—including expressiveness, convergence, and generalization ability—using
proxies defined in 3.1. Computational cost (FLOPs) is also considered as an additional constraint.
We subsequently determine the set of non-dominated paths among the candidates. A path a; is said
to dominate another path a; if and only if:

Vmec,e,g,f, l‘ai lelj? (]0)
Elxec?evgmfv Iai<$a]‘7

where ¢, e, g, and f denote the proxies for convergence, expressiveness, generalization, and negative

FLOPs, respectively. The set of non-dominated paths forms the Pareto front, representing architectures

that achieve optimal trade-offs among the competing objectives. Note that in Eq. (10), the metric

f is used consistently throughout the entire supernet training process, while the other metrics are

activated only during their respective stages.

Our objective is to select the top-k paths from the Pareto front. If the number of non-dominated
candidates is fewer than k, we supplement the selection with additional high-quality paths, chosen
based on a composite score calculated by summing their ranks across all proxies.

Diversity-driven Exploration. To prevent the path selection from collapsing into narrow and
suboptimal regions of the search space, we introduce a diversity-driven exploration strategy that
promotes structural diversity and balances exploitation with exploration.

Let S = {aj,as,...,a,} be the set of m candidate paths sampled at each training iteration, and
let h; denotes the discrete structural encoding of path a;, we define the pairwise structure distance
between two paths a; and a; using a weighted Hamming distance:

L
Dist(ai,aj) = Zwl H[hgl) 7é h§-l)], (] 1)
=1

where L is the maximum encoding length (with padding applied as needed), w; is a weight for the
[-th position and I[-] represent the indicator function. Then we estimate a diversity score of each path
by computing its average pairwise structure distance within the sampled set:

K
1
diversity(a;) = 1 E Dist(s;, s;), (12)
m—
Jj=1

Finally, the path with the highest diversity score is considered for replacement. If its score exceeds a
predefined threshold 7, it replaces the worst-performing path in the top-k set to maintain diversity
while preserving performance.

Dynamic Stage Scheduling. To maximize the utility of each proxy and facilitate effective, adaptive
path selection, we propose a dynamic stage scheduling mechanism that prioritizes different proxy



metrics at different training stages. Specifically, the mechanism focuses on convergence in the first
stage, expressiveness in the middle stage, and both expressiveness and generalization in the final
stage.

Unlike methods that enforce rigid transitions between training phases, our approach dynamically
adjusts the selection focus based on learning dynamics. Stage transitions are determined by monitoring
the improvement trend of the current main metric over a sliding window of size t,,;,. A transition is
triggered when the average improvement drops below a dynamic threshold:

7 = e - std(history[—tuin :]), (13)

and remains non-negative. Here, history[—t,, :] denotes the most recent t,,;,, values of the current
metric, and € is a sensitivity coefficient that controls the responsiveness of the threshold to historical
variation. Note that, in stage II, the performance predictor is used solely for path ranking and does
not provide estimates of relative improvement over time. Therefore, we instead use the training loss
to assess the improvement trend and determine whether a stage transition should occur.

This approach dynamically adjusts the threshold based on the volatility of the metric: high variance
delays path switching to allow for further optimization, while low variance enables timely transitions
when performance improvements plateau.

The details of overall dynamic path selection strategy is given in the Appendix B.

3.3 Evolution Search with Elite Population.

To better initialize the population in the evolutionary algorithm and improve search efficiency, we
maintain an elite population M after entering final stage of the training process. Specifically, in each
iteration, the top-k paths are added to this elite population. If the population exceeds the predefined
size limit | M|, the oldest individuals are removed to maintain a fixed capacity. This strategy ensures
that high-quality paths are preserved and reused during the search process, thereby accelerating the
discovery of optimal paths. The algorithm details of evolution search refer to Appendix C.

4 [Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three widely used semantic segmentation datasets:
Cityscapes[34], CamVid [35], and BDD100K[36]. Cityscapes contains 2,975 training, 500 val-
idation, and 1,525 test images with a resolution of 1024 x 2048, annotated with 19 semantic classes.
CamVid consists of 367 training, 101 validation, and 233 test images at 720 x 960 resolution, labeled
with 11 categories. BDD100K provides 7,000 training and 1,000 validation images (resolution: 720
x 1280), also annotated with 19 semantic classes. All models are trained without external data such
as ImageNet [37].

Search Space. For a fair comparison, we adopt the same search space from SqueezeNAS [21] and
FasterSeg [8]. The first search space use inverted bottleneck [38] as the basic building block and
have five different factors, including kernel size, expand ratio, dilation ratio, groups and network
depth. The second search space supports multi-branch architecture design. It is based on an L-layer
cell framework, where each branch operates at a distinct resolution scale. Within each branch, every
cell has five different operation choices. The searchable downsample rates are set to s € {8, 16, 32},
allowing flexible control of input resolution and feature hierarchy.

Implementation Details. The pipeline of our method is divided into three stages: (1) Supernet
training with dynamic path selection. (2) Evolution search with elite population. (3) Network
retraining. In concrete, once the supernet is fully converged, we will perform an evolution search
on it to obtain the optimal path. For more details on the training and search settings, please refer to
Appendix C and D.

4.2 Ablation Studies

Searching on same search space. To demonstrate the effectiveness of DPS, we first compared it with
other one-shot NAS method using the same search space, including samlping-based, gradient-based



Table 1: Comparison of one-shot NAS methods on Cityscapes validation set and CamVid test set,
categorized into sampling-based (S), gradient-based (G), and training-free (F) approaches; GFLOPs
is measured using an input size of 1024 x 2048.

Method Type GFlops . mioU (%) .
Cityscapes CamVid
SqueezeNAS Search Space
Random Search F 17.32 69.8 70.7
Uniform Sampling [6] S 17.10 71.6 71.8
Loss Based [13] S 12.57 72.7 73.1
SqueezeNAS [21] G 10.86 72.4 73.2
Ours S 10.96 74.5 73.8
FasterSeg Search Space
Random Search F 31.48 69.7 67.9
Uniform Sampling [6] S 31.77 71.2 69.9
Loss Based [13] S 30.64 70.9 71.8
FasterSeg [8] G 28.20 73.1 71.1
SasWOT [39] F 29.34 71.3 64.3
Ours S 29.59 73.2 72.1

and training-free methods. Note that ‘Loss Based’ refers to using the validation loss as an evaluation
metric to filter out suboptimal paths, as done in GreedyNAS [13]. As shown in Table 1, our DPS
achieves the best performance on both search spaces. On the SqueezeNAS search space, our method
outperforms the original gradient-based SqueezeNAS by 2.1% on Cityscapes and 0.6% on CamVid,
while maintaining nearly the same computational cost (FLOPs). For the FasterSeg search space, [8]
employed knowledge distillation to further boost accuracy, whereas our approach achieves slightly
higher accuracy without relying on extra training strategies. These results demonstrate that DPS
achieves an excellent trade-off between accuracy and computational efficiency, thereby showcasing
its effectiveness in architecture search.

Effect of Different Proxies. To analyze the effect
of different proxies, we conduct ablation studies
on each component using various proxy combi-

Table 2: Comparison of different proxy combina-
tions on Cityscapes dataset.

nations. The results are summarized in Table 2. Proxies Stage  GFlops mloU (%)
We observe that increasing the number of proxies c e g

significantly improves the network performance. v 1 14.33 72.8
Specifically, the combination involving all three v 2 13.82 72.6
proxies achieves the best result, yielding an mloU v 3 11.91 72.8
of 74.5%. In contrast, relying on a single proxy v v 1—=2 12.51 73.8
resu}ts in qotic.eably inferior performance. Th.ese v v 1—3 12.12 73.4
findings hlghllght the importance of pvaluatmg S v a3 11.28 731
paths from multiple perspectives. By incorporat- /v 15253 1096 74.5

ing more proxies into the path selection process,

our method is able to capture complementary signals during training, enabling a more comprehensive
assessment of path quality. This, in turn, enhances the effectiveness of the architecture search and
leads to better-performing models.

Effect of Diversity-driven Exploration and Dynamic Stage Scheduler. We further study the
impact of our proposed diversity-driven exploration (DDE) and dynamic stage scheduler (DSS). As
summarized in Table 3, both strategies contribute to performance improvement, with DSS showing
a more significant effect. This indicates that adaptive stage switching is critical for ensuring the
reliability of the evaluation metrics. Using inappropriate fixed-stage switching strategies can greatly
reduce metric reliability, potentially leading to suboptimal path selection.

Effect of MS-IB. To investigate the impact of MS-IB on model generalization, we design two
different experiments. First, we evaluate the model’s robustness against various common corruptions
and perturbations following the experimental setup in [40]. Specifically, we construct a benchmark
containing 16 types of algorithmically generated corruptions across four categories: noise, blur,
weather, and digital. Under this setting, we compare the model’s performance using single-scale



Table 3: Ablation study of diversity-driven  Table 4: Ablation study of different IB configura-

exploration and dynamic stage scheduler. tions in transfer learning.
DDE DSS GFlops mloU mloU (%)
Meth Fl
10.82 728 ethod  GFlops —=21¥id  BDDIOOK
v 11.47 73.4 None 4.12 67.7 43.5
v 10.31 73.8 Single-scale 3.72 70.2 44.9
v v 10.96 74.5 Multi-scale 3.61 69.7 45.2

Table 5: Comparison of model performance under various corruptions across IB configurations.

Method Blur Noise Digital Weather Av
Motion Defoc Glass Gauss | Gauss Impul Shot Speck | Bright Contr Satur JPEG | Snow Spatt Fog Frost g
None 63.1 613 580 651 | 34 43 41 187 | 579 493 494 347 | 156 51.1 322 150 364

Single-scale 649 633 588 665 | 4.9 74 50 179 | 583 508 539 388 | 149 504 315 184 379
Multi-scale  65.0  63.7 58.6 669 | 4.8 99 63 259 | 611 534 507 379 | 144 529 353 153 389

Table 6: Comparison of different NAS methods on Cityscapes. * denotes the model is reduced for
acc-efficiency trade-offs, implemented by [41].

. mloU (%)
Method Flops Resolution Val Test
Auto-DeepLab™ [7] 27.29 512 x 1024 71.2 -
HR-NAS-A [41] 1.91 512 x 1024 74.2 -
CAS [22] - 768 x 1536 71.6 70.5
GAS [42] - 769 x 1537 - 71.8
FasterSeg [§] 28.20 1024 x 2048 73.1 71.5
SqueezeNAS-Large [21] 10.86 1024 x 2048 72.4 -
SasWOT [39] 29.34 1024 x 2048 71.3 69.8
Ours 10.96 1024 x 2048 74.5 73.5

IB, multi-scale IB, and without the IB module. As presented in Table 5, the multi-scale IB module
outperforms the baseline in the majority of corruption types, yielding an average mloU gain of
2.5%. Meanwhile, the single-scale IB also demonstrates moderate improvements in robustness, with
particularly strong performance observed on digital corruptions.

In the second experiment, we evaluate cross-dataset generalization by directly transferring Cityscapes-
pretrained models to CamVid[35] and BDD100K [36], fine-tuning only the segmentation head while
keeping the backbone frozen. As shown in Table 4, both single-scale and multi-scale IB strategies
improve generalization over the baseline. The single-scale IB achieves the highest mIoU on CamVid
(70.2%), slightly outperforming the multi-scale version (69.7%). This variant computes the IB based
solely on the final feature before the segmentation head, whereas the multi-scale IB aggregates IB
scores from multiple feature resolutions (e.g., 1/8, 1/16 of input size), aiming to capture a broader
information flow. However, the modest performance drop with multi-scale IB on CamVid suggests
that not all feature levels contribute equally to generalization. Since CamVid contains low-resolution
images with simpler scenes, additional features may introduce redundancy rather than useful signal.
These results indicate that future work could explore adaptive weighting of multi-scale features,
emphasizing high-level ones near the output while maintaining lower-level regularization, to better
balance informativeness and redundancy.

4.3 Comparison to state of the art methods.

In this experiment, we compare our method with existing state-of-the-art NAS approaches on the
Cityscapes[34] datasets. As shown in Table 6, DPS achieves superior performance. Specifically,
it obtains the highest mIoU on the Cityscapes validation and test sets, reaching 74.5% and 73.5%,
respectively.

5 Conclusion

We propose DPS, a dynamic path selection strategy for one-shot NAS in semantic segmentation. By
integrating stage-wise evaluation based on convergence, expressiveness, and generalization, DPS



adaptively focuses supernet training on high-quality paths, enabling targeted optimization. To align
with these three stages, we introduce three complementary proxies that evaluate path quality from
corresponding perspectives and guide selection through explicit feedback. Extensive experiments
validate its effectiveness in identifying efficient models with strong generalization and performance.
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A Training Details of Mutual Information Estimator

Before entering the final stage of supernet training, we optimize two mutual information estimators
to separately compute the two terms in MS-IB, which are used for evaluating path generalization.
Once training reaches the final stage, these estimators are fixed and switched to evaluation mode. The
detailed training procedures are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 The optimization algorithm of 7.

Input: Neural network Tp, training set Diin = {(z1,¥1), (€2,Y2), .-, (Tn, Yn)}, number of

iterations 7" required to enter Stage III

Output: Optimized neural network Ty

1: fort =1toT do

2:  Sample a mini-batch B from Dy

3 B:{(xlayl)?(anyQ)v'"7(xb7yb)}

4:  Compute Z by the sampled path a:

50 21,21,---,2p = a(®1,Ta, ..., Tp)

6 Sample Z from marginal distribution of Z:

7 Z;Ev"’v%NpZ

8:  Compute the value of 1(Z;Y") by Eq.7:
b — b ETRT

90 V=133 To(z, ) —log(g >,y ™ Fw)

10:  Update the parameters 6 using gradient ascent:

1 0«0+ 9

12: end for

Algorithm 2 The optimization algorithm of g.

Input: Variational distribution g, (z|z), training set Dyyqin = {(21,%1), (2, y2),
number of iterations 7" required to enter Stage III

Output: Optimized neural network g4
1: fort =1to T do

2:  Sample a mini-batch B from Dy;qin
3: B:{(xl,yl)a(x%yQ)a-"7($b7yb)}
4:  Compute Z by the sampled path a:
5: 21,227.;,217:(L(iﬂhl'g,...,l'b)
6:  Sample Z from marginal distribution of Z:
7 21,22+, 20 ~ Pz
8:  Compute the positive term:
b
9: Lpos = % >_i=1108 g (2| z:)
10:  Compute the negative term:
b b _
1: Lneg = b% Diet Zj:l log ¢4 (Z];)
12:  Compute the vCLUB estimate:
13: LicLus = Lpos - Lneg
14:  Update the parameters ¢ using gradient ascent:
150 ¢ ¢+ Ham
16: end for

cooo (@n,yn) s
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B Dynamic Path Selection

Details of dynamic path selection are presented below. We summarize the key settings as follows:
twin =20, m =10,k =5,¢1 =2¢ —5,€5 =4e — 5.

Algorithm 3 Dynamic Path Selection (DPS)

Input: Supernet N with weights W, training set Dy,.qn,, performance predictor fpred, max iteration
T, window size t.,;,, diversity threshold 7, sensitivity coefficients €1, €5

1: Initialize stage counters: s = 1

2: Track historical performance: history < []

3: fort =1to 7T do

4: ift mod 5 == 1 then
5: Initialize score list: Scores « ||
6: Sample m paths from search space: P = {a1,...,a10}
7: for each path a; € P do
8: Compute FLOPs score: Score(a;) = —FLOPs(a;)
9: if s == 1 then
10: Compute convergence score: Score.(a;) = AngleScore(a;)
11: else if s == 2 then
12: Compute expressiveness score: Score. = fpred(a;)
13: else
14: Compute expressiveness score: Score. = fpred(a;)
15: Compute generalization score: Score, = MS-IB(a;)
16: end if
17: Scores < Scores U {(a;, Scores, Score./c/4) }
18: end for
19: Phrop,, < NonDominatedSort(Scores, k)
20: if | Piop, | < k then
21: Supplement Py, with paths having lowest aggregated rank across all metrics
22: end if
23: Apply diversity-driven exploration:
24: for each a; € P\ Pyop, do
25: if diversity(a;) > J then
26: Identify aworst = arg max,ep,,,, RankSum(a)
27: Replace ayorst in Prop,, With a;
28: break
29: end if
30: end for
31: Train selected paths Py,
32: Update history:
33: if s == 1 then
34: history < history U {ﬁ Y aep AngleScore(ai)}
35: else if s == 2 then
36: history < history U {ﬁ Zaieptopk TramLoss(ai)}
37: endif
38: Update stage s based on learning dynamics:
39: Extract recent window: W < history[—t ., :]
40: Compute average improvement: A = twi,llq boin =L OWi] — Wi — 1))
41: if A < 7 then
42: s+s+1
43: end if
44:  end if
45: end for
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C Evolution Search with Elite Population

Details of the evolutionary search are presented below. We summarize the key settings as follows:
M =1,500,G =20, N =50, p,, = 0.2, ps = 0.1, k = 10.

Algorithm 4 Evolution Search

Input: Trained supernet S, search space .A, elite population M, number of generations G, popula-
tion size N, mutation probability p,,, crossover probability p., validation set D,
Output: Optimal Architecture o*
Initialize population: P < RandomSample(M, N)
fort =1to G do
Pparent < Select top k subnets from P by mloU
Penita < 0
if Random() < p. then
7)child — Pchildu Crossover(Pparent)
end if
if Random() < p,, then
Pchild <~ Pchildu MUtation(Pparent)
end if
if "Pchizﬂ < N then
Sample N — |Pepiiq| subnets from M and add to P.p 14
end if
P < Pehiid
end for
o + argmax,ep mloU(S(a), Dyar)
return o*

D Implementation Details

Supernet Training. In this stage, we train the supernet on Cityscapes[34] dataset. We employ the
stochastic gradient descent (SGD) optimizer with an initial learning rate of 0.01, momentum of 0.9,
and weight decay of 0.0005. The learning rate is adjusted using a polynomial decay policy with a
power of 0.9. During training, we apply standard data augmentation techniques including random
cropping, random scaling, and horizontal flipping. All models are trained for 850 epochs with a total
batch size of 12 across two RTX 3090 GPUs. In addition, the OHEM loss is adopted to enhance
model performance.

Network Retraining. For network retraining, we adopt the same training strategy used for the
supernet. In the case of transfer learning, the learning rate is set to 0.007, and the models are trained
for 500 epochs on CamVid [35] and 200 epochs on BDD100K [36], with all other settings remaining
unchanged.

E Experiments on Proxy Analysis

To examine the behavior of the convergence proxy, we tracked the angle score averaged over 10
randomly sampled paths at different training epochs. As reported in Table 7, the score increases
rapidly in the early stage (0.65 at epoch 100) and gradually saturates after epoch 400 (around 1.23 at
epoch 800). This confirms that the angle score becomes less discriminative in the mid-to-late stages.

To assess the reliability of the performance predictor across training, we measured its correlation
with the ground-truth accuracy at different epochs. Table 8 reports Kendall’s 7 and Spearman’s p
correlations. The results indicate that the predictor is relatively noisy in the early stage (e.g., 7=0.53
at epoch 50), but its accuracy improves steadily and stabilizes after around 200 epochs (7=0.76,
p=0.92). This trend supports our design choice of activating the predictor only from Stage II onward,
when the supernet has reached a more stable phase.
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Table 7: Angle score across epochs. Table 8: Rank correlations between predicted
and true accuracies across epochs.

Epoch  Angle Score (avg. 10 paths)

Epoch 7 (Kendall) p (Spearman)

100 0.65

200 0.99 50 0.53 0.72
400 1.20 100 0.63 0.82
600 1.22 200 0.76 0.92
800 1.23 400 0.75 0.92

F Searched Architectures

Table 9: Searched architecture using DPS on the SqueezeNAS search space. k, g, e, d denote kernel
size, groups, expansion ratio, and dilation ratio, respectively.

Block Operator Cout Down
1 k3_g2 el_dl 16 2
2 k5_gl_e3_dl 24 4
3 k5_g2 el_dl 24 4
4 k5_gl_e3_dl1 24 4
5 k3_gl_el_dl 24 4
6 k5_gl_e3_dl 32 8
7 k3_gl_e3_d2 32 8
8 k3_gl_el_dl 32 8
9 k5_gl_e3_dl 32 8
10 k5_gl_e6_dl 64 16
11 k5_gl_e6_dl 64 16
12 k5_gl_e3_dl1 64 16
13 Identity 64 16
14 k3_gl_e6_dl 96 16
15 k3_g2 el_dl 96 16
16 k3_gl_e3_dl 96 16
17 k3_gl_e3_d2 96 16
18 k3_gl_el_dl 160 16
19 k3_gl_el_d2 160 16

20 k5_gl_e3_dl 160 16
21 k3_gl_e3_d2 160 16
22 k3_gl_el_d2 160 16

Table 10: Searched architecture using DPS on the FasterSeg search space. Left: cells for branch with
final downsample rate of 16. Right: cells for branch with final downsample rate of 32.

Cell Operator Exp. Cou Down

Cell Operator Exp. Couw Down

1 zoomed conv. 12 96 8

1 zoomed conv. 12 96 8
2 zoomed conv. 6 48 8

2 conv. 6 96 16
3 zoomed conv. 10 80 8

3 zoomed conv. X2 4 128 32
4 conv. 4 32 8

4 zoomed conv. x2 4 128 32
5 zoomed conv. 4 64 16

5 zoomed conv. 12 384 32
6 zoomed conv. 4 64 16 6 d 4 128 0

zoomed conv.

7 zoomed conv. 8 128 16
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope are clearly presented in the abstract and introduc-
tion.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in sec 4.2, effect of MS-IB.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not contain any mathematical proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experiment settings and implementation details are described in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings and implementation details are described in Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars, as prior literature on the same benchmarks typically
does not include them. However, we conduct extensive experiments on three benchmarks to
support the robustness of our method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources we used are listed in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the rules carefully.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all the public datasets we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for writing and editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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