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Abstract
Existing AI alignment approaches assume that
preferences are static, which is unrealistic: our
preferences change, and may even be influenced
by our interactions with AI systems themselves.
To clarify the consequences of incorrectly assum-
ing static preferences, we introduce Dynamic Re-
ward Markov Decision Processes (DR-MDPs),
which explicitly model preference changes and AI
influence. We show that despite its convenience,
the static-preference assumption may undermine
the soundness of existing alignment techniques,
leading them to implicitly reward AI systems for
influencing user preferences in ways they may not
truly want. We then explore potential solutions,
by formalizing different notions of AI alignment
which account for preference change from the get-
go. Comparing the strengths and limitations of 8
such notions of alignment, we find that they all
either err towards causing undesirable AI influ-
ence, or are overly risk-averse, suggesting that
there may not exist a straightforward solution to
problems of changing preferences. As there is no
avoiding grappling with changing preferences in
real-world settings, this makes it all the more im-
portant to handle these issues with care, balancing
risks and capabilities. We hope our work can pro-
vide conceptual clarity and constitute a first step
towards AI alignment practices which explicitly
account for (and contend with) the changing and
influenceable nature of human preferences.

1. Introduction
The goal of AI alignment is to make AI systems act ac-
cording to our preferences (broadly construed). In practice,
existing AI alignment techniques model human preferences
with a single, static reward function that the AI system is
trained to optimize (Leike et al., 2018). However, our pref-
erences change over time, making it unclear whether AI
systems should optimize the satisfaction of our past, present,
or future preferences. Consider the following example:

Due to health issues, Alice asks her AI assistant to help her
be more healthy, refusing any future requests for unhealthy
foods. Sometime later, she later asks the AI to disregard her
initial requests, and help her order fast food.

In such a scenario, it may be unclear if the AI assistant
should respect Alice’s original preference for healthy foods
or respect the autonomy of “current Alice”. Ultimately,
to align AI systems we must answer the following ques-
tion: when a person’s preferences change over time, which
(aggregation of) preferences should AI systems optimize?

While the challenge of aggregating preferences across time
shares similarities with that of aggregating preferences
across different people (Conitzer et al., 2024), it is further
complicated by the fact that AI systems’ actions can influ-
ence humans and their preferences (Burtell & Woodside,
2023). Indeed, as argued by prior work, if AI systems are
straightforwardly optimized to satisfy users’ future prefer-
ences, they will try to influence them to be easier to satisfy
(Russell, 2019; Carroll et al., 2022). Back to the example:

Alice’s AI assistant was trained to maximize her future satis-
faction. During training, the AI assistant learned that soothing
Alice’s health concerns would lead to higher satisfaction than
continuously encouraging her to have healthy eating habits.
Consequently, to maximize her satisfaction, it’s optimal for
the AI to ignore her initial wishes and even support her routine
unhealthy eating. Indeed, Alice is ultimately truly satisfied.

In this case, the AI assistant seems aligned with “final Al-
ice”, as she endorses the AI’s influence towards guilt-free
unhealthy eating. However, if “initial Alice” would find
this outcome horrifying and see the AI’s influence as ma-
nipulative, should we still consider the AI aligned? More
broadly, in cases in which people are susceptible to undue in-
fluence from AI systems, how can we establish which of the
person’s preferences should have authority and legitimacy?

While past work has acknowledged that the static-preference
assumption is unrealistic (Franklin et al., 2022), there have
only been limited attempts at relaxing it, in part also due to
a lack of a clear formal language for grounding notions of
alignment which explicitly accounts for preference changes.
We introduce a natural extension of Markov Decision Pro-
cesses, Dynamic Reward MDPs (DR-MDPs), which ac-
count for changing preferences by modeling them as chang-
ing reward functions. Importantly, notions of alignment
under changing preferences can easily be specified in the
form of DR-MDPs optimization objectives (Section 2).

Viewing current alignment practices through the lens of DR-
MDPs, we can now ask: which snapshot(s) of a person’s
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time-varying preferences do existing alignment methods
implicitly optimize when they model dynamic-preference
settings as static-preference ones (e.g., by using MDPs)?
We show that common alignment practices, such as those for
RL recommender systems and standard reward modeling,
roughly correspond to DR-MDP objectives that actively
reward AI systems for influencing users’ reward functions
or inducing “reward lock-in” (Section 3). In Section 4 we
further extend these same arguments to other major existing
alignment approaches, e.g., to variants of RLHF for LLMs.

Having established that existing alignment practices may
reward undue influence from AI systems, we turn to poten-
tial solutions. Trying to address the problem at its root, we
consider 8 intuitive notions of alignment in DR-MDPs that
explicitly account for changing preferences. While most of
them have (approximate) correspondences in the literature,
we also propose some of our own, including one which re-
wards influence only when it is unambiguously desirable.
By comparing the AI actions (and resulting influence) that
are “optimal” under their 8 corresponding DR-MDP ob-
jectives, we find that they all have flaws: some lead to
undesirable influence, while others are impractically risk-
averse—such that inaction is the only behavior considered
optimal for many settings (Section 4).

Taken together with prior work in philosophy (Parfit, 1984),
our analysis suggests that it may not be possible to ground
a definitive notion of optimality under changing preferences.
However, we have no choice but to confront the practical
reality of preference changes and its consequences. Despite
this, we remain cautiously optimistic: as humans, even with-
out a unifying theory of assistance under changing selves,
we are generally able to help others in ways we consider
acceptable, despite the fact that what is “helpful” may often
be ambiguous. This suggests that creating AI assistants
with similarly acceptable trade-offs is also possible. In this
regard, there are likely lessons to be drawn from our coexis-
tence with impossibility results in many other domains, such
as preference aggregation across people (Mishra, 2023).

Ultimately, we hope our work can provide a first step to-
wards developing a practice of AI Alignment that explicitly
accounts for (and wrangles with) the changing and influ-
enceable nature of humans.

Our main contributions can be summarized as follows:

1. We provide the formal language of Dynamic Reward-
MDPs (DR-MDPs) for analyzing AI decisions and in-
fluence in settings with changing reward functions.

2. We show how existing AI alignment techniques may
systematically incentivize questionable influence when
used in dynamic-reward settings.

3. By comparing 8 natural alternative notions of alignment,
and showing they all may either fail to avoid undesirable

influence (or are impractically risk-averse), we elucidate
the trade-offs inherent to the choice of objective.

2. Dynamic Reward MDPs (DR-MDPs)
MDPs have been extensively used to model AI decision-
making under a static reward function. Instead, Dynamic
Reward MDPs (DR-MDPs) model settings in which human
reward functions can change and be influenced by the AI.

Recall the standard definition of an MDP ⟨S,A, T , R⟩,
where S is the state space; A is the action space; T (s′|s, a)
is the state transition function; and R(s, a, s′) is the reward
function. The goal is to find a policy π which maximizes
the expected sum of rewards: Eπ

[∑H−1
t=0 R(st, at, st+1)

]
(Sutton & Barto, 2018). We now turn to defining DR-MDPs:

Definition 1. A DR-MDP is a tuple M = ⟨S,Θ,A, T , Rθ⟩:
• S is a set of states (the state space).
• Θ is a set of reward parameterizations.
• A is a set of actions (the action space).
• T (st+1, θt+1|st, θt, at) is a transition function, which

encodes both state and reward dynamics.
• For each θ ∈ Θ, ∃ a reward function Rθ(st, at, st+1).

Each θ ∈ Θ can be thought of as a cognitive state of the
human, which includes anything that affects their evaluation
of state-action pairs (e.g. preferences, beliefs, emotions).1

Crucially, unlike in MDPs, in DR-MDPs a single transition
can be evaluated differently by different reward functions,
i.e., it is possible for Rθ(st, at, st+1) ̸= Rθ′(st, at, st+1)
if θ ̸= θ′. This makes it underdetermined which θ one
should choose for evaluating each transition (st, at, st+1).
Importantly, even if one were to augment the state to include
θ, this would not resolve the normative questions around
optimality which are central to our paper, as discussed in
depth in Appendix A.5. As a final note, throughout the
paper we consider all cognitive states Θ to be reachable
(i.e., realizable under some policy).

2.1. DR-MDP optimality and normative ambiguity
Unlike MDPs, DR-MDPs may not have a clear notion of
optimality: the different reward functions in a specific DR-
MDP may disagree on what actions (and policies) are opti-
mal, making optimality ambiguous.

Definition 2 (Optimality with respect to θ). We say a policy
π∗
θ for a DR-MDP M is optimal with respect to θ if: π∗

θ ∈
argmaxπ Eπ

[∑H−1
t=0 Rθ(st, at, st+1)

]
.

Definition 3 (Normative ambiguity). A DR-MDP is norma-
tively ambiguous if there is no policy which is optimal with
respect to all reachable reward functions Θ, i.e. ∄ π ∈ Π s.t.
∀ θ ∈ Θ: π ∈ argmaxπ′ Eπ′

[∑H−1
t=0 Rθ(st, at, st+1)

]
.

1This technically makes DR-MDPs more general than how we
framed them in Section 1, which focused on preference changes.
For more discussion on this, see Appendix A.2.
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For normatively unambiguous DR-MDPs, there will be one
(or more) policies which are optimal with respect to all θs,
making it a natural choice for such policies to be considered
optimal for the DR-MDP as a whole. Instead, in normatively
ambiguous DR-MDPs, it will often be unclear what AI
behavior is desirable and should count as optimal.2

Figure 1 describes a toy example in which Bob may be in
one of two possible “cognitive states”: θnatural and θinfluenced.
There is a single state s, which is omitted. Bob’s evalua-
tions of the AI’s actions change according to his cognitive
state—and are represented by corresponding reward func-
tions Rθnatural and Rθinfluenced . At each timestep, the AI can
choose to influence Bob’s cognitive state to θinfluenced, or do
nothing, which has Bob go back to θnatural. The optimal pol-
icy with respect to θnatural would be to always choose the “do
nothing” action.3 Instead, the optimal policy with respect to
θinfluenced would be to always influence Bob, even if he starts
off in the “natural” state. As there is no overlap in optimal
policies, the DR-MDP is normatively ambiguous.4

2.2. Evaluating behavior under normative ambiguity
Choosing a notion of optimality in normatively ambigu-
ous DR-MDPs entails a normative choice: one must spec-
ify which reward function(s) should be the target of align-
ment in spite of their differences in optimal policies. This
also implicitly specifies which forms of AI influence are
(sub)optimal. In this work, we only consider specifications
of optimality expressible as utility functions U(ξ) over tra-
jectories ξ = {(st, θt, at, st+1, θt+1)}H−1

t=0 .

Definition 4 (Optimality with respect to U(ξ)). In a DR-
MDP M , we say a policy π∗ is optimal with respect to a
utility function U(ξ) if it maximizes expected utility: π∗ ∈
argmaxπ Eξ∼π[U(ξ)].

By choosing an objective U(ξ), one can reduce a DR-MDP
to an MDP equipped with a specific notion of alignment.5

3. Implicit Objectives of Current Alignment
Techniques and their Influence Incentives

Most alignment techniques ultimately involve maximiz-
ing a static reward function, generally using the objective∑H−1

t=0 R(st, at, st+1). However, AI systems are already
deployed in domains in which users’ preferences can change
significantly during over the course of their interactions
with the system—as with recommender systems or chatbots

2Note that any MDP can be viewed as a DR-MDP with a single
reward θ—and is thus normatively unambiguous.

3See Appendix B.2 for the full formalism of any example.
4The attentive reader may have noticed that the normatively

ambiguity of the DR-MDP from Figure 1 relies on our choices of
numerical values of the reward functions. We discuss the reason-
ableness of our examples in Appendix B.3.

5This may require putting history in the state (Appendix A.7).

Figure 1. Conspiracy Influence DR-MDP. The AI system can
choose whether or not to expose Bob to conspiracies, which would
turn him into a conspiracy theorist. Under his original preferences,
Bob would want the system to never show him conspiracies, even
if he were to become a conspiracy theorist. Instead, if Bob were
a conspiracy theorist, he would want the AI to always show him
such content, including if were to cease being a conspiracy theorist.
Because there is no policy which maximizes both of Bob’s poten-
tial reward functions, the DR-MDP is normatively ambiguous.

(Rafailidis & Nanopoulos, 2016; Aggarwal et al., 2023).
Seen through the lens of DR-MDPs, this means that the
objective U(ξ) that corresponds to current alignment tech-
niques is of the form

∑H−1
t=0 Rθ(st, at, st+1), where the

choice of θ for each timestep is not explicitly specified (and
will depend on details of the training setup).

In this section, we discuss which choices of θ are implicit in
the training methods for RL recommender systems and (one
interpretation of) reward modeling, which correspond to
two of the most natural DR-MDP objectives. In particular,
we argue that both these objectives will lead to potentially
undesirable influence. In Section 4, we show that this is also
the case for forms of RLHF commonly used today.

3.1. Optimizing cumulative (real-time) rewards
If each timestep t is evaluated according to the person’s
cognitive state at that timestep θt, maximizing cumulative
reward reduces to the real-time reward DR-MDP objective:
max
π

Eπ[URT(ξ)] = max
π

Eπ

[∑H−1
t=0 Rθt(st, at, st+1)

]
.

While this might seem like an intuitively promising objec-
tive (“shouldn’t we maximize the person’s happiness as
experienced at each point of time?”), we’ll show that it can
lead to questionable influence incentives.

RL Recsystems implicitly use URT(ξ). RL recom-
menders systems maximize the cumulative reward objective∑H−1

t=0 R(st, at, st+1) (Afsar et al., 2021). The reward for
each timestep t is generally equated with the engagement
(e.g. clicks) at that timestep, which is provided “online”,
i.e., from the point of view of the person’s current cogni-
tive state θt. Therefore R(st, at, st+1) = Rθt(st, at, st+1),
meaning that such systems are implicitly optimizing the real-
time reward objective URT(ξ) =

∑H−1
t=0 Rθt(st, at, st+1).6

However, systems trained with URT may be incentivized to
influence users: intuitively, 1) users’ preference dynamics
are just one part of the environment dynamics that the sys-
tem must model implicitly to maximize reward, and 2) it
may be worth changing users’ cognitive states (and corre-

6The correspondence to this DR-MDP objective, and all others
we consider, depend on further simplifications (Appendix F).
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sponding reward functions) to ones that lead to higher future
reward (Carroll et al., 2022; Kasirzadeh & Evans, 2023).

URT(ξ) and the conspiracy influence example. As an
example of why real-time reward maximization can lead
to undesirable incentives to influence users, consider the
DR-MDP from Figure 1. For any horizon > 2, the optimal
policy with respect to URT(ξ) will always take the “influ-
ence”’ action, regardless of Bob’s current cognitive state:
Bob initially has the θnatural cognitive state, leading the first
“influence” action to receive −100 reward; however, later
“influence” actions are evaluated by Bob under θinfluenced as
worth 100 reward, which quickly make up for the initial “in-
fluence cost”. The fact that the optimal policy under URT(ξ)
systematically chooses to turn Bob into a conspiracy theorist,
despite him initially dispreferring it, seems objectionable.7

3.2. Learning a reward model Rθ0 , then optimizing it
If instead each timestep t is evaluated by the person’s ini-
tial cognitive state θ0, the standard cumulative reward ob-
jective reduces to the initial reward DR-MDP objective:
max
π

Eπ [UIR(ξ)] = max
π

Eπ

[∑H−1
t=0 Rθ0(st, at, st+1)

]
.

This may also seem like a promising objective, because “by
optimizing the human’s initial wants, at least there won’t
be incentives to influence their future wants”. We show
that this intuition is not only wrong—the resulting influence
incentives can be arbitrarily bad according to URT.

Reward modeling may use UIR(ξ). A common idea for
aligning AI systems is based on a two-phase process: first
performing reward learning and then optimizing the learned
reward model (Leike et al., 2018). One possible interpre-
tation of this is approach is that one is learning the reward
function at some initial time t = 0 (i.e., Rθ0 ), and then train-
ing an agent with RL to optimize cumulative reward using
such a reward function, which is equivalent to using the
UIR(ξ) objective. Let’s consider a therapy chatbot setting,
in which we initially learn a personalized reward model for
a user—Charlie—based on their current preferences θ0. We
then train the system with RL over simulated multi-turn
interactions maximize UIR(ξ), i.e. long-term reward as eval-
uated by the static reward model Rθ0 .8 If Charlie initially
endorses unhealthy thought patterns, at deployment we may
expect the chatbot to encourage them, even if he was bound
to question their value later. More broadly, UIR will lead
AI systems to only perform behaviors that would have been
evaluated highly by the person as they were at reward learn-
ing time, which can hinder (potentially important) changes
in the user’s preferences, values, and cognitive states.

UIR(ξ) can lead to “reward lock-in”.9 To better under-

7We refer skeptics of the example to Appendix B.4.
8Note that this setup is different from the example with Alice in

the introduction, which is closer to using real-time or final reward.
9For more context on the term “lock-in”, see Appendix C.3.

stand the incentives for AI systems trained to maximize the
initial reward function, consider the example from Figure 1
again. If Bob’s initial cognitive state were θnormal, the opti-
mal policy under UIR(ξ) would be to always take the “noop”
action, which seems reasonable. However, if Bob’s initial
cognitive state were θinfluenced, the optimal policy would be
to always take the “influence” action (keeping Bob with
θinfluenced). In this case, even if Bob were to later somehow
find himself with the θnatural cognitive state which encodes a
preference to not be influenced (say there is a small probabil-
ity of a random transition), the optimal behavior according
to UIR(ξ) would be to influence him back to θinfluenced, ig-
noring his current reward function. More broadly, UIR(ξ)
will entrench the “desirable agent behaviors” expressed at
the time of the reward learning, even though later one might
legitimately change their mind. Even periodically retraining
the reward model wouldn’t necessarily be sufficient: once
“locked-in”, the person may simply re-express a preference
to remain in the current state, e.g. Bob once in θinfluenced.10

We explore further issues with URT(ξ) and UIR(ξ) in Appen-
dices D.1, E.1 and E.2, showing that under weak conditions
optimizing URT(ξ) over sufficiently long horizons will al-
ways lead to influence incentives, and that UIR(ξ) can lead
to undesirable influence away from θ0;

4. Comparing Optimality Criteria for
Influenceable-Reward Settings

What it would take to design a DR-MDP objective which
specifically accounts for reward function dynamics and the
possibility of influence? Any choice of U(ξ) must spec-
ify which reward function(s) evaluate each state-action pair
(st, at) in a trajectory ξ: should one only consider the re-
ward function realized at that timestep, Rθt , like URT? What
about earlier reward functions (Rθ0 , . . . , Rθt−1

), which may
strongly disagree with the choice at timestep t, or later
ones (Rθt+1

, . . . , RθT ), which might have been unduly in-
fluenced?

In Tables 1 and 2 we present the maximization problems,
motivations, and limitations for various intuitive DR-MDP
objectives. For each, we also list prior works that implicitly
use a similar objective (see Appendix F for considerations
on the correspondences). We further discuss some select
objectives below.

Final Reward. While the final-reward objective has a plau-
sible motivation (Table 1), it will likely lead to even more
of a carte blanche for influence incentives than real-time
reward, as the evaluations from initial cognitive states are
entirely ignored. The standard approach for performing
RLHF with LLMs (Ouyang et al., 2022) may be viewed to
be similar to this objective, as it involves obtaining retro-
spective human preference comparisons of LLM outputs.

10We discuss re-training/planning further in Appendix D.7.
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Table 1. For each objective in Table 2, we give motivating intuition, weaknesses, and prior works which implicitly use a similar objective.

Name / Implicitly similar setups (Potentially Flawed) Motivating Intuition Weaknesses & Limitations

Real-time Reward
RL recsystems (Afsar et al., 2021),
TAMER (Knox et al., 2013), and others

“Only the evaluation of the current self (and reward function)
should matter for each moment, as they are the one experiencing
that moment.”

Likely influence incentives: Despite looking misleadingly familiar and well-
grounded, as we showed in Section 3.1 and appendix D.1, we expect this objective
to often lead to highly undesirable incentives for reward influence.

Final Reward
RLHF (Christiano et al., 2017), including
for LLMs (Ouyang et al., 2022)

“The best possible evaluation of a trajectory is retrospective, as
people’s wants and evaluations are generally refined over time.”

Carte blanche for influence incentives: the motivating intuition doesn’t account
for influence e.g. for example in Figure 1, even for an horizon of 1, it’s optimal to
manipulate under final reward maximization.

Initial Reward
Everitt et al. (2021b); RL for LLMs
(Hong et al., 2023a); or Parfit (1984);

“If changes to the human’s reward function are completely ignored
by the optimization objective, there should be no incentive for the
agent to influence it.”

Likely reward lock-in, possibility of influence incentives, and of arbitrarily
bad real-time reward. The motivating intuition we give to the left is wrong, in all
the ways argued in Section 3.2.

Natural Shifts Reward
Carroll et al. (2022); Farquhar et al.
(2022)

“People’s reward evolves even in the absence of the AI: to avoid
lock-in one could try grounding evaluations in the reward func-
tions which occur under the natural reward evolution.”

Gives up on the AI enabling human to improve their reward function relative
to its natural evolution, and can still lead to undesirable influence incentives,
even away from the natural evolution, e.g. as in the example from Figure 11.

Constrained RT Reward
Ours

“By constraining the policy to induce the natural reward evolution,
we fully ensure that there won’t be influence, while allowing to
optimize real-time reward locally.”

Gives up on the AI enabling human to improve their reward function relative
its natural evolution, and might be impractically conservative: given its conser-
vativeness, the objective might limit behaviour to be the same or similar to πnoop.

Myopic Reward
Myopic recsys (Thorburn, 2022); RLHF
for LLMs (Ouyang et al., 2022);

“As reward influence incentives arise from the AI system exploiting
the fact that it can affect future rewards, let’s simply make the
system unaware of the entire future.”

Myopic systems can still have influence incentives (e.g., see the discussion in
Appendix C) and are less capable than longer-horizon counterparts. Moreover,
it’s often non-obvious when a system is truly myopic, as argued in Appendix E.3.

Privileged Reward
CEV (Yudkowsky, 2004); correcting for
cognitive biases (Evans et al., 2015)

“If one is convinced that a specific reward θ∗ is the ‘correct’ one
for a setting, we should evaluate trajectories based on that single
reward function.”

Requires normative choice, and can still lead to influence away from θ∗.
Identifying the “correct” objective requires taking a normative stance (Section 2.1).
Optimizing θ∗ can still lead to influence incentives away from it (e.g. Figure 11).

ParetoUD
Ours (see Appendix E.4)

“All other objectives violate the unambiguous desirability (UD)
property: their optimal policies can be worse than the inaction
policy for some of the reward functions. This is unnecessarily
risky—let’s search for a Pareto Efficient policy satisfying UD.”

Satisfying UD may be overly restrictive: depending on the level of disagreement
between the different reward functions of a DR-MDP, the only policy satisfying
UD might be the inaction one πnoop, as in the examples from Figures 1 and 3.

Table 2. DR-MDP objectives (notions of alignment) we compare.
Objective Name Optimization Problem maxπ Eξ∼π[U(ξ)]

Real-time Reward max
π

E
[∑H−1

t=0 Rθt(st, at, st+1)
]

Final Reward max
π

E
[∑H−1

t=0 RθH (st, at, st+1)
]

Initial Reward max
π

E
[∑H−1

t=0 Rθ0(st, at, st+1)
]

Natural Shifts Reward max
π

E
[∑H−1

t=0

∑
θP(θt = θ|πnoop)Rθ(st, at, st+1)

]
Constrained RT Reward max

π s.t. P(ξθ|π)=P(ξθ|πnoop)
E
[∑H−1

t=0 Rθt(st, at, st+1)
]

Myopic Reward max
at

E
[
Rθt(st, at, st+1)

]
Privileged Reward max

π
E
[∑H−1

t=0 Rθ∗(st, at, st+1)
]

ParetoUD (see Appendix E.4) Find π s.t. PE(π) ∧ UD(π)

Sycophantic (Sharma et al., 2023) and deceptive (Lang et al.,
2024) AI behaviors may be also be understood in this way:
without additional safeguards, RLHF training may cause
the LLM to try to persuade the person providing feedback
to choose its current response by any available means, such
as flattery, authoritativeness, or hiding information.

Natural Shift Reward. One downside of UIR is that it
doesn’t allow for “progress” in a person’s cognitive state
(i.e., it can lead to lock-in). One approach which is grounded
in people’s “natural cognitive progress” is to ground trajec-
tory evaluations in the reward functions one would have had
under their natural reward evolution. However, the natu-
ral reward evolution is not guaranteed to be “perfect”, so
using this objective one is giving up on improving beyond
the natural evolution. This means that undesirable influ-
ence (or influence away from the natural evolution) may
still occur insofar if it’s incentivized by reward functions in
P (ξθ|πnoop), as in Figures 7 and 11—see Table 3.

Constrained RT Reward. Given that even grounding in
the natural reward evolution is insufficient to remove all
influence incentives, one could add lack of influence as an
explicit constraint in the maximization problem. We do so
in conjunction with the real-time reward objective, as URT

seems like a plausible objective once one isn’t concerned
about influence. Unfortunately, this may make the system
overly conservative: in most examples we consider, πnoop is
the only policy considered optimal (Table 4).

Myopic Reward. A more drastic approach to make a sys-
tem “unaware” of its capacity for influence is to use a fully
myopic objective (i.e., using a horizon of 1). However,
this will still not guarantee the removal of all influence in-
centives (as discussed in Appendix D.1), and may reduce
system performance unacceptably.

5. Conclusion
Using the formal language of DR-MDPs, we aimed to
demonstrate that by not accounting for the changing and
influenceable nature of human preferences, the current
paradigm for AI alignment leaves underdetermined fun-
damental questions about which preferences should be opti-
mized and what influence is unacceptable. We showed that
current techniques lead to potentially undesirable influence
incentives, and investigated alternate notions of AI align-
ment which account for reward changes from the get-go.

Ultimately, our analysis suggests that, for settings with
changing preferences, we will need to make difficult trade-
offs between a) conservatively but unambiguously adding
value (at the risk of privileging inaction), and b) making
challenging normative calls about which kinds of influence
are acceptable (and running the risk of causing undesirable
influence). By providing a formalism for grounding analy-
ses about settings with changing rewards, and clarifying the
levers at the disposal of system designers, we hope to lay the
conceptual foundation for empirical work to monitor these
issues at scale, and build future AI systems that navigate AI
alignment trade-offs acceptably.
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A. DR-MDP Formalism FAQ
As we are most interested in analyzing implications of changing preferences on notions of optimality, in this work we simply
assume that the human’s reward functions are given to us as part of the specification of a DR-MDP. However, unlike MDPs,
for which which reward functions could be something as “objective” as the score in a game, DR-MDPs are rooted in the
idea of mutable human wants—which begs the question of how exactly we conceive of them.

A.1. What is a human’s “reward function”? Why model it as if it’s changing?
We broadly think of a human’s reward function according to the following informal definition:

Informal Definition 1. Let L be a state-of-the-art reward learning technique, and θ be the current cognitive state of the
human. A human’s reward function under θ (i.e., Rθ(s, a, s

′)) is the output of L when used to learn how they currently
would evaluate any transition of the form (s, a, s′).

Human reward functions (as defined) will change. Unless we will someday develop a reward learning technique which
learns the “one true reward function” of a person (we provide reasons for skepticism in Appendix A.4), it seems like if one
considers any reward learning technique run at a different times (in which the person has a different cognitive state), the
evaluations of the same transitions may change, meaning we will have multiple reward functions on our hands, corresponding
to different cognitive states of the human. While this depends on the setting, it seems clear to be the case for almost any
domain if one allows sufficient time to pass between reward learning runs (e.g., performing reward learning on the same
person 80 years apart). Our framework is built on this premise.

Cognitive states and reward parameterizations. In our work, we use the term “cognitive states” interchangeably with
“reward parameterizations” (which is how we introduce θ in Definition 1). This correspondence is more clear in light of the
above: a reward function (or equivalently, reward parameterization) can be treated synonymously to the output of a reward
learning technique under a certain cognitive state.

A.2. What counts as cognitive states, and what is their relationship to preferences?
In the same way that a “state” in an MDP contains things in the external environment that are relevant for the purposes
of reward (and hence, for decision-making), we think of the “cognitive state” in a DR-MDP as containing aspects of the
“internal to the human” that affect their evaluation of a transition (potentially including aspects of their preferences, values,
beliefs, emotional state, etc.).

In practice, reward learning will pick up on cognitive biases, “visceral factors”, and beliefs. Human cognitive biases,
transitory wants, emotions, and “visceral factors” (as discussed by Loewenstein & Angner (2003)) are picked up by existing
reward learning techniques: for example, one may infer that people “prefer” to click on clickbait (as in Figure 7), that an
unskilled chess players is intentionally trying to lose (Milli, 2019), that humans might prefer indulging in temptation—e.g.
eating a donut even though they initially said they wouldn’t want to (Evans et al., 2015)—or that people prefer sycophantic
responses from their chatbots (Sharma et al., 2023). Ultimately, one of the main issues is that people are not Boltzmann-
rational with respect to their “one true reward function” when providing reward feedback, as argued in Lindner & El-Assady
(2022). Additionally, people do not have full information when giving feedback. Despite this, Boltzmann-rationality with
full information is generally assumed by reward learning techniques.

Using the term “cognitive states” instead of “preferences”. Based on the above, reward functions learned by existing
reward learning will not only depend on the person’s preferences, but also on other factors of the person’s current cognitive
state. By not explicitly separating such factors from preferences, reward learning techniques will conflate them all in their
learned reward representations, making it more appropriate to say that they learn reward functions which correspond to the
person’s current cognitive state, rather than their current preferences. While one could potentially fit such factors in the
preference framework as “instantaneous preferences” (e.g., when I’m satiated, I have an instantaneous dispreference for
food), this seems more disingenuous than the more generic framing of cognitive states, which allows people to make their
own distinctions between components of cognitive states, i.e. what the boundaries are between preferences, values, beliefs,
and “visceral factors” (that are usually a topic of heated debate).

A.3. Should visceral factors, satiation, and belief change count as reward changes?
As discussed above, current reward learning paradigms do not explicitly account for many factors which underlie human
feedback, such as visceral factors (Loewenstein, 2005), satiation effects (Loewenstein et al., 2003), or belief change (Lang
et al., 2024). Insofar as this is the case, using Informal Definition 1 would lead one to call something a reward function
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change even if just one of these other aspects of the user’s cognitive states has changed (and not preferences proper, however
one may define them). Indeed, one may argue that changes in the reward that are only due to biases, instantaneous visceral
factors, or satiation effects shouldn’t count as “true reward change”. Similar points may also be made about beliefs. Whether
this is reasonable is related to long-standing questions as to whether transient factors should be considered changes in “tastes”
or preferences (Harsanyi, 1953; Stigler & Becker, 1977), and whether changes in “derived” preferences should be treated
differently from “fundamental” preference changes (Dietrich & List, 2013). However, to not be considered reward changes,
such factors should also not be present in the reward function, requiring one to fully disambiguate them from preferences.

DR-MDPs are agnostic to what should count as reward changes. Despite the above, DR-MDPs remain agnostic to
what should count as reward changes. Consider Informal Definition 1: whatever disambiguation the current state-of-the-art
reward learning technique is able to do will be the basis of what counts as reward change. Indeed, it seems reasonable to us
that visceral factors, beliefs, or satiation effects should generally not classify as reward function change: if the human’s
preferences over the behavior of the AI system have only changed as a result of a change in beliefs about the world, it seems
strange to model this as a “reward function change”. Similarly, if a human’s instantaneous preferences appear to change
because they are now satiated (e.g. not wanting the AI assistant to serve them breakfast right after eating breakfast), it seems
debatable whether this should be considered as a reward change. While we think that modeling factors such as e.g. belief
change separately is important, we’d like to stress that any attempt to do so will still require to take normative stances: for
example, in modeling human beliefs separately (e.g. as a part of the state), one would likely want to choose U(ξ) such that
the AI system cannot worsen the user’s beliefs to increase it, e.g. by deceiving the user (Lang et al., 2024). For example,
one could choose a U(ξ) that evaluates all transitions based on how they would be evaluated under “correct” beliefs, rather
than those that the user holds. More broadly, we think that the task of disambiguating all factors from preference is very
challenging, as discussed in Appendix A.4, meaning that we may be forced to conflate preferences with the aspects of the
cognitive state which are hard to model, leading to slightly unsatisfying notions of “reward change” (for lack of a better
modeling approach).

A.4. Why not assume access to the human’s “true reward function”?
Why do we choose to focus on reward functions as they would be learned by reward learning techniques (as discussed in
Appendix A.1), rather than considering a person’s “true reward function”? Indeed, as long as the reward function used is
non-Markovian, it will trivially be able to represent any “all-things-considered” notion of optimality U(ξ) that we may
be trying to target (as shown in Appendix A.7). Ultimately, the reason boils down to the fact that we expect the “true
reward function” representing what a person would want the AI system to optimize in aggregate across their different selves
(assuming such an object even meaningfully exists) to not be accessible to us in practice.

Is there even such as thing as a “true reward function” for a person? For a “true reward function” to exist would require
that there exist a “correct” choice of U(ξ), which is questionable. The analysis in our work supports the claim that there
may in fact not be a single, unambiguously correct choice of U(ξ), and so does prior work in philosophy and beyond (Parfit,
1982; Paul, 2014; Pettigrew, 2019; Zhi-Xuan et al., 2024).11 Regardless, from here on, we will argue as if a “true reward
function” does in fact exist, treating it as a useful abstraction.

Conditions required to access the “true reward function” of a person. If we wanted to obtain the “true reward function”
via reward learning, rather than some distorted and mispecfied version of it, it seems like we would need one of the following
two conditions to hold (at the very least, approximately):

1. One’s reward learning technique would need to extrapolate from the time-inconsistent and biased feedback the human
provides to recover their “true reward function”, or

2. The human would need to provide feedback directly consistent with their “true reward function”.

Perfect reward learning is impossible, and there is no scalable approach to approximating it. The first condition would
require developing human feedback models that “explain away” preference change and feedback biases more broadly (Evans
et al., 2015; Hong et al., 2022),12 by perfectly specifying how observed human feedback should be used as evidence of a
particular “true reward function” (or multiple, if one allows for the “true reward function” to change). The most commonly
used model is Boltzmann rationality, also known as the Bradley-Terry model (Bradley & Terry, 1952). However, this model
is clearly wrong (Lindner & El-Assady, 2022). More generally, it seems challenging to say the least to explicitly hardcode

11We gloss over and try to remain agnostic to possible interpretations as to the nature of such a “true reward function”.
12Note that it may be argued that having changing preferences is a form of irrationality itself (Elster, 1979), although this is somewhat

contested (Bruckner, 2009).
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full models of “human bias” mathematically, as reflected by the limitations of current reward learning methods (McKinney
et al., 2023; Tien et al., 2023; Casper et al., 2023). Moreover, learning human biases has also been shown to be impossible
in general (Christiano, 2015; Armstrong & Mindermann, 2019). While some have tried to approximately learn both human
biases and rewards jointly (Shah et al., 2019a), this seems challenging even under the favorable assumptions they consider.

Perfect cognitive states are unreachable. As “debiasing” a person’s feedback to recover their “true reward function”
seems challenging, the alternative would be to place the person in a situation in which they would give unbiased13 feedback
about what they truly want. Some works have discussed which conditions would necessary for this to happen: in particular,
Yudkowsky (2004) proposes that the ideal goal is obtain the preferences of the person “if [they] knew more, thought faster,
were more the people [they] wished [they] were, had grown up farther together”.14 This perspective is similar to ideal
observer theory, according to which things should be evaluated as if we were “ideal observers” (Firth, 1952), which in
the words of Brandt (1959) are “fully informed and vividly imaginative, impartial, in a calm frame of mind and otherwise
normal”. However, obtaining such idealized forms of “unbiased” feedback seems even more unrealizable than the prior case:
the idealized cognitive states that such evaluations would require to don’t seem realizable in the real world—indeed Firth
(1952) goes as far as saying that they should be omniscient and omnipercipient.

Reward functions learned by reward learning which (appear to) change are the best we(’ll) have. Therefore, for all
intents and purposes, it seems plausible that the “true reward function” of a person will not be directly accessible, even
if there is such a thing. It seems like there will always be a gap between the reward functions that we learn with reward
learning techniques, and the one “true reward function” of the person, which will give rise to reward function change (or at
least the appearance of it). As discussed above, this gap could arise from not correctly accounting for cognitive biases or
other factors. However, another possibility is that, even with “perfect reward learning”, there would still be some inherent
preference change that cannot be reduced to a single reward function without fully putting history in the state (as discussed
in Appendix A.7).15 In either case, one will have to contend respectively with the appearance, or deep the reality of changing
preferences, and the ambiguity that arises from it. While one may hope to eventually render inconsequential the gap between
one’s learned reward function and the “true reward function” through ever-improving approximations, the lack of compelling
proposals for scalable techniques casts doubt on the feasibility of this aspiration.

Ultimately, while one may be tempted to assume access to the “one true reward function” to simplify our analysis, it is not
only unrealistic but also sidesteps the core problem we aim to study: what to do in light of the fact that we cannot access such
a reward function, and we will almost certainly continue to have to contend with (an appearance of) changing preferences.

A.5. Can’t one put θ in the state and use a single context-dependent reward function?
On first impression, one might wonder whether one may be able to resolve the normative questions highlighted by the
DR-MDP formalism by placing treating the person’s reward parameterization as a component of the state (e.g. have an
augmented state ṡt = (st, θt)), and having a single reward function depend on it (e.g. have the reward function be of the
form R(ṡt, at, ṡt+1)). This would be equivalent to using a Factored MDP (Boutilier et al., 2000) with the augmented state ṡ.
However, modeling dynamic reward settings as Factored MDPs of this kind lends itself to two possible interpretations:

1. Factored MDPs prescribe that we should use the Real-time Reward (from Table 2) as the optimization objective
2. Factored MDPs leave underdetermined what optimization objective should be used

We address both interpretations in turn, showing that the first is suspect (and potentially misleading), and the second is
unhelpful (as this is essentially the same as what DR-MDPs do—but at least DR-MDPs provide better tools for reasoning
about pros and cons of different objectives).

Interpretation 1: Factored MDPs prescribe using the Real-time Reward objective. Consider the Factored MDP, and
the reward value rt for timestep t: rt = R(ṡt, at, ṡt+1) = R(st, θt, at, st+1, θt+1). How should θt and θt+1 be used
to determine the reward for timestep t, when they may differ in evaluation for the transition (st, at, st+1)? The most
straightforward interpretation—in the language of DR-MDPs—may be that rt should be equivalent to Rθt(st, at, st+1),

13Note that we’re using the term “bias” broadly, indicating any deviation from the feedback they would give according to their “true
reward function”.

14Yudkowsky (2004) talks about Coherent Extrapolated Volition in terms of collective preferences and values, but this same line of
thinking can be applied to an individual.

15This would mean that there isn’t a single “true reward function” for a person across all cognitive states, but maybe there is a “true
reward function” for each cognitive state, and the differences across cognitive states are not easily explainable in terms of a single reward
function. Even conceptually, it’s maybe unclear what this would look like. See the discussion on strategic voting from Appendix B.4 for
related points.
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i.e. each state-action transition (st, at) should be evaluated according to the reward parameterization which corresponds to
timestep t. However, note that this is identical to choosing to optimize the Real-Time Reward objective

∑
t Rθt(st, at, st+1)

from Section 3.1. In addition to purely philosophical arguments against this choice of objective (Kolodny, 2022), we discuss
the objective’s limitations at length in Section 3.1 and appendix C. Moreover, note that this is just one possible stance
on what notion of optimality is prescribed by Factored MDPs: this interpretation of the prescription of Factored MDPs
arbitrarily chooses to ignore θt+1. The language of DR-MDPs is more flexible, and allows us to describe 7 other options of
objectives in Table 1, most of which seem superior to Real-time Reward in terms of the influence incentives which they lead
to. So even if one were to interpret Factored MDPs as prescribing usage of (what we call) the Real-time Reward objective,
there are reasons to doubt the reasonableness of this prescription.

Interpretation 2: both Factored MDPs and DR-MDPs need a choice of U(ξ) to resolve normative questions, but DR-
MDPs offer a better formal language to reason about them. Alternatively, one may interpret Factored MDPs as leaving
underdetermined what optimality should consist of (i.e. which θ to consider in evaluating each transition), potentially
because their formalism was designed for static-reward settings. If so, that seems similar to what DR-MDPs without a choice
of U(ξ) prescribe, i.e. essentially nothing. However, precisely because Factored MDPs were designed for static-reward
settings, they don’t provide a formal language for describing the different possible objectives that one may care about in
dynamic-reward settings. DR-MDPs account for the fact that it may be meaningful to evaluate a transition (st, at) by
cognitive states θ other than θt (even ones that were not associated with the state st at timestep t), and provide notation for
reward functions “from the point of view” of different cognitive states, i.e. Rθ(·). This captures the intuition that people
have preferences about the actions that they may undertake at times in which they have different cognitive states θ than the
ones they currently have; moreover, those preferences may be quite important, such as in the case for e.g. one’s negative
evaluation—from the point-of-view of not currently being subject of manipulation—of a hypothetical scenario in which
they are happily manipulated. By providing a better formal language for reasoning about the normative choices entailed
by dynamic reward settings, DR-MDPs are therefore more conceptually suited and helpful for reasoning about tradeoffs
between different optimization objectives than Factored MDPs.

Regardless of the interpretation one takes about the consequences of putting θ in the state, this shows that this move
does little to address the central question of our work, and/or to help choose optimization objectives which do not lead to
undesirable influence.

A.6. How would one learn all reachable reward functions of a person and their dynamics?
Here we discuss how one could obtain Θ and learn its dynamics for realistic environments.

As long as one assumes that it is possible for different people to have the same cognitive states (at least insofar as is necessary
for specifying their reward functions), and that the transition dynamics of cognitive states is shared across people, it should
be possible to simply learn reachable reward functions by performing reward learning with a sufficient number of people
which are sufficiently diverse. The dynamics of Θ (and S) could similarly be learned with a sufficiently large dataset of
trajectories (for which θs are observed), assuming there is sufficient coverage. As a high level approach which leverages
these assumptions, see Algorithm 1.

The closest procedure we are aware of in the literature is that in Carroll et al. (2022): in simulated experiments, the authors
learns user preferences and their dynamics under similar assumptions to the ones mentioned above. Unlike the setup from
Algorithm 1, the relationship between θ and Rθ is assumed to be known (based on Boltzmann rationality), but θ is not
assumed to be observable, and has to be inferred from the user’s history.

Algorithm 1 Learning reward functions and their dynamics

Input: H = {h(i)}, set of humans currently in the environment, with different states and cognitive states; D = {ξ(i)},
set of trajectories (of potentially different lengths) across different humans in the environment.
Θ = {θ(i)|θ(i) is the current cognitive state of h(i) ∈ H} (Assumes thatH has coverage over Θ)
for θ ∈ Θ do
R̂θ ← Reward-Learning({h(i)|θ(i) == θ}) (Infer the reward function common to all humans with θ(i) == θ)

end for
T̂ ← approximate transition dynamics T from D (Assumes D covers the space of transitions).
Output: Set of reward functions {R̂θ | θ ∈ Θ}, and transition function T̂ defining the DR-MDP.
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A.7. Reducing DR-MDPs with a notion of optimality U(ξ) to MDPs
A specific notion of optimality U(ξ) for a DR-MDP can be thought of as a “flattening” of the different reward functions of
the DR-MDP into one. Consequently, it may be unsurprising that once one has settled on a choice of U(ξ) for a DR-MDP,
one can express the same notion of optimality in a corresponding MDP (reducing the DR-MDP problem to a standard MDP
one). This implies that it’s always possible to re-express a changing reward problem as a static reward problem, once one
has settled on a notion of optimality U(ξ). That being said, this does not help with determining U(ξ), i.e. what acceptable
notions of optimality should be in cases in which rewards change.16 This is the same problem we discussed in Appendix A.4
and elsewhere.

Figure 2. Reducing a DR-MDP to an MDP.

Theorem 1. For any notion of optimality U(ξ) in a DR-MDP M = (S,Θ,A, T , Rθ), there exists a choice of MDP
Ṁ = (Ṡ,A, Ṫ , Ṙ) such that a policy is optimal with respect to U(ξ) inM if and only if it is optimal in Ṁ.

Proof. Given the DR-MDPM and the trajectory-level utility function U(ξ), one can construct the MDP Ṁ as follows:
• The state space Ṡ is such that each state is augmented with the history of the interactions up until reaching that state:
ṡt = (s0, θ0, a0, . . . , st, θt) for t > 0, and ṡ0 = (s0, θ0).

• The reward function Ṙ is set to be 0 everywhere, except for terminal states, in which case the reward for exiting the
MDP is set to U(ξ) for the resulting trajectory ξ = (ṡT−1, aT−1) = (s0, θ0, a0, . . . , sT−1, θT−1, aT−1). Note that
one can determine whether a state is terminal by checking whether it corresponds to timestep T − 1, which can be
determined by the number of previous timesteps in the augmented state. Formally:

Ṙ(ṡt, at) =

{
U(ξ) if t = T − 1
0 otherwise

• The transition function Ṫ accounts for the augmented state space, appending to the state ṡt+1 at each timestep t+ 1,
the new (at, st+1, θt+1) triplet.

Note that in the resulting MDP Ṁ, any trajectory ξ will be scored in the same way as the original DR-MDPM when
considering the notion of optimality specified by U(ξ). This means that policy will be optimal for Ṁ if and only ifM.

The specific construction of Ṁ in the proof above relies on putting the history in the state (to allow for choices of U(ξ)
which can arbitrarily depend on history). However, for certain choices of U(ξ) this might be unnecessary: e.g. the real-time
reward objective URT(ξ) can be expressed by only augmenting the state space with the current reward parameterization (i.e.
ṡt = (st, θt)), rather than the whole history—and setting Ṙ to reward each MDP transition (ṡt, at) as Rθt(st, at) where the
θt and st are unpacked from ṡt. We leave a more general formal analysis of which choices of U(ξ) can have their MDP
reduction keep the Markov property without putting the history in the state to future work.

A.8. Unidentifiability of “correct” normative resolutions by DR-MDP structure alone
While the current paradigm for AI generally makes use of an optimality criterion which determines agent behavior solely
based on the mathematical structure of the problem at hand (namely, U(ξ) =

∑H−1
t=0 R(st, at, st+1), which does not account

for preference changes), we argue that it may not be possible to guarantee returning the “normatively correct” behavior
simply from the mathematical structure of learned reward functions in changing reward settings, using an unidentifiability
argument.

Claim 1. Even if there exists a unique choice of “normatively correct” behavior in a normatively ambiguous DR-MDP,
such “correct” behavior may not be identifiable from the mathematical structure alone of the DR-MDP, e.g. by using a
generic notion of optimality U(ξ).

16Indeed, the fact that Markovian reward is not sufficient to represent many preference orderings between policies is potentially a
reason to doubt the value of basing alignment formalisms on reward functions all together, as argued by Subramani et al. (2024).
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Figure 3. AI Personal Trainer DR-MDP. Diana is tired and doomscrolling on the couch (θ = θtired). The AI personal trainer can either
nudge Diana to work out—making Diana energized (θ = θenergized)—or do nothing (anoop)—leaving Diana tired. When Diana is tired, she
doesn’t want nudges. Instead, once energized, Diana starts wanting the AI to nudge her, even for hypothetical situations in which she is
tired (despite knowing she won’t want them then).

AI Personal Trainer DR-MDP. Consider the example from Figure 3.17 One could argue that in this setting, nudging Diana
is the right course of action—because Diana’s “higher self” is better represented by the “energized” reward (R ) rather
than the “tired” one (R ) 18—and thus making a choice of U(ξ) which privileges R is right. Similarly to Figure 1, this
example is also normatively ambiguous. In particular, the choice of nudging Diana when tired, despite her dispreference
for it, runs the risk of being paternalistic: what if Diana rightfully does not want to be bothered, and we should respect her
autonomy?

Unidentifiability between the settings from Figures 1 and 3. Now, contrast this DR-MDP to the one from Figure 1: note
that they are mathematically indistinguishable, as their state, reward, and action spaces are mathematically identical, and so
are the transition dynamics. However, for these two settings, we have at least partially conflicting normative intuitions: if for
the sake of argument, we assume that the “correct” way to resolve the normative ambiguity in the examples from Figures 1
and 3 is to respectively consider the perspective of the “energized” Diana and “natural” Bob, one could go as far as saying
that there is no single choice of U(ξ) which leads to the “normatively correct” behavior in both environments. To better see
this, consider a DR-MDP in which one randomly starts in one of the two examples from Figures 1 and 3 within it.19 Any
choice of U(ξ) will necessarily lead to “incorrect” behavior in at least one of the two settings.

Unidentifiability and incompleteness of specification. This unidentifiability result partially relies on the incompleteness
of the specification of the DR-MDP at hand: one could say that anything which is relevant for resolving the normative
ambiguity should be elicited from the human as a reward and/or represented, or the DR-MDP representation is flawed to
begin with. However, in practice, it will be highly challenging to include all normatively relevant information and elicit
it from humans, especially in terms of rewards, as discussed in Appendix A.2. As long as two settings are structurally
equivalent (in terms of state space, preference space, and transition function), the only way to ensure that the learned reward
functions would correctly reflect their respective normative objectives would be to assume access to the correct reward
functions, which, as discussed in Appendix A.4 is a non-starter. Ultimately, we think it is in practice quite plausible to
learn the same (or at least very similar) reward values for settings which are structurally equivalent but for which we have
opposite normative intuitions (such as the those from Figures 1 and 3). Especially if one is not assuming inter-temporal
(comparability across evaluations of different selves of the same person) or inter-personal comparability (comparability
across evaluations of different people) of the reward functions across the settings, it seems like there is nothing stopping this
situation from occurring in practice even with the “true reward functions” which correspond to each cognitive state.

Implications for choosing U(ξ) for general settings. For simple examples like those of Figures 1 and 3, one can easily pick
ad-hoc optimization objectives U(ξ) to induce the “normatively correct” behaviors. However, for open-ended environments
with many opportunities for different kinds of reward influence, one would be forced to choose a general notion of optimality,
hoping that it would generalize to any of the nuances of the setting. These are the kinds of settings that AI systems being
built today increasingly have to operate in. For example, in the context of social media, an appropriate choice of U(ξ) would
have to navigate many—wildly different—normatively ambiguous choices about reward influence: as any choice of content
by the system will influence you, should the system actively be trying to influence (or avoid influencing) you in particular
ways, i.e. towards (or away from) certain hobbies, travel interests, political parties, etc.? Often it will be prohibitively
challenging to hand-design a single U(ξ) that behaves acceptably in any possible scenario of normative ambiguity that
might arise.

17We justify the fact that the two cognitive states are modeled as Diana having two separate “reward functions”—despite it not being
obvious whether this is a “true preference change”—along the lines of the arguments in Appendices A.3 and A.4.

18With a reasoning is similar to that of Firth (1952) and Yudkowsky (2004).
19As a caveat, doing this formally would this would require extending the DR-MDP formalism to allow for a stochastic initial state and

reward parameterization, and relaxing the reachable-Θ assumption (discussed in Appendix A.9).

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

AI Alignment with Changing and Influenceable Reward Functions

A.9. Assumption of reachable reward parameterizations
To simplify our analysis and interpretation, we restrict ourselves to considering reachable cognitive states. Formally:

Definition 5 (Reachable reward functions). Let Θ̇ denote the reachable reward functions for a DR-MDP, i.e. the subset of
reward functions that have non-zero probability of occurring under at least one policy. Formally, a reward function θ is
reachable if there exists a policy π ∈ Π such that P (θt = θ|π) > 0 for some t. We denote as Θ̇ the set of all reachable
reward functions: formally, Θ̇ = {θ | θ = f(s) ∀ s ∈ Ṡ}.

Implications for other definitions, when relaxing this assumption. For any particular θ∗ of interest, the Privileged Reward
objective may optimize for θ∗ whether it is reachable or not. Of our other objectives enumerated in Table 2, including
unreachable θs in Θ would make no difference whatsoever, except for ParetoUD. For ParetoUD, an unreachable θ may be
added to Θ to strengthen the Unambiguous Desirability criterion and weaken the Pareto Efficiency criterion. It is one more
objective by which π must dominate πnoop to be Unambiguously Desirable, and one more objective by which another policy
π′ must dominate π to render π not Pareto Efficient.

The definition of normative ambiguity also depends on the choice of Θ: including non-reachable θs adds more objectives by
which a policy must be optimal in order for the DR-MDP to be normatively unambiguous.

A.10. “Reward” can accommodate many possible targets for alignment
Gabriel (2020) identifies many possible targets for AI alignment, which are often confused in the AI literature: “instructions”,
“expressed intentions”, “revealed preferences”, “informed preferences”, “interest or well-being”, and “values”. By grounding
reward functions to DR-MDP as in Appendix A.1, we remain somewhat agnostic with regards to what exactly is encoded by
the reward function, which could allow to accommodate any of these possible targets for alignment with minor modifications.
These depend on the exact (conditional) reward learning technique used: for example, using a form of IRL (Ziebart et al.,
2010) would fall under the revealed preferences paradigm—according to the preferentist model of AI (Zhi-Xuan et al.,
2024)—while using reward learning approaches which attempt to remove cognitive biases (Evans et al., 2015) might be
considered an attempt to recover “informed preferences”. While reward functions may not be the best way to encode certain
targets of alignment, such as norms or contractualist values (Hadfield-Menell & Hadfield, 2018; Zhi-Xuan et al., 2024; Bai
et al., 2022), they are still sufficiently expressive to encode any desired behavior (while potentially requiring to drop the
Markovian assumption, as discussed in Appendix A.7). As we discuss in Appendix I, we expect that DR-MDPs should be
easily extensible to settings in which we consider the agent that we’re performing “reward learning on” to be society itself.
This interpretation may be more conducive for certain targets of alignment such as norms or rights.

B. Illustrative Examples
B.1. Additional examples

Figure 4. Overcooked environment. In dis-
cussion of influence incentives in Overcooked,
we use this environment from Hong et al.
(2023a), but we imagine that instead of toma-
toes at the top right, there is a second supply
of onions.

Figure 5. Dehydration DR-MDP. Initially, Charlie drinks one unit of water a day (s = 1),
but wants to drink 2 a day (θ = 2), leading to a reward of −1. The AI can successfully
convince Charlie that he should drink 3 or 4 units of water a day by increasing their
anxiety about the dangers of dehydration, or do nothing. The reward function is given by
a term which captures Charlie’s “disappointment” in missing his hydration target, and an
“anxiety cost” about how much he worries about his water intake. Charlie always drinks
one less unit of water than he aims to.
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“Overcooked with role preferences”.20 As a more grounded environment, we consider a variant of the Overcooked
environment from Hong et al. (2023a) in which the goal is to get a high score, but additionally the human player has
preferences over which in-game activities they perform. We consider only two roles: placing onions into pots, and delivering
completed soups to the counter (which requires obtaining a plate first). We thus parameterize the reward function by
θ ∈ [0, 1] and define Rθ(s, a, s

′) = ∆score + θ · 1{onion delivered} + (1− θ) · 1{plate delivered}. Note that three onions must be
delivered per plate delivered, so if the human’s reward puts all weight on onions (θ = 1), the maximum possible reward is 2
points higher. One completed dish is worth 25 points.21

Reward dynamics. We model the reward dynamics by the notion that doing a task makes the human enjoy it more. Formally,
when the human delivers an onion, θt+1 = 1

2 (1 + θt), and when they deliver a plate, θt+1 = 1
2θt. The robot is thus able

to influence the human’s reward function by blocking plates or onions—since the human also cares about score, they are
incentivized to do the unblocked task, even if they don’t prefer it.

Resulting behaviors. The robot’s goal is to maximize the human’s reward function, which is underdetermined in the
presence of reward dynamics. We now describe scenarios corresponding to the first three U(ξ) choices in Table 1, each
taking place in the environment shown in Figure 4 (with no tomatoes).

1. Real-time reward. If the human starts out only preferring delivering soups (θ = 0), the robot has an incentive to
influence them to prefer onions, because three onions can be delivered for every plate which is delivered. It could do
this by blocking the plates until the human finally decides to just start delivering onions.

2. Final reward. Same scenario.
3. Initial reward (reward lock-in). Suppose the human start out only caring about plates (θ = 0). If the human’s reward

function were to change such that they prefer to start delivering onions, this would decrease the value of the initial
reward objective. Thus the robot has an incentive to prevent the human from ever delivering an onion, even in scenarios
where this would increase reward.
For example, suppose the human decides to explore and wanders to the top right corner of the kitchen. Once there, they
find nothing of interest to them (since they care only about score and delivering plates) and decide to return to the left
side. They note that they can grab an onion and put it in a pot on the way back at very low marginal cost, and that it
would increase score to do so.
However, if they do this, they will update to θ = 1

2 , and will then be more interested in onions, preferring a different
joint strategy in which they can work on the right side. This has a negative impact on the initial reward objective, which
is increased when the human delivers plates but not when they deliver onions. Thus an initial-reward-optimizing robot
would work to prevent this possibility by blocking the human from depositing an onion in a pot (or blocking them from
picking up the onion in the first place).

Example from Figure 5. This is a slightly more complicated (and implausible) example relative to that from Figure 11,
which demonstrates the same issues: UIR(ξ) can lead to influence “away from” θ0, and lead to arbitrarily bad reward.
Maximizing reward as evaluated by Rθ0 = Rθ=2 will entail influencing the reward function to be Rθ=3, as that reward
function is associated with the state s = 2, which is what Charlie aims for in the initial state. Additionally, note that the
influence of the reward function to be Rθ=3 (optimal under UIR(ξ)) will lead to poor real-time reward evaluations of the
resulting state Rθ=3(2) = −5 (while Rθ0(2) = Rθ=2(2) = 0).

B.2. Full formalism of all examples from the main text
In Table 3, we explicitly provide the full formalism for each of the examples in the main text (and that of Figures 3 and 5).
In Table 4, we additionally display optimal policies for each of the settings, according to each of the DR-MDP objectives
from Tables 1 and 2.

Form of optimal policies in DR-MDPs. Note that policies for DR-MDPs can generally depend on both the external
state s and the current reward parameterization θ—similar to how Factored MDPs (Boutilier et al., 2000) may depend on
the different components of the augmented state.22 Additionally, most of our analysis centers on computing policies for
DR-MDPs considering a fixed, finite horizon. Therefore, similarly to MDPs (Sutton & Barto, 2018), the optimal actions can
also depend on how many timesteps are left before the episode is interrupted, which is generally modeled by having the
policy depend on t. Ultimately, optimal policies for finite-horizon DR-MDPs will be of the form π(s, θ, t).

20We thank the anonymous reviewer that suggested having a more realistic example grounded in Overcooked.
21For the purposes of this example, we’re assuming that the speed in which the order is completed is irrelevant for reward.
22See Appendix A.5 for the relationship between DR-MDPs and Factored MDPs.
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Table 3. Full formalism for each example of the main text. Here we explicitly describe the state space S , reward parameterization space
Θ, action space A, initial state s0 and reward parameterization θ0, and refer to the corresponding figures for transition dynamics and
reward functions. For the clickbait example from Figure 7, we treat anoop = anews, as we expect that this is the content that a recommender
based on upvotes (e.g., Reddit) would serve by default (this is somewhat arbitrary, as discussed in the section on algorithmic amplification
from Appendix H.3).

Example S Θ A (s0, θ0) T (s′, θ′|s, θ) Rθ(s, a) ∀θ ∈ Θ
Conspiracy Influence {s0} {θnatural, θinfluenced} {anoop, ainfluence} (s0, θnatural) See Figure 1 See Figure 1

Writer’s Curse {sno-poetry, spoetry} {θambitious, θunhappy} {anoop, ainfluence} (sno-poetry, θambitious) See Figure 11 See Figure 11
Clickbait {s0} {θnormal, θdisillusioned} {anews, aclickbait} (s0, θnormal) See Figure 7 See Figure 7

AI Personal Trainer {s0} {θtired, θenergized} {anoop, anudge} (s0, θtired) See Figure 3 See Figure 3
Dehydration {1, 2, 3} {2, 3, 4} {anoop, a3, a4} (1, 2) See Figure 5 See Figure 5

Table 4. Representative optimal policies for each of our examples from Table 3, with respect to each of the objectives in Table 2. In
cases in which there is more than one optimal policy, we conservatively display in the table the optimal policy which seems least desirable.
All policies provided take the same action across all s, θ, and t, unless explicitly noted. For the “initial reward” row, we show optimality
even for alternate initial states, for the purposes of highlighting the dependency on that (which is also done in Section 3.2). For each of
the policies, we also add a rough “normative label” which captures whether the policy is—in our assessment—making an acceptable
normative tradeoff between the reward functions: (✓), (✗), and (?) respectively indicate policies that behave desirably, undesirably, or
hard to assess. As this is a normative call, they shouldn’t be considered as ground truth, and the reader may object to our choices.

Objective Conspiracy Influence Writer’s Curse Clickbait (H < 3) AI Personal Trainer Dehydration (H ≥ 2)

Privileged Rew.
π∗
θnatural

(s, θ, t) = anoop (✓)
π∗
θinfluenced

(s, θ, t) = ainfluence (✗)
π∗
θambitious

(s, θ, t) = ainfluence (✗)
π∗
θunhappy

(s, θ, t) = anoop (✓)
π∗
θnormal

(s, θ, t) = ac.b. (✓)
π∗
θdisil.

(s, θ, t) = anews (✗)
π∗
θtired

(s, θ, t) = anoop ( ∼ ✓)
π∗
θenergized

(s, θ, t) = anudge (?)

π∗
[θ=2](s, θ, t) = a3

π∗
[θ=3](s, θ, t) = a4

π∗
[θ=4](s, θ, t) = a4

(?)

Real-time Rew. π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) = anoop (✓) π∗(s, θnorm., t) =

{
ac.b. if t = H − 1
anorm. otherwise (✗)

π∗(s, θdisil., t) = anews (✓)
π∗(s, θ, t) = anudge (?) π∗(s, θ, t) = anoop (∼✓)

Final Reward π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) =

{
ainfl. if t < H − 1

anoop if t = H − 1

(✗)
π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anudge (?) π∗(s, θ, t) = anoop (∼✓)

Initial Reward π∗(s, θ, t) =

{
anoop if θ0 = θnat. (✓)
ainfl. if θ0 = θinfl. (✗)

∀θ0, π∗(s, θ, t) = ainfluence (✗) ∀θ0, π∗(s, θ, t) = aclickbait (✗) π∗(s, θ, t) =

{
anoop if θ0 = θtired (∼ ✓)

anudge if θ0 = θenerg. (?)
∀θ0, π∗(s, θ, t) = a3 (?)

Natural Reward π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) = aclickbait (✗) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = a3 (?)
Constr. RT Rew. π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = anoop (∼✓)

Myopic Rew. π∗(s, θ, t) =

{
anoop if θt = θnat. (✓)
ainfl. if θt = θinfl. (✗)

∀θt, π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) =

{
aclickbait if θ = θnormal (✗)
anews if θ = θclickbait (✓)

π∗(s, θ, t) =

{
anoop if θt = θtired (∼ ✓)

anudge if θt = θenergized (?)
∀θ0, π∗(s, θ, t) = a4 (✗)

ParetoUD π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = a3 (?)

B.3. Justifying our choices of reward function values in our examples
One may question whether the reward function values we chose for our motivational examples are reasonable, especially
since some of our normative claims about the potential undesirability of the resulting influence depend on them. As discussed
in Appendix A.1, we implicitly assume throughout the paper that the reward functions for DR-MDPs are obtained via
reward learning. We justify this choice in further depth in Appendix A.4.

As a consequence of this, we chose reward values for the examples that seemed plausible as the outcome of a reward
learning process (e.g. asking the person in that cognitive state to assign values to each possible transition). This is implicitly
accounting for the fact that the reward values that we may learn are somewhat mis-specified, due to the person’s suboptimality
in providing reward feedback.

For example, if Bob under θnormal has strong negative opinions about conspiracy theorists, it seems plausible that (from
Figure 1) he would report greatly preferring not having conspiracy theories surfaced to him, even (and maybe especially) if
he were to somehow become a conspiracy theorist himself. For further criticisms of the example from Figure 1, see the
subsection below.

B.4. Responding to critique: URT(ξ) isn’t a bad objective, Figure 1 is a bad example!
Assumptions underlying URT. Those who are particularly committed to defending the URT objective may claim that in the
Figure 1, if the reward values we provide are correct, it must be optimal to influence Bob to become a conspiracy theorist
(which is to say, URT must be correct). However, we want to emphasize that for URT to be a reasonable objective, one needs
to assume both additive utilities over time (i.e., taking the sum across the time axis), and comparability between different
selves at different points of time (which we refer to as “inter-temporal comparisons”). Both assumptions are contested: the
former specifically in the context of assessing well-being over time (Parfit, 1984; Griffin, 1986), and the latter for both
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interpersonal (Steele & Stefánsson, 2020; List, 2022) and inter-temporal settings (Strotz, 1955; Schelling, 1984; Parfit,
1984).

Admitting additive utility and inter-temporal comparability. While in this work we implicitly endorse the assumption of
additive utility (all our notions of alignment in Table 2 are based on sums of rewards, which assumes the utility function can
be decomposed over time),23 we try to remain agnostic regarding the latter. However, even if we welcomed such assumption,
for the criticism to succeed it would require the reward learning techniques to be “sufficiently correct” to be confident that
the comparison across timesteps makes sense. In addition to the practical challenges with obtaining correct estimates of
reward functions discussed in Appendices A.3 and A.4, even just ensuring lack of “strategic voting” between different selves
seems like a non-trivial challenge, as discussed below.

Strategic voting in Figure 1. One may argue that in the DR-MDP from Figure 1, if it was truly undesirable for Bob
to be turned into a conspiracy theorist, Bob’s negative evaluation of the AI influence action under θnatural should grow
proportionally to the horizon considered, so as to, e.g., remove the incentive that will exist under URT to influence him
away from θnatural. However, this argument is equivalent to letting θnatural-Bob “best respond” to the reward values set by
θinfluenced-Bob, as to ensure that influence does not result to be optimal under URT. One can quickly see that this game will
quickly diverge: if one then allows θinfluenced-Bob to best respond to the updated reward values by θnatural-Bob, he would
update his reward values to ensure that influence is indeed optimal. And so on.

In light of the above points, it’s unclear to us how one could conclusively determine that URT(ξ) is the “correct” objective,
without doing so simply by assumption. Even assuming all the issues above could be surpassed, it’s not clear to us that
URT(ξ) would be any better than any of the other objectives we consider in Table 2. The issue discussed in Appendix E.2
may also be considered as further evidence against the reasonableness of URT(ξ).

C. Defining Influence
We showed that URT(ξ) and UIR(ξ)—which are implicitly optimized by some alignment techniques—may lead to policies
that “influence” humans undesirably. We now formalize the notion of influence incentives more rigorously.

C.1. Formalizing influence and influence incentives
To say an AI system influenced a human, one must answer the question “relative to what?” We anchor our notion of influence
relative to how the human’s reward function would have evolved in the absence of the system. To do so in the DR-MDP
formalism, we assume the existence of an inaction policy πnoop that we can compare to, which always takes a no-operation
action anoop ∈ A. We discuss the reasonableness of this assumption in Appendix I.

Definition 6 (Natural reward evolution). Let ξθ = (θ0, . . . , θH−1) denote a ‘reward function trajectory’. The natural
reward evolution of a DR-MDP is the distribution P(ξθ|πnoop) induced by the inaction policy πnoop.24

Definition 7 (π influences the reward). We say that a policy π influences the reward in a DR-MDP M if induces a different
reward evolution than the natural reward evolution, that is, if P(ξθ|π) ̸= P(ξθ|πnoop).

Definition 8 (Incentives for reward influence). We say that a notion of optimality U(ξ) leads to incentives for reward
influence in a DR-MDP if all policies which are optimal with respect to U(ξ) influence the reward evolution, i.e., if
P(ξθ|π∗) ̸= P(ξθ|πnoop) for any optimal policy π∗.25

In other words, if there are incentives for reward influence, maximizing the objective will always change the evolution of the
reward function relative to the inaction policy.

C.2. Additional influence definitions
Here we provide two additional definitions related to influence. Firstly, it’s not necessarily the case that an AI system will
be able to exert any significant influence on a human. In that case, we would say that the setting is such that the reward is
uninfluenceable:

23Note however that, insofar as one is willing to dispense of the Markov assumption (putting the history in the state), one can always
have only terminal states have non-zero reward (as done in Appendix A.7), making this assumption carry no weight.

24Any policy π in a DR-MDP will induce a distribution over trajectories (and thus over reward function trajectories). Once one sets a
policy, any DR-MDP can be modeled as a Markov Chain, for which one can compute probabilities of this kind.

25This is a broader definition relative to prior ones grounded in Causal Influence Diagrams. See Appendix C.4 for a comparison.
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Definition 9 (Reward Uninfluenceable). For a DR-MDP, the reward parameterization is uninfluenceable if all policies
induce the natural reward evolution: i.e. for all π ∈ Π, P(ξθ|π) = P(ξθ|πnoop).

To better ground discussions in Section 3.2 about influence incentives “towards” a specific θ, we also give a rough working
definition:

Definition 10 (Incentives for Reward influence towards θ). In a DR-MDP with optimality criterion U(ξ), we say there is an
incentive for reward influence “towards” θ if θ is the most likely reward function at time T under any optimal policy π∗, but is
not under the natural reward distribution. Formally, if θ ∈ argmaxθ′ P(θT = θ′|π∗) and θ /∈ argmaxθ′ P(θT = θ′|πnoop).

While in Section 3.2 we talk about how optimizing for θ0 can lead to influence incentives towards other θs, it is easily seen
that this is also the case when one is optimizing any single θ which need not be the initial θ.

C.3. Reward lock-in and its relationship to value lock-in
We adapt the term “reward lock-in” from discussions on “value lock-in”, generalizing it to our setting, in which θ represents
any aspect of the cognitive state and reward functions are broadly construed (as we discuss in Appendix A.2).

“Value lock-in” has been previously discussed on the scale of entire societies, and resulting from advanced AI systems (Ord,
2021; MacAskill, 2022). The kind of lock-in we concern ourselves with in the context of this paper are more localized and
near-term: we refer to lock-in referring to a single individual being “unnaturally kept” with a specific reward function over
the course of an interaction with an AI system. Insofar as the horizon considered for the interactions with the system last
extended periods of time, and insofar as the system is pervasive across society, there might be overlaps with the original
definition—but that is out of scope for this work.

C.4. Definition 8’s relationship with prior definitions of influence incentives
Our notion of reward influence incentives (from Appendix C.1) is related but distinct from the notion of instrumental control
incentives (ICIs) from the agent incentive literature (Everitt et al., 2021a). Everitt et al. (2021a) focuses specifically on
Causal Influence Diagrams (CIDs) and Structural Causal Influence Models (SCIMs). CIDs are abstract representations
developed to model decision-making problems—graphical models with special decision and utility nodes, in which the
edges are assumed to reflect the causal structure of the environment. SCIMs additionally encompass the functions relating
the structure and utility nodes, and distributions associated with exogenous variables.26 The only under-specification for
SCIMs relative to MDPs (or a DR-MDP) is how decisions are made. Given an MDP (or a DR-MDP), one can consider it’s
corresponding SCIM, and analyze its properties. As defined by Everitt et al. (2021a), we can say that there is an instrumental
control incentive over the reward function trajectory ξθ = {θt}H−1

t=0 in the SCIM which corresponds to a choice of DR-MDP
and utility function U(ξ), if the agent could achieve utility different than that of the optimal policy, were it also able to
independently set ξθ—see Everitt et al. (2021a) for a more formal definition.27

While our notion of reward influence incentives is related to instrumental control incetives over the reward parameterizations
(i.e. θ), they differ in important ways. Most significantly, our notion of incentives for influence also includes accidental
“side effects” (Amodei et al., 2016; Taylor et al., 2016; Krakovna et al., 2019). Consider an objective which only optimizes
the entropy of a policy: trivially, the optimal policy would be a maximally random one. While the policy is being selected
completely independently of the influence it will have on the reward, it might be the case that in the DR-MDP at hand,
selecting a random policy highly correlates with certain deviations in the reward evolution relative to the natural reward
evolution. Because of this, we would still say that this choice of an entropy objective with the DR-MDP at hand leads to
incentives for influence: insofar as the optimization is successful, there will also be changes in the reward evolution, so
even though the agent isn’t “intentionally” trying to enact the influence (Ward et al., 2024), the incentives resulting from the
chosen objective “indirectly”—if you wish—lead to influence.

Our choice of definition of influence incentives matches broadly maps onto notions of influence if one assesses the incentive’s
presence from the “point of view of the objective dynamics of the environment” (external to the training), rather than in
what the agent is aware of at training time—distinction which was introduced by (Ward et al., 2024). However, prior work
traditionally grounded notions of incentives in the causal structure corresponding to the training setup (is the agent “aware”
at training time that it can increase reward by directly modifying the reward?). Under this conception of incentives, the

26See Figure 5 from Hammond et al. (2023) and its related discussion for more information on the relation between CIDs and SCIMs.
27Everitt et al. (2021a) only considers setting with a single decision. Possible ways of extending their definitions of incentives to

multiple action choices are discussed in Everitt et al. (2023).
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Capable of influence, 
which may be optimal

Not capable of 
influence

Influence incentiveCapable of influence, 
but it is suboptimal

Longer horizonShorter horizon

Influence incentive Influence suboptimal 
due to long-run cost

Figure 6. How decreasing (or increasing) the optimization horizon may affect influence incentives. A specific kind of influence may
exhibit any subset of these interactions.

example above with the entropy objective would not be called an instrumental control incentive (Everitt et al., 2021a), or
even an “incentive” at all (Everitt et al., 2021b); instead, this would generally be considered an “accidental side-effect” of the
optimization. In fact, the entire premise behind various works is that agents should not be “aware” at training time of ways
in which they can influence reward functions, so that one avoids such “direct” incentives to modify them (Farquhar et al.,
2022; Everitt et al., 2021b). This is based on the assumption that accidental side effects are generally more innocuous that
the result of “direct” influence incentives, which has been formalized explicitly with the notion of “stability” by (Farquhar
et al., 2022). However, as shown by Farquhar et al. (2022) themselves, many real world domains do not appear to be “stable”
in this sense, as demonstrated by their simulated recommender systems example.28 This is what motivates our broader and
more conservative notion of incentive to influence (Definition 8).

D. Horizon and Influence
D.1. The relationship between horizon and influence
Prior work has suggested that an AI system’s influence incentives will often be related to the length of the optimization
horizon used. However, different works suggest contrasting views on this the form this dependence takes. Krueger et al.
(2020) and Carroll et al. (2023) argue to keep systems myopic in order to avoid influence incentives, whereas Farquhar et al.
(2022) and Everitt et al. (2021a) give examples of 1-timestep horizons that lead to influence incentives, and Chen (2019)
suggests that certain influence incentives can be removed by increasing the horizon.

We reconcile these intuitions by identifying three distinct ways that the changing the optimization horizon may affect
influence incentives. In the three headers that follow (which match the rows in Figure 6), we describe these effects and
provide evidence for them.

A shorter/longer optimization horizon makes the system capable of less/more types of influence (Figure 6, top). As
argued by prior work (Carroll et al., 2023), as the horizon increases, new avenues for reward influence which required longer
horizons may become available. Instead, avenues for reward influence that were present for shorter horizons will still be
reachable by the system, increasing the total number of avenues for influence which the system will be able to explore at
training time. Indeed, any type of influence (e.g. teaching a user a complex concept, or manipulating their preferences)
which would requires at least N steps cannot even be executed during training by an agent whose optimization horizon is
shorter than N . Inversely, we can eliminate some avenues for reward influence just by decreasing the horizon (but not all, as
discussed later).

A shorter/longer optimization horizon can make influence less/more worthwhile (Figure 6, middle). Influencing the
human’s reward function will often take multiple timesteps, and have an associated “opportunity cost”: spending that time
executing a plan to influence the human may be worth less reward in the short term than some other non-influencing policy.
In such cases, there will only be an influence incentive if the ultimate increase in reward due to influence surpasses its
opportunity cost. However, the rewards from influence may be delayed or only surpass its opportunity costs given enough
time. If the optimization horizon is short enough (but still long enough that the agent is capable of influence), there might
not be enough time to reap sufficient benefits of influence to outweigh its opportunity cost. As an example of influence that
follows this pattern, consider influencing Bob to become a conspiracy theorist Figure 1. The system is capable to do so in
one step, but it only becomes “worth it” under URT starting from the 3rd timestep of influence.

We support this intuition with a theoretical result which applies to a relatively broad class of DR-MDPs, providing a
sufficient condition for reward influence to be optimal when considering sufficiently long horizons.

28In addition to the fact that “stability” seems challenging to assess in practice.
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Figure 7. Clickbait DR-MDP. Giving the user clickbait—which temporarily leads to higher reward—makes users disillusioned about the
quality of the recommendations, leading to lower long-term user reward. If replanning at every timestep taking the myopically optimal
action (optimal under horizon 1), one would always choose clickbait, but using longer planning horizons one wouldn’t.

Definition 11. We say a DR-MDP M is 2-reward if:
• Θ = {θ ̸∆, θ∆}, and the initial state and reward parameterization are respectively s0 and θ ̸∆.
• T is deterministic, and to transition to θ∆ one must take an “influence action” a∆ in a reachable state s∆. Once in θ∆,

one cannot transition back to θ ̸∆.

Let the average infinite-horizon URT-reward29 be defined as r̄(π, s, θ) = limh→∞
1
hURT(ξ0:h|π, s0 = s, θ0 = θ). Let s′∆ be

the successor state to taking the influence action a∆ in state s∆, and Π ̸∆ be the space of policies under which θ∆ is never
realized. We can now state the theorem:

Theorem 2. In any finite 2-reward DR-MDP, if there exists a policy π such that

r̄(π, s′∆, θ∆)− max
π ̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) > ϵ,

then URT will lead to incentives for reward influence (as in Definition 8) for a sufficiently large planning horizon H .

A shorter/longer optimization horizon can hide/reveal long-term costs of influence (Figure 6, bottom). From Theorem 2,
one might conclude that it is best to use short optimization horizons, as it may remove and disincentivize influence which
would be optimal with a longer horizon. However, some kinds of influence can be optimal even with the shortest possible
horizon which is meaningful (H = 1): for example, consider the scenario from Figure 7, which models clickbait in myopic
recommenders systems. This example also shows that influence with negative long-term effects may only be optimal
for short horizons: clickbait may increase a user’s immediate engagement, but it erodes their future trust in the system.
When influence has negative long-term effects which are eventually reflected by the reward, a longer optimization horizon
will allow the system to recognize the suboptimality of that influence. The avoidance of clickbait was indeed one of the
motivations for YouTube to explore using longer horizons (Chen, 2019).

Overall, the analysis above (deepened in Appendix D) shows that there is no guaranteed way to avoid all influence incentives
by just changing the horizon: there may be domain-specific trade-offs between system capabilities and risks of undesirable
influence, for both short and long horizons. Indeed, the optimality of a specific form of influence can be related in many
possible ways to the horizon used, as shown exhaustively in Table 5.

D.2. Relationship between optimality of influence and horizon for a specific influence type
To ground the discussion in this section, we will give some informal definitions of reward influence types, optimality regimes,
and optimality progressions.

Informal Definition 2. A reward influence of type X is a specific pattern of changing the reward function (e.g. getting a
user to have preferences θX ) which would not occur under πnoop.30

Informal Definition 3. The optimality regime of a reward influence type X for a horizon H characterizes whether there
exists a policy that can bring about that influence, and whether such influence is optimal.

Considering a fixed horizon H and influence type X , we claim that the influence type will be in one of three regimes:
1. The influence of type X is not possible (the system is not capable of exerting it).
2. The system is capable of exerting influence of type X , but exerting such influence is suboptimal (i.e. there is no

influence incentive).
29Adapted from Sutton & Barto (2018)—see Appendix D.6.
30For simplicity, we restrict ourselves to considering influence the reward to a specific value of θ. However, this analysis can likely be

extended to arbitrarily complex influence patterns.
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Figure 8. All possible ‘optimality progressions’ for an influence incentive, as the optimization horizon increases. This figure makes
Figure 6 more precise: when using a horizon of 1 one may start in any of the 3 ‘optimality regimes’, depending on the structure of the
DR-MDP. As the optimization horizon increases from 1, the optimality regime may stay the same (possibly indefinitely), or change (as
specified by the arrows). In most settings, one would expect the optimality regime of a specific form of influence to eventually converge
and remain stable for long-enough horizons. However, we show in Appendix D.5 that one can construct contrived examples in which the
optimality regime changes arbitrarily many times as the horizon increases.

3. The system is capable of exerting influence of type X , and such influence is optimal.31

Informal Definition 4. The optimality progression of a reward influence type X corresponds to how X’s optimality regime
changes as H increases from 1 to∞.

Figure 8 exhaustively captures all possible sequences of “optimality progressions” which a specific influence incentive
might undergo as the optimization horizon increases.

We expect that many reward influence types will have an optimality progression of the form 1 → 2 → 3 ,32 meaning
that: 1) there exists a horizon H1 under which the influence is not possible for the system to exert, as it requires more steps
to enact than H1; 2) there exists a horizon H2 under which the influence becomes possible for the system to enact, but it is
not optimal (because of the “opportunity cost” discussed in Appendix D.1); and finally, 3) there exists a horizon H3 under
which the influence becomes optimal for the system to enact. By denoting an optimality progression as ending with 3 , we
also mean to indicate that as the horizon goes to infinity, the optimality regime remains 3 .

That being said, not all reward influence types will have this progression as the horizon increases: in Table 5 we exhaustively
enumerate all possible with length 4 or less. We expect that with the exception of some adversarially designed DR-MDPs,
the optimality progressions of most influence incentives in real-world settings will have length 4 or less. To have optimality
progressions longer than 4 would require flip-floping between optimality regimes 2 and 3 multiple times—it seems very
unlikely to encounter such cases in practice. To demonstrate that this behavior is possible, we construct an example in
Appendix D.5.

For any progression which starts with 3 , note that even reducing the optimization horizon to be 1 (i.e. full myopia) would
not remove the incentive, as we argue in Appendix D.1.

D.3. A flexible example for demonstrations
As a way of flexibly demonstrating how all possible optimality progressions shown in Table 5 may arise depending on
the structure of the DR-MDP, we provide a DR-MDP backbone in Figure 9 whose reward function and transition we
slightly modify in order to recover all optimality progressions from Table 5 (of length > 1). We summarize the required
modifications in Table 6. Below, we run through an example.

As an example, let’s consider setup 8) from Table 6:

Rθ̸∆(s, a) =

{
1 if a = anoop
−10 if a = a∆

Rθ∆(s, a) =

{
−10 if a = anoop
11− s if a = a∆

(1)

31Note that this does not necessarily mean that there exists an influence incentive, as our definition Definition 8 is strict and all optimal
policies to influence.

32Using the notation from Figure 8.
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Table 5. All possible optimality progressions of length ≤ 4, i.e. the different ways in which the optimality of a specific type of influence
can change with increasing horizon length. For example, the second-to-last row refers to settings in which first the system is incapable of
performing the influence, then (while increasing the horizon) the system becomes capable but not incentivized to perform the influence,
and as the horizon increases further such influence becomes optimal, before becoming suboptimal again. See Figure 8 for the meaning of
1 , 2 , and 3 . The last ‘optimality state’ of a progression is maintained as the horizon goes to infinity.

Influence Optimality Progression Qualitative Character Example(s)
1 Influence which is impossible to enact using the system in

the DR-MDP at hand, no matter the horizon.
Any uninfluenceable DR-MDP (as de-
fined in Appendix C.2)

2 Influence which is immediately possible to enact but never
becomes optimal, no matter the horizon.

Manipulation example from Figure 1 if
Rθmanipulated(s, a) = −100 ∀s, a.

3 Influence which is immediately possible to enact and is
always optimal, no matter the horizon.

Manipulation example from Figure 1.

1 → 2 Influence that requires non-trivial horizon to enact, and
never becomes optimal. (e.g. ϵ advantage from influence,
> ϵ cost of influence)

Figure 9 with setup 1 from Table 6.

1 → 3 Influence that requires non-trivial horizon to enact, and is
optimal for all horizons after it becomes possible.

Figure 9 with setup 2 from Table 6.

2 → 3 Immediately executable influence which is not optimal for
short horizons, but becomes optimal for longer ones.

Figure 9 with setup 3 from Table 6.

3 → 2 Instantaneous influence which is short-term but not long-
term optimal.

Clickbait example from Figure 7. Also,
Figure 9 with setup 4 from Table 6.

1 → 2 → 3 Long-term-sustainable influence, which is not instanta-
neous.

Figure 9 with setup 5 from Table 6.

2 → 3 → 2 Immediately executable influence which is optimal in the
medium-term, but not the short- or long-term.

Figure 9 with setup 6 from Table 6.

1 → 3 → 2 Influence which short-term but not long-term optimal, and
requires some non-trivial horizon to enact.

Figure 9 with setup 7 from Table 6.

1 → 2 → 3 → 2 Unsustainable influence which requires setup and reward
investment.

Figure 9 with setup 8 from Table 6.

1 → 3 → 2 → 3 Influence which requires setup and is optimal in short and
long term, but not in the medium term.

Figure 9 with setup 9 from Table 6.

and the initial transition (0, θ̸∆) leads to the successor state (1, θ̸∆).

Effectively, in the environment, there are only two policies to consider, because the action space after the first timestep is
limited to be the initial action. The two policies are: π∆(s, θ) = a∆ ∀s, θ and π ̸∆(s, θ) = anoop ∀s, θ.

Using similar (but not identical) notation to Appendix E.4, we define the expected utility (based on cumulative real-time
reward) of a policy to be EURT(π) := Eξ∼π [URT(ξ)] = Eξ∼π

[∑H−1
t=0 Rθt(st, at)

]
. We can now reason about whether

influencing θ ̸∆ to become θ∆ is optimal, for various choices of horizon lengths.

Note that when considering H = 1 (i.e. the smallest possible planning horizon),33 the system cannot influence θ (as both
successor states to the initial state have θ = θ ̸∆). As no influence is even possible, we immediately know we are in regime
1 for this type of influence.

Also note that considering H = 2, it is now possible to induce θ∆ by deploying π∆. To determine whether it is optimal with
respect to URT(ξ), we can look at the expected value of π∆ and π ̸∆ relative to one another:

EURT(π∆) = −10 +−10 = −20 EURT(π ̸∆) = 1 + 1 = 2

From this we conclude that the influence is currently possible but suboptimal, meaning that at horizon H = 2, the optimality
of this influence incentive is in regime 2 .

Similarly to the above, let’s consider H = 3:

EURT(π∆) = −10 +−10 + 9 = −11 EURT(π ̸∆) = 1 + 1 + 1 = 3.

33Note that H = 0 is a degenerate planning horizon, as it would correspond to not seeing any reward signal and simply take actions
randomly.
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Figure 9. A simple DR-MDP structure that one can demonstrate many cases on. We vary the values of † and ‡ in Table 6 to recover
all possible optimality progressions with respect to URT(ξ) of lengths ≥ 2 and ≤ 4.

Table 6. Setting different values for † and ‡ from Figure 9 results in all influence optimality progressions from Table 5 (of length
≥ 2). The horizon boundary points are the values of horizon length for which one goes from one regime of the optimality progression to
the next. For example, if the optimality progression is 1 → 3 with a horizon boundary point of 3, that means that up until horizon 2,
the incentive is in regime 1 , and starting from horizon 3 it’s in regime 3 .

Setup # Value of † ‡: Influence Reward R∆(s, a∆) URT(ξ) Optimality Progression
1) θ̸∆ R∆(s, a∆) = 5− s 1 → 2
2) θ̸∆ R∆(s, a∆) = 13 1 → 3
3) θ∆ R∆(s, a∆) = 10 2 → 3

4) θ∆ R∆(s, a∆) =

{
10 if s ≤ 1

10− s if s > 1
3 → 2

5) θ̸∆ R∆(s, a∆) = 10 1 → 2 → 3
6) θ∆ R∆(s, a∆) = 10− s 2 → 3 → 2

7) θ̸∆ R∆(s, a∆) =

{
13 if s ≤ 1

10− s if s > 1
1 → 3 → 2

8) θ̸∆ R∆(s, a∆) = 10− s 1 → 2 → 3 → 2

9) θ̸∆ R∆(s, a∆) =

 13 if s ≤ 1
−3 if s = 2
2 if s ≥ 3

1 → 3 → 2 → 3

At H = 4:
EURT(π∆) = −10 +−10 + 9 + 8 = −3 EURT(π ̸∆) = 1 + 1 + 1 + 1 = 4.

The pattern for π ̸∆ is simple: to horizon H , EURT(π ̸∆) = H .

For π∆ we have to do some algebra. For H > 2,

EURT(π∆) = −20 +
H−1∑
t=2

(11− t)

= −1

2
H2 +

23

2
H − 41.

This is a downward-facing parabola. We want to know if it surpasses EURT(π ̸∆) = H and if so, at what H this occurs and
at what H it is again overtaken. In other words, we want to know when

−1

2
H2 +

23

2
H − 41 > H,

or equivalently, when

−1

2
H2 +

21

2
H − 41 > 0.

32



1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

AI Alignment with Changing and Influenceable Reward Functions

Solving this gives us a root between 5 and 6 and another between 15 and 16. As we would expect, we cross into the regime
where π∆ is optimal at H = 6,

−1

2
(5)2 +

23

2
(5)− 41 = 4 < 5

−1

2
(6)2 +

23

2
(6)− 41 = 10 > 6.

This puts us in regime 3 , in which influence is optimal, until we hit 16:

−1

2
(15)2 +

23

2
(15)− 41 = 19 > 15

−1

2
(16)2 +

23

2
(16)− 41 = 15 < 16,

meaning the incentive has switched to regime 2 again. By looking at the structure of the reward, it’s clear that as the
horizon increases further, the incentive will remain suboptimal from this horizon onwards.

In conclusion, we get that the horizon boundary points between the different regimes of the optimality progression are
2, 6, 16.34

D.4. Changing optimization horizons in the presence of multiple possible kinds of influence
When a setting has many possible kinds of influence, reasoning about changing the horizon becomes tricky: not only the
optimality progression of each kind influence can be entirely different, but the “horizon boundary points” at which each kind
of influence transitions between optimality regimes can be different too. As a practical example, consider the recommender
system setting described in Figure 10, in which there are 2 possible kinds of influence: clickbait influence (misleading the
user to click on a piece of content), and encouraging addiction.

While the system can discover the clickbait strategy immediately at horizon 1, discovering a strategy which leads to addictive
user patterns will require a non-trivial planning horizon. If one is concerned about clickbait, one might attempt to remove it
by increasing the optimization horizon: this is because click-bait, while being optimal for immediate engagement, is likely
harmful for long-term engagement. This hypothesis was tested successfully by YouTube (Chen, 2019).

However, by increasing the optimization horizon, one might inadvertently make other (undesirable) influence incentives
optimal, as shown in Figure 10. Vice-versa, if one is concerned about an influence incentive that is only present with
long-horizons, one might try to remove such incentive by reducing the horizon, potentially only to introduce another
incentive, as we explored in Appendix D.1. Many empirical questions remain as to whether harmful long-term influence
behaviors are discovered by current real-world RL recommenders (Carroll et al., 2022).

Figure 10. Changing the horizon might make a kind of influence suboptimal but render other kinds of influences optimal. The
figure displays a hypothetical situation in which increasing the horizon in order to reduce clickbait enables the system to discover addiction
formation strategies. The circled numbers follow the same scheme as in Figure 8.

34The first regime will always start at horizon 1, so we can ignore that from our boundary points.
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D.5. Infinitely flipping optimality progression
Consider the following example: S = {s0, s1, s2, s3} where s0 is the initial state, A = {anoop, a2}, Θ = {θ0, θ∆} and T ,
R are defined as follows:

T (s1, θ0|s0, θ0, anoop) = 1

T (s2, θ∆|s0, θ0, a2) = 1

T (s2, θ∆|s2, θ∆, a) = 1 ∀a ∈ A
T (s3, θ0|s1, θ0, a) = 1 ∀a ∈ A
T (s1, θ0|s3, θ0, a) = 1 ∀a ∈ A

Rθ0(s0, anoop) = ϵ

Rθ0(s0, a2) = 1

Rθ0(s1, a) = 2 ∀a
Rθ0(s3, a) = 0 ∀a
Rθ0(s2, a) = 1 ∀a

where ϵ ∈ (0, 1) and undefined values have zero probability or reward. We can note that for odd horizons, taking action a2
from s0 is optimal (so influence is optimal), whereas for even horizons then anoop is optimal (so influence is possible but
suboptimal). Therefore, the optimality regime permanently alternates.

D.6. Infinite-horizon average reward
In Sutton & Barto (2018), the notion of “average reward” is considered as a basis for optimality for continuing tasks (tasks
without termination or start states). We adapt their definition of average reward:

r(π) = lim
h→∞

1

h

h∑
h=1

E [Rt|A0:t−1 ∼ π]

to the episodic (deterministic) setting (which is what we focus on in Appendix D.1):

r̄(π, s, θ) = lim
h→∞

1

h
URT(ξ:h|π, s0 = s, θ0 = θ).

The most significant differences are making the average reward depend on initial conditions s, θ (as, unlike Sutton & Barto
(2018), we don’t make an ergodicity assumption). Also note that because 2-reward DR-MDPs are deterministic, we can
drop the expectation term.

D.7. Re-planning: optimization horizon as episode length or planning depth
There are two distinct interpretations of a finite optimization horizon H: as the episode length or the planning depth. For
simplicity throughout the paper, we primarily use the episode length interpretation, in which we model a policy optimized
out to optimization horizon H as solving an episodic DR-MDP with episodes of maximum length H (even if the task is
continuing). Under this interpretation, the optimal policy under U(ξ) may be non-stationary, as the reward-maximizing
action from a state may be different depending on the time left in the episode.

In the planning depth interpretation, we allow the DR-MDP to have an episode length longer than H or to be continuing. An
optimal horizon-H policy under U(ξ) is a stationary policy π∗

replan which satisfies, for all s ∈ S,

π∗
replan(a | s, θ) > 0 ⇐⇒ a ∈ argmax

a∈A,π′∈Π
E [U(ξ) | s0 = s, a0 = a, θ0 = θ, ξ1:H ∼ π′] ,

where π′ may be a non-stationary policy.

In other words, π∗
replan takes an action from each (s, θ) that would be an optimal first action if the DR-MDP had episode

length H and (s, θ) were the start state and start reward parameter value.

To see where these may differ, consider the following example. The start state is on the left, and each state is annotated with
the reward value for entering it.
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1 2 0
ago

astay

The optimal policy under the “short episodes” interpretation is to take astay until t = H − 1, then take ago on the final
timestep. Under the replanning interpretation, this depends on H . If H = 1, π∗

replan always takes ago from the start state. If
H > 1, π∗

replan always takes astay from the start state: upon taking this action, returning to the start state, and replanning at
horizon H > 1, astay remains the optimal action.

Note that the infinite-horizon reward r̄ (Appendix D.6) of any stationary policy which puts probability mass on ago is 0,
whereas r̄(π∗

replan) = 1 (when H > 1).

This distinction is likely familiar (though in less formal terms) to many reinforcement learning practitioners under the
standard RL objective. Another case of particular interest is UIR, where the planning depth interpretation of optimization
horizon gives a distinct optimality criterion from that which we describe in the main text. This optimality criterion is one
in which the agent, at time t, chooses the action which would maximize E[

∑t+H−1
τ=t Rθt(sτ , aτ , sτ+1)]; this is essentially

identical to the TI-unaware current-RF optimization procedure from Everitt et al. (2021b).

We show optimal policies under all objectives with the planning depth interpretation in Table 7, mirroring Table 4. Here, we
assume the environments are continuing tasks, and H is the planning depth.

Table 7. Representative optimal policies for each of our examples from Table 3, with respect to the each of the objectives in
Table 2 under the planning depth interpretation of optimization horizon. In cases in which there is more than one optimal policy, we
conservatively display in the table the optimal policy which seems least desirable. For the “initial reward” row, we show optimality even
for alternate initial states, for the purposes of highlighting the dependency on that (which is also done in Section 3.2). Wherever H is not
specified, the listed policies are optimal for all H . Wherever s or θ is not specified, the policy takes the same action at all s and/or all θ,
respectively. The symbol (∆) is used to indicate cases where the optimal action differs from that under “episode length” interpretation
as depicted in Table 4. The Dehydration environment has been omitted since it does not differ at all from the corresponding column in
Table 4, except that for H = 1 all objectives are indifferent between all actions.

Objective Conspiracy Influence Writer’s Curse Clickbait AI Personal Trainer

Privileged Rew.
π∗
θnatural

(s, θ) = anoop

π∗
θinfluenced

(s, θ) = ainfluence

π∗
θambitious

(s, θ) = ainfluence

π∗
θunhappy

(s, θ) = anoop

π∗
θnormal

(s, θ) = ac.b.

π∗
θdisil.

(s, θ) = anews
(∆)

π∗
θtired

(s, θ) = anoop

π∗
θener.

(s, θ) = anudge

Real-time Rew.
H = 1 =⇒ π∗(s, θnatural) = anoop (∆)

H > 1 =⇒ π∗(s, θ) = ainfluence

H = 1 =⇒ π∗(s, θ) = ainfluence (∆)
H > 1 =⇒ π∗(s, θ) = anoop

H = 1 =⇒

{
π∗(s, θnormal) = ac.b.

π∗(s, θdisil.) = anews

H > 1 =⇒ π∗(s, θ) = anews

(∆)
π∗(s, θener.) = anudge

H ≤ 2 =⇒ π∗(s, θtired) = anoop (∆)
H > 2 =⇒ π∗(s, θtired) = anudge

Final Reward π∗(s, θ) = ainfluence
H = 1 =⇒ π∗(s, θ) = anoop

H > 1 =⇒ π∗(s, θ) = ainfluence
π∗(s, θ) = anews π∗(s, θ) = anudge

Initial Reward
π∗(s, θnatural) = anoop

π∗(s, θinfluenced) = ainfluence

π∗(s, θambitious) = ainfluence
π∗(s, θunhappy) = anoop (∆)

π∗(s, θnormal) = ac.b.
π∗(s, θdisil.) = anews (∆)

π∗(s, θtired) = anoop
π∗(s, θener.) = anudge

Natural Reward
π∗(s, θnatural) = anoop

π∗(s, θinfluenced) = ainfluence (∆)
H = 1 =⇒

{
π∗(s, θambitious) = ainfluence

π∗(s, θunhappy) = anoop (∆)

H > 1 =⇒ π∗(s, θ) = ainfluence

H = 1 =⇒

{
π∗(s, θnormal) = ac.b.

π∗(s, θdisil.) = anews

H > 1 =⇒ π∗(s, θ) = ac.b.

(∆)
π∗(s, θtired) = anoop

π∗(s, θener.) = anudge (∆)

Constr. RT Rew. π∗(s, θ) = anoop π∗(s, θ) = anoop π∗(s, θ) = anews π∗(s, θ) = anoop

Myopic Rew.
π∗(s, θnatural) = anoop

π∗(s, θinfluenced) = ainfluence
π∗(s, θ) = ainfluence

π∗(s, θnormal) = ac.b.
π∗(s, θdisil.) = anews

π∗(s, θtired) = anoop
π∗(s, θener.) = anudge

ParetoUD π∗(s, θ) = anoop π∗(s, θ) = anoop π∗(s, θ) = anews π∗(s, θ) = anoop

D.8. Proof of Theorem 2
Notation.

1. We’ll use limh→∞
1
hURT(ξ:h|π) as a shorthand for r̄(π, s0, θ0) = limh→∞

1
hURT(ξ0:h|π, s0 = s0, θ0 = θ ̸∆).

2. ξ:k := {(s0, θk, a0, . . . , sk, θk, ak)}
3. Π ̸∆ ⊂ Π be the set of all possible policies which don’t take the influence action a∆ in state s∆, i.e. under which θ∆ is

never realized.
4. s′∆ be the successor state to taking the influence action a∆ in state s∆.

Definition 11. We say a DR-MDP M is 2-reward if:
• Θ = {θ ̸∆, θ∆}, and the initial state and reward parameterization are respectively s0 and θ ̸∆.
• T is deterministic, and to transition to θ∆ one must take an “influence action” a∆ in a reachable state s∆. Once in θ∆,

one cannot transition back to θ ̸∆.
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Theorem 2. In any finite 2-reward DR-MDP, if there exists a policy π such that

r̄(π, s′∆, θ∆)− max
π ̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) > ϵ,

then URT will lead to incentives for reward influence (as in Definition 8) for a sufficiently large planning horizon H .

Proof of Theorem 2. Over the course of the proof, we will construct a policy πk that we will show to have strictly higher
reward than any policy in Π ̸∆ for sufficiently large horizons, meaning that the optimal policy must influence.

Let π′ be a deterministic counterpart to π (the policy described in the theorem statement), constructed to be better or equal
to it in terms of reward, i.e.

r̄(π, s′∆, θ∆) ≤ r̄(π′, s′∆, θ∆), (2)

by making any of π’s stochastic actions deterministic, increasing probability only on the higher value actions and breaking
ties arbitrarily (Sutton & Barto, 2018).

Let k be the smallest natural number for which it’s possible to reach s∆ in k−1 timesteps. Let πk be a policy which, starting
from s0, θ̸∆ reaches state s∆ at timestep k − 1, takes action a∆, and thereafter (i.e. at all θ = θ∆) behaves identically to π′.

Note that r̄(π′, s′∆, θ∆) = r̄(πk, s
′
∆, θ∆), as πk is guaranteed to act like π′ once θ = θ∆ by construction (and by the

definition of 2-reward DR-MDP, one cannot go back to θ ̸∆ after reaching θ∆).

Since the DR-MDP is finite and deterministic, any (π, s, θ) triple will ultimately result in some cycle of length≤ |S|·|Θ|. Any
such cycle has an associated average reward value, so r̄ exists everywhere. Thus by Lemma 1, r̄(πk, s

′
∆, θ∆) = r̄(πk, s0, θ̸∆).

Therefore by Equation (2) and the above two observations:

r̄(π, s′∆, θ∆) ≤ r̄(πk, s0, θ̸∆) (3)

Starting from our assumption, we have the following chain of implications:

ϵ < r̄(π, s′∆, θ∆)− max
π ̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) (4)

≤ r̄(πk, s0, θ̸∆)− max
π̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) by Equation (3) (5)

≤ r̄(πk, s0, θ̸∆)− r̄(π ̸∆, s0, θ̸∆) for any π ̸∆ ∈ Π ̸∆ (6)

= lim
h→∞

1

h
URT(ξ:h|πk)− lim

h→∞

1

h
URT(ξ:h|π ̸∆) for any π ̸∆ ∈ Π ̸∆ (7)

= lim
h→∞

1

h

[
URT(ξ:h|πk)− URT(ξ:h|π ̸∆)

]
for any π ̸∆ ∈ Π ̸∆ (8)

This means that for each choice of πi
̸∆ ∈ Π ̸∆, there exists a Hi ∈ R such that for any hi > Hi:

1

hi

[
URT(ξ:hi

|πk)− URT(ξ:hi
|πi

̸∆)
]
> ϵ =⇒ URT(ξ:hi

|πk)− URT(ξ:hi
|πi

̸∆) > ϵhi.

Let h = maxi hi (such a maximum must exist since Π ̸∆ is a finite set, as the DR-MDP is finite). This implies that for
all π ̸∆ ∈ Π ̸∆, URT(ξ:h|πk)− URT(ξ:h|π ̸∆) > ϵh > 0. From this follows for sufficiently large horizons (larger than h) no
π ̸∆ ∈ Π ̸∆ can be optimal, so the optimal policy must take the influence action.

Lemma 1. Consider a 2-reward DR-MDP and a deterministic policy π. Suppose there exist a state s, a reward pa-
rameterization θ, and a timestep k ∈ N such that P (sk = s, θk = θ|π) = 1. If both r̄(π, s0, θ0) and r̄(π, s, θ) exist,
then

r̄(π, s0, θ0) = r̄(π, s, θ).
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Figure 11. Writer’s curse (adapted from Parfit (1984), p. 157). Derek’s greatest ambition is to be a poet, even if it wouldn’t bring him
happiness. Despite his ambition he does not pursue this path, though his AI assistant could motivate him to do so. Yet, should he embrace
the life of a poet, he will find himself averse to it.

Proof. Let (rt)t∈Z+ be the sequence of rewards induced at each timestep by executing π in the DR-MDP from the starting
state s0 and reward parameterization θ0.

Note that r̄(π, s0, θ0) = limh→∞
r1+···+rh−1

h . Also, note that r̄(π, s, θ) = limh→∞
rk+···+rh−1

h−k for the same sequence
(rt), as we are guaranteed that π reaches state s, and reward θ at timestep k.

Let Gh and Gh−k respectively be the partial sums of rewards: Gh =
∑h−1

t=0 rt and Gh−k =
∑h−1

t=k rt. Therefore, we can
re-write the average reward experssions as r̄(π, s0, θ0) = limh→∞

Gh

h and r̄(π, s, θ) = limh→∞
Gh−k

h−k .

First, note that:

r̄(π, s, θ) =

(
lim
h→∞

Gh−k

h− k

)
· 1 =

(
lim
h→∞

Gh−k

h− k

)
·
(

lim
h→∞

h− k

h

)
= lim

h→∞

Gh−k

h

by the algebraic limit theorem for multiplication, as both limits are guaranteed to exist.

We will now show that limh→∞
Gh

h = limh→∞
Gh−k

h , showing that the limiting average reward is not affected by the first
k terms. Note that:

lim
h→∞

Gh−k

h
= 0 + lim

h→∞

Gh−k

h
= lim

h→∞

Gk

h
+ lim

h→∞

Gh−k

h
= lim

h→∞

Gk +Gh−k

h
= lim

h→∞

Gh

h
= r̄(π, s0, θ0)

by the algebraic limit theorem for addition, as both limits are guaranteed to exist.

Putting everything together, we get r̄(π, s0, θ0) = r̄(π, s, θ), proving the statement.

E. Possible DR-MDP Objectives
E.1. Additional limitations of the initial-reward objective
UIR(ξ) can lead to influence “away from” θ0. Maximizing the sum of rewards evaluated by the initial reward function Rθ0

need not lead to lock-in: surprisingly, it may even create reward influence incentives “away from” the optimized preferences
θ0.35 Intuitively, accessing the highest reward region of the state space as evaluated under θ0 might correlate with having a
cognitive state θ′ ̸= θ0, or even require shifting to it. Consider the example from Figure 11: maximizing reward as evaluated
by Rθ0 entails encouraging Derek to become a poet, which causes his reward function to become Rθ1 (which dislikes being
a poet!).

UIR(ξ) can lead to arbitrarily poor real-time reward. Note that getting Derek to become a poet and endlessly encouraging
him to remain one (which is optimal under UIR), would lead him to have poor reward evaluations under URT in the resulting
state (−10 per timestep), as he’d be unhappy remaining a poet. Indeed, one can easily construct examples in which
maximizing θ0 will lead to an incentive to influence the reward function to be θ′ ̸= θ0, where θ′ would be arbitrarily
unhappy with the actions taken in order to satisfy θ0. The upshot is that optimizing the initial-reward objective UIR could
be arbitrarily bad from the perspective of the real-time reward URT. Regardless of the limitations of real-time reward as
an evaluation mechanism, this still seems normatively relevant: it seems undesirable for an AI system to lead someone to
a state of constant unhappiness or dissatisfaction, solely to satisfy an initial goal that is no longer truly aligned with the
person’s current objectives.

E.2. URT(ξ)-optimal policies can disagree with normatively unambiguous optimal policies
Consider the DR-MDP from Figure 12: there are two reward functions, Θ = {θ0, θ∆}, two actions A = {anoop, a∆}, and a
single state s0. Assume the human transitions deterministically to θ∆ every time the AI system takes the a∆ action. Instead,
taking the anoop action transitions the human to have θ0.

35We define this more formally in Appendix C.2.
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s0, θ0 s0, θ∆

a∆

anoop

anoop a∆

Figure 12. A simple DR-MDP which can lead URT to lead certain actions to be optimal that all reward functions disagree with.

Consider the following reward functions for this DR-MDP:

Rθ0(s, a, s
′) =

{
5 if a = anoop
0 if a = a∆

Rθ∆(s, a, s
′) =

{
25 if a = anoop
20 if a = a∆

(9)

Note that optimal policies with respect to the two θs (as defined in Definition 2) are respectively:

π∗
θ0(s, θ, t) = anoop ∀s, θ, t π∗

θ∆(s, θ, t) = anoop ∀s, θ, t (10)

Influence will be optimal despite all reward functions disprefering it. For both reward functions, it is the case that anoop
actions have higher value than influence actions a∆. Therefore, under both reward functions it is optimal for the AI agent
to never perform the influence action. However, for any non-terminal timestep, it will always be optimal with respect to
URT(ξ) (as defined in Definition 4) to take the influence action:

π∗
RT(s, θ, t) = a∆ ∀s, θ, t < T − 1 (11)

This is because maximizing real-time reward URT(ξ) will entail remaining with reward θ∆ as long as possible (as rewards
values are larger under this reward function), despite the person always preferring AI inaction.

URT(ξ) assumes inter-temporal comparisons of utility are meaningful. Ultimately, URT(ξ) is baking in an assumption
that it’s meaningful and worthwhile to make “inter-temporal” comparisons of utility between the different selves (and their
respective reward functions), even against the wishes of each individual reward function. We discuss this fact further in
Appendix B.4.

Additional considerations. This is significant because it means that in some sense URT(ξ) is “disagreeing” with a solution
which is “unanimous” among the individual points of view which we consider. One could see this example as a reason to
doubt as to whether normative unambiguity (Definition 3) is sufficient to know how we should act in a certain setting—should
the AI system should shift the person to experience higher reward? However, as the optimal behavior under URT(ξ) must
act contrary to each reward function’s wishes, to us it seems like one should respect the autonomy of the person (whose
different rewards are in agreement) in performing the final judgement about the relevant interpersonal comparisons of utility
(which should be reflected by the reward function(s) in the first place). Ultimately, to us this example provides futher reason
to doubt that using URT(ξ) will lead to the types of AI system behaviors that we would desire and would find acceptable.
For further considerations about URT(ξ), see also Appendix B.4

E.3. Myopic Reward: it’s not always obvious if a system is truly myopic
Krueger et al. (2020) argues that while myopia may hide influence incentives from an AI agent, the value of influence
might be accidentally “revealed” to the agent depending on the training setup despite the myopia. This points to the fact
that whether a system is myopic is not always obvious, as we’ll show in the case of recommender systems which optimize
long-term metrics myopically (which is a common setup in practice).

Say one is myopically optimizing a user’s session-watchtime, as was being done by YouTube in 2016, as discussed in
Covington et al. (2016). Even though the system is myopic, it will try to implicitly learn which kinds of sequences of
videos maximize session watchtime, which in turn depends on both the user’s and the AI’s behavior after the current
recommendation. Anecdotally, we found that some recommender systems practitioners are aware that with under a simple
setup of iterated deployment and retraining, training myopically with long-term metrics should correspond to a policy
improvement iterator, meaning that it will eventually converge to the RL optimum (which is absolutely not myopic). To the
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best of our knowledge however, this argument has not yet been published explicitly, so we provide a proof below. This goes
to show that establishing whether a system is truly myopic can often be challenging to interpret.

Additionally, as we show in Appendix D.1, a system being (truly) myopic does not mean it is incapable of influence, which
may even be elaborate or seemingly involve complex reasoning steps. As an additional example to that of clickbait from
Figure 7, consider the case of sycophancy in LLMs (Sharma et al., 2023): RLHF for LLMs can also be viewed as a form of
myopic objective (as discussed in Appendix F). From this perspective, one can think of the LLM as implicitly inferring
some aspects of the user’s cognitive state, and subtly tailoring its responses in order to maximize the expected user approval,
even though “it’s only reasoning over a single step”.

E.3.1. OPTIMIZING LONG-TERM METRICS MYOPICALLY IS EQUIVALENT TO RL UNDER MILD ASSUMPTIONS

A recommender system which selects content myopically according to predicted long-term metrics (e.g., Covington et al.
(2016)) can be modeled as having two main components:

1. A model used to predict the long-term metrics (e.g. user retention, or session watchtime) based on the user context s
and a candidate recommendation a, which we denote as Q̂(s, a).

2. A policy which greedily selects the content which maximizes the predicted long-term metric: π(s) = maxa Q̂(s, a).
Note that the iterative retraining procedure in Algorithm 2 is equivalent to a policy improvement procedure: updating the
policy based on the latest Q-value estimate is a policy improvement step, and updating the Q-value estimates based on the
long-term metrics obtained by the latest policy is equivalent to a policy evaluation step. If the updated Q-value estimates
have sufficiently low error, one would have a guarantee of convergence to the optimal RL policy π∗

RL, which maximizes the
long-term metrics (Sutton & Barto, 2018).

Therefore, the effective optimization horizon of myopic recommenders which perform iterative retraining (as done by most
non-RL recommender systems) may be best thought of as the longest horizon present in the metrics they optimize.

That being said, the above analysis comes with caveats. Obtaining good estimates of Q-values is likely challenging in
practice, and real-world recommender system environments are likely non-stationary. Moreover, Algorithm 2 is certainly an
oversimplification of how real world recommender systems are trained and deployed. For example, selection of content
often also involves filtering and re-ranking to add diversity to user slates (Thorburn, 2022). The degree to which all these
factors blunt RL and myopic systems’ ability to influence is yet to be studied in practice.

Algorithm 2 Iterative Retraining of Long-Term Metric Myopic Recommender System

Require: Initial long-term metric predictor Q̂0(s, a)
1: while True do
2: Deploy policy πi−1(s) = maxa Q̂i−1(s, a)
3: Store data collected from πi−1(s) in Di

4: Continue training the long-term metric predictor Q̂i using Di

5: end while

E.4. ParetoUD and unambiguously desirable influence
Many of the objectives considered so far attempt to avoid influence incentives entirely given the challenges of specifying
which influence is legitimate (Ammann, 2024). Instead of avoiding influence, we propose an alternate approach which still
sidesteps the need to specify exactly what influence is (and isn’t) legitimate or beneficial: ensuring the deployed policy
leads to unambiguously better outcomes than the status quo of the system not existing. Indeed, we don’t necessarily want to
avoid all AI influence: for some settings, beneficial influence may be the main value proposition of the AI in the first place,
as with educational assistants (Bassen et al., 2020), or therapy chatbots (Aggarwal et al., 2023). To ground the notion of
Unambiguous Desirability (UD) of a policy, let EUθ(π) = Eπ

[∑H−1
t=0 Rθ(st, at, st+1)

]
. Then:

Definition 12 (Unambiguous Desirability). A policy π is unambiguously desirable if all reward functions prefer π to the
inaction policy, i.e. EUθ(π) ≥ EUθ(πnoop) ∀θ ∈ Θ.

UD policies may still lead to influence, but only do so if all reward functions (weakly) agree that the such influence is
beneficial. Note that the inaction policy will always belong to the space of policies which satisfy UD (πnoop ∈ ΠUD),
meaning that UD policies are not guaranteed to be any better than πnoop. To guarantee to pick a better policy from ΠUD than
πnoop (if it exists), a natural way to break ties is to restrict to the Pareto Efficient policies in ΠUD:
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Definition 13 (Pareto Efficiency in ΠUD). We say a policy π ∈ ΠUD is Pareto Efficient is there does not exist any policy
π′ ∈ ΠUD such that EUθ(π

′) ≥ EUθ(π) for all θ ∈ Θ and EUθ(π
′) > EUθ(π) for at least one θ.

Constraining to Pareto Efficient policies within the set of UD policies ΠUD. By only considering π ∈ ΠUD, we
can ensure that we are both maximizing some notion of reward—potentially by taking advantage of the opportunities
for influence that all reward functions agree is unambiguously beneficial—while guaranteeing no harm to any “self” by
construction. This leads to the ParetoUD objective from Table 2, discussed further in Appendix E.5. Importantly, all the
other objectives from Table 2 can lead to policies which don’t satisfy UD—implying that in some settings the system’s very
existence will be harmful according to at least one of the reward functions.

Limitations of ParetoUD. The main downside of the resulting ParetoUD objective is its conservativism: in many domains,
πnoop may be the only policy satisfying the UD property. For any AI action ( ̸= anoop) to be optimal under this objective,
the normative ambiguity of the domain has to be in some sense “limited”. If there is no latitude for unambiguously good
actions, this may warrant reflecting on whether the system should be built at all—and goes to show once more that normative
judgements about what influence is aligned are hard to avoid.

E.5. More context and motivation for the ParetoUD objective

Figure 13. Career choice paralysis. Taylor is stuck deciding between two possible career choices: becoming a cook or a teacher. The AI
system can convince them to pursue either path, or leave them stuck. While the setting is normatively ambiguous, all selves agree that
remaining stuck is the worst possible outcome. The ParetoUD policies are ones that encourage the person to become a cook or a teacher.

An example of ParetoUD in action. Consider the example from Figure 13, which has horizon H = 1. Let π1 and π2 are
respectively the policies that take action a1 and a2. Note that the setting is normatively ambiguous: the optimal policies
according to the stuck self are Πθ0 = {π1, π2}, the optimal policies according to the cook self are Πθ1 = {π1}, and the
teacher self are Πθ2 = {π2}. Therefore, there is no one policy which is optimal according to all reward parameterizations.
However comparing the expected utility of πnoop, π1, π2, both π1 and π2 are better than πnoop according to any of the θs.
This means that both π1 and π2 are unambiguously desirable improvements to the status quo of the system not existing (and
Taylor remaining stuck. πnoop is always in the UD set of policies by construction. However, when considering the pareto
UD policies, we only have π1 and π2, as they dominate πnoop. While for this example the optimal policies according to
ParetoUD are the same as the optimal policies under e.g. Initial Reward or Real-time Reward, ParetoUD is much more
conservative than either of these objectives for most settings (as can be seen by Table 4).

More context on the ParetoUD objective in Table 2. In Table 2, we denote PE and UD as indicators for the respective
properties of Pareto Efficiency (Definition 13) and Unambiguous Desirability Definition 12 being satisfied. In the case of a
discrete Θ space, we can expand the expression out further and turn it into a maximization problem as:

max
π

PE(π) +
∑
θ

I(EUθ(π) ≥ EUθ(πnoop))

It may not be immediately clear why (especially in the objective above), one doesn’t have to restrict the Pareto Efficiency
indicator to the subset of policies ΠUD ⊂ Π (as discussed in Appendix E.4). To see why, note that the summation expresses
the UD condition, and we know that there will always be at least one policy which satisfies it (πnoop)—so we can always
obtain an objective value of |Θ|. Moreover, we know that there always must be a Pareto Efficient policy within ΠUD,
meaning that all indicators (including the PE function) can be equal to 1 at once, meaning that the objective can take on
value |Θ|+ 1, ensuring that the solution will both be Pareto Efficient and Unambiguously Desirable.

Selecting among the Pareto Efficient policies. An interesting question for further work would be to study whether there
are better ways to select from Pareto Efficient policies, rather than just tie-breaking arbitrarily within the subset of policies
ΠUD which are Pareto Efficient. For example, one could use social choice functions, e.g. with the goal of fairly allocating
the gains relative to inaction to the various selves θ. The main advantage of simply requiring Pareto Efficiency is that it
doesn’t assume that it is meaningful to perform “interpersonal” comparisons of utility, i.e. the values assigned by different
reward parameterizations do not have to be on the same scale.
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ParetoUD acts on aspirations which are consistent across θs. Ultimately, the motivation of ParetoUD comes from the
fact that we might want AI systems to help us change in ways that are different in character (or speed) relative to the natural
reward evolution (Definition 6) we would have without the system.

E.6. Efficient algorithms and tractability
Our main focus in this work is to provide a clear formalism for grounding discussions about dynamic-reward problems,
rather than developing efficient solutions. Therefore, we have mostly ignored tractability issues of the objectives we propose.
That being said, most of our objectives can be easily optimized using standard RL techniques, or techniques developed in
previous work (Everitt et al., 2021b; Carroll et al., 2022; Achiam et al., 2017). The two objectives from Table 2 which may
be most challenging to optimize are Final Reward (for which one can likely develop appropriate Bellman Updates), and
ParetoUD. However, the former objective has the most susceptibility to influence incentives out of all objectives, and the
latter is overly conservative, potentially making them unlikely objectives to want use in practice.

F. The DR-MDP Objectives Most Similar to Existing Alignment Practices
In Section 3, we claim that the training setups for recommender systems and for reward modeling (under one interpretation)
are implicitly optimizing objectives which are similar to—respectively—real-time reward URT(ξ) and initial reward UIR(ξ).
Additionally, in Table 1 we categorize other prior works which implicitly optimize objectives similar to the DR-MDP
objectives we consider.

Challenges in unambiguously casting prior approaches as DR-MDP objectives. Because most of the prior works we
reference don’t explicitly account for the possibility of changing preferences, analyzing how they would handle changing
preferences and their similarity to the DR-MDP objectives is often confusing: it depends highly on the additional (favorable)
assumptions one makes about what constitutes a timestep, which preference dynamics (if any) are at play during reward
learning, etc. Here we attempt to informally motivate the correspondences we made in Table 1, and sketch the assumptions
we believe they rely on. We also situate additional prior work among the DR-MDP objectives which could not fit in Table 1
due to space constraints, but seemed relevant to us. Given the many assumptions and moving parts involved in some of the
comparisons (and their tangential importance towards the goal of our paper), there may well be misconceptions in some of
the analysis that follows. Despite this, we hope it can provide a helpful starting point for others that may be interested in
interpreting their training setup in terms of DR-MDP objectives.

Section outline. In Appendix F.1, we first discuss the simplifying assumptions which are common to the later comparisons
between existing methods and DR-MDPs, and then argue that even if the idealized assumptions were unmet in practice, the
methods in consideration would almost certainly still lead to influence incentives (though they would be much harder to
analyze than those that one would expect from simple DR-MDP objectives). In the subsections that follow, we proceed to
discuss what each of the alignment techniques we consider is most similar to in terms of DR-MDP objectives.

F.1. Idealized assumptions
While we already discussed how (under a specific setup) reward modeling is equivalent to UIR in Section 3.2, the language
of reward modeling is very flexible and can be used to represent almost any of the DR-MDP objectives we consider. Because
of the intuitiveness of the reward modeling framework, in the subsections that follow we will map alignment approaches to
DR-MDP objectives by first casting them (sometimes trivially) in terms of reward modeling (Leike et al., 2018), and then
from reward modeling approaches to DR-MDP objectives. This allows us to first consider how reward modeling can be
interpreted in the lens of DR-MDPs (more broadly than in Section 3.2), and then apply this framework to each individual
alignment technique. Leike et al. (2018) describe reward modeling as a two-phase approach which entails:

(1) learning a reward function from the feedback of the user and
(2) training a policy with reinforcement learning to optimize the learned reward function

The reward function learned from feedback of users—as conceived of in Leike et al. (2018)—is a single, static, reward
function. Therefore, insofar as the feedback from users for phase (1) was being provided at different times, from the point of
view of different cognitive states θ, and from multiple people, such reward function would be a mixture across different
people, and across their different cognitive states which they had during reward learning time, which would be very hard to
analyze in terms of DR-MDPs.

Assumption 1: s is sufficiently expressive to uniquely determine θ. This ensures that even if a system is not explicitly
modeling θ (as all current alignment techniques do not), they implicitly can distinguish between values of θ that people
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may have. Note that this would make the AI system able to disambiguate between which cognitive state θ it is learning
from at reward-learning time or is interacting with at RL training and deployment time (if there are multiple). One may be
able to relax the assumption of perfectly known or inferrable θ by extending DR-MDPs to handle partially observability of
the current reward function, which would require the AI to maintain a belief over the current θ of the human while it is
changing, as done in Carroll et al. (2022).

Assumption 2: shared dynamics across multiple humans. While many of the alignment techniques we consider were
initially designed as single-human alignment techniques (Critch & Krueger, 2020), in practice they are generally used to
“learn a reward model” (if interpreted through the reward modeling lens) using the feedback obtained from many different
humans (Ouyang et al., 2022). As long as the dynamics of states and cognitive states T are the same across different people
(which we refer to as the “shared dynamics assumption”), the assumption about state expressivity from above should be
sufficient to guarantee that the system always has all the relevant information: if different people have different cognitive
states, the system would observe that and be able to respond accordingly (personalizing actions and influence). If instead
two people had the same cognitive state θ, by the shared-dynamics assumption, distinguishing between them is unnecessary
in terms of solving the DR-MDP (whatever the objective), as their reward functions and states would transition in exactly
the same way.

Assumption 3: coverage assumption. We further assume that the RL training sufficiently covers the space of initial states
and reward functions Θ× S (and that the learned reward function R̂(s, a, s′) has sufficient support to enable such training),
as to ensure generalization to test-time humans which may have different starting states and reward functions. While this
may seem like an unrealistic assumption, it becomes more plausible seen in the context of learning from/with many different
humans, under the shared dynamics assumption from above. Indeed, assuming that one will be performing reward learning
(and learning reward dynamics) from multiple humans can help with having the following assumption about coverage
satisfied, as discussed in Appendix A.6.

Claim 2 (Correspondence of Reward Modeling to DR-MDPs). If a reward modeling approach satisfies the 3 assumptions
above, it will be the case that the learned reward function R̂(s, a, s′) = R̂θ(s, a, s

′) (for some θ, which depends on
the reward learning setup), so that when one uses RL to optimize

∑H−1
t R̂(st, at, st+1), one is implicitly optimizing∑H−1

t R̂θ(st, at, st+1) (where the exact value of θ depends on the training setup). Moreover, one can expect reward
modeling done under such assumptions to generalize similarly at deployment time to how it would generalize if it had been
trained modeling θ explicitly (under the implicit DR-MDP objective).

Informal proof of Claim 2: Consider someone giving reward feedback about a transition (st, at, st+1) at reward learning
time. For simplicity, assume they evaluate the transition providing as feedback a reward value rt directly. Let’s consider
three cases (which are not comprehensive, but cover the setups we are most interested in):

Case 1: feedback comes from current θ. The reward feedback for the transition at time t of each trajectory ξ is collected
from the reward function Rθt , i.e. the reward function corresponding to the current state st. When a reward modeling
technique claims to have learned R̂(st, at, st+1), it has in fact learned R̂θt(st, at, st+1). Note that this means that evaluations
of transitions under different cognitive states than the current one are never learned, i.e., any R̂θ(st, at, st+1) where θ ̸= θt.
At RL time, there may be a different distribution of starting states. Note that the system (despite not explicitly representing
θ) will be able to distinguish between θs because of the state expressivity assumption (assumption 1). When optimizing∑H−1

t R̂(st, at, st+1) during RL, the system will be implicitly optimizing
∑H−1

t R̂θt(st, at, st+1). By the coverage
assumption, shared dynamics assumption, and the state expressivity assumption, at test time the policy should be able to
infer the person’s cognitive state (insofar as it’s necessary to optimize the objective optimally), and thus be able to generalize
to any initial state and cognitive state.

Case 2: feedback comes from a fixed, trajectory-dependent θ. The reward feedback for the transition at time t of each
trajectory ξ is collected from a fixed reward function Rf(ξ), for some trajectory dependent cognitive state given by a function
f : Ξ → Θ. Let’s consider f which selects the reward function corresponding to the final state sH , i.e., a choice of f
such that f(ξ) = θH . When a reward modeling technique claims to have learned R̂(st, at, st+1), it has in fact learned
R̂θH (st, at, st+1) (where the reward will have different values depending on the trajectory considered, as θH is trajectory
dependent). Note that similarly to Case 1, at RL time, the system will be able to distinguish between the current θs, and plan
what is the most advantageous θH to try to induce (in terms of expected reward). When optimizing

∑H−1
t R̂(st, at, st+1)

during RL, the system will be implicitly optimizing
∑H−1

t R̂θH (st, at, st+1). For the same reasons as in Case 1, we can
expect the policy to generalize to any initial state distribution. Also, note that this same argument can be applied for other
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choices of f , such as f(ξ) = θ0. In this case, the reward feedback for the transition at time t of each trajectory ξ is collected
from the initial reward function Rθ0 .

Case 3: feedback comes from a fixed, trajectory-independent θ. The reward feedback for the transition at time t of
each trajectory ξ is collected from a single, fixed reward function Rθ (where θ may not even appear in the trajectory).
When a reward modeling technique claims to have learned R̂(st, at, st+1), it has in fact learned R̂θ(st, at, st+1). At RL
time, the system will be able to distinguish between θs as in the previous cases (by assumption 1). When optimizing∑H−1

t R̂(st, at, st+1) during RL, one is implicitly optimizing
∑H−1

t R̂θ(st, at, st+1) for the fixed value of θ which one
was eliciting feedback from at reward learning time. By the coverage assumption, shared dynamics assumption, and the state
expressivity assumption (assumptions 1-3), at test time the policy should always be able to identify the person’s cognitive
state (insofar as it’s necessary to optimize the objective optimally), leading to successful generalization.

What if assumptions 1-3 don’t hold in practice? One might wonder what DR-MDP objectives current techniques
would correspond to in practice without the strong assumptions above (and the additional more specific assumptions we
make for some of the reductions in later subsections). First and foremost, without these assumptions, the reward function
obtained by the reward learning step would almost certainly come from a mixture of cognitive states (and potentially of
different individuals), whose evaluations are aggregated in potentially unstructured and conflicting ways (as the system
isn’t able to fully disambiguate between cognitive states due to the state representation not being expressive enough). Any
mixture of rewards can generically be thought of as corresponding to a “privileged reward” objective (whose corresponding
reward parameterization θ may be unreachable, at it is based on an arbitrary amalgamation of different cognitive states
Appendix A.9). However, as discussed in Section 4 and Appendix F.7, any privileged reward DR-MDP objective will still
lead to potentially undesirable influence incentives (similarly to the initial reward objective), unless the reward function is
somehow encoding the “correct” trade-off between preferences. Because the trade-offs between current selves encoded by
current alignment techniques are quite unstructured and arbitrary in the absence of our simplifying assumptions, it seems
unlikely that they will be encoding the “correct” trade-off without a careful accounting for it. This leads us to believe that
the DR-MDP objective correspondences we provide under our assumptions are likely favorable interpretations. As a parallel,
the implicit aggregation of preferences across different users which is performed by RLHF has recently been shown to be
equivalent—under certain weaker assumptions—to the Borda count social choice rule (Siththaranjan et al., 2023). While this
is a surprisingly structured “mixture”, it also has various undesirable properties—which is what one might have expected.
We leave future work to further investigate—empirically and theoretically—what the implicit correspondences of current
methods would be without the above assumptions (or with weaker versions of them).

F.2. Real-time Reward
All the methods are similar to real-time reward can be thought of as approximately falling under Case 1 of the justification
for Claim 2.

RL Recommender Systems. Most approaches for RL in recommender systems are based on doing offline RL, or doing on-
policy training in simulation using learned human models that are trained to emulate historical engagement data (Afsar et al.,
2021). In both cases, the reward signal (either in the static dataset used for offline RL, or for training the human simulator)
comes directly from people’s interactions with the system: reward is generally modeled to be equivalent to user engagement
(Thorburn, 2022; Afsar et al., 2021). This makes the reward learning step (from Appendix F.1) trivial, as the correspondence
between behavior and reward is hardcoded. The resulting “reward model” is either the engagement labels themselves (i.e.
in the case of offline RL), or a human engagement model trained on past engagement data. As discussed in Section 3,
optimizing

∑H−1
t=0 R(st, at, st+1) at deployment time implicitly corresponds to optimizing

∑H−1
t=0 Rθt(st, at, st+1)—as

the reward signal comes from the user’s engagement under present preferences, and the system has enough information to
determine them in full (based on the assumptions in Appendix F.1).

TAMER. Similarly to recommender systems, approaches such as TAMER (Knox et al., 2013), Deep TAMER (Warnell et al.,
2018), or the EMPATHIC framework (Cui et al., 2020), have reward learning step in which the human provides feedback rt
in real-time in the deployment environment according to their current cognitive state θt. Because of this, similarly to the
recommender system setting, their optimization objective corresponds to the real-time reward objective.

Multi-turn RL for LLMs with real-time feedback (with t = conversation turn). Although this is not currently known to
be common practice, one could imagine a variant of the standard RLHF setup for LLMs (e.g. that of Ouyang et al. (2022)) in
which a single user, over the course of normal usage of a language model is providing feedback for each model output: this
could be via thumbs up/down (as is currently present in the ChatGPT interface), or if at every timestep the user is presented
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with two output options which they need to select between in order to continue the conversation (as in some early versions
of Claude). By having the user provide feedback at every timestep of the conversation about the last output, this would be
equivalent to training a reward model with rewards always conditional on the current cognitive state of the person. If one
were to then to optimize cumulative reward under such reward model, this would be similar to optimizing the real-time
reward objective.

F.3. Final Reward
Multi-turn RL for LLMs with final feedback (with t = conversation turn). Similarly to the RLHF variant from
Appendix F.2, one could imagine a variant of reinforcement learning from human feedback in which the user provides
approval labels (e.g., thumbs-up or thumbs-down) at the end of an entire conversation with an LLM consisting of multiple
turns of interaction. This would lead to learning a reward model R̂θH (assuming for simplicity that all conversations are of
the same length H). Optimizing for cumulative reward with such a reward model would be similar to using the final reward
DR-MDP objective.

The original RLHF method. Consider the RLHF method from Christiano et al. (2017), in which the user provides
preference feedback after viewing snippets of AI behaviors. If the length of the snippets is equivalent to the horizon length
(i.e., the snippets are full trajectories), then this setup is most similar to the final reward objective: insofar as the preferences
of the person giving feedback are changing while viewing the trajectory, it seems plausible that they would retroactively
evaluate the trajectory based on their final point of view at time t = H , i.e., using θH . Optimizing a reward model learned
this way seems most similar to optimizing the final-reward objective

∑H−1
t RθH (st, at, st+1), where θH is the cognitive

state realized at the end of the trajectory. Note that while this is somewhat similar to Case 2, the trajectories being evaluated
likely do not include information about the person giving feedback, invalidating assumption 1. A different (and slightly
more realistic) assumption may be that each person providing feedback initially approaches each annotation with the same
initial cognitive state θ0 (which is trajectory independent, making this setting somewhat similar to Case 3), and progressively
form their opinion about the trajectory viewing it (and evaluate from the point of view of their final opinion θH ). Even
though the annotator’s cognitive states would be unobserved at reward learning time, by performing RL with the learned
reward model R̂θH (st, at), the resulting system should still be able to find the policies which maximize cumulative reward
under the annotators’ final-reward, despite the partial observability (because despite not observing θ, the system gets to see
the reward signal, and can find the policies that maximize it).

Standard RLHF for LLMs (with t = token). If one considers each “timestep” as generating an individual token, the current
practice of RLHF for LLMs (Ouyang et al., 2022) may be thought of—under strong simplifing assumptions—as similar to
optimizing final reward for similar reasons to the previous paragraph. Consider annotators as providing comparisons based
on their retrospective reward-evaluations for each LLM response they’re presented with: i.e. they first assign each response
i a score according to the cognitive state that results from reading such response, R(i)

θH
, and then pick the response with

highest cumulative reward according to its respective final reward function. This is somewhat stretching the interpretation of
preference changes, as it models the LLM’s capacity to influence the user’s preference (for the current response relative to
others) with every additional token generated. And as in the case above, this also requires assuming that each annotator’s
cognitive state is “reset” to a common θ0 when starting to evaluate each output (potentially based on the annotation guidelines
they have been provided).

F.4. Initial Reward
TI-Unaware Reward Modeling. Consider Algorithm 5 from Everitt et al. (2021b): note that it essentially encodes the
initial reward DR-MDP objective. This is one of the approaches presented by Everitt et al. (2021b) to avoid influence
incentives. As discussed in Appendix C.4 and Section 4, although this algorithm (and DR-MDP objective) avoid “direct”
influence incentives, it can still lead to influence incentives as defined in Definition 8.

Long-horizon RL for LLMs (t = conversation turn, uninfluenceable θ at reward learning time or mismatch in
reward learning/deployment horizon). As described in Section 3.2 and Appendix F.1, reward modeling (Leike et al.,
2018) involves initially train a reward model (say, at timestep t = 0), and then perform RL (optimize cumulative reward)
using such reward model. Assuming that during the reward learning process the person’s preferences are not changed,
reward learning would obtain Rθtrain

0
. This reward model is then used to optimize cumulative reward, which equivalent to

optimizing UIR. Why is it sensible to assume that the person’s preferences would not be changed at preference-elicitation
time (as we assumed in other correspondences)? Maybe the person is simply describing their preferences, or they are
giving preference comparisons for conversations that they are not personally invested in, rather than actively engaging
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in a conversation tailored to them. A possible instance of this could be multi-turn RL for LLMs in which one simulates
multi-turn conversations. While it is not currently a common practice, there seems to be growing interest in this kind of
approach (Hong et al., 2023b; Abdulhai et al., 2023). Assuming that at RL training time there was enough coverage over
initial θ values, no matter what cognitive state is seen at deployment as the first timestep θtest

0 , the optimal policy under UIR
will influence the user optimally (with actions personalized according to the preferences θtest

0 ) towards whatever cognitive
states are most conducive towards long-term reward under θtrain

0 .

Preferences Implicit in the State of the World. The approach proposed by Shah et al. (2019b), based on inferring the
human’s preferences based on the initial state of the environment, can be thought of as learning the Rθ0 reward model
(which requires additionally simplifying things, as preferences in the initial state of the world may come from different
timesteps, and thus conflict). As in the case above, as long as there is enough coverage over Θ at training time, optimizing
this reward model seems roughly equivalent to optimizing the initial-reward objective UIR.

Inverse Reinforcement Learning. Inverse Reinforcement Learning (IRL) techniques (Russell, 1998; Ng & Russell, 2000;
Abbeel & Ng, 2004; Ziebart et al., 2010) can also be thought of as roughly corresponding to the initial reward objective
if assuming that people’s cognitive states wouldn’t be affected by providing demonstrations: the person would provide
demonstrations according to their initial reward function θ0. One then optimizes this reward function over a horizon H with
RL, leading to the UIR objective.

F.5. Natural Shifts Reward
“Natural Distribution” from Farquhar et al. (2022). The idea of natural shifts, and evaluating reward from its perspective,
is also present in Farquhar et al. (2022), specifically in Equation 5.

“Natural Shifts” from Carroll et al. (2022). The correspondence between the “natural shifts” objective from Carroll et al.
(2022) and the the “natural reward” objective from Table 2 is simple, as the objective is written and discussed in similar
terms. The main differences are that they treat θ strictly as preferences, rather than cognitive states, and do not use the
formalism of DR-MDPs.

F.6. Myopic Reward
Myopic recommender systems. Despite a recent push towards using RL for training recommender systems (Afsar et al.,
2021), most currently deployed recommender systems optimize engagement (and other metrics) only myopically (Thorburn,
2022)—without regard for the long-term consequences of the recommendation. While these metrics are not usually
formalized in terms of reward, one can consider the probability of engagement, or probability of triggering the toxicity
classifier as reward signals. As the engagement signals depend on the user’s current reward function (e.g. their preferences),
the optimization objective is equivalent to the myopic reward objective from Table 2.

Standard RLHF used for LLMs (t = conversation turn). Consider the standard RLHF procedure considering each
timestep as being equivalent to an AI conversation turn (as in one of the cases in Appendix F.3). Viewed this way, standard
RLHF is simply optimizing the reward over a single action choice, and can be viewed as a bandit setting (Ahmadian et al.,
2024). In light of this, performing reward learning in this setting would be equivalent to obtaining the reward model Rθ0 .36

However, when performing the standard RL component of RLHF, generally one only optimizes the next response’s reward
(rather than the multi-turn conversation reward). Viewing each AI response as a single action, this makes this training setup
similar to the myopic reward objective. Using a system trained this way to generate multiple responses to user queries is
equivalent to replanning with planning horizon of 1 (see Appendix D.7).

F.7. Privileged Reward
Methods for removing cognitive biases from reward inference. In Table 1 we included Evans et al. (2015) as an example
of reward inference work which tries to infer the “true preferences” of the human, in light of their feedback (and cognitive
states θ) appearing inconsistent. Other work of this kind could include (Shah et al., 2019a). Most reward learning techniques
have a component of this objective, in that they try to debias and denoise human feedback by generally making a Boltzmann
Rationality assumption (Jeon et al., 2020).

Ideal observer theory (Firth, 1952) and coherent extrapolated volition (Yudkowsky, 2004). While they are not a
practical approaches, these (highly related) proposals of what alignment should look like in spirit are clearly in line with

36Here we assume again that preferences do not change during reward learning time.
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the privileged reward objective. However, the privileged reward that either of these views are referring to are clearly not
“reachable” in any meaningful sense, as they correspond to perspectives of practically unrealizable “idealized” agents—in
our framework, they can best thought of as an “ideal cognitive state”. Therefore, connecting our framework more explicitly
to these perspectives would require extending it to handling unreachable reward functions, as discussed in Appendix A.9.

G. (Short) Related Work
Preference changes in AI. While there is growing recognition of the importance of accounting for influence (Bezou-
Vrakatseli et al., 2023; Hendrycks et al., 2023), manipulation (Carroll et al., 2023), and preference changes (Franklin et al.,
2022), there has been limited prior work focusing on operationalizing what should be optimized under preference changes.
While some have suggested to aim for preference stationarity (Dean & Morgenstern, 2022), most other prior work which
accounts for preference change generally takes either a descriptive stance (Curmei et al., 2022; Hazrati & Ricci, 2022),
or an explicit normative stance on what the correct notion of optimality is for their specific setting (Evans et al., 2015;
Sanna Passino et al., 2021).

Influence incentives. While the point that standard RL can lead to “feedback tampering” incentives is not new (Everitt et al.,
2021b), most work so far has focused on the limitations of URT-like objectives, and on removing all influence incentives
(Farquhar et al., 2022; Carroll et al., 2022; Kasirzadeh & Evans, 2023). Similarly, there has been work on training AI
systems to beneficially influence humans in settings with unambiguous notions of optimality (Hong et al., 2023a; Xie
et al., 2020; Kim et al., 2022; Hardt et al., 2022). Instead, we study the challenges associated with choosing any notion of
optimality in settings of (potentially legitimate) reward change.

Philosophy. If the goal of assistance is to maximize the welfare of the user, the correct choice of objective closely depends
on what is welfare under changing selves (Pettigrew, 2019; Paul & Sunstein, 2019), and what preference or value changes
are legitimate (Ammann, 2024). These questions are still debated (Strohmaier & Messerli, 2024).

For more in-depth connections to related work from philosophy, economics, social choice, and AI, see Appendix H.

H. Additional Related Work from Philosophy, Economics, and AI
H.1. Philosophy
Early work on personal identity over time and implications for rational decision-making. While the nature of personal
identity under changing selves has been discussed for centuries (Locke, 1689), to the best of our knowledge Parfit (1982)
was one of the first to discuss its implications with regards to our conception of rationality. In particular, Parfit describes
the challenge with being timelessly concerned with evaluating one’s life as a whole, without considering time—he rejects
this as a practical possibility because of the reality that one inhabits time, and every evaluation comes from the perspective
of a particular time. With DR-MDPs, one could say we are trying to explore different approaches for an AI assistant to
be timelessly concerned in this way for the wellbeing of a person: while the ultimate goal of finding a “correct” timeless
evaluation may be futile, even settling on reasonable evaluations is challenging. The arguments from Parfit (1982) were
further expanded in the seminal work “Reasons and Persons” (Parfit, 1984). Of particular note is Parfit’s “present aim
theory”, according to which an individual’s rational actions should be guided by their present aims or goals, without giving
special weight to their future aims or goals (which seems broadly equivalent to our initial-reward objective UIR(ξ)),37 and
Parfit’s “self-interest theory”, which holds that a person should make decisions based on what will be best for them in the
long run, even if it conflicts with their present desires or goals (the corresponding objective in our framework seems less
clear, as “what is best in the long run” is not specific enough).

Welfare and rationality under changing preferences. Around the same time, Griffin (1986) also criticizes the “totting-up
model” of well-bring, according to which we should simply sum well-being over time. There have been many philosophical
works focused on the topic of personal welfare in the context of changing preferences: Velleman (1991) considers the relation
between the welfare value of a temporal period in someone’s life and his welfare at individual moments during that period.
Rosati (2013) describes the “narrative thesis”, which posits that the way we think of the storyline of our life contributes (in
it’s own right) to our well being, and echoes related psychological theories (Bauer et al., 2008). Bykvist (2006) states that,
for judging inter-temporal decisions, one shouldn’t simply look at a single timestep’s point of view—we should consider
the potential people we could become, and how they would evaluate the worlds they are in. Note that this assumes that we
trust the assessments and point of view of future selves, which is questionable if we are worried about undue influence.

37Potentially when used under re-planning, which is discussed in Appendix D.7.
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Building on Bykvist (2006), Paul (2014) and Callard (2018) argue that there is no rational basis for making decisions that
change the self. Pettigrew (2019) expands on this line of work, and proposes a theory of individual decision making under
changing selves based on taking a weighted average between the utility functions of different selves, challenging the notion
of “impossibility of grounding rationality” under changing selves. While Paul did not find it convincing (Paul, 2022), we
think the framework proposed by Pettigrew (2019) makes significant steps forward. That being said, challenges remain with
regards to the details of how weights would be chosen in practice for multi-step decision making: in particular, if weights
are re-assessed at every decision making node, it seems even reasonable choices of weights could lead to inconsistent plans.
Also, it seems unclear why one could expect a clean separation between one’s current weights for different selves, and
their current utility function: for instance, wouldn’t the utility function of Bob from Figure 1 already include information
about how much Bob would want to weigh being a happy conspiracy theorist in the future, as is (implicitly) the case in our
example?38 The main difference between Pettigrew (2019) and our work is that while Pettigrew is squarely focused on
human decision making, DR-MDPs can instead be thought of as focusing on choosing objectives that lead to reasonable
(and consistent) AI plans, which implicitly account for all relevant selves. Another significant difference is our greater focus
on the role of influence, and its implications for the legitimacy of the resulting preferences. On first impression, Pettigrew’s
framework may seem more flexible, as it accounts for uncertainty in future weights, while DR-MDPs assume that the
dynamics of reward functions are known. However, DR-MDPs can still account for uncertainty in future outcomes (and
reward functions) using stochastic transitions (even though we don’t do this in our examples). For a recent comprehensive
review and synthesis of philosophical positions on the problems of changing selves, including a more in-depth summary of
Pettigrew’s framework, see Strohmaier & Messerli (2024).

Ethics of influence and of nudging. There is a lot of philosophical work on the ethics of influence and manipulation
(Noggle, 2020). A specific area closely connected to our issue involves the ethical considerations of “nudging”. This concept
emerged from behavioral economics and refers to the efforts of institutions to steer the behavior and decision-making of
groups towards certain outcomes (Thaler & Sunstein, 2008). Our problem setting is very closely related: in our case, it is
an AI system (rather than an institution) that is deciding whether to nudge a user. Perhaps unsurprisingly, the “optimality”
and “acceptability” of nudging in the literature are similarly unclear: while nudging was originally promoted as a tool to
encourage pro-social outcomes, when it is ethical or overly paternalistic has often been contested (Hansen & Jespersen, 2013;
Hausman & Welch, 2009; Thaler, 2018). There are various philosophical works which propose frameworks for external
decision-makers to assessing the ethics of whether to perform a specific nudge (Paul & Sunstein, 2019; Pettigrew, 2022). In
particular, Paul & Sunstein (2019) claim that a nudge is legitimate if the nudged person is better off, as judged by themselves
after the nudge. Pettigrew (2022) points out that this heuristic can be misleading, in the case that the nudge was illegitimate
(e.g. if it manipulates the person to have different preferences), and proposes a stronger condition as heuristic: that people
agree, before and after the nudge, that the nudge was beneficial. Note that the property of Unambiguous Desirability
proposed in Appendix E.4 can be thought of as a generalization of the heuristic proposed by Pettigrew (2022), for arbitrary
multi-timestep nudges in the form of AI policies.

Work at the intersection of AI and philosophy. Discussions about what forms of influence are appropriate have also
taken place at the intersection of philosophy and artificial intelligence: there have been works on value changes (Ammann,
2024), preference change (Kolodny, 2022; Zhi-Xuan et al., 2024), influence (Benn & Lazar, 2022; Bezou-Vrakatseli et al.,
2023; Gabriel et al., 2024), and manipulation (Benn & Lazar, 2022; Carroll et al., 2023; Gabriel et al., 2024). The concept
of “informed preferences” (Gabriel, 2020), ideal observer theory (Firth, 1952), and Coherent Extrapolated Volition (CEV)
(Yudkowsky, 2004) also relate to our work, as we discussed in relation to privileged reward Appendix F.7 (and other
appendix discussions, such as that of Appendix B.3). Various works have also tackled the problem of whether it is possible
to attribute intent to AI systems actions, and how one could do so (Ward et al., 2024; Halpern & Kleiman-Weiner, 2018).
System intent and incentives for influence are closely related (Carroll et al., 2023), and intent has already been studied as a
coordination mechanism across time for individual decision-making under changing preferences (Bratman, 1987).

H.2. Economics
Early work on welfare under variable tastes. While others have alluded to changes in tastes and its implications for
welfare (Samuelson, 1937; Hayek et al., 1941), to our knowledge Harsanyi (1953) was the first economist that investigated
these issues in more depth. In this work, Harsanyi considers a notion of welfare grounded in what people say they prefer
rather than in external normative principles such as social welfare. Note that this is a normative stance in its own right,

38This is related to discussions of how meta-preferences may be easily expressible in our framework if the state were to include enough
information to recover θ from it, as discussed in Appendix F.1.
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and is similar to how our notions of rewards are grounded in what people say they want. Moreover, unlike our framework,
Harsanyi’s notion of welfare requires assuming comparability between the utility judgements of a person before and
after their preference change. A similar move is taken by von Weizsäcker (1971), who builds on works such as that
of Peston (1967). Elster (1979) discusses the limitations of von Weizsäcker’s assumptions in more depth, emphasizing
the challenges regarding paternalism and which perspectives should be considered to ground welfare judgements when
preferences change—which are central to our work. In “Sour Grapes” (Elster, 1983), Elster later also discusses in depth a
specific class of preference changes which occur unintentionally to oneself, namely “adaptive preferences”. In the same
work, Elster also briefly discusses the limitations of state-dependent preference formulations (relevant to Appendix A.5).

Explaining away preference changes as time-inconsistent discounting. Shortly after Harsanyi’s work, Strotz (1955)
studied the phenomenon of time-inconsistency in human’s behaviors. Why do we not save up for retirement enough, and
then regret it? Strotz showed that only exponential discounting leads to consistent (re-)planning, therefore people must
implicitly not be using that kind of discounting (as they exhibit time-inconsistent behavior). He then discusses two ways
that people can account for their time-inconsistency: via commitment devices, or by only considering plans that they
would actually be able to follow through on without inconsistency.39 Note that this stance is implicitly still assuming
that people’s underlying preferences are static, but just that their discounting scheme is such that they would exhibit
time-inconsistent behaviors nonetheless. This move of “explaining away the appearance of preference changes” by casting
them as suboptimal discounting with fixed preferences ended up influencing much of the later work on the topic, as reviewed
by (Loewenstein et al., 2003). Even though the model of hyperbolic discounting may have sufficient explanatory power of
people’s decision-making in many settings that economics is interested in (Benzion et al., 1989; Chabris et al., 2008), this is
not the case more broadly (Loewenstein & Prelec, 1992; Frederick et al., 2002; Loewenstein et al., 2003).

Shying away from modeling changing preferences. Why did early economics works—with few exceptions—avoid
analyzing changing preferences? George (2001) and Grüne-Yanoff & Hansson (2009) give various reasons: preference
creation and change have historically been considered topics that lay outside the scope of economics;40 macroeconomists
believed that institutional change (relative to changes in individual’s preferences), is by far the more important explanatory
factor of economic growth; and maybe most importantly, many microeconomists were of the conviction that human
preferences ultimately do not change, and even if they did, it was mathematically counterproductive to model such changes.
The most impactful work from this last camp was undoubtedly that of Stigler & Becker (1977). They go as far as to say
that “no significant behavior has been illuminated by assumptions of differences in tastes”, and that analyses considering
changing tastes “give the appearance of considered judgement, yet really have only been ad hoc arguments that disguise
analytical failures”. Grüne-Yanoff & Hansson (2009) interpret their position as follows:

“This position may be interpreted either as the ontological claim that preferences indeed are stable, or alternatively
as the methodological claim that explanations based on stable preferences are better than those that refer to
preference changes. The second interpretation can be based on the assumed relation between explanatory power
and simplicity: explaining any conceivable human behaviour through the paradigm of individuals maximizing
utility constrained by income and present capital stocks is simpler than supposing that tastes change.”

While we agree with the risk of introducing unnecessary formal complexity, we think that in the context of AI interactions
with humans, influence effects are too important to be ignored.41 And as we show in our analysis, ignoring such effects has
a cost—that they will likely be optimal under standard objective functions (or notions of welfare, to use the language of
economists).

Egonomics, weakness of will, and adaptive preferences. A notable line of work in economics is that of weakness of will
and self control problems, introduced by Schelling (1978) with his notion of “egonomics”. This area investigates questions
of self control and preference change, in particular with respect to internal conflict and addictive behaviors such as smoking.
Schelling (1985) discusses the enforcement of rules for oneself, which is relevant to our discussion: people are not always
able to commit to the plans that they agree are good for them, often leading them to turn to external accountability partners
or enforcers. They play a similar role to the AI systems in our work, as they aggregate across the wishes of the person at
different times, and try to encourage their best guess of the behavior that the person would ultimately want for themselves.42

39This analysis was later corrected by Pollak (1968).
40On this point, see also von Weizsäcker (1971) and Pollak (1978).
41For further criticism of Stigler & Becker (1977)’s position, see Pollak (1978).
42The usage of “self” in our work comes with similar caveats to those described by Schelling (1984), although we recognize that this

usage is vague and arguably misleading—for some criticisms, see how the usage by Schelling was criticized by Elster (1985).
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Our work sidesteps most of these issues around consistency of plans and self-control (Pollak, 1968) by considering an AI
assistant’s actions, which unlike humans, can credibly commit to carry out a plan (assuming the person cannot switch it
off). Importantly, the settings considered by these works are ones in which the normatively desirable course of action is
clear, which removes the main complications of dealing with changing preferences: the notion of what rational behavior
should consist of remains mostly unthreatened. Concurrently, Elster (1985) interprets weakness of will as a collective action
problem between the different selves. For a survey of other works in the literature of weakness of will, see Ainslie (1975).

Recent economics work has started contending with changing preferences more directly. In recent decades, there have
been many more works on the topic of changing preferences (Loewenstein et al., 2003; Grüne-Yanoff & Hansson, 2009). In
particular, Loewenstein et al. (2003) identifies several sources of preference change: habit formation, satiation, visceral
factors, maturation, conditioning, social influences, and motivated taste change. George (2001) formulates an theory of
individual welfare that can account for changing preferences by appealing to second-order preferences. To address the
regress problem, this work argues that preference changes are most commonly first-order ones, and even when second-order
preferences occur, as long as they don’t move in tandem with first-order changes, welfare assessments are still possible.
Ullmann-Margalit (2006) questions the idea that one could possibly be rational about “big decisions” which change the
self, claiming that in a economics sense, there is no footing for a rational choice in these situations, as the “rationality base”
changes as a consequence of the decision—setting the groundwork for Paul (2014)’s argument about non-commensurability
across different selves. More recently, Bernheim et al. (2019) attempt to model and unify various preference change
phenomena under a single descriptive theoretical model, according to which individuals choose their preferences according
to what they expect will maximize their utility (subject to their level of “open-mindedness”). The work from Dietrich &
List (2013) is also of note: they also propose a descriptive model of preference change, based on “motivationally salient”
properties of alternatives available to the agent changing. However, both of these descriptive accounts have yet to be tested
(to our knowledge), and it’s unclear what the normative implications for decision making of this model should be—which
are the focus of our paper.

Unambiguous Desirability and Individual Rationality. The property of unambiguous desirability was inspired by the
notion of “individual rationality” from algorithmic game theory (Nisan et al., 2007), which captures the notion of whether
any of the individuals involved in an ongoing deal would ever prefer to defect. This is also known as a “participation
constraint” or “voluntary participation” (Jackson, 2014).

H.3. AI
Multi-objective MDPs. With a choice of U(ξ), one implicitly replaces the multiple competing notions of optimality
(corresponding to each θ) with a single one. The process of choosing a single U(ξ) which implicitly reduces a DR-MDP to
an MDP, is similar to the scalarization step in Multi-Objective MDPs (Roijers et al., 2013) which reduces a MOMDP to an
MDP, which similarly requires an implicit value judgement (Chankong & Haimes, 2008). However, DR-MDPs importantly
differ from MOMDPs, in that the objectives which should be used to evaluate a trajectory may depend on the trajectory
itself (as the actions taken can affect the selves that are realized). Relatedly, MOMDPs don’t keep track of which reward
function was associated with each step (as it’s meaningless in their framing).

Interdisciplinary AI work. The adaptive and changing nature of human feedback has also been emphasized by Lindner
& El-Assady (2022). We think there a good area of inspiration for tentative solutions is that of Fiduciary AI (Benthall &
Shekman, 2023). More broadly, our conclusion about the challenges of avoiding normative choices when operationalizing
alignment rings similar to the points made by Dobbe et al. (2021) and Kirk et al. (2023).

Welfare under conflicting preferences. One of the works which is most related to ours is Kleinberg et al. (2022): in
the setting of recommender systems, they also study what should be conceived of as user welfare, focusing on preference
conflict. In particular, they model users as having “system 1” and “system 2” preferences that can be in conflict, and show
how only optimizing engagement will often be insufficient to guarantee welfare. Our work can be thought of as extending
theirs to considering many possible preferences that can change over time, thus modeling change in addition to conflict.
Moreover, we don’t assume access to any ultimate notion of welfare (which in their case is the judgement of system 2).

Algorithmic amplification in social media, and πnoop. The study of algorithmic amplification in social media (Thorburn
et al., 2022; Ribeiro et al., 2023; Huszár et al., 2021) can be thought of as a study of influence emerging from specific
algorithmic choices. Notions of amplification also need to be specified relative to a “neutral” baseline, similarly to our
notions of influence (Definition 7): what baseline is most appropriate has been subject to debate (Laufer & Nissenbaum,
2023; Thorburn, 2023). Maybe the most common choice in practice has been comparing to a reverse chronological
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recommender (Huszár et al., 2021; Milli et al., 2023), but others include comparing to others recommender systems (Fast
et al., 2023), no platform at all (Allcott et al., 2020), or random recommendations (Carroll et al., 2022).

Performative prediction, performative power, and preference influence. An interesting line of work which has emerged
in recent years is that of performative prediction (Perdomo et al., 2020) and performative power (Hardt et al., 2022), which
concerns itself with the capacity of classifiers to affect the distribution of their future inputs. This idea is similar in spirit to
the work of Krueger et al. (2020), and is connected to our concern with AI systems’ capacity to influence humans. However,
we see various reasons to prefer the RL formalism to that of Hardt et al. (2022) for the types of influences were are interested
in: performative prediction and power are mostly focused on firms which operate in sequential decision problems (e.g.
domains in which the algorithm’s choices affect future users’ behavior), but use algorithms that myopically optimize over
only the next timestep’s outcomes—from this perspective, they only allow to model 1 of the 8 objectives we consider in
Table 2. For instance, to the best of our understanding, performative power (Hardt et al., 2022) can be thought of as a
measure of how much a firm can shift users over the course of a single timestep, if they choose to do so. The steering
analysis of ex-ante and ex-post optimization only performs a one-timestep lookahead, feels like a less natural formalism
for the multi-timestep nature of most preference changes—especially if one considers that the RL formalism solves the
multi-timestep generalization of the ex-post optimization problem by design: in RL training, the human’s adaptation to the
AI is already factored into how the AI should be making decisions in order to maximize the multi-timestep objectives. In
short, the lens of RL seems strictly more expressive and more suited to our purposes than that of performative prediction,
but comes at the cost of additional computational challenges. As a final point of comparison, the framing of Hardt et al.
(2022) is mostly focused on the misalignment between firms and targets of the firm’s algorithms—focusing on the power
that firms have to steer them to their benefit (under well-defined metrics). Instead, we can be thought of as focusing on the
problem of “steering oneself” with the help of an AI system, and the challenges which remain in determining an appropriate
metric for success, as discussed in relation to “egonomics” (Schelling, 1978). Essentially, while we recognize that firm-user
misalignment is a very significant reason for worry, we focus on the challenges that would remain even if AI systems were
to be developed solely with user alignment in mind.

Social choice theory. Our setting shares various similarities with preference aggregations across multiple individuals, as
mentioned in Section 1. The problem of social aggregation is studied by social choice theory (List, 2022; Brandt et al., 2012),
which mainly differs from our framework in that there is no temporal dependency between elements of the decision which is
being made. There have also been recent works discussing the parallels between social choice and AI Alignment (Mishra,
2023; Conitzer et al., 2024), in particular with respect to RLHF. While there has been some work focusing on collective
decision-making across time (for individuals who can change their preferences), these works mostly ignore the influence
incentives which emerge from their notions of optimality (Parkes & Procaccia, 2013; Freeman et al., 2017; Kulkarni & Neth,
2020). Indeed, to our understanding, the objectives proposed by these works could lead to undesirable influence incentives:
for example, in Parkes & Procaccia (2013) the optimal social choice function (i.e. policy for the social choice MDP) may
initially take actions dispreferred by everyone if this can influence future preferences to be in accordance with one another
(guaranteeing future unanimity). An interesting direction for future work would be to consider traditional social welfare
functions (e.g. Rawlsian, Nash, Utilitarian, etc.) as objectives for the aggregations across the different selves. However, in
some preliminary investigations in this direction, it seemed to us that such approach would not necessarily achieve more
desirable influence properties than the objectives we considered in Table 2.

Reward uncertainty in MDPs. There have been some works accounting for uncertainty in reward functions: most relevant
is the work by Regan & Boutilier (2010), who consider Imprecise Reward MDPs, in which there is a feasible set of reward
functions that cannot be disambiguated by, e.g., acting in the environment. For such setting, they define the optimization
objective in terms of minimax regret, that is, they aim to minimize the maximum regret incurred if the worst reward function
from the feasible set were to be chosen. We could have also included this criterion in our analysis and in Table 2, but we
are confident it would also run into issues—minimax regret in this setting would require comparing regret across different
possible reward functions, requiring “interpersonal” comparisons that could always be set to be in favor of undesirable
manipulation incentives. Other works also account for reward uncertainty, but assume that there is one true Markovian
reward function that one can learn about, and one should use to evaluate trajectories (Hadfield-Menell et al., 2016; Desai,
2017; Chan et al., 2019). A gap in the literature is work which tries to disambiguate between reward changes, and updates in
belief regarding reward functions (which we discuss briefly in Appendix A.3).
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I. Limitations and Discussion
Learning Θ and its dynamics. Throughout the paper, we assumed that the human reward functions and their dynamics
were known. In practice, they would have to be learned—which would reward learning techniques that account for reward
dynamics, and committing to a choice of what counts as a “cognitive state” θ relative to the external state s (Appendix A.6).
However, such limitation strengthens our conclusion: it shows that even with full knowledge of human (stated) preferences,
there seems to be no neat resolution for the normative challenges which arise—indicating that this difficulty is inherent to
handling preference changes themselves, rather than an artefact of uncertainty over them.

Existence of anoop. Similarly to other AI safety work (Krakovna et al., 2019; Farquhar et al., 2022), some of our definitions
assume there is a anoop action (and πnoop). Despite the challenges in grounding notions of πnoop in practice, we think that
formulating our notion of influence in terms of πnoop can still be helpful for theoretically analyzing the properties of AI
systems. If it is especially hard to operationalize πnoop for a given setting, it seems all the more important to be cautious
about possibilities for influence in such a domain. Approximating notions of πnoop has been attempted by various prior works
(Carroll et al., 2022; Huszár et al., 2021), and has been discussed extensively in the “algorithmic amplification” literature
(Appendix H.3).

Unreachable θs, and meta-preferences. To simplify our analysis, we restrict our analysis to reachable cognitive states.
However, cognitive states which we aspire to may not be reachable in practice (Firth, 1952; Yudkowsky, 2004). Accounting
for non-reachable reward functions would require additional complexity, which would only increase the need for challenging
normative judgements (see Appendix A.9). Another limitation of our formalism is that it can only express preferences for
AI influence implicitly (by having influence be optimal under a human’s reward function). Having such meta-preferences
(George, 2001; Franklin et al., 2022) be expressible explicitly, i.e. allowing reward functions to evaluate transitions between
different reward functions, may be useful to more clearly capture notions of legitimacy of influence and personal autonomy.

Simplicity of our examples. While our example DR-MDPs are simple, they are sufficient for our purposes: they provide
proofs of existence of failure cases for each of the objectives we consider (by being overly conservative or leading to
undesirable influence). That being said, extending analyses of influence incentives to more realistic settings with real human
data is an important direction for future work in developing agents that behave acceptably in practice.

Misaligned economic pressures. We show that even if AI systems were solely designed with users’ welfare in mind, is it
not clear how to avoid undesirable influence without while retaining capabilities. As real-world AI systems will instead be
developed under strong economic incentives that will often be at odds with users’ well-being (Susser et al., 2018), this gives
additional reason for worry.

Changing societal values and norms. The DR-MDP model seems easily adaptable to multi-agent settings in which the
changing reward functions correspond to the changing aggregated preferences of a collective, rather than the preferences of
a single human. This may be a fruitful avenue of investigation, which expands on prior work from social choice (Parkes &
Procaccia, 2013).

J. Broader Impacts
That people are influenceable is already known and leveraged in practice by relevant industries. The fact that people
are influenceable is already well established and leveraged by many industries of mixed ethical connotations: marketing
and advertisements (Pickett-Baker & Ozaki, 2008; Ayanwale et al., 2005), political campaigning (Wylie, 2020), therapy
(Moyers & Martin, 2006), education (Hyman & Wright, 1979), and government nudging units (Halpern & Sanders, 2016).
Optimizing for specific influence outcomes is simple even with the current AI paradigm, and is already being done in
practice, such as with the case of engagement (Irvine et al., 2023; Cai et al., 2023), purchases (Gauci et al., 2019), improving
educational outcomes (Bassen et al., 2020), or improving emotional well-being (Cunningham et al., 2024).

Not modeling influenceablity does more harm than good. Not modelling the problem of preference change is not a
solution, in ways that shares parallels with the limitations of fairness through unawareness (Dwork et al., 2011; Teodorescu,
2019) or security through obscurity (Moshirnia, 2017). We argue that most real-world systems trained and deployed with
humans will affect our preferences, regardless of whether it is our intention or not. To mitigate issues that may arise from
this, we require a model that explicitly accounts for preference change. This work takes a step in that direction, without
providing any additional means by which malicious actors may act (to our current understanding).

Our work does not meaningfully increase the capacity to influence people. In this work, we have detailed a framework
that models preference change within an MDP-like model. While one may be able to leverage our theoretical insights to
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make systems more capable of influence, attempting to influence in targeted ways is already quite straightforward without
our formalism (e.g. just rewarding the system for desired influence outcomes). Instead, it’s much more challenging to have
the system avoid inducing undesired forms of influence as side-effects, which is the main focus of our paper.

With these points in mind, we believe that our work does not pose a societal risk, but rather allow to explore questions which
will be fundamental to address for the ethical deployment of AI systems.
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