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Abstract
Watermarking is essential for protecting the copy-
right of AI-generated images. We propose
WMAdapter, a diffusion model watermark plu-
gin that embeds user-specified watermark infor-
mation seamlessly during the diffusion genera-
tion process. Unlike previous methods that mod-
ify diffusion modules to incorporate watermarks,
WMAdapter is designed to keep all diffusion com-
ponents intact, resulting in sharp, artifact-free im-
ages. To achieve this, we introduce two key in-
novations: (1) We develop a contextual adapter
that conditions on the content of the cover image
to generate adaptive watermark embeddings. (2)
We implement an additional finetuning step and
a hybrid finetuning strategy that suppresses no-
ticeable artifacts while preserving the integrity of
the diffusion components. Empirical results show
that WMAdapter provides strong flexibility, su-
perior image quality, and competitive watermark
robustness. Code: https://github.com/
showlab/WMAdapter

1. Introduction
With the widespread adoption of diffusion models (Ho et al.,
2020; Podell et al., 2023; Song et al., 2020; Rombach et al.,
2022; Ci et al., 2023; Zhang et al., 2023a; Wang et al., 2024),
diffusion-generated images are proliferating across media
and the internet. While these models meet the demand for
high-quality creative content, their misuse raises signifi-
cant concerns about copyright protection and the security
of images against deepfakes (Westerlund, 2019; Song et al.,
2024b;a). Watermarking technology (Cox et al., 2007) pro-
vides a tailored solution for resolving copyright disputes
and identifying the sources of forgeries.

Previous watermarking methods added watermarks to im-
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ages in a post-hoc way through frequency domain transfor-
mations (Cox et al., 2007; Lin et al., 2001; Xia et al., 1998)
or encoder-decoder networks (Zhu et al., 2018; Tancik et al.,
2020; Zhang et al., 2019). However, in the context of wa-
termarking diffusion images, post-hoc methods introduce
additional workflows and unable to fully leverage the rich
latent space provided by the image generation process. Re-
cently, more efforts (Zhao et al., 2023b; Fernandez et al.,
2023; Min et al., 2024; Xiong et al., 2023; Lei et al., 2024;
Meng et al., 2024; Yang et al., 2024b; Ci et al., 2024) have
focused on leveraging the characteristics of the diffusion
process to seamlessly integrate watermarking into the dif-
fusion pipeline, known as diffusion-native watermarking.
Among these, Stable Signature (Fernandez et al., 2023) pro-
posed a method that fine-tunes the VAE decoder of a latent
diffusion model (Rombach et al., 2022) using a pretrained
watermark decoder (Zhu et al., 2018). This approach has
shown promising results. However, it requires fine-tuning a
separate VAE decoder for each unique watermark, making it
difficult to scale to millions of keys as required in large-scale
commercial scenarios where each user may need a unique
key. Additionally, the tuning of VAE decoder on a small
amount of data results in blurry and lens flare-like artifacts
(see Fig. 7).

Recent works (Bui et al., 2023; Xiong et al., 2023; Min
et al., 2024; Meng et al., 2024; Zhang et al., 2024; Kim
et al., 2023; Nguyen et al., 2023) have explored watermark
plugins for diffusion models. These plugins accept arbitrary
watermark keys and generate watermark embeddings with-
out requiring per-watermark finetuning, thereby addressing
the scalability issue. However, these methods typically gen-
erate watermark embeddings without considering the image
content (Kim et al., 2023; Xiong et al., 2023; Bui et al.,
2023) (i.e., they are context-less) and often require fine-
tuning or modifying diffusion modules to incorporate the
watermark embeddings (Kim et al., 2023; Xiong et al., 2023;
Feng et al., 2024) . Tab. 1 compares several watermarking
methods. Unfortunately, finetuning the original diffusion
pipeline or making intrusive modifications often leads to
a significant drop in image quality, resulting in blurriness
or noticeable artifacts. Fig. 1 illustrates the image quality
of different methods, where artifacts introduced by other
methods are evident. Find more examples in Fig. 12.

We propose an innovative watermark plugin solution —
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Figure 1: WMAdapter introduces minimal artifacts, providing better accuracy-quality tradeoff.

Table 1: Comparison of several diffusion watermarking methods. They all tend to introduce noticeable artifacts or produce
blurry images.

Modified Diffusion Modules Scalable Imperceptible

AquaLoRA (Feng et al., 2024) UNet Backbone ✓ ✗
StableSig (Fernandez et al., 2023) VAE Decoder ✗ ✗
WOUAF (Kim et al., 2023) VAE Decoder ✓ ✗
RoSteALS (Bui et al., 2023) No ✓ ✗
Ours No ✓ ✓

WMAdapter (Fig. 2). Its core design philosophy focuses
on preserving the integrity of the original diffusion pipeline
to produce high-quality images. We do not modify any pa-
rameters of the pretrained diffusion modules. So how do
we conceal the watermark information and ensure its robust-
ness? We introduce two key innovations: (1) We propose a
novel Contextual Adapter structure that conditions on the
cover image features to generate content-aware watermark
embeddings (hence "contextual"). Intuitively, this allows
the adapter to better identify areas of the image that are more
suitable for hiding the watermark, enhancing concealment
and robustness. To fully leverage diffusion features while
reducing computational overhead, our Contextual Adapter
extracts image features from the intermediate layers of the
diffusion VAE decoder. Unlike ControlNet plugins (Zhang
et al., 2023b; Min et al., 2024), which use a heavy UNet
structure (Ronneberger et al., 2015), the Contextual Adapter
is lightweight, totaling only 1.3MB in parameters, and en-
ables watermarking an image in just 30ms. (2) We introduce
an additional finetuning stage with a novel Hybrid Finetun-
ing strategy to further enhance image quality. To preserve
the original diffusion modules, our Hybrid Finetuning strat-
egy involves jointly finetuning the adapter and the diffusion
VAE decoder during training for alignment, and then using
the original VAE decoder during inference. This approach
effectively suppresses noticeable artifacts and significantly
improves image sharpness. We summarize our contributions

as follows:

1. We introduce WMAdapter, a novel diffusion water-
marking solution with an innovative design philosophy.
It embeds watermarks non-intrusively during the dif-
fusion process, thereby preserving the integrity of the
diffusion pipeline and producing high-quality images.

2. Methodologically, we propose Contextual Adapter
and Hybrid Finetuning to achieve non-intrusive wa-
termarking, ensuring both watermark robustness and
generation quality.

3. Experimental results demonstrate that WMAdapter ef-
fectively suppresses noticeable artifacts and offers bet-
ter accuracy-quality tradeoffs compared to prior post-
hoc and diffusion-native watermarking methods.

2. Related Work
2.1. Post-hoc Watermarking

Post-hoc methods include traditional frequency domain
transformation methods (Cox et al., 2007), optimization-
based methods (Fernandez et al., 2022b; Kishore et al.,
2021), and encoder-decoder methods (Zhu et al., 2018; Tan-
cik et al., 2020; Jia et al., 2021; Sander et al., 2024). Dif-
ferent methods have different aims. For instance, Kishore
et al. (2021) emphasizes hiding more bits, Zhu et al. (2018)
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Figure 2: Framework overview. WMAdapter is plugged onto the VAE decoder. It takes user input watermark bits and
image features from the VAE decoder, imprinting the watermark on-the-fly during VAE decoding. In contrast, traditional
context-less adapters take only watermark conditions as input. The image and icons credit to (Freepik-Flaticon, 2024).

and Jia et al. (2021) prioritizes robustness against JPEG
compression.

2.2. Diffusion Native Watermarking

According to the location of the watermark, we classify
diffusion-native watermarking methods into two categories.
Adding to initial noise: Tree-Ring (Wen et al., 2023) adds
watermarks to the frequency of initial noise, achieving re-
markable robustness. Subsequent methods (Yang et al.,
2024b; Ci et al., 2024; Lei et al., 2024) improves its multi-
key identification capabilities. However, these methods
significantly alter the layout of the generated images, which
is not desirable in some production scenarios. Adding to
latent space: Other methods leverage the latent space of the
VAE (Bui et al., 2023; Meng et al., 2024; Zhang et al., 2024;
Xiong et al., 2023; Kim et al., 2023; Fernandez et al., 2023)
or diffusion backbone (Feng et al., 2024). However, they
either generate content-agnostic watermark embeddings or
modify the original diffusion modules, often resulting in
lower image quality. In contrast, WMAdapter prioritizes
image quality through novel contextual designs while pre-
serving the integrity of the entire diffusion pipeline. Stable
Messenger (Nguyen et al., 2023) is a recent method that also
generates content-aware watermarks. However, they mainly
focus on improving message accuracy and their model de-
sign is different from ours.

3. Method
In this section, we will introduce the framework of
WMAdapter, detail its contextual structure, and discuss the
training and fine-tuning strategies.

3.1. Framework Overview

Fig.2 illustrates the overall framework of WMAdapter.
WMAdapter is a plug-and-play watermark module that can
be directly attached to the VAE decoder of a latent diffusion
model (Rombach et al., 2022). It imprints the watermark
during image generation, seamlessly integrating into the dif-
fusion generation workflow. WMAdapter employs a novel
contextual adapter structure, which takes both watermark
bits and image features from the VAE decoder as input and
outputs feature residuals containing watermark information.
Watermarked images can be directly fed into a pretrained
watermark decoder, such as HiDDeN (Zhu et al., 2018), to
retrieve the watermark information.

The training of WMAdapter consists of two stages: large-
scale training and fast finetuning. In the training stage,
we freeze the VAE decoder and the watermark decoder
and train only the Adapter on a large scale dataset. We
then finetune the Adapter and VAE decoder on a small
amount of data. Specifically, we present a novel hybrid
finetuning strategy that is able to suppress tiny artifacts and
significantly enhance generation quality. We also discuss
several different strategies concerning different tradeoffs
between robustness and quality.

3.2. Contextual Adapters

In this section, we provide a detailed overview of the con-
textual structure of WMAdapter. Fig. 3 (Left) illustrates the
internal structure of WMAdapter, which comprises a series
of independent Fuser modules. Each Fuser ϕi(·) is attached
before a corresponding VAE decoder block i. It receives
both VAE feature fi and watermark bits w as inputs, and
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Figure 3: The architecture of WMAdapter. Left: The structure of WMAdapter. It comprises several independent Fusers with
identical structures. Right: The structure of Fuser. It consists of a watermark Embedding module and a Fusing module.

outputs a feature residual yi to update fi. Formally,

yi = ϕi (fi, w) ,

f ′
i = fi + yi.

(1)

We put a total of 6 Fusers before the Conv Block, Middle
Block and four Up Blocks in the kl-f8 VAE decoder used
by Stable Diffusion (Rombach et al., 2022).

Fig. 3 (Right) illustrates the internal structure of an Fuser.
An Fuser consists of two main components: the Embedding
module and the Fusing module. The Embedding module
maps the 01 bit sequence into a 48-dimensional watermark
feature vector. This feature vector is then expanded along
the width and height dimensions to produce a watermark
feature map with the same dimensions as the image feature.
The image feature and watermark feature are concatenated
along the channel dimension and fed into the Fusing mod-
ule, which outputs the image feature residuals. Keeping
lightweight in mind, we use two MLPs with 256 intermedi-
ate feature channels for the Embedding module, and two 1x1
convolutions with half the image feature channels c

2 as in-
termediates for the Fusing module. We employ LeakyReLU
as the non-linearity. The total parameters of WMAdapter
are only 1.3M, making it a small and efficient plugin.

3.3. Training

In the training stage, we use a pretrained watermark de-
coder to decode watermark bits from the watermarked im-
ages. We freeze the watermark decoder and the VAE de-
coder, and only train the Adapter. Why do we use a pre-
trained decoder instead of training a watermark decoder
from scratch along with the Adapter? We observe that
training an encoder/decoder pair from scratch, as post-hoc
methods do, typically requires significant training effort.
For example, HiDDeN takes 300 epochs to converge on
the COCO dataset. The situation gets worse when trained
with a diffusion pipeline. WOUAF (Kim et al., 2023) takes
about 10 days. Using a pretrained post-hoc decoder facili-
tates efficient knowledge transfer, allowing WMAdapter to

converge in just 1-2 epochs. Note that this will not bring se-
rious security risks, because there are hundreds of different
open-source decoders. We use two types of losses as our
objective: the consistency loss between the watermarked
image xw and the unwatermarked image x, and the accuracy
of decoded bits. The total loss function is defined as:

L = λ1Lmae (x, xw) + λ2Llpips (x, xw)

+ λ3Lvgg (x, xw) + λ4Lbce (w,w
′) (2)

where the first three terms represent image consistency
losses. We use MAE and LPIPS loss (Zhang et al., 2018)
to maintain consistency with VAE pretraining (Rombach
et al., 2022). Additionally, we include a Watson-VGG
loss (Czolbe et al., 2020) similar to Stable Signature (Fernan-
dez et al., 2023) to enhance human visual preference. For
watermark decoding accuracy, we use binary cross-entropy
loss bewteen decoded bits w′ and input bits w. We empiri-
cally set λ1, λ2, λ3, λ4 to 0.2, 0.2, 0.08, 1.0, respectively.

3.4. Hybrid Finetuning

After the training stage, we obtain a watermark adapter
that performs well in both accuracy and image quality
(Sec. 4.4.2). However, when we zoom in on the gener-
ated images, grid-like artifacts can sometimes be observed
(Fig. 6). To further improve image quality and eliminate
these tiny artifacts, we introduce a fine-tuning stage on a
small amount of data. On top of the first stage training losses,
we incorporate an additional total variation loss (et al, 2024)
on the watermarked images to enhance smoothness, setting
its weight to 0.02.

Further, we present a novel Hybrid Finetuning strategy. Con-
cretely, we finetune both the Adapter and the VAE decoder,
but use the fine-tuned Adapter and the original VAE decoder
for inference. Fig. 4 distinguishes this strategy from two
other classic finetuning strategies: Fixed and Joint Finetun-
ing. The Fixed Finetuning strategy uses the same training
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Figure 4: Illustration of 3 different finetunig strategies. They differ in how to treat the VAE decoder.

approach as in the first stage, fixing the VAE decoder and
quickly finetuning the Adapter with a high learning rate. The
Joint Finetuning strategy jointly finetunes the Adapter and
the VAE decoder, using both finetuned copies for inference.

Sec. 4.4.2 will give a side-by-side comparison between these
three finetuning strategies. In short, Hybrid Finetuning can
effectively suppress noticeable artifacts and, by keeping the
VAE intact, produces the sharpest and clearest images while
maintaining the plug-and-play advantage, making it ideal
for commercial image generation products which require
high image quality.

3.5. Discussion

WMAdapter is designed with a strong emphasis on image
quality, particularly in suppressing noticeable artifacts in
generated images. We introduce the Contextual Adapter
and the Hybrid Finetuning, non-intrusive watermarking
methods that achieve this goal by preserving the integrity
of the diffusion pipeline. This fundamentally distinguishes
our approach from other diffusion watermarking methods
that embed watermarks at the expense of image quality and
introduce noticeable artifacts. We want to highlight the
importance of high-quality, artifact-free watermarked im-
ages for generative products, as no user wants to receive
images with visible flaws. The Experiment Section demon-
strates that our method successfully combines scalability,
high-quality image generation, and watermark robustness.

4. Experiments
4.1. Experimental Setup

Model and dataset We experiment with a popular latent
diffusion model Stable Diffusion 2.1 (Rombach et al., 2022)
and its associated kl-f8 VAE. We adopt the pretrained water-
mark decoder from HiDDeN (Zhu et al., 2018). The check-
point we use was pretrained by (Fernandez et al., 2023),
encoding 48-bits watermark information. This checkpoint
is also used to finetune Stable Signature (Fernandez et al.,
2023). Thus, our adapter can be directly compared with (Fer-

nandez et al., 2023). ALL training and finetuning steps are
performed on MS-COCO 2017 (Lin et al., 2014) training
set. Validation is performed on COCO 2017 validation set.
We train and evaluate our adapters on images at resolution
512×512. For images smaller than this size, we resize their
shorter edge to 512, then center crop to get a 512 × 512
image.

Training strategies For the first stage training, we adopt 8
× NVIDIA A5000 GPUs of 24 GB memory, with per-GPU
batchsize of 2, AdamW optimizer (Loshchilov & Hutter,
2017), a learning rate of 5e-4. We train the model for 2
epochs, taking about 5 hours. For the second stage finetun-
ing, we use a single A5000 GPU. We set the mini-batch to
2. We also use the AdamW optimizer and a start learning
rate of 5e-4. However, we adopt a per-step cosine learning
rate decay with 20 warm-up steps. Unless otherwise spec-
ified, the total fine-tuning process defaults to 2,000 steps,
lasting for about 50 minutes. Different finetuning strate-
gies result in several different adapter variants. We use
Adapter-B, Adapter-F, Adapter-V, and Adapter-I to denote
the adapters obtained by No Finetuning, Fixed Finetuning,
Joint Finetuning and Hybrid Finetuning, respectively.

Evaluation metric Following previous conventions (Zhu
et al., 2018; Fernandez et al., 2022b; 2023), we use average
bit accuracy to evaluate the watermarking performance of
our adapter. Bit accuracy is defined by the ratio of correctly
decoded bits in a 48-bit watermark sequence. Apart from
the bit accuracy, we also report the tracing accuracy among
different numbers of users following concurrent works (Min
et al., 2024; Ci et al., 2024). We adopt the evaluation pro-
tocol of (Min et al., 2024). Concretely, we construct user
pools of different sizes, ranging from 104 to 106, to evaluate
the accuracy of user tracing at different scales. Each user is
assigned a unique key. For each user pool. we randomly se-
lect 1,000 users and watermark 5 images per user, resulting
in 5,000 watermarked images. For each of the 5,000 images,
we find the best match among the user pool and check if
it’s a correct match. Tracing accuracy is then averaged over
all 5,000 images. To evaluate the detection performance,
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we report TPR@FPR10−6. Concretely, we assume the bits
decoded from the natural images following Bernoulli distri-
bution with parameter 0.5. Then the number of matched bits
M follows a binomial distribution with parameters (48, 0.5).
So we have the false detection rate as a function of threshold
τ : FPR (τ) = P (M > τ) = I0.5 (τ + 1, 48− τ), where
I is the incomplete beta function. We control FPR = 10−6

and calculate the corresponding τ , then we evaluate TPR
with this threshold.

In addition to accuracy measurements, we are also inter-
ested in the watermark’s invisibility and image generation
quality. We report the Peak Signal-Noise-Ratio (PSNR)
between images before and after watermarking and Fréchet
Inception Distance (FID) (Heusel et al., 2017) between wa-
termarked images and images from coco val set. Typically,
higher PSNR leading to sharper and clearer images. While
lower FID means the watermarked images have higher fi-
delity and more closely resemble the real images in terms
of appearance and variety.

4.2. Comparison With Other Methods

Accuracy and image quality We compare our method
with three post-hoc watermarking methods SSL (Fernandez
et al., 2022b), StegaStamp (Tancik et al., 2020), and HiD-
DeN (Zhu et al., 2018). SSL bases on iterative optimization
to get the watermark, while StegaStamp and HiDDeN are
encoder-decoder based methods. For HiDDeN, we use the
model provided by (Fernandez et al., 2023), which is en-
hanced with a JND mask (Fernandez et al., 2022a) for better
image quality. We also compare with three recent diffusion-
native watermarking methods RoSteALS (Bui et al., 2023),
WOUAF (Kim et al., 2023) and Stable Signature (Fernandez
et al., 2023). Note that all these methods do not alter the
image layout during watermarking.

As shown in Tab. 2, WMAdapter-I achieves the best im-
age quality among all methods, excelling in both PSNR
and FID. Its PSNR and FID improve over the baseline,
Stable Signature, by approximately 17% and 22%, respec-
tively. In contrast, Stable Signature produces blurrier im-
ages with lens flare artifacts (Sec. 4.5) due to fine-tuning of
the VAE decoder, resulting in lower PSNR and FID scores.
WMAdapter-I shows even greater improvements compared
to SSL (5% and 83%), RoSteALS (14% and 55%), and
WOUAF (38% and 81%), as these methods introduce larger
artifacts greatly degrading quality metrics (See Fig. 12 for
artifacts).

In terms of watermark detection performance, our meth-
ods achieve perfect TPR, outperforming HiDDeN, WOUAF,
and Stable Signature. For bit accuracy, while SSL excels
in single attack scenario, it is more sensitive to combined
attacks. Both WMAdapter-F and WMAdapter-I surpass
SSL, HiDDeN and RoSteALS under combined attacks, trail-

ing the top-performing methods by only 0.01 and 0.03, re-
spectively, while still maintaining competitive robustness.
Overall, WMAdapter achieves a better robustness-quality
tradeoff, which can be seen in Fig. 1 (right).

Tracing accuracy Since certain watermarking methods,
such as Wen et al. (2023), don’t incorporate the concept
of bits or use tracing accuracy as an alternative evaluation
protocol (Min et al., 2024), we further compare the tracing
accuracy in Tab. 3. We can see that our adapters achieve
nearly perfect tracing accuracy with different scales of users.
Tree-Ring (Wen et al., 2023) achieves zero tracing accuracy
due to its design flaws uncovered by Ci et al. (2024). WAD-
IFF (Min et al., 2024) is a concurrent effort, which employs
HiDDeN decoder to finetune a UNet watermark plugin for
diffusion models. We can see that its tracing accuracy grad-
ually drops as the scale grows despite they employ a heavier
adapter (∼900MB params). Both ours and Stable Signature
perform consistently at different user scales. Notably, Stable
Signature has higher average bit accuracy but gets slightly
worse tracing accuracy than ours. We attribute this to its
larger performance variance among different keys.

Summary Unlike other methods with significant draw-
backs—such as RoSteALS, SSL, and WOUAF, which
introduce noticeable artifacts and result in significantly
lower FID scores, or StableSignature, which lacks scala-
bility—our approach delivers high image quality, scalability,
and competitive accuracy simultaneously. In all three as-
pects, WMAdapter-I consistently outperforms HiDDeN,
providing a better overall tradeoff.

4.3. Robustness to More Attacks

Other transformations and intensities Fig. 8 evaluates
against more image transformations and intensities. Our
adapters achieve comparable performance to the baseline
Stable Signature under various levels of attacks, while offer-
ing flexibility, scalability and higher image quality.

Regeneration attack Recent work (Zhao et al., 2023a;
Liu et al., 2024) has demonstrated the potential of regen-
eration attacks in watermark removal. We evaluate the
robustness of WMAdapter against three different regen-
eration methods introduced in Zhao et al. (2023a): one
diffusion-based (Zhao et al., 2023a) and two VAE-based
methods (Ballé et al., 2018; Cheng et al., 2020). For Ballé
et al. (2018); Cheng et al. (2020), we assess performance
at compression rates of 1-6 and 1-8, respectively. Fig. 5
presents the Accuracy-PSNR curve. We observe that the
three regeneration attacks require a PSNR drop of 4-6 dB
to successfully remove our watermark. In contrast, only a
2 dB reduction in image quality is needed to remove the
watermark of Stable Signature. This demonstrates that our
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Table 2: Comparison with other watermarking methods on generation quality and robustness. All methods are evaluated on
COCO 2017 val set (Lin et al., 2014) with image size 512× 512. Since Stable Signature (Fernandez et al., 2023) requires
finetuning of separate VAE decoders to embed different keys, we report its average results on 10 randomly sampled keys.
We report TPR@FPR10−6 for detection performance. For robustness, we use Crop 0.3, JPEG 80, Brightness 1.5.

Bit Accuracy ↑
Method PSNR ↑ FID ↓ TPR ↑ None JPEG Crop Bright Comb

Po
st

SSL 33.0 14.8 1.00 1.00 0.99 0.97 0.98 0.88
HiDDeN 34.1 3.1 0.99 0.98 0.84 0.97 0.98 0.85
StegaStamp 29.3 9.9 1.00 0.96 0.96 0.49 0.94 0.49

N
at

iv
e

RoSteALS 30.4 5.5 1.00 0.99 0.99 0.50 0.96 0.50
WOUAF 25.3 13.5 0.97 0.99 0.99 0.94 0.97 0.93
Stable Signature 29.7 3.2 0.99 0.99 0.93 0.99 0.99 0.93
WMAdapter-F 33.1 2.7 1.00 0.99 0.92 0.99 0.99 0.92
WMAdapter-I 34.8 2.5 1.00 0.98 0.90 0.97 0.97 0.90

Table 3: Accuracy of tracing different numbers of keys. All
methods are evaluated on COCO dataset (Lin et al., 2014).
For WADIFF∗ (Min et al., 2024), the number is reported by
its original paper.

Method Trace 104 Trace 105 Trace 106

WADIFF∗ 0.982 0.968 0.934
Tree-Ring 0.000 0.000 0.000
Stable Signature 0.999 0.999 0.998
WMAdapter-F 1.000 1.000 1.000
WMAdapter-I 1.000 0.999 0.999

method exhibits better robustness against regeneration at-
tacks.

Adversarial attack Adversarial attack relies on
PGD (Madry, 2017) optimization to generate adversarial
noise targeting the watermark decoder. Based on access to
the watermark decoder, these attacks are categorized as
white-box and black-box. In black-box settings, a binary
classifier is trained to identify watermarked images, and
adversarial noise is then optimized to mislead this classifier,
disrupting the watermark. This is commonly referred to as
a surrogate detector attack (Saberi et al., 2023; Jiang et al.,
2023; An et al., 2024; Lukas et al., 2023). We follow the
implementation of An et al. (2024) and demonstrate our
method’s robustness against both white-box (An’24-wb
△) and black-box attacks (An’24 ▽) in Fig. 5. Notably,
both WMAdapter and Stable Signature exhibit strong
robustness against black-box adversarial attacks, with a bit
accuracy drop of about 0.02 and TPR drop less than 0.01.
In white-box scenarios, where attackers have full access
to the watermark decoders, the watermarks can be easily
disrupted with minimal impact on image quality.

Query-based attack Another common black-box attack
is the query-based attack, which defines a blending process
that transitions from a random image to a given watermarked
image. During this process, it repeatedly queries the water-
mark decoder API to determine whether the current blended
image contains a watermark, aiming to identify the image
with the minimal perturbation that successfully removes
the watermark. We adopt the WEvade-B-Q approach from
Jiang et al. (2023) and set the detection threshold τ to control
FPR = 10−6. Our observations show that the query-based
attack can successfully evade watermark detection for both
WMAdapter and Stable Signature, achieving a success rate
of 1.0 (i.e., TPR = 0). However, this method results in
significant image quality degradation, with the final attacked
images averaging a PSNR of approximately 8 dB.1

Steganalysis attack Yang et al. (2024a) propose averag-
ing multiple watermarked images to extract content-agnostic
watermark patterns for removal or forgery. However, the
contextual adapter in WMAdapter adapts watermark pat-
terns based on image layout, making it naturally robust to
this type of attack—achieving no bit accuracy drop on a 5k
image averaging evaluation.

4.4. Ablation Study

4.4.1. WHY CONTEXTUAL ADAPTER?

Tab. 4 compares different adapter variants after the first
stage training. We can find that using the contextual adapter
structure is crucial for both watermark accuracy and image
quality, improving bit accuracy by 0.02 and PSNR by a
significant number of 4.1 db compared with the context-

1We did not include this method in Fig. 5 because the resulting
image quality is far outside the scope of the comparisons shown in
the figure.
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Figure 5: Against various regeneration and adversarial at-
tacks. SS: Stable Signature.

less structure. This result well supports our motivation that
the watermark encoder should be aware of the cover image
content to generate high quality embedding. Note that SOTA
watermarking methods still use the context-less structure
to encode watermark (Xiong et al., 2023; Kim et al., 2023;
Bui et al., 2023). Contextual adapter provides a simple yet
promising approach for further improvement. Another key
design is to use 1x1 conv in the adapter, because we found
that 3x3 conv suffers from unstable training.

Table 4: Comparison between adapter structures.

Contextual Context-less Conv 3× 3

Bit Acc 0.99 0.97 0.49
PSNR 32.8 28.7 12.0

4.4.2. ROLE OF FINETUNING

Tab. 5 and Fig. 6 compare different finetuning strategies
quantitatively and qualitatively. From Tab. 5, we can see that
Adapter-B achieves good numerical results. However, upon
closer inspection of the generated images, subtle grid-like
artifacts become noticeable. If we freeze the VAE decoder
and perform a quick fine-tuning for 2k steps using a large
learning rate, resulting in Adapter-F. We find that PSNR and
SSIM metrics further improve, though the artifacts persisted.

Hybrid Finetuning (Adapter-I) further suppresses artifacts.
Since the VAE remains unaltered during inference, it pro-
duces the sharpest and most visually appealing images, with
PSNR improving significantly to 34.8 dB. This improve-
ment comes at the minor cost of a 0.02 decrease in bit
accuracy under combined attacks.

Joint Finetuning (Adapter-V) significantly degrades all im-
age quality metrics. As shown in Fig. 6, Joint Finetuning

Table 5: Comparison between different finetuning strategies.
"Adapter-B" means no extra finetuning. Bit Acc is evaluated
under combined attacks.

Bit Acc PSNR SSIM FID

Adapter-B 0.92 32.8 0.94 2.7

Adapter-F 0.92 33.1 0.95 2.7
Adapter-I 0.90 34.8 0.96 2.5
Adapter-V 0.92 29.9 0.87 3.1

results in smoother but blurrier images. It also introduces
noticeable lens flare artifacts, which are commonly observed
in methods such as Stable Signature (Fernandez et al., 2023),
FSW (Xiong et al., 2023), AquaLoRA (Feng et al., 2024),
and WOUAF (Kim et al., 2023), as they all modify diffu-
sion components to embed the watermark. This observation
supports our core idea that preserving the integrity of the
original diffusion pipeline is crucial for high-quality genera-
tion.

Considering both numerical results and visual artifacts,
Adapter-F and Adapter-I offer better accuracy-quality trade-
offs. Therefore, we adopt these two as our default choices.
Note that all adapter variants incorporate an additional total
variation loss during the second stage finetuning. While this
loss helps produce visually smoother images and provides a
0.1 PSNR improvement, it does not reduce artifacts (Fig. 6).
Applying it during the first stage training can lead to overly
smoothed images.

4.4.3. RESULTS ON DIFFERENT VAES

We train several watermark adapters for VAEs used by
SD1.5&2.1 (Rombach et al., 2022), SDXL (Podell et al.,
2023) and DiT (Peebles & Xie, 2023) (kl-f8-mse) at res-
olution 512 × 512. We compare the adapters before the
finetuning stage. Tab. 6 shows the results. We observe
that WMAdapter consistently performs well across various
VAEs, making it applicable in a wide range of contexts. The
PSNR of SDXL adapter is lower compared to SD2.1 and
DiT VAE. This may be caused by the resolution mismatch.

We further evaluate the zero-shot transferability of
WMAdapter across different VAEs. Specifically, we di-
rectly apply the adapter trained on SD2.1 to the SD1.5
VAE and observe that it effectively handles SD1.5 image
latents with minimal performance degradation. This empiri-
cal result highlights the zero-shot generalization potential of
WMAdapter to various customized Stable Diffusion VAEs.

4.5. Qualitative Results

We qualitatively compare WMAdapter with the baseline
method, Stable Signature (Fernandez et al., 2023) in Fig. 7.
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Original Adapter-B Adapter-F Adapter-I Adapter-V

Figure 6: Qualitative comparison between different fine-
tuning strategies. Adapter-B and Adapter-F produces tiny
grid-like artifacts. Finetuning with VAE (Adapter-I and -V)
alleviates this issue. Using fintuned VAE at inference time
(Adapter-V) leads to lens flare artifact. Using original VAE
(Adapter-I) achieves the most visually appealing results.
Zoom in for best view.

Table 6: Evaluation on VAEs from different models.

SD1.5 SD2.1 SDXL DiT

Bit Acc 0.99 0.99 0.99 0.99
PSNR 32.1 32.8 31.2 32.4

We can observe that Stable Signature tends to produce lens
flare artifacts, as indicated by the yellow arrows. We at-
tribute this issue to the modification of VAE decoder. In
contrast, Adapter-F and Adapter-I greatly suppress this
noticeable artifact by preserving the integrity of all dif-
fusion components. As shown in columns (C)(D), our
adapters produce sharper images with clearer text edges,
which is also supported by the higher PSNR metric. In
short, compared to StbaleSignature, WMAdapter produces
higher quality images with fewer noticeable artifacts. Ap-
pendices A.6, A.7, A.8 provide additional comparisons
across more datasets.

5. Conclusion and Limitation
In this paper, we introduce WMAdapter, a plug-and-play
watermarking plugin that enables latent diffusion models
to embed arbitrary bit information during image genera-
tion. Our adapter is lightweight, easy to train, and of-
fers a superior accuracy-quality trade-off with significantly
fewer noticeable artifacts compared to previous post-hoc
and diffusion-native watermarking methods. One limitation
is that the Adapter-F variant occasionally produces grid-like
artifacts that become visible upon zooming in. In summary,
WMAdapter provides a simple yet powerful baseline for
further exploration on diffusion watermarking.
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Figure 7: Comparison between WMAdapter and StableS-
ignature (Fernandez et al., 2023). Yellow arrows point to
the generated artifacts. (B)(D)(F) show the difference after
watermarking. View in color and zoom in.
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A. Appendix
A.1. Experiment Statistical Significance

For the first training stage, we ran 3 independent training and found the standard deviation of average validation bit accuracy
across 3 runs to be 0.0006, and the standard deviation of validation PSNR to be 0.03 dB.

For the second finetuning stage, we also ran 3 independent trials. The standard deviation of average validation bit accuracy
across 3 runs was also 0.0006, and the std of validation PSNR was 0.04 db. The small standard deviation at both stages
demonstrates the stability of our method. Since the standard deviation is too small to be clearly viewed in Fig. 8, we report
the numbers in text.

A.2. Broader Impacts

The proposed diffusion watermarking technique offers significant positive societal impacts, such as enhancing copyright
protection for digital creators and helping to prevent the spread of fake news by enabling the authentication of images.
However, it also poses potential negative impacts, including privacy concerns, the risk of misuse for malicious purposes,
technical challenges that may disadvantage smaller creators, and possible degradation of image quality. Balancing these
benefits and drawbacks is crucial to ensure the responsible and effective use of this technology.

In terms of applications, our proposed WMAdapter can also be directly applied to video generation models such as
AnimateDiff (Guo et al., 2023) and StableVideoDiffusion (Blattmann et al., 2023), which share the same VAE architecture
as image Diffusion models. We leave further exploration on video to the future work.

A.3. Evaluation on Various Distortion Intensities

Fig. 8 evaluates our method under larger ranges of distortion intensities and more attacks. We can see that our adapters
remain comparable robustness to Stable Signature (Fernandez et al., 2023) over range of attack intensities. Note that all
three methods exhibit limited robustness to significant Gaussian noise and Rotation. This limitation arises because the
pretrained HiDDeN decoder (Fernandez et al., 2023) was not specifically trained to handle such attacks. To further enhance
robustness under such attacks, WMAdapter would need to be built upon a watermark decoder that is pretrained with rotation
and noise augmentation.

A.4. Visualization of Distortions

Fig. 9 shows different image distortions evaluated in the paper.

A.5. Evaluation Against Other Adaptive Attacks

We also evaluate WMAdapter-I against another adversarial attack Lukas et al. (2023), which propose to train a stronger
surrogate detector. We reproduce the adversarial noising method described in the paper. Specifically, we implemented their
approach using the reported hyperparameters. We found that the suggested ϵ-ball of 2/255 produced negligible attack effects.
We increased the ϵ-ball to 8/255, reducing PSNR from 34.8 to 30.3 (similar drop to other attacks in our Fig. 5), while the bit
accuracy dropped moderately from 0.98 to 0.93. This suggests that our method demonstrates resilience to such attacks.

A.6. More Qualitative Results on COCO Dataset

Fig. 10 shows the watermarked images and their difference with the original images. We find that both WMAdapter-F and
WMAdapter-I can adaptively embed watermark information into regions with significant color variations and richer textures
in the images, significantly enhancing their invisibility.

A.7. Generalization to Ideogram Dataset

Fig. 11 shows our results on images generated by Ideogram (Ideogram.ai, 2024). These images exhibit completely different
styles. However, our WMAdapter, trained on COCO, transfers seamlessly to them.
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A.8. Comparison With Other Watermarking Methods

Fig. 12 compares various watermarking methods. We observe that our method introduces minimal noticeable artifacts to
the images. Thanks to the dedicated design of the contextual adapter, the modifications adapt more effectively to the cover
image content.

While the JND enhancement (Fernandez et al., 2022a) used by HiDDeN* can also adapt the watermark post-hoc. However,
such post-hoc methods compromises robustness and tends to alter the background. In contrast, our contextual adapter is
trained end-to-end, offering a better robustness-quality tradeoff (see Tab. 2 and Fig. 1).
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Figure 8: Robustness comparison over various distortion intensities.
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Rotate 20 JPEG 50Crop 0.3 Contrast 3.0Brightness 3.0

Noise 0.1 Resize 0.5 Sharpness 3.0Saturation 3.0Erase 0.25

Figure 9: Visualization of different augmentations.
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Original Adapter-F Difference Adapter-I Difference

Figure 10: Qualitative results on COCO dataset at resolution 512.
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Original Adapter-F Difference Adapter-I Difference

Figure 11: Qualitative results on Ideogram (Ideogram.ai, 2024) at resolution 512.
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AquaLoRA StableSigWOUAF RoSteALSOriginal SSL HiDDeN* WMAdatper-I

“Downtown Beijing at sunrise. detailed ink wash”

“a cat sitting on a box with a drawing of an elephant on it”

“robots meditating in a vipassana retreat”

“a tree growing out of the middle of an intersection”

Figure 12: Watermarking images generated with given prompts. For HiDDeN* (Zhu et al., 2018), we use a post-hoc just
noticeable difference (JND) mask to enhance invisibility (Fernandez et al., 2022a). Zoom in for best view.
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