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Abstract

Feature bagging is a well-established ensembling method which aims to reduce
prediction variance by combining predictions of many estimators trained on subsets
or projections of features. Here, we develop a theory of feature-bagging in noisy
least-squares ridge ensembles and simplify the resulting learning curves in the spe-
cial case of equicorrelated data. Using analytical learning curves, we demonstrate
that subsampling shifts the double-descent peak of a linear predictor. This leads
us to introduce heterogeneous feature ensembling, with estimators built on varying
numbers of feature dimensions, as a computationally efficient method to mitigate
double-descent. Then, we compare the performance of a feature-subsampling
ensemble to a single linear predictor, describing a trade-off between noise ampli-
fication due to subsampling and noise reduction due to ensembling. Our qualitative
insights carry over to linear classifiers applied to image classification tasks with
realistic datasets constructed using a state-of-the-art deep learning feature map.

1 Introduction

Ensembling methods are ubiquitous in machine learning practice [1]. A class of ensembling methods
(known as attribute bagging [2] or the random subspace method [3]) is based on feature subsampling
[2–6], where predictors are independently trained on subsets of the features, and their predictions are
combined to achieve a stronger prediction. The random forest method is a popular example [3, 7].

While commonly used in practice, a theoretical understanding of ensembling via feature subsampling
is not well developed. Here, we provide an analysis of this technique in the linear ridge regression
setting. Using methods from statistical physics [8–12], we obtain analytical expressions for typical-
case generalization error in linear ridge ensembles (proposition 1), and simplify these expressions
in the special case of equicorrelated data with isotropic feature noise (proposition 2). The result
provides a powerful tool to quickly probe the generalization error of ensembled regression under a
rich set of conditions. In section 3, we study the behavior of a single feature-subsampling regression
model. We observe that subsampling shifts the location of a predictor’s sample-wise double-descent
peak [13–15]. This motivates section 4, where we study ensembles built on predictors which are
heterogeneous in the number of features they access, as a method to mitigate double-descent. We
demonstrate this method’s efficacy in a realistic image classification task. In section 5 we apply our
theory to the trade-off between ensembling and subsampling in resource-constrained settings. We
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characterize how a variety of factors influence the optimal ensembling strategy, finding a particular
significance to the level of noise in the predictions made by ensemble members.

In summary, we make the following contributions:

• Using the replica trick from statistical physics [8, 11], we derive the generalization error of
ensembled least-squares ridge regression in a general setting, and simplify the resulting expressions
in the tractable special case where features are equicorrelated.

• We demonstrate benefits of heterogeneous ensembling as a robust and computationally efficient
regularizer for mitigating double-descent with analytical theory and in a realistic image classification
task.

• We describe the ensembling-subsampling trade-off in resource-constrained settings, and charac-
terize the effect of label noise, feature noise, readout noise, regularization, sample size and task
structure on the optimal ensembling strategy.

Related works: A substantial body of work has elucidated the behavior of linear predictors for a
variety of feature maps [14, 16–30]. Several recent works have extended this research to characterize
the behavior of ensembled regression using solvable models [24, 31–33]. Additional recent works
study the performance of ridge ensembles with example-wise subsampling [34, 35] and simultane-
ous subsampling of features and examples [32], finding that subsampling behaves as an implicit
regularization. Methods from statistical physics have long been used for machine learning theory
[10–12, 26, 27, 30, 36, 37]. Relevant work in this domain include [38] which studied ensembling by
data-subsampling in linear regression.

2 Learning Curves for Ensembled Ridge Regression

We consider noisy ensembled ridge regression in the setting where ensemble members are trained
independently on masked versions of the available features. We derive our main analytical formula for
generalization error of ensembled linear regression, as well as analytical expressions for generalization
error in the special case of equicorrelated features with isotropic noise.

2.1 Problem Setup

Consider a training set D = {ψ̄µ, yµ}Pµ=1 of size P . The training examples ψ̄µ ∈ RM are drawn from
a Gaussian distribution with Gaussian feature noise: ψ̄µ = ψµ + σµ, where ψµ ∼ N (0,Σs) and
σµ ∼ N (0,Σ0). Data and noise are drawn i.i.d. so that E

[
ψµψν⊤

]
= δµνΣs and E

[
σµσν⊤

]
=

δµνΣ0. Labels are generated from a noisy teacher function yµ = 1√
M
w∗⊤ψµ + ϵµ where ϵµ ∼

N (0, ζ2). Label noises are drawn i.i.d. so that E[ϵµϵν ] = δµνζ
2.

We seek to analyze the quality of predictions which are averaged over an ensemble of ridge regression
models, each with access to a subset of the features. We consider k linear predictors with weights
ŵr ∈ RNr , r = 1, . . . , k. Critically, we allow Nr ̸= Nr′ for r ̸= r′, which allows us to introduce
structural heterogeneity into the ensemble of predictors. A forward pass of the model is given as:

f(ψ) =
1

k

k∑
r=1

fr(ψ), fr(ψ) =
1√
Nr

ŵ⊤
r Ar(ψ + σ) + ξr. (1)

The model’s prediction f(ψ) is an average over k linear predictors. The “measurement matrices”
Ar ∈ RNr×M act as linear masks restricting the information about the features available to each
member of the ensemble. Subsampling may be implemented by choosing the rows of each Ar
to coincide with the rows of the identity matrix – the row indices corresponding to indices of the
sampled features. The feature noise σ ∼ N (0,Σ0) and the readout noises ξr ∼ N (0, η2r), are
drawn independently at the execution of each forward pass of the model. Note that while the
feature noise is shared across the ensemble, readout noise is drawn independently for each readout:
E[ξrξr′ ] = δrr′η

2
r .
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The weight vectors are trained separately in order to minimize an ordinary least-squares loss function
with ridge regularization:

ŵr = argmin
wr∈RNr

[
P∑
µ=1

(
1√
Nr

w⊤
r Arψ̄

µ + ξµr − yµ
)2

+ λr|w2
r |

]
(2)

Here {ξµr } represents the readout noise which is present during training, and independently drawn:
ξµr ∼ N (0, η2r), E[ξµr ξνr ] = η2rδµν . As a measure of model performance, we consider the generaliza-
tion error, given by the mean-squared-error (MSE) on ensemble-averaged prediction:

Eg(D) = Eψ,σ,{ξr}

[(
f(ψ)− 1√

M
w∗⊤ψ

)2
]

(3)

Here, the expectation is over the data distribution and noise: ψ ∼ N (0,Σs), σ ∼ N (0,Σ0),
ξr ∼ N (0, η2r). The generalization error depends on the particular realization of the dataset D
through the learned weights {ŵ∗}. We may decompose the generalization error as follows:

Eg(D) =
1

k2

k∑
r,r′=1

Err′(D) (4)

Err′(D) ≡ 1

M

[(
1

√
νrr
A⊤
r ŵr −w∗

)⊤

Σs

(
1

√
νr′r′

A⊤
r′ŵr′ −w∗

)
+

1
√
νrrνr′r′

ŵ⊤
r ArΣ0A

⊤
r′ŵr′ +Mδrr′η

2
r

] (5)

Computing the generalization error of the model is then a matter of calculating Err′ in the cases
where r = r′ and r ̸= r′. In the asymptotic limit we consider, we expect that the generalization error
concentrates over randomly drawn datasets D.

2.2 Main Result

We calculate the generalization error using the replica trick from statistical physics, and present the
calculation in Appendix F. The result of our calculation is stated in proposition 1.
Proposition 1. Consider the ensembled ridge regression problem described in Section 2.1. Consider
the asymptotic limit where M,P, {Nr} → ∞ while the ratios α = P

M and νrr =
Nr

M , r = 1, . . . , k
remain fixed. Define the following quantities:

Σ̃rr′ ≡
1

√
νrrνr′r′

Ar[Σs +Σ0]A
⊤
r′ (6)

Gr ≡ INr
+ q̂rΣ̃rr (7)

γrr′ ≡
α

M(λr + qr)(λr′ + qr′))
tr
[
G−1
r Σ̃rr′G

−1
r′ Σ̃r′r

]
(8)

Then the terms of the average generalization error (eq. 5) may be written as:

⟨Err′(D)⟩D =
γrr′ζ

2 + δrr′η
2
r

1− γrr′
+

1

1− γrr′

(
1

M
w∗⊤Σsw

∗
)

− 1

M(1− γrr′)
w∗⊤Σs

[
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

]
Σsw

∗

+
q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′Σsw

∗

(9)

where the pairs of order parameters {qr, q̂r} for r = 1, . . . ,K, satisfy the following self-consistent
saddle-point equations

q̂r =
α

λr + qr
, qr =

1

M
tr
[
G−1
r Σ̃rr

]
. (10)
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Figure 1: Comparison of numerical and theoretical learning curves for ensembled linear regression.
Circles represent numerical results averaged over 100 trials; lines indicate theoretical predictions.
Error bars represent the standard error of the mean but are often smaller than the markers. (a) Testing
of proposition 1 with M = 2000, [Σs]ij = .8|i−j|, [Σ0]ij =

1
10 (0.3)

|i−j|, ζ = 0.1, and all ηr = 0.2
and λr = λ (see legend). k = 3 linear predictors access fixed, randomly selected (with replacement)
subsets of the features with fractional sizes νrr = 0.2, 0.4, 0.6. Fixed ground-truth weights w∗ are
drawn from an isotropic Gaussian distribution. (b) Testing of proposition 2 with M = 5000, s = 1,
c = 0.6, ω2 = 0.1, ζ = 0.1, all ηr = 0.1, and all λr = λ (see legend). Ground truth weights sampled
as in eq. 11 with ρ = 0.3. Feature subsets accessed by each readout are mutually exclusive (inset)
with fractional sizes νrr = 0.1, 0.3, 0.5.

Proof. We calculate the terms in the generalization error using the replica trick, a standard but
non-rigorous method from the statistical physics of disordered systems. The full derivation may be
found in the Appendix F. When the matricesAr (Σs +Σ0)A

⊤
r , r = 1, . . . , k have bounded spectra,

this result may be obtained by extending the results of [31] to include readout noise, as shown in
Appendix G.

We make the following remarks:
Remark 1. Implicit in this theorem is the assumption that the relevant matrix contractions and traces
which appear in the generalization error (eq. 9) and the surrounding definitions tend to a well-defined
limit which remains O(1) as M → ∞.
Remark 2. This result applies for any (well-behaved) linear masks {Ar}. We will focus on the case
where eachAr implements subsampling of an extensive fraction νrr of the features.
Remark 3. When k = 1, our result reduces to the generalization error of a single ridge regression
model, as studied in refs. [36, 39].
Remark 4. We include “readout noise” which independently corrupts the predictions of each ensemble
member. This models sources of variation between ensemble members not otherwise accounted
for. For example, ensembles of deep networks will vary due to random initialization of parameters
[24, 31, 36]. Readout noise is more directly present in physical neural networks, such as an analog
neural networks [40] or biological neural circuits[41] due to their inherent stochasticity.

In Figure 1a, we confirm the result of the general calculation by comparing with numerical experi-
ments using a synthetic dataset with M = 2000 highly structured features (see caption for details).
k = 3 readouts see random, fixed subsets of features. Theory curves are calculated by solving the
fixed-point equations 10 numerically for the chosen Σs, Σ0 and {Ar}kr=1 then evaluating eq. 9.

2.3 Equicorrelated Data

Our general result allows the freedom to tune many important parameters of the learning problem:
the correlation structure of the dataset, the number of ensemble members, the scales of noise, etc.
However, the derived expressions are rather opaque. In order to better understand the phenomena
captured by these expressions, we examine the following special case:
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Proposition 2. In the setting of section 2.1 and proposition 1, consider the following special case:

w∗ =
√

1− ρ2P⊥w
∗
0 + ρ1M (11)

w∗
0 ∼ N (0, IM ) (12)

Σs = s
[
(1− c)IM + c1M1⊤

M

]
(13)

Σ0 = ω2IM (14)

with c ∈ [0, 1], ρ ∈ [−1, 1]. Label and readout noises ζ, ηr ≥ 0 are permitted. Here P⊥ =
IM − 1

M 1M1⊤
M is a projection matrix which removes the component of w∗

0 which is parallel to 1M .
The matrices {Ar}kr=1 have rows consisting of distinct one-hot vectors so that each of the k readouts
has access to a subset of Nr = νrrM features. For r ̸= r′, denote by nrr′ the number of neurons
sampled by bothAr andAr′ and let νrr′ ≡ nrr′/M remain fixed as M → ∞.

Define the following quantities:

a ≡ s(1− c) + ω2 Sr ≡
q̂r

νrr + aq̂r
, γrr′ ≡

a2νrr′SrSr′

α
(15)

The terms of the decomposed generalization error may then be written:

⟨Err′⟩D,w∗
0
=

1

1− γrr′

(
(1− ρ2)I0rr′ + ρ2I1rr′

)
+

γrr′ζ
2 + δrr′η

2
r

1− γrr′
(16)

where we have defined

I0rr′ ≡ s(1− c) (1− s(1− c)νrrSr − s(1− c)νr′r′Sr′ + as(1− c)νrr′SrSr′) (17)

I1rr′ ≡

{
s(1−c)(νrr′−νrrνr′r′ )+ω

2νrr′
νrrνr′r′

if 0 < c ≤ 1

I0rr′ if c = 0
(18)

and where {qr, q̂r} may be obtained analytically as the solution (with qr > 0) to:

qr =
aνrr

νrr + aq̂r
, q̂r =

α

λr + qr
(19)

In the “ridgeless” limit where all λr → 0, we may make the following simplifications:

Sr →
2α

a (α+ νrr + |α− νrr|)
, γrr′ → 4ανrr′

(α+ νrr + |α− νrr|) (α+ νr′r′ + |α− νr′r′ |)
(20)

Proof. Simplifying the fixed-point equations and generalization error formulas in this special case is
an exercise in linear algebra. The main tools used are the Sherman-Morrison formula [42] and the
fact that the data distribution is isotropic in the features so that the form of Σ̃rr and Σ̃rr′ depend only
on the subsampling and overlap fractions νrr, νr′r′ , νrr′ . To aid in computing the necessary matrix
contractions we developed a custom Mathematica package which handles block matrices of symbolic
dimension, with blocks containing matrices of the formM = c1I + c211

⊤. This package and the
Mathematica notebook used to derive these results are available online (see Appendix B)

In this tractable special case, c ∈ [0, 1] is a parameter which tunes the strength of correlations between
features of the data. When c = 0, the features are independent, and when c = 1 the features are
always equivalent. s sets the overall scale of the features and the “Data-Task alignment” ρ tunes the
alignment of the ground truth weights with the special direction in the covariance matrix (analogous
to “task-model” alignment [14, 27]). A table of parameters is provided in Appendix A. In Figure 1b,
we test these results by comparing the theoretical expressions for generalization error with the results
of numerical experiments, finding perfect agreement.

With an analytical formula for the generalization error, we can compute the optimal regularization
parameters λr which minimize the generalization error. These may, in general, depend on both r
and the sample size α. Rather than minimizing the error of the ensemble, we may minimize the
generalization error of predictions made by the ensemble members independently. We find that this
“locally optimal” regularization, denoted λ∗, is independent of α, generalizing results from [14, 43]
to correlated data distributions (see Appendix H.3).
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Figure 2: Subsampling alters the location of the double-descent peak of a linear predictor. (a)
Illustrations of subsampled linear predictors with varying subsampling fraction ν. (b) Comparison
between experiment and theory for subsampling linear regression on equicorrelated datasets. We
choose task parameters as in proposition 2 with c = ω = ζ = η = 0, s = 1, and (i) λ = 0,
(ii) λ = 10−4, (iii) λ = 10−2. All learning curves are for a single linear predictor k = 1 with
subsampling fraction ν shown in legend. Circles show results of numerical experiment. Lines are
analytical prediction.

3 Subsampling shifts the double-descent peak of a linear predic-
tor

Consider a single linear regressor (k = 1) which connects to a subset of N = νM features in the
equicorrelated data setting of proposition 2. Also setting c = 0, s = 1, and ηr = ω = 0 and taking
the limit λ → 0 the generalization error reads:

⟨Eg⟩D,w∗ =

{
ν

ν−α
[
(1− ν) + 1

ν (α− ν)2
]
+ α

ν−αζ
2, if α < ν

α
α−ν [1− ν] + ν

α−ν ζ
2, if α > ν

}
(21)

We thus see that double descent can arise from two possible sources of variance: explicit label noise
(if ζ > 0) or implicit label noise induced by feature subsampling (ν < 1). As Eg ∼ (α − ν)−1,
generalization error diverges when sample size is equal to the number of sampled features. Intuitively,
this occurs because subsampling changes the number of parameters of the regression model, and thus
its interpolation threshold. To demonstrate this, we plot the learning curves for subsampled linear
regression on equicorrelated data in Figure 2. At small finite ridge the test error no longer diverges
when α = ν, but still displays a distinctive peak.

4 Heterogeneous connectivity mitigates double-descent

Double-descent – over-fitting to noise in the training set near a model’s interpolation threshold – poses
a serious risk in practical machine-learning applications [22]. Cross-validating the regularization
strength against the training set is the canonical approach to avoiding double-descent [17, 43],
but in practice requires a computationally expensive parameter sweep and prior knowledge of the
task. In situations where computational resources are limited or hyperparameters are fixed prior to
specification of the task, it is natural to seek an alternative solution. Considering again the plots
in Figure 2(b), we observe that at any value of α, the double-descent peak can be avoided with an
acceptable choice of the subsampling fraction ν. This suggests another strategy to mitigate double
descent: heterogeneous ensembling. Ensembling over predictors with a heterogeneous distribution of
interpolation thresholds, we may expect that when one predictor fails due to over-fitting, the other
members of the ensemble compensate with accurate predictions.

In Figure 3, we show that heterogeneous ensembling can guard against double-descent. We define two
ensembling strategies: in homogeneous ensembling, each of k readouts connects a fraction νrr = 1/k
features. In heterogeneous ensembling, the number of features connected by each of the k readouts
are drawn from a Gamma distribution Γk,σ(ν) with mean 1/k and standard deviation σ (see Fig. 3b)
then re-scaled to sum to 1 (see Appendix C for details). All feature subsets are mutually exclusive
(νrr′ = 0 for r ̸= r′). Homogeneous and heterogeneous ensembling are illustrated for k = 10 in
Figs. 3 a.i and 3 a.ii respectively. We test this hypothesis using eq. 16 in 3c. At small regularization
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(λ = .001), we find that heterogeneity of the distribution of subsampling fractions ( σ > 0) lowers
the double-descent peak of an ensemble of linear predictors, while at larger regularization (λ = 0.1),
there is little difference between homogeneous and heterogeneous learning curves. The asymptotic
(α → ∞) error is unaffected by the presence of heterogeneity in the degrees of connectivity, which
can be seen as the coincidence of the triangular markers in Fig. 3c, as well as from the α → ∞ limit
of eq. 16 (see Appendix H.5). Fig. 3c also shows the learning curve of a single linear predictor with
no feature subsampling and optimal regularization. We see that the feature-subsampling ensemble
appreciably outperforms the fully-connected model when c = 0.8 and η = 0.5, suggesting the
important roles of data correlations and readout noise in determining the optimal readout strategy.
These roles are further explored in section 5 and fig 4.

We also test the effect of heterogeneous ensembling in the a realistic classification task. Specifically,
we train ensembles of linear classifiers to predict the labels of imagenet [44] images corresponding to
10 different dog breeds (the “Imagewoof” task [45]) from their top-hidden-layer representations in a
pre-trained ResNext deep network [46] (see Appendix E for details). We characterize the statistics of
the resulting M = 2048-dimensional feature set in Fig. S1. This “ResNext-Imagewoof” classification
task has multiple features which make it amenable to learning with a feature-subsampling ensemble.
First, the ResNext features have a high degree of redundancy [47], allowing classification to be
performed accurately using only a fraction of the available features (see Fig. 3d and S1c). Second,
when classifications of multiple predictors are combined by a majority vote, there is a natural
upper bound on the influence of a single erring ensemble member (unlike in regression where
predictions can diverge). Calculating learning curves for the imagewoof classification task using
homogeneous ensembles, we see sharp double-descent peaks in an ensemble of size k when P = M/k
(Fig. 3e.i). Using a heterogeneous ensemble mitigates this catastrophic over-fitting, leading to
monotonically decreasing error without regularization (Fig. 3e.ii). A single linear predictor with
a tuned regularization of λ = 0.1 performs only marginally better than the heterogeneous feature-
subsampling ensemble with k = 16 or k = 32. This suggests heterogeneous ensembling can be an
effective alternative to regularization in real-world classification tasks using pre-trained deep learning
feature maps.

Note that training a feature-subsampling ensemble also benefits from improved computational
complexity. Training an estimator of dimension Nr involves, in the worst case, inverting an Nr ×Nr

matrix, which requires O(N3
r ) operations. Setting Nr = M/k, we see that the number of operations

required to train an ensemble of k predictors scales as O(k−2).

5 Correlations, Noise, and Task Structure Dictate the
Ensembling-Subsampling Trade-off

In resource-constrained settings, one must decide between training a single large predictor or an
ensemble of smaller predictors. When the number of weights is constrained, ensembling may benefit
generalization by averaging over multiple predictions, but at the expense of each prediction incor-
porating fewer features. Intuitively, the presence of correlations between features limits the penalty
incurred by subsampling, as measurements from a subset of features will also confer information
about the unsampled features. The equicorrelated data model of proposition 2 permits a solvable
toy model for these competing effects. We consider the special case of ensembling over k readouts,
each connecting the same fraction νrr = ν = 1/k of all features. For simplicity, we set νrr′ = 0
for r ̸= r′. We asses the learning curves of this toy model in both the ridgeless limit λ → 0 where
double-descent has a large effect on test error, and at ’locally optimal’ regularization λ = λ∗ for
which double-descent is eliminated. In these special cases, one can write the generalization error in
the following forms (see Appendix H.4 for derivation):

Eg(k, s, c, η, ω, ζ, ρ, α, λ = 0) = s(1− c)E(k, ρ, α,H,W,Z) (22)
Eg(k, s, c, η, ω, ζ, ρ, α, λ = λ∗) = s(1− c)E∗(k, ρ, α,H,W,Z) (23)

where we have defined the effective noise-to-signal ratios:

H ≡ η2

s(1− c)
, W =

ω2

s(1− c)
, Z =

ζ2

s(1− c)
(24)
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Therefore, given fixed parameters s, c, ρ, α, the value k∗ which minimizes error depends on the noise
scales, s, and c only through the ratios H , W and Z:

k∗λ=0(H,W,Z, ρ, α) ≡ argmin
k∈N

Eg(k) = argmin
k∈N

E(k, ρ, α,H,W,Z) (25)

k∗λ=λ∗(H,W,Z, ρ, α) ≡ argmin
k∈N

Eg(k) = argmin
k∈N

E∗(k, ρ, α,H,W,Z) (26)

In Fig. 4a, we plot these reduced errors curves E , E∗ as a function of α for varying ensemble
sizes k and reduced readout noise scales H . At zero regularization learning curves diverge at
their interpolation threshold. At locally optimal regularization λ = λ∗, learning curves decrease
monotonically with sample size. Increasing readout noise H raises generalization error more sharply
for smaller k. In Fig. 4b we plot the optimal k∗ in various two-dimensional slices of parameter space
in which ρ is fixed and W = Z = 0 while α and H vary. The resulting phase diagrams may be
divided into three regions. In the signal-dominated phase a single fully-connected readout is optimal
(k∗ = 1). In an intermediate phase, 1 < k∗ < ∞ minimizes error. And in a noise-dominated phase
k∗ = ∞. At zero regularization, we have determined an analytical expression for the boundary
between the intermediate and noise-dominated phases (see Appendix H.4.1 and dotted lines in Figs
4.b,c,d). The signal-dominated, intermediate, and noise-dominated phases persist when λ = λ∗,
removing the effects of double descent. In all panels, an increase in H causes an increase in k∗. This
can occur because of a decrease in the signal-to-readout noise ratio s/η2, or through an increase in
the correlation strength c. An increase in ρ also leads to an increase in k∗, indicating that ensembling
is more effective for easier tasks. Figs 4c,d show analogous phase diagrams where W or Z are
varied. Signal-dominated, intermediate, and noise-dominated regimes are visible in the resulting
phase diagrams at zero regularization. However, when optimal regularization is used, k∗ = 1 is
always optimal. The presence of regions where k∗ > 1 can thus be attributed to double-descent at
sub-optimal regularization or to the presence of readout noise which is independent across predictors.
We chart the parameter-space of the reduced errors and optimal ensemble size k∗ extensively in
Appendix I. We plot learning curves for the “ResNext-Imagewoof” ensembled linear classification
task with varying strength of readout noise in Fig. 4e, and phase diagrams of optimal ensemble size k
in Fig. 4f, finding similar behavior to the toy model. See Figs. S3, S4, S5 and Appendix E.4.3 for
further discussion.

6 Conclusion

In this paper, we provided a theory of feature-subsampled linear ridge regression. We identified the
special case in which features of the data are “equicorrelated” as a minimal toy model to explore the
combined effects of subsampling, ensembling, and different types of noise on generalization error.
The resulting learning curves displayed two potentially useful phenomena.

First, we demonstrated that heterogeneous ensembling can mitigate over-fitting, reducing or eliminat-
ing the double-descent peak of an under-regularized model. In most machine learning applications,
the size of the dataset is known at the outset and suitable regularization may be determined to mitigate
double descent, either by selecting a highly over-parameterized model [22] or by cross-validation
techniques (see for example [17]). However, in contexts where a single network architecture is de-
signed for an unknown task or a variety of tasks with varying structure and noise levels, heterogeneous
ensembling may be used to smooth out the perils of double-descent.

Next, we described a trade-off between noise reduction due to ensembling and noise amplification
due to subsampling in a resource-constrained setting where the total number of weights is fixed. Our
analysis suggests that ensembling is particularly useful in neural networks with an inherent noise.
Physical neural networks, such as analog neural networks[40] and biological neural circuits [41]
present such a resource-constrained environments where intrinsic noise is a significant issue.

Much work remains to achieve a full understanding of the interactions between data correlations,
readout noise, and ensembling. In this work, we have given a thorough treatment of the convenient
special case where features are equicorrelated. Future work should analyze subsampling and en-
sembling for codes with realistic correlation structure, such as the power-law spectra (see Fig. S1)
[27, 30, 48, 49] and sparse activation patterns [50].
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Figure 3: Heterogeneous ensembling mitigates double-descent. (a) We compare (i) homogeneous
ensembling, in which k readouts connect to the same fraction ν = 1/k of features, and (ii) hetero-
geneous ensembling (b) In heterogeneous ensembling subsampling fractions are drawn i.i.d. from
Γk,σ(ν), shown here for k = 10, then re-scaled to sum to 1. (c) Generalization Error Curves for
Homogeneous and Heterogeneous ensembling with k = 10, ζ = 0, ρ = 0.3 and indicated values
of λ, c, and η. Blue: homogeneous subsampling. Red, green, and purple show heterogeneous
subsampling with σ = 0.25/k, 0.5/k, 1/k respectively. Dashed lines show learning curves for 3
particular realizations of {ν11, . . . , νkk}. Solid curves show the average over 100 realizations. Gray
shows the learning curve for a single linear readout with ν = 1 and optimal regularization (eq. 193).
Triangular marks show the asymptotic generalization error (α → ∞), with downward-pointing gray
triangles indicating an asymptotic error of zero. (d,e) Generalization error of linear classifiers applied
to the imagewoof dataset with ResNext features averaged over 100 trials. (d) P = 100, k = 1 varying
subsampling fraction ν and regularization λ (legend). (e) Generalization error of (i) homogeneous
and (ii) heterogeneous (with σ = 0.75/k) ensembles of classifiers. Legend indicates k values. λ = 0
except for gray curves, where λ = 0.1
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Figure 4: Task parameters dictate the ensembling-subsampling trade-off: (a-d) In the setting of
proposition 2 in the special case where all νrr′ = 1

k δrr′ so that feature subsets are mutually exclusive
and the total number of weights is conserved. (a) We plot the reduced generalization errors E (for
λ = 0, using eq. 22) and E∗ (for λ = λ∗ using eq. 23) of linear ridge ensembles of varying size k
with ρ = 0 and H = 0, 1 (values indicated above plots). Grey lines indicate k = 1, dashed black lines
k → ∞, and intermediate k values by the colorbar. (b) We plot optimal ensemble size k∗ (eqs. 25,
26) in the parameter space of sample size α and reduced readout noise scale H setting W = Z = 0.
Grey indicates k∗ = 1 and white indicates k∗ = ∞, with intermediate values given by the colorbar.
Appended vertical bars show α → ∞. Dotted black lines show the analytical boundary between the
intermediate and noise-dominated phases given by eq. 214. (c) optimal readout k∗ phase diagrams
as in (b) but showing W -dependence with H = Z = 0. (d) optimal readout k∗ phase diagrams as
in (b) but showing Z-dependence with H = W = 0. (e) Learning curves for feature-subsampling
ensembles of linear classifiers combined using a majority vote rule on the imagewoof classification
task (see Appendix E). As in (a-d) we set νrr′ = 1

k δrr′ . Error is calculated as the probability of
incorrectly classifying a test example. λ and η values are indicated in each panel. (f) Numerical phase
diagrams showing the value of k which minimizes test error in the parameter space of sample size P
and readout noise scale η, with regularization (i) λ = 0 (pseudoinverse rule) (ii) λ = 0.1.
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A Table of Parameters from Proposition 2 and Figures 2,3,4

Data Scale s
Correlation Strength c
Data-Task Alignment ρ
Readout Noise Scale η
Feature noise scale ω
Label Noise Scale ζ

Ensemble Size k
Subsampling Fractions νrr r = 1, . . . ,K

Subsampling Overlap Fractions νrr′ r ̸= r′

Sample Size P → ∞
Data Dimensionality M → ∞
Sample Complexity α ≡ P

M (finite)
Effective Noise-To-Signal Ratios H ≡ η2

s(1−c) , W ≡ ω2

s(1−c) , Z ≡ ζ2

s(1−c)

B Code Availability and Compute

All Code used in this paper has been made available online (see
https://github.com/benruben87/Learning-Curves-for-Heterogeneous-Feature-Subsampled-Ridge-
Ensembles.git). This includes code used to perform numerical experiments, calculate theoretical
learning curves, and produce plots as well as the custom Mathematica libraries used to simplify the
generalization error in the special case of equicorrelated data. The compute time required to do all of
the calculations in this paper is approximately 3 GPU days.

C Homogeneous and Heterogeneous Subsampling

In this section, we describe the homoegeneous and heterogeneous subsampling strategies, as used
in this work, in detail. This sampling method was used in calculating the theoretical loss curves
for heterogeneous subsampling experiments seen in main text Fig. 3, and in the heterogeneous
subsampling experiments applied to the ResNext-features-based image classification task in Figs. 3e,
S2.

In homogeneous ensembling, the subsampling fractions νrr = Nr/M are chosen as νrr = 1/k
for all r = 1, . . . , k. In heterogeneous ensembling, the subsampling fractions {ν11, . . . , νkk} are
generated according to the following statistical process:

1. Each fraction νrr is drawn independently as νrr ∼ Γk,σ , where a Γk,σ represents a Gamma
distribution with mean 1

k and variance σ2.
2. The fractions are re-scaled in order to sum to 1: νrr → νrr/(ν1 + · · ·+ νk)

Equivalently, the subsampling fractions are drawn from a Dirichlet distribution parameterized by the
ensemble size k and a chosen variance σ as (ν11, . . . , νkk) ∼ Dir((σk)−2, . . . , (σk)−2) [51].

In main text Fig. 3c, we combine this sampling strategy with theoretical learning curves for the
equicorrelated data model in a quasi-numerical experiment. At each trial of the experiment, we
draw a particular realization of the subsampling fractions {ν11, . . . , νkk}, then use the analytical
expression (eq. 16) to calculate the resulting learning curve. Dotted lines show the loss curves for 3
single trials, corresponding to three particular realizations of the subsampling fractions. The solid
lines show the average over 100 trials.

Note that we have defined our own convention for the parameterization of the Γ distribution in which
the inverse of the mean and the standard deviation are specified. In terms of the standard “shape” and
“scale” parameters, we have:

Γk,σ ≡ Γ
(
shape = (kσ)−2, scale = kσ2

)
(27)
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D Numerical Linear Regression with Synthetic Datasets

Numerical experiments were performed using the PyTorch library [52]. The code used to perform
numerical experiments and generate plots has been made publicly available (see section B).

In numerical regression experiments, synthetic datasets with label noise are constructed as described
in section 2.1, drawing data randomly from multivariate Gaussian distributions and adding label noise
(see “DatasetMaker.py” in available code). Representing the training set in terms of a data matrix
Ψ ∈ RM×P in which column µ consist of the training point ψµ, and the labels with a column vector
y such that yµ = yµ, the learned weights are calculated as:

ŵ = Ψ
(
Ψ⊤Ψ+ λIp

)−1
y (28)

In the ridgeless case, a pseudoinverse is used:

ŵ = Ψ†y (29)

E Ensembled Linear Classification of Imagenet Images

In this section, we provide the details of numerical experiments which demonstrate that qualitative
insights gained from our analysis of the linear regression task with Gaussian data carries over to a
practical machine learning task. In particular, we apply ensembles of linear classifiers to datasets
constructed using a pre-trained ResNext [46] a specific type of Convolutional Neural Network (CNN).

E.1 Dataset Construction

To construct the dataset, we start with a set of n images {xµ}nµ=1 from a subset of C = 10 classes
of the imagenet dataset. For each image xµ, we obtain a corresponding feature vector ψµ ∈ RM
as the last-hidden-layer activation of the ResNext [46], which has been pre-trained on the imagenet
classification task [44]. The architecture we use produces M = 2048 features per image. These
features will serve as the data input to the downstream linear classifier. The corresponding labels
yµ ∈ RC are one-hot vectors.

We construct two datasets using this method, using images from the “Imagenette” and “Imagewoof”
datasets [45]. For the “Imagenette” task, we a construct a training set of size ntr = 9469 and a
test set of size ntest = 3925 containing features corresponding to images from 10 unrelated classes
(tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump,
golf ball, parachute). For the “Imagewoof” task, we a construct a training set of size ntr = 9025
and a test set of size ntest = 3929 containing features corresponding to images of 10 different dog
breeds (Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian
ridgeback, Dingo, Golden retriever, Old English sheepdog). The imagewoof classification task is
naturally more difficult. The statistics of the resulting datasets are described in Fig. S1, where we
plot the data-data covariance matrix, feature-feature covariance matrix, and the eigenvalue spectrum
for both the “Imagenette” and “Imagewoof” tasks.

E.2 Model Training

At training time a dataset of P examples is constructed: D = {ψµ,yµ}Pµ=1. We represent the training
set with a “design matrix” Φ ∈ RP×M and a label matrix Y ∈ {0, 1}P×C . The loss function for each
ensemble member is generalized to multi-class regression. With ridge regularization, the objective
for each ensemble member r becomes:

Ŵr = argmin
Wr∈RNr×C

[
P∑
µ=1

∥ 1√
Nr

Arψ̄
µWr + ξ

µ
r − yµ∥22 + λr∥Wr∥2F

]
,
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ImagewoofImagenettea

b

c

Figure S1: In numerical experiments, we train linear classifiers to predict labels of imagenet images
based on their last-hidden-layer representations in a pre-trained RexNext deep learning architecture
[46]. Here, we show the structure of the datasets constructed using the ResNext feature map for
the Imagenette task (left), which consists of categorizing images from 10 unrelated categories, and
the Imagewoof task (right), which consists of categorizing images from 10 different dog breeds. (a)
Gram matrix of the centered ResNext features defined as 1

P

(
Φ− Φ̄

)⊤ (
Φ− Φ̄

)
for data matrix

Φ ∈ RP×M where P is the total size of the dataset. Dataset is sorted by label and tick marks show
the boundaries between classes. (b) The covariance eigenspectrum of the ResNext features is well
described by a power law decay. (c) Generalization error of Linear classification with a single linear
predictor with access to a fraction ν = N/M of the ResNext features averaged over 100 trials (see
discussion in section E.4.1)
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where ∥ · ∥F denotes the Frobenius norm and where the readout noise vector ξµr ∼ N (0, η2IC) is
a C - dimensional readout noise which corrupts the model’s prediction. The weights Ŵr can be
determined in closed form as follows:

Ŵr =
1√
Nr

(
1

Nr
ArΦ

⊤ΦA⊤
r + λrI

)−1 (
ArΦ

⊤(Y −Ξr)
)
.

where we have defined [Ξr]µc = [ξµr ]c. When λ = 0 we instead use a pseudoinverse rule. In
all experiments presented here, we use measurement matrices Ar which implement an ordinary
subsampling of the features, so that the rows and columns ofAr consist of one-hot vectors.

E.3 Model Prediction

Once trained, the learned weights may be used to predict the label of a new example ψ as follows.
For r = 1, . . . , k we calculate the prediction of each ensemble member by first assigning each class a
“score”. The scores of predictor r are stored in a vector fr ∈ RC :

fr(ψ) =
1√
Nr

ArψŴr + ξr

Where ξr ∼ N (0, η2IC) is drawn randomly at model evaluation. Each ensemble member’s “vote”
corresponds to the class with the largest score. The prediction of the ensemble is then calculated as a
majority vote of the ensemble members. Generalization error is then calculated as the probability of
misclassifying an example from the test set.

E.4 Linear Classification Experiments

We apply the described majority-vote linear classifier ensembles to the ResNext-Imagenette and
ResNext-Imagewoof tasks in three different experiments.

E.4.1 Reduncancy of ResNext Features

In the first experiment, we investigate the performance of a single linear classifier (k = 1) as the
fraction of features ν which it has access to varies. We set P = 1000 and vary ν over 50 values on a
logarithmic scale from 10−3 to 1. We also vary the regularization strength over 0 and a logarithmic
scale from 10−3 to 104. We average over 100 trials. At each trial the particular subset of P = 1000
training examples and the particular subset of ν ∗M features is randomly re-sampled. We find that
ResNext features are highly redundant – classification accuracy is very robust to subsampling of
the features. For example, in the Imagewoof classification task with the best regularization tested
(λ = 0.1), test error increases from about 1% to about 2% as the subsampling fraction decreases
from ν = 1 to ν = 0.1 (meaning 90% of the features are ignored) (see Fig. 3d). Similarly, for the
imagenette task, test error increases from about 0.1% to about 0.2% as the subsampling fraction
decreases from ν = 1 to ν = 0.1 (see Fig. S1c). Code used to run these experiments may be found in
the folder “DeepNet_Subsamp” in the GitHub repository.

E.4.2 Heterogeneous Ensembling Mitigates Double-Descent

In the second experiment, we compare learning curves for homogeneous ensembling and hetero-
geneous ensembling applied to the ResNext-Imagewoof classification task. In each trial, we train
ensembles of k = {1, 4, 8, 16, 32} linear predictors whose subsampling fractions {νrr, . . . , νkk} are
assigned either with Homogeneous ensembling or with Heterogeneous Ensembling with σ = 0.75/k
C. After subsampling fraction are assigned, the training set is randomly shuffled. We iterate over 50
sample sizes P logarithmically distributed from 400 to 4000, and then add the values M/k for each
k to the list of P values. We repeat for 100 trials for both λr = 0 (pseudoinverse rule) and λ = 0.1,
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Homogeneous vs Heterogeneous 
ensembles

Figure S2: Results of the experiment described in section E.4.2. Learning curves for ResNext-
Imagenewoof classification task in linear classifier ensembles. In Homogeneous ensembling (left)
all νrr = 1/k with k indicated by the legend. In heterogeneous ensembling νrr are drawn from a
Dirichlet distribution as described in section C, with σ = 3/(4k). We use regularization λ = 0 (top)
and λ = 0.1 (bottom). λ = 0, 0.1. Lines represent an average over 100 trials, shaded regions show
standard deviation. We set νrr′ = 0 for r ̸= r′.

which was found to mitigate double-descent by the parameter sweep in Fig. S1c. In main text Fig. 3e,
we plot the mean learning curves over 100 trials. In Fig. S2 we show standard deviation over the 100
trials as shaded error bars. When λ = 0, heterogeneous ensembling mitigates double-descent, leading
to a monotonically decreasing learning curve for sufficiently high k. When λ = 0.1, homogeneous
and heterogeneous ensembles of size k perform similarly. Code used to run these experiments may
be found in the folder “DeepNet_HomVHet” in the GitHub repository.

E.4.3 Readout Noise Encourages Ensembling

In the third experiment, we test the effect of a readout noise which is independent across the members
of the ensemble on generalization error. We do this by sweeping over the readout noise scale η as
defined in sections E.2, E.3. For λ = 0, 0.1 and ν = 0, .1, . . . , 1 we compute the learning curves
of linear predictors with k = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 100, 200 and all νrr = 1/k, averaged
over 50 trials. These learning curves are shown in Fig. S3 for both the ResNext-Imagenette and
ResNext-Imagewoof task. In Figs. S4a and S5a, we plot the value k∗ which minimizes error as
pase diagrams in the parameter space of α and η, analogous to the phase diagrams in Fig. 4b. We
see that the qualitative shape of these phase diagrams is similar to the equicorrelated model. The
differences may be attributed to the nonlinear nature of the classification task. Furthermore, we find
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that, in general the optimal k∗ tends to be higher with the Imagenette dataset than with the Imagewoof
dataset, in agreement with our finding in the equicorrelated regression model that as ρ increases
(making the classification task easier), optimal ensemble size tends to increase (Fig. 4b and S6, S7,
S8). In Fig S3 we see that there are often a number of k values for which test error is at or near to its
lowest. To quantify this, we also plot diagrams of the minimum and maximum values of k that are
within an small margin ϵ of the minimum measured error. For the ResNext-Imagenette task, we use
ϵ = 0.001 and for ResNext-Imagewoof ϵ = 0.01. We see that there is a wide array of k values which
bring error near-to-minimum in practice (Figs S4b,c, S5b,c). We also plot the minimum achieved
error, and the difference between minimum errors at λ = 0.1, 0 (Figs. S4d, S5d). Code used to run
these experiments may be found in the folder “DeepNet_PD” in the GitHub repository.
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ImagewoofImagenette

Figure S3: Learning curves for ensembles of linear classifiers with homogeneous subsampling for
λ = 0, 0.1 and readout noise η values indicated in the figure. Results are averaged over 50 trials.
Experiments are described in section E.4.3
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a

b

c

d

e

Figure S4: Diagrams described in section E.4.3 for the ResNext-Imagenette experiment. Using
learning curves in Fig. S3 (and for additional values of η not shown there) , we plot (a) Optimal
k∗ in the parameter space of α and η, (b) Minimum value of k for which error is within a tolerance
ϵ = .001 of its value for k∗, (b) Maximum value of k for which error is within a tolerance ϵ = .001
of its value for k∗, (d) the value of the minimum error E(k∗), and (e) the difference between this
optimal error for λ = 0.1 and λ = 0.
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Figure S5: Diagrams described in section E.4.3 for the ResNext-Imagewoof experiment. Using
learning curves in Fig. S3 (and for additional values of η not shown there) , we plot (a) Optimal
k∗ in the parameter space of α and η, (b) Minimum value of k for which error is within a tolerance
ϵ = .001 of its value for k∗, (b) Maximum value of k for which error is within a tolerance ϵ = .001
of its value for k∗, (d) the value of the minimum error E(k∗), and (e) the difference between this
optimal error for λ = 0.1 and λ = 0.
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F Generalization error of ensembled linear regression from the
replica trick

Here we use the Replica Trick from statistical physics to derive analytical expressions for Err′ . We
treat the cases where r = r′ and r ̸= r′ separately. Following a statistical mechanics approach, we
calculate the average generalization error over a Gibbs measure with inverse temperature β;

Z =

∫ ∏
r

dw exp

−β

2

∑
r

Er
t −

Mβ

2

∑
r,r′

Jrr′Err′(wr,wr′)

 (30)

Er
t =

P∑
µ=1

(
1√
Nr

w⊤
r Arψ̄µ + ξr − yµ

)2

+ λ|w2
r | (31)

In the limit where β → ∞ the gibbs measure will concentrate around the weight vector ŵr which
minimizes the regularized loss function. The replica trick relies on the following identity:

⟨log(Z[D])⟩D = lim
n→0

1

n
log (⟨Zn⟩D) (32)

where ⟨·⟩D represents an average over all quenched disorder in the system. In this case, quenched
disorder – the disorder which is fixed prior to and throughout training of the weights – consists of
the selected training examples along with their feature noise and label noise: D = {ψµ,σµ, ϵµ}Pµ=1.
The calculation proceeds by first computing the average of the replicated partition function assuming
n is a positive integer. Then, in a non-rigorous but standard step, we analytically extend the result to
n → 0.

F.1 Diagonal Terms

We start by calculating Err for some fixed choice of r. This derivation partially follows section D.3
from [36], with the addition of readout noise and label noise. Noting that the diagonal terms of the
generalization error Err only depend on the learned weights wr, and the loss function separates over
the readouts, we may consider the Gibbs measure over only these weights:

Z =

∫
dwr exp

(
− β

2λ
Et
r −

JMβ

2
Err(wr)

)
(33)

⟨Zn⟩D =

∫ ∏
a

dwa
rE{ψµ,σµ,ϵµ}

exp

(
−βM

2λ

∑
µ,a

1

M

[
1

√
νrr
wa⊤
r Ar (ψµ + σµ)−w∗⊤ψµ −

√
M(ϵµ − ξµr )

]2

−β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(w
a)

) (34)

Next we must perform the averages over quenched disorder. We first integrate over
{ψµ,σµ, ξµr , ϵµ}Pµ=1. Noting that the scalars

hraµ ≡ 1√
M

[
1

√
νrr
wa⊤
r Ar (ψµ + σµ)−w∗⊤ψµ −

√
M(ϵµ − ξµr )

]
are Gaussian random variables (when conditioned on Ar) with mean zero and covariance:
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⟨hraµ hrbν ⟩ = δµνQ
rr
ab (35)

Qrr
ab =

1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

] (36)

To perform this integral we re-write in terms of {Hr
µ}Pµ=1, where

Hr
µ =


hr1µ
hr2µ

...
hrnµ

 ∈ Rn (37)

⟨Zn⟩D =

∫ ∏
a

dwa
rE{ψµ,σµ,ϵµ} exp

(
− β

2λ

∑
µ

Hr⊤
µ Hr

µ − β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(w
a)

)
(38)

Integrating over theHr
µ we get:

⟨Zn⟩D =

∫ ∏
a

dwa
r exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
− β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(wr)

)
(39)

Next we integrate overQr and add constraints. We use the following identity:

1 =
∏
ab′

∫
dQrr

abδ

(
Qrr
ab −

1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

]) (40)

Using the Fourier representation of the delta function, we get:

1 =
∏
ab

∫
1

4πi/M
dQrr

abdQ̂
rr
ab exp

(
M

2
Q̂rr
ab

(
Qrr
ab −

1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

]))
(41)

Inserting this identity into the replicated partition function and substituting Err(w
a
r ) = Qrr

aa − ζ2 we
find:
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⟨Zn⟩D ∝∫ ∏
ab

dQrr
abdQ̂

rr
ab exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
+

1

2

∑
ab

MQ̂rr
abQ

rr
ab −

JMβ

2

∑
a

(Qrr
aa − ζ2)

)
∫ ∏

a

dwa
r exp

(
−β

2

∑
a

|wa
r |2 −

1

2

∑
ab

Q̂rr
ab

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

])
(42)

In order to perform the Gaussian integral over the {wa
r}, we unfold over the replica index a. We first

define the following:

w·
r ≡

w
1
r

...
wn
r

 (43)

T r ≡ βIn ⊗ INr
+ Q̂rr ⊗

(
1

νrr
Ar(Σs +Σ0)A

⊤
r

)
(44)

V r ≡ (Q̂rr ⊗ INr )(1n ⊗ 1
√
νrr
ArΣsw

∗) (45)

We then have for the integral over w

∫
dw·

r exp

(
−1

2
w·⊤
r T rw·

r′ + V r⊤w·
r

)
(46)

=exp

(
1

2
V r⊤(T r)−1V r − 1

2
log det(T r)

)
(47)

We can finally write the replicated partition function as:

⟨Zn⟩D ∝∫ ∏
ab

dQrr
abdQ̂

r
ab exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
+

1

2

∑
ab

MQ̂rr
abQ

rr
ab −

JMβ

2

∑
a

(Qrr
aa − ζ2)

)

exp

(
1

2
V r⊤(T r)−1V r − 1

2
log det(T r)− 1

2

∑
ab

Q̂rr
ab(M(ζ2 + η2r) +w

∗⊤Σsw
∗)

)
(48)

We now make the following replica-symmetric ansatz:

Qrr
ab = β−1qδab + q0 (49)

Q̂rr
ab = βq̂δab + β2q̂0 (50)

which is well-motivated because the loss function is convex. We will verify that the chosen scalings
are self-consistent in the zero-temperature limit where β → ∞. We may then rewrite the partition
function as follows:
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⟨Zn⟩D = exp

(
−nM

2
g [q, q0, q̂, q̂0]

)
(51)

Where the effective action is written:

g [q, q0, q̂, q̂0] = α

[
log(1 +

q

λ
) +

βq0
λ+ q

]
− (qq̂ + βqq̂0 + βq0q̂) + βJ

[
(β−1q + q0)− ζ2

]
− β

νrrM
q̂2w∗⊤ΣsA

⊤
r G

−1ArΣsw
∗ +

1

M

[
log det(G) + βq̂0 tr[G

−1Σ̃]
]
+ βq̂

(
ζ2 + η2r +

1

M
w∗⊤Σsw

∗
)

(52)

WhereG ≡ INr
+ q̂Σ̃ and Σ̃ ≡ 1

νrr
Ar(Σs +Σ0)A

⊤
r

To determine the values of the order parameters we set the derivatives of g [q, q0, q̂, q̂0], evaluated at
zero source (J = 0), to zero:

∂g

∂q0
= 0 =

αβ

λ+ q
− βq̂ ⇒ q̂ =

α

λ+ q
(53)

∂g

∂q̂0
= 0 = −βq +

β

M
tr
[
G−1Σ̃

]
⇒ q =

1

M
tr
[
G−1Σ̃

]
(54)

∂g

∂q
= 0 =

α

λ+ q
− αq0β

(λ+ βq)2
− q̂ − βq̂0 ⇒ q̂0 = − αq0

(λ+ βq)2
(55)

∂g

∂q̂
= 0 = −q − βq0 + βζ2 + βη2r +

1

M
tr
[
G−1Σ̃

]
− βq̂0

M
tr

[(
G−1Σ̃

)2]
+

β

M
w∗⊤

[
Σs −

2

νrr
q̂ΣsA

⊤
r G

−1ArΣs +
1

νrr
q̂2ΣsA

⊤
r G

−1Σ̃G−1ArΣs

]
w∗

(56)

⇒ q0 =
1

1− γ

(
ζ2 + η2r +

1

M
w∗⊤

[
Σs −

2

νrr
q̂ΣsA

⊤
r G

−1ArΣs +
1

νrr
q̂2ΣsA

⊤
r G

−1Σ̃G−1ArΣs

]
w∗
)

(57)

where γ ≡ α
Mκ2 tr

[
(G−1Σ̃)2

]
and κ ≡ λ+ q. We retroactively confirm that the chosen β-scalings

are correct by noticing that the saddle-point equations permit a solution where all order parameters
remain O(1) as β → ∞. The error is given as:

Err = lim
β→∞

1

β

∂

∂J
g[q, q0, q̂, q̂0] = lim

β→∞
β−1q + q0 − ζ2 = q0 − ζ2 (58)

Where q, q0, q̂, q̂0 are the solutions to the saddle-point equations 53, 54, 55, 57. Substituting eq. 57
for q0, we obtain:

Err =
1

1− γ

1

M
w⋆⊤

[
Σs −

2

νrr
q̂ΣsA

⊤
r G

−1ArΣs +
1

νrr
q̂2ΣsA

⊤
r G

−1Σ̃G−1ArΣs

]
w∗ +

γζ2 + η2r
1− γ

(59)

=
1

1− γ

1

M
w⋆⊤

[
Σs −

1

νrr
q̂ΣsA

⊤
r G

−1ArΣs −
1

νrr
q̂ΣsA

⊤
r G

−2ArΣs

]
w∗ +

γζ2 + η2r
1− γ

(60)
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F.2 Off-Diagonal Terms

We now calculate Err′ for r ̸= r′. We now must consider the joint Gibbs Measure over wr and wr′ :

Z =

∫
dwrdwr′ exp

(
− β

2λ
(Et

r + Et
r′)−

JMβ

2
Err′(wr,wr′)

)
(61)

(62)

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′E{ψµ,σµ,ϵµ}

exp

(
−βM

2λ

∑
µ,a

1

M

[(
hraµ
)2

+
(
hr

′a
µ

)2]
− β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err′(w
a
r ,w

a
r′)

)
(63)

Where the hraµ are defined as before. Next we must perform the averages over quenched disorder. To
do so, we note that the hraµ are Gaussian random variables with covariance structure:

⟨hraµ hr
′b
ν ⟩ = δµνQ

rr′

ab (64)

Qrr′

ab =
1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1
√
νrrνr′r′

wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

] (65)

To perform this integral we re-write in terms of {Hµ}Pµ=1, where

Hµ =

[
Hr
µ

Hr′

µ

]
∈ R2n (66)

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′E{ψµ,σµ,ϵµ}

exp

(
− β

2λ

∑
µ

H⊤
µHµ − β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err′(w
a
r ,w

a
r′)

) (67)

Integrating overHµ we get:

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
− β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err(w
a
r ,w

a
r′)

) (68)

Where we have defined the matrixQ so that:

Q =

[
Qrr Qrr′

Qrr′ Qr′r′

]
(69)

Next we integrate overQ and add constraints. We use the following identity:
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1 =
∏
ab

∫
dQrr′

ab δ

(
Qrr′

ab − 1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1
√
νrrνr′r′

wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

]) (70)

Using the Fourier representation of the delta function, we get:

1 =
∏
ab

∫
1

4πi/M
dQrr′

ab dQ̂
rr′

ab exp

(
M

2
Q̂rr′

ab

(
Qrr′

ab − 1

M

[(
1

√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

]))
(71)

Inserting this identity and the corresponding statements for Qrr
ab and Qr′r′

ab into the replicated partition
function and substituting Err′(w

a) = Qrr′

aa − ζ2 we find:

⟨Zn⟩D ∝
∫ ∏

abr1r2

dQr1r2
ab dQ̂r1r2

ab

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
+

1

2

∑
abr1r2

MQ̂r1r2
ab Qr1r2

ab − JMβ

2

∑
a

(Qrr′

aa − ζ2)

)
∫ ∏

a

dwa
rdw

a
r′ exp

(
−β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− 1

2

∑
abr1r2

Q̂r1r2
ab

[(
1

√
νr1
wa⊤
r1 Ar1 −w∗⊤

)
Σs

(
1

√
νr2
A⊤
r2w

b
r2 −w

∗
)

+
1

√
νr1νr2

wa⊤
r1 Ar1Σ0A

⊤
r2w

b
r2 +Mζ2

])
(72)

Where sums over r1 and r2 run over {r, r′}.

In order to perform the Gaussian integral over the {wa
r}, we unfold in two steps. We first define the

following:

w·
r ≡

w
1
r

...
wn
r

 (73)

[Q̂rr′ ]ab ≡ Q̂rr′

ab (74)

Σ̃rr′ ≡
1

√
νrrνr′r′

Ar[Σs +Σ0]A
⊤
r′ (75)

T rr
′
≡ βδrr′In ⊗ INr + Q̂

rr′ ⊗ Σ̃rr′ (76)

Unfolding over the replica indices, we then get:
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⟨Zn⟩D ∝
∫ ∏

abr1r2

dQr1r2
ab dQ̂r1r2

ab

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
+

1

2

∑
abr1r2

MQ̂r1r2
ab Qr1r2

ab − JMβ

2

∑
a

(Qrr′

aa − ζ2)

)

exp

(
−1

2

∑
abr1r2

Q̂r1r2
ab

(
w∗⊤Σsw

∗ +Mζ2
))

∫
dw·

rdw
·
r′ exp

(
−1

2

∑
r1r2

w·⊤
r1 T

r1r2wr2 +
∑
r1r2

[
(Q̂r1r2 ⊗ INr1

)(1n ⊗ 1
√
νr1
Ar1Σsw

∗)

]⊤
wr1

)
(77)

Note that the dimensionality of T r1r2 varies for different choices of r1 and r2. Next, we unfold over
the two readouts:

w ≡
[
w·
r

w·
r′

]
(78)

T ≡
[
T rr T rr

′

T r
′r T r

′r′

]
(79)

V ≡

 (
(Q̂rr + Q̂rr′)⊗ INr

)(
1n ⊗ 1√

νrr
ArΣsw

∗
)(

(Q̂r′r′ + Q̂r′r)⊗ INr′

)(
1n ⊗ 1√

νr′r′
Ar′Σsw

∗
) (80)

The integral over w then becomes:

∫
dw exp

(
−1

2
w⊤Tw + V ⊤w

)
∝ exp

(
1

2
V ⊤T−1V − 1

2
log detT

)
(81)

We are now ready to make a replica-symmetric ansatz. The order parameter that we wish to constrain
is Qrr′

ab . Overlaps go between the weights from different replicas of the system as well as different
readouts. The scale of the overlap between two measurements depends on their overlap with each
other and with the principal components of the data distribution. An ansatz which is replica-symmetric
but makes no assumptions about the overlaps between different measurements is as follows:

Qr1r2
ab = β−1qr1r2δab +Qr1r2 (82)

Q̂r1r2
ab = βq̂r1r2δab + β2Q̂r1r2 (83)

Next step is to plug the RS ansatz into the free energy and simplify. To make calculations more
transparent, we re-label the paramters in the RS ansatz as follows:

Qrr = β−1qI +Q11⊤ (84)

Qr′r′ = β−1rI +R11⊤ (85)

Qrr′ = β−1cI + C11⊤ (86)

Q̂rr = βq̂I + β2Q̂11⊤ (87)

Q̂r′r′ = βr̂I + β2R̂11⊤ (88)

Q̂rr′ = βĉI + β2Ĉ11⊤ (89)

30



In order to simplify log det (λI2n + βQ), we note that this is a symmetric 2-by-2-block matrix,
where each block commutes with all other blocks. We may then use [53]’s result to simplify.

log det (λI2n + βQ) = n

[
log
(
(λ+ q)(λ+ r)− c2

)
+ β

(λ+ q)R+ (λ+ r)Q− 2cC

(λ+ q)(λ+ r)− c2

]
+O(n2)

(90)

∑
abr1r2

Q̂r1r2
ab Qr1r2

ab = n
[(

qq̂ + βq̂Q+ βqQ̂
)
+
(
rr̂ + βr̂R+ βrR̂

)
+ 2

(
cĉ+ βĉC + βcĈ

)]
+O(n2)

(91)

∑
a

(
Qrr′

aa − ζ2
)
= n

[
1

β
c+ C − ζ2

]
+O(n2) (92)

∑
abr1r2

Q̂r1r2
ab = βn [q̂ + r̂ + 2ĉ] +O(n2) (93)

log det(T ) = n

[
log(β) + log det

[
Grr Grr′

Gr′r Gr′r′

]
+ β tr

([
Grr Grr′

Gr′r Gr′r′

]−1 [
Q̂Σ̃rr ĈΣ̃rr′

ĈΣ̃r′r R̂Σ̃r′r′

])]
+O(n2)

(94)

whereGrr = INr
+ q̂Σ̃rr Gr′r′ = INr′ + r̂Σ̃r′r′ Grr′ = ĉΣ̃rr′ Gr′r = ĉΣ̃r′r (95)

V ⊤T−1V = nβw∗⊤

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]⊤ [
Grr Grr′

Gr′r Gr′r′

]−1
[

1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ +O(n2)

(96)

Collecting these terms, we may write the replicated partition function as follows:

⟨Zn⟩D = exp

(
−nM

2
g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

])
(97)

Where the free energy is written:

g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

]
= (98)

α

[
log
(
(λ+ q)(λ+ r)− c2

)
+ β

(λ+ q)R+ (λ+ r)Q− 2cC

(λ+ q)(λ+ r)− c2

]
(99)

−
[(

qq̂ + βq̂Q+ βqQ̂
)
+
(
rr̂ + βr̂R+ βrR̂

)
+ 2

(
cĉ+ βĉC + βcĈ

)]
(100)

+ J(c+ βC − βζ2) (101)

+ β [q̂ + r̂ + 2ĉ]

(
1

M
w∗⊤Σw∗ + ζ2

)
(102)

− 1

M
βw∗⊤

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]⊤
G−1

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ (103)

+
1

M

[
log(β) + log detG+ β tr

(
G−1

[
Q̂Σ̃rr ĈΣ̃rr′

ĈΣ̃r′r R̂Σ̃r′r′

])]
(104)
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where we have definedG ≡
[
Grr Grr′

Gr′r Gr′r′

]
The saddle-point equations for the replica-diagonal order parameters are:

∂g

∂Q
= 0 = β

α(λ+ r)

(λ+ q)(λ+ r)− c2
− βq̂ (105)

∂g

∂Q̂
= 0 = −βq + β

1

M
tr

(
G−1

[
Σ̃rr 0
0 0

])
(106)

∂g

∂R
= 0 = β

α(λ+ q)

(λ+ q)(λ+ r)− c2
− βr̂ (107)

∂g

∂R̂
= 0 = −βr + β

1

M
tr

(
G−1

[
0 0

0 Σ̃r′r′

])
(108)

∂g

∂C
= 0 = −β

2αc

(λ+ q)(λ+ r)− c2
− 2βĉ+ βJ (109)

∂g

∂Ĉ
= 0 = −2βc+ β

1

M
tr

(
G−1

[
0 Σ̃rr′

Σ̃r′r 0

])
(110)

Note that when J = 0, the saddle point equations 109, 110 are solved by setting c = ĉ = 0, and in this
case the remaining saddle-point equations decouple over the readouts (as expected for independently
trained ensemble members) giving: For readout r:

0 =
α

(λ+ q)
− q̂ (111)

0 = −q +
1

M
tr
(
G−1
rr Σ̃rr

)
(112)

and for readout r′:

0 =
α

(λ+ r)
− r̂ (113)

0 = −r +
1

M
tr
(
G−1
r′r′Σ̃r′r′

)
(114)

These are equivalent to the saddle-point equations for a single readout given in equation 53, 54 as
expected for independently trained readouts. It is physically sensible that c = 0 when J = 0, because
at zero source, there is no term in the replicated system energy function which would distinguish
the overlap between two readouts from the same replica from the overlap between two readouts in
separate replicas (we expect that the total overlap between readouts is non-zero, as we may still have
C > 0).

The saddle-point equations obtained by setting the derivatives ∂g
∂q = ∂g

∂q̂ = ∂g
∂r = ∂g

∂r̂ = 0 will
similarly decouple to recover two copies of the diagonal case 57 55. We will not re-write the
expressions here as they are not necessary to determine the off-diagonal error term Err′ .

The remaining saddle-point equations are obtained by setting ∂g
∂c = ∂g

∂ĉ = 0

∂g

∂c

∣∣∣∣
c=ĉ=J=0

= − 2αβC

(λ+ q)(λ+ r)
− 2βĈ ⇒ Ĉ = − αC

(λ+ q)(λ+ r)
(115)
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∂g

∂ĉ

∣∣∣∣
c=ĉ=J=0

= 0 =− 2βC + 2β

(
1

M
w∗⊤Σsw

∗ + ζ2
)

− 2β

M
w∗⊤Σs

[
1

νrr
q̂A⊤

r G
−1
rr Ar +

1

νr′r′
r̂A⊤

r′G
−1
r′r′Ar′

]
Σsw

∗

+
2βq̂r̂

M

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
rr Σ̃rr′G

−1
r′r′Ar′Σsw

∗

− 2Ĉβ

M
tr
[
G−1
rr Σ̃rr′G

−1
r′r′Σ̃r′r

]
(116)

Solving equations 115 and 116 for C, we obtain:

C =
1

1− γ
ζ2 +

1

1− γ

(
1

M
w∗⊤Σsw

∗
)

− 1

M(1− γ)
w∗⊤Σs

[
1

νrr
q̂A⊤

r G
−1
rr Ar +

1

νr′r′
r̂A⊤

r′G
−1
r′r′Ar′

]
Σsw

∗

+
1

M(1− γ)
q̂r̂

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
rr Σ̃rr′G

−1
r′r′Ar′Σsw

∗

(117)

where γ ≡ α

(λ+ q)(λ+ r)
tr
[
G−1
rr Σ̃rr′G

−1
r′r′Σ̃r′r

]
(118)

We can obtain the generalization error as:

Err′ = lim
β→∞

1

β

∂

∂J
g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

]
= lim
β→∞

1

β
(c+βC −βζ2) = C − ζ2 (119)

We may then simplify the expression for the Err′ error as follows:

Err′ =
γ

1− γ
ζ2 +

1

1− γ

(
1

M
w∗⊤Σsw

∗
)

− 1

M(1− γ)
w∗⊤Σs

[
1

νrr
q̂A⊤

r G
−1
rr Ar +

1

νr′r′
r̂A⊤

r′G
−1
r′r′Ar′

]
Σsw

∗

+
1

M(1− γ)
q̂r̂

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
rr Σ̃rr′G

−1
r′r′Ar′Σsw

∗

(120)

Re-labeling the order parameters: q̂ → q̂r, r̂ → q̂r′ , γ → γrr′ andGrr → Gr, we obtain the result
given in the main text.

G Derivation of Proposition 1 from [31]

In the case where the data and noise covariance matrices Σs and Σ0 have bounded spectra, our main
result may be derived using Theorem 4.1 from Loureiro et. al. [31], with a few additional arguments
to incorporate a readout noise which varies across ensemble members, and to allow for the presence
of label noise in the training set but not at test time. Rather than reproducing their very lengthy
statements here, we direct the reader to theorem 4.1 and corollary 4.2 in [31].
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G.1 Altered Expectations at Evaluation

In [31], labels are generated at both training and test time through the same statistical process
y ∼ P 0

y (y|ν) where ν = ⟨x|θ⟩√
d

. However, their results may be easily extended to the case where
data are generated through a different statistical process for the training set and at evaluation. This
will allow the application of their results to the case where label noise is present during training
but not at evaluation as studied in this work. We therefore introduce separate distributions of the
labels y at training and evaluation. During training, we still have y ∼ P 0

y (y|ν). At evaluation, we put
y ∼ P gy (y|ν). This leads to the updated formula:

E(y,x)

[
φ

(
y,

⟨⟨Ŵ | U⟩⟩
√
p

)]
P→ E(ν,µ)

[∫
dyP gy (y|ν)φ(y,µ)

]
(121)

when the expectation is over data-label pairs (y,x) at evaluation.

G.2 Rigorous Proof of Proposition 1

We now restate the the problem setup of our main theorem using notation consistent with [31]. We
study generalization error in an ensemble of estimators {ŵk}, k = 1, . . . ,K. We say ŵk ∈ Rp
for all k = 1, . . . ,K. The weights are trained independently such that each minimizes a ridge loss
function:

ŵk = argmin
w

n∑
µ=1

(
yµ − 1√

Nk

u⊤
k w − ξµk

)2

+ λk|w|2 k = 1, . . . ,K

= argmin
w

n∑
µ=1

(
yµ − 1

√
p
u⊤
k

(
1

√
νkk

w

)
− ξµk

)2

+ νkkλk|
1

√
νkk

w|2
(122)

So that our results will correspond to the results of [31] after re-scaling the regularizations λk →
νkkλk. The training labels are drawn as yµ ∼ P 0

y (y| 1√
pθ

⊤xµ) where P 0
y (y|x) = N (x, ζ2), ξµk ∼

N (0, η2r) and θ represent the ground truth weights. For k = 1, . . . , k we have a “measurement matrix”
Ak ∈ RNk×d, and we may set d = p ≥ maxkNk (so that γ = d

p = 1). The feature vectors uk(x)
are then drawn as

uk(x) =

[
Ak(x+ σ)
0(p−Nk)

]
= Āk(x+ σ)

where x ∼ N (0,Σs) and σ ∼ N (0,Σ0). For convenience, we have defined the auxilary matrices

Āk ≡
[

Ak

0(p−Nk)×p

]
∈ Rp×p

By constructing the feature vectors as p-dimensional vectors with only Nk non-zero components, we
may apply the results of [31] while preserving structural heterogeneity (we may have Nk ̸= Nk′ for
k ̸= k′) as is present in our main result. Because [uk]i = 0 for all i > Nk, these auxiliary dimensions
will not affect model predictions or generalization error. We then have µk = 1√

pu
⊤
k ŵk, and labels

are generated at evaluation according to :

y ∼ P gy (y|
1

K

∑
k

µk) where P gy (y|x) = N (x,
1

K2

∑
k

η2k) (123)

The generalization error may then be decomposed as Eg = 1
K2

∑
k,k′ Ekk′ where Ekk′ =

E(y,x) [(y − µk)(y − µk′)]. We will apply eq. 121 separately to calculate Err′ in the cases where
r ̸= r′ and r = r′.
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G.2.1 Off-Diagonal Terms

Eq. 121 cannot be used to calculate Err′ directly in the case where r ̸= r′ due to the presence of
noises ξµk which vary over elements of the ensemble (indexed by k) in the loss function (eq. 122).
We may argue, however, that the presence of readout noise noise has no effect on the expected value
of Err′ when r ̸= r′, then apply eq. 121 with ηk = ηk′ = 0. To see this, we examine the analytical
form of the minimizer of the loss function (eq, 122):

ŵk = U⊤
k

(
UkU

⊤
k + λkI

)−1
(y − ξk) (124)

where we have defined the design matrices [Uk]iµ = 1√
p [uk(x

µ)]i and the vectors [y]µ = yµ and
[ξk]µ = ξµk . We then have

Ekk′ =

(
y − 1

√
p
y⊤ (UkU⊤

k + λkI
)−1

Uk

)(
y − 1

√
p
y⊤ (Uk′U⊤

k′ + λk′I
)−1

Uk′

)
+

(
y − 1

√
p
y⊤ (UkU⊤

k + λkI
)−1

Uk

)(
1
√
p
ξ⊤k′
(
Uk′U

⊤
k′ + λk′I

)−1
Uk′

)
+

(
y − 1

√
p
y⊤ (Uk′U⊤

k′ + λk′I
)−1

Uk′

)(
1
√
p
ξ⊤k
(
UkU

⊤
k + λkI

)−1
Uk

)
+

(
1
√
p
ξ⊤k
(
UkU

⊤
k + λkI

)−1
Uk

)(
1
√
p
ξ⊤k′
(
Uk′U

⊤
k′ + λk′I

)−1
Uk′

)
(125)

Taking the expectation value over the readout noise in the training set we get:

E{ξ1,...,ξK}Ekk′ =

(
y − 1

√
p
y⊤ (UkU⊤

k + λkI
)−1

Uk

)(
y − 1

√
p
y⊤ (Uk′U⊤

k′ + λk′I
)−1

Uk′

)
(k ̸= k′)

(126)
This is identical to Ekk′ when ξk = 0 for all k. We may therefore calculate the off-diagonal error
terms by setting ξk = 0 in eq. 122, which gives a problem compatible with the theorem 4 of [31]. To
calculate Err′ , we appeal to theorem 4.1 and corollary 4.2 of [31]. The following objects defined in
121 are given the following definitions:

r({ŵ1, . . . , ŵK}) = 1

2

K∑
k=1

νkkλk|ŵk|2 (127)

∆(y, ŷ(x)) = (y − ŷ(x))2 (128)

ℓ̂(y,µ) =
1

2
|µ− y1|2 (129)

Z0(y, µ, σ) :=

∫
P 0
y (y | x)dx
√
2πσ

e−
(x−µ)2

2σ =
1√

2π(ζ2 + σ)
exp

(
− (y − µ)2

2(ζ2 + σ)

)
(130)

Ekk′ = E(y,x) [(y − µk)(y − µk′)] → E(ν,x)

[∫
dyP gy (y|ν)(y − µk)(y − µk′)

]
(131)

= E(ν,x) [(ν − µk)(ν − µk′)] +
1

K2

K∑
k=1

η2k (132)

= ρ− [m]k − [m]k′ + [Q]kk′ +
1

K2

K∑
k=1

η2k (133)

Where ρ,m andQ are defined as in [31]:

(ν,µ) ∼ N
(
01+K ,

(
ρ m⊤

m Q

))
(134)
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What remains is to determine the values of the order parameters ρ, m and Q. We next define the
covariance matrices which characterize the feature maps. The feature-feature covariance is:

Ωij
kk′ = Ex [(uk(x))i(uk′(x))j ] = 1{1≤i≤Nk,1≤j≤Nk′}

[
Ak (Σs +Σ0)A

⊤
k′
]
ij

(135)

=
√
νkkνk′k′1{1≤i≤Nk,1≤j≤Nk′}

[
Σ̃kk′

]
ij
=
[
Σ̄kk′

]
ij

(136)

where we have defined νkk = Nk

p , Σ̃kk′ = 1√
νkkνk′k′

Ak (Σs +Σ0)A
⊤
k′ , and Σ̄kk′ =

√
νkkνk′k′

[
Σ̃kk′ 0
0 0

]
∈ Rp×p. Note that while in [31], all Ωkk must have strictly positive

eigenvalues, their result can be easily extended to cover the case where some eigenvalues are zero by
a continuity argument.

The feature-label covariance is given by:[
Φ̂
]i
k
= Ex

[
uk(x)x

⊤θ
]
i
= 1{1≤i≤Nk} [AkΣsθ]i =

[
ĀkΣsθ

]
i

(137)

[Θ]
ij
kk′ =

[
Φ̂
]i
k

[
Φ̂
]j
k′

=
[
ĀkΣsθ

]
i

[
Āk′Σsθ

]
j

(138)

Recalling ω := Q1/2ξ, we can now obtain an explicit form for the proximal h:

h := argmin
u

[
(u− ω)V −1(u− ω)

2
+ ℓ̂(y,u)

]
= V (I + V )−1(V −1Q1/2ξ + y1) (139)

The proximalG should not arise in this special case.

Next, we will simplify the saddle-point equations. Simplifying where possible, we may write:

f = V −1(h−w) = (I + V )−1 (y1− ω) (140)

∂ωf = −(I + V )−1 (141)

ρ = Ex

[(
1√
d
θ⊤x

)2
]
=

1

d
θ⊤Σsθ (142)

ω0 ≡m⊤Q−1/2ξ (143)

σ0 = ρ−m⊤Q−1m =
1

d
θ⊤Σsθ −m⊤Q−1m (144)

V̂ = −α

∫
dyEξ

[
Z0(y, ω0, σ0)(−(I + V )−1)

]
= α(I + V )−1Eξ

∫ dyZ0(y, ω0, σ0)︸ ︷︷ ︸
1


(145)

⇒ V̂ = α(I + V )−1 (146)

We can simplify the prior equation for V̂ to the following set of equations:

Vkk =
1

p
tr

[
Σ̄kk

[
νkkλkIp + V̂kkΣ̄kk

]−1
]

k = 1, . . . ,K (147)

Vkk′ =
1

p
tr

[
Σ̄kk′

[
V̂k′kΣ̄k′k

]−1
]

k′ ̸= k (148)
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Equations 146 and 148 are solved by setting V̂kk′ = Vkk′ = 0 for all k ̸= k′ so that V̂kk′ = V̂kδkk′
and Vkk′ = Vkδkk′ . The diagonal components then satisfy

V̂k =
α

1 + Vk
(149)

Vk =
1

p
tr

[
Σ̄kk

[
νkkλkIp + V̂kΣ̄kk

]−1
]

(150)

Which may be solved separately for each k = 1, . . . ,K. Simplifying the remaining channel equations
we have:

Q̂ = α(I + V )−1
[(
ζ2 + ρ

)
11⊤ − 1m⊤ −m1⊤ +Q

]
(I + V )−1 (151)

⇒ Q̂kk′ =
1

α
V̂kV̂k′

[
ζ2 + ρ−mk −mk′ +Qkk′

]
(152)

m̂ = α(I + V )−11 ⇒ m̂k =
α

(1 + Vk)
= V̂k (153)

Simplifying the prior equations we obtain (through some tedious but straightforward algebra):

Qkk′ = Q̂kk′Jkk′ + V̂kV̂k′Λkk′ (154)

mk = V̂kRk (155)

Where we have defined:

Gk ≡ νkkλkIp + V̂kΣ̄kk (156)

Jkk′ ≡
1

p
tr
[
Σ̄kk′G

−1
k′ Σ̄k′kG

−1
k

]
(157)

Λkk′ ≡
1

p
θ⊤ΣsĀ

⊤
kG

−1
k Σ̄kk′G

−1
k′ Āk′Σsθ (158)

Rk ≡ θ⊤ΣsĀ
⊤
kG

−1
k ĀkΣsθ (159)

Solving eq’s 154,152 forQ, we obtain:

Qkk′ =
γkk′

1− γkk′

(
ζ2 + ρ−mk −mk′

)
+

V̂kV̂k′

1− γkk′
Λkk′ (k ̸= k′) (160)

Combining these results, we arrive at a formula for Ekk′ :

Ekk′ =
1

1− γkk′

(
γkk′ζ

2 + ρ− V̂kRk − V̂k′Rk′ + V̂kV̂k′Λkk′
)
+

1

K2

∑
k

η2k (k ̸= k′)

(161)

where γkk′ ≡
1

α
V̂kV̂k′Jkk′ (162)

Where the order parameters V̂k, k = 1, . . . ,K satisfy the fixed-point equations given by eq’s 149,
150.

G.2.2 Diagonal Terms

To calculate Err, we cannot ignore the presence of readout noise in the loss function. However, as
the loss function is separable over the readouts k, we may calculate Err using the results of [31] in
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the special case where K = 1, incorporating the readout noise into the label noise. Concretely, we
may calculate Err as the error of a single linear predictor under the same setup as the off-diagonal
terms except that in the training set yµ ∼ P 0

y (y| 1√
pθ

⊤xµ) where P 0
y (y|x) = N (x, ζ2 + η2k). This

may be recovered from the calculation for the off-diagonal terms by setting k = k′ and re-scaling
ζ2 → ζ2 + η2k, giving:

Ekk =
1

1− γkk

(
γkk(ζ

2 + η2r) + ρ− 2V̂kRk + V̂ 2
k Λkk

)
+

1

K2

∑
k

η2k (k ̸= k′) (163)

where the definitions of γkk, ρ, Rk, and Λkk can be inherited from the off-diagonal case, as well as
the saddle-point equations 149, 150.

G.2.3 Full Error

The results obtained here are equivalent to the results of our main theorem, up to a reshuffling of
additive constants η2k among the error terms, and a trivial re-scaling of the order parameters as follows:
Vk → 1

λk
Vk, V̂k → λkV̂k

H Equicorrelated Data Model

To gain an intuition for the joint effects of correlated data, subsampling, ensembling, feature noise,
and readout noise, we simplify the formulas for the generalization error in the following special case:

Σs = s
[
(1− c)IM + c1M1⊤

M

]
(164)

Σ0 = ω2IM (165)

Here s is a parameter which sets the overall scale of the data and c ∈ [0, 1] tunes the correlation
structure in the data and ω2 sets the scale of an isotropic feature noise. We consider an ensemble
of k readouts, each of which sees a subset of the features. Due to the isotropic nature of the
equicorrelated data model and the pairwise decomposition of the generalization error, we expect that
the generalization error will depend on the partition of features among the readout neurons through
only:

• The number of features sampled by each readout: Nr ≡ νrrM , for r = 1, . . . , k
• The number of features jointly sampled by each pair of readouts nrr′ ≡ νrr′M for r, r′ ∈
{1, . . . , k}

Here, we have introduced the subsampling fractions νrr = Nr

M and the overlap fractions νrr′ =
nrr′
M

We will average the generalization error over readout weights drawn randomly from the space
perpendicular to 1M , with an added spike along the direction of 1M :

w∗ =
√

1− ρ2P⊥w
∗
0 + ρ1M (166)

w∗
0 ∼ N (0, IM ) (167)

The projection matrix may be written P⊥ = IM − 1
N 1M1⊤

M . The two components of the ground
truth weights will yield independent contributions to the generalization error in the sense that

⟨Err′⟩ = (1− ρ2)Err′(ρ = 0) + ρ2Err′(ρ = 1) (168)

Calculating Err and Err′ is an exercise in linear algebra which is straightforward but tedious. To assist
with the tedious algebra, we wrote a Mathematica package which can handle multiplication, addition,
and inversion of matrices of symbolic dimension of the specific form encountered in this problem.
This form consists of block matrices, where the blocks may be written as aδMNIM + b1M1⊤

N , where
a, b are scalars and δMN ensures that there is only a diagonal component for square blocks (when
M = N ). This package is included as supplemental material to this publication.
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H.1 Diagonal Terms and Saddle-Point Equations

Here, we solve for the dominant values of qr and q̂r and simplify the expressions for Err in the
case of equicorrelated features described above. In this isotropic setting, Err, qr, q̂r will depend
on the subsampling only through Nr = νrrM . We may then write, without loss of generality
Ar = (INr 0) ∈ RNr×M where 0 denotes a matrix of all zeros, of the appropriate dimensionality.

We start by simplifying the saddle-point equations 53,54. Expanding 1
M tr

(
G−1
r Σ̃rr

)
and keeping

only leading order terms, the saddle-point equations for qr and q̂r reduce to:

qr =
νrr
(
s(1− c) + ω2

)
q̂r(s(1− c) + ω2) + νr

(169)

q̂r =
α

λ+ qr
(170)

Defining a ≡ s(1− c) + ω2 and solving this system of equations, we find:

qr =

√
a2α2 + 2aα(λ− a)νr + (a+ λ)2ν2r − aα+ (a− λ)νr

2νr
(171)

q̂r =

√
a2α2 + 2aα(λ− a)νr + (a+ λ)2ν2r + aα− (a+ λ)νr

2aλ
(172)

We have selected the solution with qr > 0 because self-overlaps must be at least as large as overlaps
between different replicas. This solution to the saddle-point equatios can be applied to each of the k
readouts.

Next, we calculate Err. Expanding γrr ≡ α
Mκ2 tr

[
(G−1Σ̃)2

]
to leading order in M , we find:

γrr =
a2ανr

(λ+ qr)
2
(aq̂r + νr)

2 (173)

⟨Err⟩D,w∗(ρ = 0) =
1

1− γrr

1

M
tr

[
P⊥

(
Σs −

2

νrr
q̂rΣsA

⊤
r G

−1
r ArΣs +

1

νrr
q̂2rΣsA

⊤
r G

−1
r Σ̃G−1

r ArΣs

)
P⊥

]
+

γrr
1− γrr

ζ2 + η2r ,

(174)

⟨Err⟩D,w∗(ρ = 1) =
1

1− γrr

1

M
1⊤
M

[
Σs −

2

νrr
q̂rΣsA

⊤
r G

−1
r ArΣs +

1

νrr
q̂2rΣsA

⊤
r G

−1
r Σ̃G−1

r ArΣs

]
1m

+
γrr

1− γrr
ζ2 + η2r ,

(175)

With the aid of our custom Mathematica package, we calculate the traces and contractions in these
expressions and expand them to leading order in M , finding:

⟨Err⟩D,w∗(ρ = 0) =
1

1− γrr

(
s(1− c)

(
1−

(1− c)sq̂rνr
(
q̂r(s(1− c) + ω2) + 2νr

)
(q̂r(s(1− c) + ω2) + νr) 2

))
+

γrrζ
2 + η2r

1− γrr

(176)

⟨Err⟩D,w∗(ρ = 1) =
1

1− γrr

(
s(1− c)(1− νrr) + ω2

νrr

)
+

γrrζ
2 + η2r

1− γrr
(177)

In the “ridgeless” limit where λ → 0, we obtain:
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γrr =
4ανrr

(α+ νrr + |α− νrr|)2
(178)

⟨Err(ρ = 0)⟩D,w∗ =


s(1−c)νrr
νrr−α

(
1 + sα(1−c)(α−2νrr)

νrr[s(1−c)+ω2]

)
+

αζ2+νrrη
2
r

νrr−α , if α < νrr
s(1−c)α
α−νrr

(
1− s(1−c)νrr

s(1−c)+ω2

)
+

νrrζ
2+αη2r

α−νrr , if α > νrr

 (λ → 0)

(179)

⟨Err(ρ = 1)⟩D,w∗ =


νrr

νrr−α

(
s(1−c)(1−νrr)+ω2

νrr

)
+

αζ2+νrrη
2
r

νrr−α , if α < νrr

α
α−νrr

(
s(1−c)(1−νrr)+ω2

νrr

)
+

νrrζ
2+αη2r

α−νrr , if α > νrr

 (λ → 0)

(180)

H.2 Off-Diagonal Terms

In this section, we calculate the off-diagonal error terms Err′ for r ̸= r′, again making use of our
custom Mathematica package to simplify contractions of block matrices of the prescribed form. By
the isotropic nature of the equicorrelated data model, Err′ can only depend on the subsampling
scheme through νrr, νr′r′ , and νrr′ . We can thus, without loss of generality, write:

Ar =

(
Inr×nr

0nr×nr′ 0nr×ns
0nr×l

0ns×nr
0ns×nr′ Ins×ns

0ns×l

)
∈ RNr×M (181)

Ar′ =

(
0nr′×nr

Inr′×nr′ 0nr′×ns
0nr′×l

0ns×nr
0ns×nr′ Ins×ns

0ns×l

)
∈ RNr′×M (182)

where we have defined ns to be the number of features shared between the readouts, nr = Nr − ns
and nr′ = Nr′ − ns and the count of remaining features l = M − nr − nr′ − ns.

Then, to leading order in M , we find:

γrr′ =
ανrr′(s(1− c) + ω2)2

(λ+ qr)(λ+ qr′) (νrr + (s(1− c) + ω2)q̂r) (νr′r′ + (s(1− c) + ω2)q̂r′)
(183)

Averaging Err′ over w∗
0 ∼ N (0, IM ), we get:

⟨Err′(D)⟩D,w∗(ρ = 0) =
γrr′

1− γrr′
ζ2 +

1

1− γrr′

(
1

M
tr [P⊥ΣsP⊥]

)
− 1

M(1− γrr′)
tr

[
P⊥Σs

(
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

)
ΣsP⊥

]
+

q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

tr
[
P⊥ΣsA

⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′ΣsP⊥

]
,

(184)

⟨Err′(D)⟩D,w∗(ρ = 1) =
γrr′

1− γrr′
ζ2 +

1

M(1− γrr′)

(
1⊤
MΣs1M

)
− 1

M(1− γrr′)
1⊤
MΣs

(
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

)
Σs1

⊤
M

+
q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

1⊤
MΣsA

⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′Σs1M

(185)
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Calculating these contractions and traces and expanding to leading order in M , we get:

⟨Err′(D)⟩D,w∗(ρ = 0) =
s(1− c)

1− γrr′

(
1− s(1− c)νrr q̂r

νrr + (s(1− c) + ω2)q̂r
− s(1− c)νr′r′ q̂r′

νr′r′ + (s(1− c) + ω2)q̂r′

+
s(1− c)(s(1− c) + ω2)νrr′ q̂r q̂r′

(νrr + (s(1− c) + ω2)q̂r)(νr′r′ + (s(1− c) + ω2)q̂r′)

)
+

γrr′

1− γrr′
ζ2

(186)

⟨Err′(D)⟩D,w∗(ρ = 1) =
1

1− γrr′

(
s(1− c)(νrr′ − νrrνr′r′) + ω2νrr′

νrrνr′r′

)
+

γrr′

1− γrr′
ζ2 (187)

Taking λ → 0 we get the ridgeless limit:

γrr′ →
4ανrr′

(α+ νrr + |α− νrr|)(α+ νr′r′ + |α− νr′r′ |)
(λ → 0) (188)

⟨Err′(D)⟩D,w∗(ρ = 0) =
1

1− γrr′
F0(α) +

γrr′

1− γrr′
ζ2 (r ̸= r′) (189)

where

F0(α) ≡


(c−1)s(νrνr′ ((2α−1)(c−1)s+ω2)−α2(c−1)sνrr′)

νr((c−1)s−ω2)νr′
, if α ≤ νrr ≤ νr′r′

(c−1)s(νr′((c−1)sνr+(α−1)(c−1)s+ω2)−α(c−1)sνrr′)
((c−1)s−ω2)νr′

, if νrr ≤ α ≤ νr′r′

(c−1)s((c−1)sνr′−csνrr′+(c−1)sνr−cs+sνrr′+s+ω
2)

(c−1)s−ω2 , if νrr ≤ νr′r′ ≤ α

 (190)

⟨Err′(D)⟩D,w∗(ρ = 1) =
1

1− γrr′

(
s(1− c)(νrr′ − νrrνr′r′) + ω2νrr′

νrrνr′r′

)
+

γrr′

1− γrr′
ζ2 (λ → 0)

(191)

H.3 Optimal Regularization

Here, we derive the “locally” optimal regularization which minimizes the prediction error of the
ensemble members independently. Equivalently we derive the optimal regularization for a single
readout (k = 1) or the regularization which minimizes the diagonal terms Err of the generalization
errror. By differentiating Err with respect to the regularization λ, one can show that for the optimal
regularization, we will have

1

(1− γrr)

dSr
dλ

[
a2νrr

α(1− γrr)
Sr
(
(1− ρ2)I0rr + ρ2I1rr + ζ2 + η2r

)
+ (1− ρ2)s2(1− c2)νrr(aSr − 1)

]
= 0

(192)

It is easy to show that dSr

dλ cannot be equal to 0. Setting the term in brackets to zero and solving for λ,
we find with the aid of the computer algebra system Mathematica [54]:

λ⋆ = a

(
a
(
νrr(ζ

2 + η2) + aρ2 + s(1− c)νrr(1− 2ρ2)
)

(1− c)2ν2rr (1− ρ2) s2
− 1

)
, (0 < c ≤ 1) (193)

In the limiting case of isotropic data (c = 0), the optimal regularization reduces to:
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λ⋆ =
1

νrr
(ζ2 + η2) + s

(
1

νrr
− 1

)
, (c = 0) (194)

We note that while generalization error is discontinuous at c = 0, this result can be quickly obtained
from eq. 193 by noticing that the formula for the generalization error with 0 < c ≤ 1 reduces to the
formula for generalization error with c = 0 when we set ρ = c = 0 (when c = 0, the generalization
error does not depend on ρ because there is no special direction in the data).

H.4 Homogeneous Ensembling with Resource Constraints

We make further simplifications in the special case where λr = λ, ηr = η, νrr = 1
k for all

r = 1, . . . k. For simplicity, we also set νrr′ = 0 for all r ̸= r′ so that ensemble members sample
mutually exclusive subsets of the features. We will consider both the ridgeless limit λ → 0 and the
case of “locally optimal” regularization λ = λ∗ (see eq. 193). Concretely, we show here that under
these special cases, generalization error has the forms given in eqs. 25, 26.

We start by analyzing the saddle-point equations 111, 112. Note that in this special case the saddle
point equations will be identical for all r = 1, . . . , k. We will therefore suppress the r index. Solving
this quadratic system of equations explicitly, we encounter the following radical, which we assign
variable name x:

x ≡
√

(aα− aν + λν)2 + 4aλν2 (195)

In order to simplify this radical to begin extracting the factor of s(1− c) that appears in eqs. 25, 26,
we define a reduced regularization:

Λ ≡ λ

s(1− c)
(196)

And substitute Λ, H , W , and Z (recall eq. 24) for λ, η, ω, and ζ, giving

x = s(1− c)X (α, ν,W,Λ) (197)

where X (α, ν,W,Λ) ≡
√
(α(W + 1) + ν(Λ−W − 1))2 + 4Λν2(W + 1) (198)

making the same substitutions, we can then write

q̂ = [s(1− c)]
−1 Q (199)

where Q ≡ 2αν

(−α(W + 1) + ν(Λ +W + 1) +X)
(200)

Continuing to make substitutions in this manner, we arrve at:

S = [s(1− c)]−1S (201)

where S ≡ Q
ν +Q(1 +W )

(202)

Finally, we may express the generalization error in a reasonably compact form. In the special case at
hand, the generalization error is written:

Ek =
1

k
Err(νrr =

1

k
) +

k − 1

k
Err′(νrr′ =

1

k
δrr′) (203)

Substituting 201 for S in eq. 16, and making further substitutions as necessary, we arrive at:

Err(νrr =
1

k
) = s(1− c)Err(k, α, ρ,Λ, H,W,Z) (204)
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where

Err =
N1 +N2

D
(205)

N1 = α(H + 1)k + S(S(W + 1)(α+WZ + Z)− 2α) (206)

N2 = αρ2(k − S)(W (k + S) + k + S − 2) (207)

D = αk − S2(W + 1)2 (208)

We also obtain

Err′(νrr′ =
1

k
δrr′) = s(1− c)Err′(k, α, ρ,Λ, H,W,Z) (209)

where

Err′ =
2
(
ρ2 − 1

)
S

k
− 2ρ2 + 1 (210)

Combining these, we obtain the error of the ensemble as:

Ek = s(1− c)E(k, α, ρ,Λ, H,W,Z) (211)

where:

E =
1

k
Err +

k − 1

k
Err′ (212)

These result are derived in the Mathematica notebook titled “EquiCorrParameterReduction.nb”
included with the available code. It follows from eq. 211 that when λ = 0 error can be written
in the form of eq. 22. It follows from equations 211, 209 that at “locally optimal” regularization
λ∗, error can be written in the form of eq. 23. To see this, note that the reduced regularization
Λ∗ which minimizes Err will only depend on the other arguments of Err. Full expresions for the
generalization error in the case λ → 0 and λ = λ∗ can be found in the mathematica notebooks
“EquiCorrPhaseDiagram_ZeroReg.nb” and “EquiCorrPhaseDiagram_LocalReg.nb” included with
the available code. These equations are long and difficult to interperet – nor are they directly used in
our code – and so are omitted here.

H.4.1 The Intermediate to Noise-Dominated Transition

The transition between the intermediate regime where 1 < k∗ < ∞ and the noise-dominated regime
where k∗ = ∞ can be studied analytically relatively painlessly in the ridgeless limit λ → 0. The
strategy we employ to determine this phase boundary is to examine the large-k asymptotic expansion
of Ek to determine whether the error approaches its asymptotic value from below or above. If Ek
approaches E∞ from below, then k∗ must be finite. If Ek approaches E∞ from above, then k∗ may
be infinite – however, there is still the possibility of k∗ < ∞ if Ek is non-monotonic in k. In practice,
we check the values of Ek for k = 1, 2, . . . , 100 and k = ∞.

Setting Λ = 0 and expanding Ek around k = ∞, we find:

Ek
s(1− c)

= 1− ρ2 + ρ2W +

(
(1 +W )2ρ2 + α(−2 +H +HW + 2ρ2)

)
(1 +W )αk

+O
(

1

k2

)
(213)

Setting the coefficient of k−1 to zero, we find the phase boundary as:

α =
(1 +W )2ρ2

2(1− ρ2)−H(1 +W )
(214)

This equation explains the shapes of the boundaries between the intermediate and noise-dominated
regions in the phase diagrams of fig. 4 with λ = 0 (see black dotted lines in panels b, c, d).

43



An analytical formula for the boundary between the intermediate and noise-dominated regimes at
locally optimal regularization λ = λ∗ cannot be easily obtained. To understand why, we can asses
the large-k asymptotic expansion of the generalization error at locally optimal regularization:

Ek(λ = λ∗) = s(1− c)

[
1− ρ2 + ρ2W +

H

k

]
+O

(
1

k2

)
(215)

This shows that at large k, when H > 0, error always approaches its asymptotic value from above
(recall that when H = 0 we always have k∗ = 1, so that there is no phase boundary unless H > 0).
Thus, determining the phase boundary requires determining the value of k which minimizes Ek,
which is not analytically tractable.

H.5 Infinite Data Limit

In this section we consider the behavior of generalization error in the equicorrelated data model as
α → ∞ while keeping the λ ∼ O(1). For simplicity, we assume νrr′ = 0 for r ̸= r′, isotropic
features (c = 0), no feature noise (ω = 0) and uniform readout noise ηr = η as in main text Fig. 3.
This limit corresponds to data-rich learning, where the number of training examples is large relative
to the number of model parameters. In this case, the saddle point equations reduce to:

q̂r →
α

λ
(216)

qr →
νrrλ

α
(217)

In this limit, we find that γrr′ → 0. Using this, we can simplify the generalization error as follows:

Eg =
1

k2

k∑
rr′=1

Err′ = s

[
1−

(
2− 1

k

)(
1

k

k∑
r=1

νrr

)]
+

η2

k
(218)

Interestingly, we find that the readout error in this case depends on the subsampling fractions νrr only
through their mean. Therefore, with infinite data, there will be no distinction between homogeneous
and heterogeneous subsampling.

I Theoretical Learning Curves and Optimal Subsampling Phase
Diagrams

Here, we provide additional learning curves and phase diagrams of k∗ such as those in Fig. 4a,b,c,d,
exploring more parameter values for the task-model alignment ρ and the Reduced noises H , W ,
and Z. Generalization errors are calculated for a homogeneous ensemble of k linear regressors, as
described in sections 5, H.4. We also show diagrams of generalization error Ek∗ .
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b

Figure S6: (a) Optimal ensemble size k∗ (eqs. 25, 26) in the parameter space of sample size α and
reduced readout noise scale H setting W = Z = 0. Grey indicates k∗ = 1 and white indicates
k∗ → ∞, with intermediate values given by the colorbar. Appended vertical bars show α → ∞. ρ
and λ indicated in panel titles. λ = λ∗ denotes the ‘locally optimal” regularization (see section H.3)
(b) Optimal generalization error Ek∗ for the same parameter values in (a).
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b

Figure S7: (a) Optimal ensemble size k∗ (eqs. 25, 26) in the parameter space of sample size α and
reduced feature noise scale W setting H = Z = 0. Grey indicates k∗ = 1 and white indicates
k∗ → ∞, with intermediate values given by the colorbar. Appended vertical bars show α → ∞. ρ
and λ indicated in panel titles. λ = λ∗ denotes the ‘locally optimal” regularization (see section H.3)
(b) Optimal generalization error Ek∗ for the same parameter values in (a).
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b

Figure S8: (a) Optimal ensemble size k∗ (eqs. 25, 26) in the parameter space of sample size α
and reduced label noise scale Z setting H = W = 0. Grey indicates k∗ = 1 and white indicates
k∗ → ∞, with intermediate values given by the colorbar. Appended vertical bars show α → ∞. ρ
and λ indicated in panel titles. λ = λ∗ denotes the ‘locally optimal” regularization (see section H.3)
(b) Optimal generalization error Ek∗ for the same parameter values in (a).
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Figure S9: Reduced generalization errors Eg/s(1 − c) with λ = 0 and W = Z = 0 (given by eq.
22) for linear ridge ensembles of varying size k. ρ and H values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar.
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Figure S10: Reduced generalization errors Eg/s(1− c) with λ = λ∗ and W = Z = 0 (given by eq.
23) for linear ridge ensembles of varying size k. ρ and H values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar.
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Figure S11: Reduced generalization errors Eg/s(1− c) with λ = 0 and H = Z = 0 (given by eq.
22) for linear ridge ensembles of varying size k. ρ and W values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar.
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Figure S12: Reduced generalization errors Eg/s(1− c) with λ = λ∗ and H = Z = 0 (given by eq.
23) for linear ridge ensembles of varying size k. ρ and W values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar.

51



Figure S13: Reduced generalization errors Eg/s(1− c) with λ = 0 and H = W = 0 (given by eq.
22) for linear ridge ensembles of varying size k. ρ and Z values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar
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Figure S14: Reduced generalization errors Eg/s(1− c) with λ = λ∗ and H = W = 0 (given by eq.
23) for linear ridge ensembles of varying size k. ρ and Z values indicated above plots. Grey lines
indicate k = 1, dashed black lines k → ∞, and intermediate k values by the colorbar.

53


	Introduction
	Learning Curves for Ensembled Ridge Regression
	Problem Setup
	Main Result
	Equicorrelated Data

	Subsampling shifts the double-descent peak of a linear predictor
	Heterogeneous connectivity mitigates double-descent
	Correlations, Noise, and Task Structure Dictate the Ensembling-Subsampling Trade-off
	Conclusion
	Acknowledgements
	Table of Parameters from Proposition 2 and Figures 2,3,4
	Code Availability and Compute
	Homogeneous and Heterogeneous Subsampling
	Numerical Linear Regression with Synthetic Datasets
	Ensembled Linear Classification of Imagenet Images
	Dataset Construction
	Model Training
	Model Prediction
	Linear Classification Experiments
	Reduncancy of ResNext Features
	Heterogeneous Ensembling Mitigates Double-Descent
	Readout Noise Encourages Ensembling


	Generalization error of ensembled linear regression from the replica trick
	Diagonal Terms
	Off-Diagonal Terms

	Derivation of Proposition 1 from LoureiroEnsembles
	Altered Expectations at Evaluation
	Rigorous Proof of Proposition 1
	Off-Diagonal Terms
	Diagonal Terms
	Full Error


	Equicorrelated Data Model
	Diagonal Terms and Saddle-Point Equations
	Off-Diagonal Terms
	Optimal Regularization
	Homogeneous Ensembling with Resource Constraints
	The Intermediate to Noise-Dominated Transition

	Infinite Data Limit

	Theoretical Learning Curves and Optimal Subsampling Phase Diagrams

