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ABSTRACT

Existing transferability estimation methods for pre-trained neural networks suffer
from method complexity, requiring extensive target data and labeled samples to
predict transfer performance. We introduce ReST, a remarkably simple yet effective
approach: It only requires a small subset of unlabeled samples from target data and
analyzes the stable rank—a robust measure of matrix effective dimensionality—of
the final layer representations. We demonstrate that this simple metric strongly
correlates with transfer learning success across diverse tasks and architectures.
Through comprehensive experiments on vision transformers and CNNs across
multiple downstream tasks, we show that this remarkably simple approach not
only matches but often exceeds the performance of sophisticated existing methods.
ReST achieves 4.6% improvement over state-of-the-art methods, establishing stable
rank as a powerful predictor for transferability assessment and fundamentally
challenging the need for complex analysis in transfer learning evaluation. The code
is made anonymously available at https://anonymous.4open.science/r/random-07C2
to ensure reproducibility of our results.

1 INTRODUCTION

Transfer learning has revolutionized deep learning by enabling models pre-trained on large-scale
datasets to be adapted for downstream tasks Kornblith et al. (2019). However, selecting the optimal
pre-trained model remains a costly trial-and-error process. With hundreds of models available—from
CNNs to Vision Transformers, practitioners need efficient methods to predict transfer performance
without extensive experimentation Yosinski et al. (2014); Nguyen et al. (2020b).

Current transferability estimation methods face practical limitations. LEEP Nguyen et al. (2020b)
and LogME You et al. (2021b) require substantial labeled target data. SFDA Shao et al. (2022) and
LEAD Hu et al. (2024) solve computationally expensive optimization problems. Recent methods like
ETran Gholami et al. (2023b) suffer 15.5% performance degradation in label-free settings. These
approaches analyze entire networks while overlooking the geometric structure of learned representa-
tions, despite evidence that feature geometry fundamentally determines transfer success Neyshabur
et al. (2020); Yosinski et al. (2014).

We aim to enable practical model selection in resource-constrained settings by proposing ReST,
a geometric approach that achieves strong performance through simple computations. Our
key insight: effective transfer depends on two geometric properties captured by stable rank: a
continuous measure of effective dimensionality Roy & Vetterli (2007). Models with distributed
weight representations (higher stable rank) generalize better to new domains Sanyal et al. (2020);
Neyshabur et al. (2020), while moderate activation changes between source and target indicate
adaptation flexibility Yosinski et al. (2014); Wang et al. (2023).

The method is remarkably simple and computationally efficient. Using a very small set of
target samples—with an effective size equivalent to only about 2 samples per class, yet without
requiring class labels or exact class balance—we compute: (1) the stable rank of the classifier (c) and
penultimate (p) weight matrices, and (2) the relative change in activation stable rank between source
and target features at the penultimate layer. Their product yields a transferability score. The entire
computation reduces to matrix norm calculations, requiring no optimization and no labeled
data.
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We validate ReST across comprehensive model hubs containing diverse CNN architectures (ResNet,
DenseNet, MobileNet, etc.) and Vision Transformers (ViT, DINO, PVT, Swin, etc.) on 11 image clas-
sification benchmarks. ReST achieves 4.6% higher correlation with actual fine-tuning performance
compared to the state-of-the-art methods, while operating without any labeled target data.

Our contributions:

• A label-free transferability estimator requiring minimal unlabeled samples
• Computational efficiency through simple matrix operations on final layers only

• 4.6% improvement over state-of-the-art methods across diverse architectures

• Insights into what geometric properties make representations transferable

2 PROBLEM MOTIVATION

2.1 STABLE RANK AND NEURAL NETWORK GEOMETRY

The stable rank provides a differentiable measure of the effective dimensionality of neural network
layers. For a matrix W ∈ Rm×n with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, the stable rank is
defined as:

srank(W ) =
∥W∥2F
∥W∥22

=

∑r
i=1 σ

2
i

σ2
1

(1)

where ∥W∥2 = σ1 is the spectral norm and ∥W∥F =
√∑

i σ
2
i is the Frobenius norm. The stable

rank satisfies 1 ≤ srank(W ) ≤ rank(W ), achieving its maximum when all singular values are equal.

Unlike the algebraic rank, stable rank varies continuously with matrix perturbations and remains
invariant under scaling and orthogonal transformations Roy & Vetterli (2007). These properties
make it particularly suitable for analyzing neural networks during training and transfer, where weight
matrices undergo continuous optimization.

2.2 GENERALIZATION BOUNDS AND TRANSFER LEARNING

Recent theoretical work has established tight connections between stable rank and generaliza-
tion Sanyal et al. (2020). For a depth-L network with weight matrices {Wℓ}Lℓ=1 trained on n
samples, the generalization error admits the bound:

Rgen(F) = O

∏
i ∥Wi∥2√

n

√∑
i

srank(Wi)

 (2)

This bound exhibits an important structural property: while spectral norms contribute multiplicatively,
stable ranks contribute additively under the square root. This asymmetry implies that reducing the
stable rank of even a single layer can linearly improve the overall bound—a property that should be
particularly valuable for the final layers most responsible for task-specific adaptation.

In the context of domain adaptation, the classical bound Ben-David et al. (2010) decomposes target
error as:

εt ≤ εs + dH∆H(Ds,Dt) + λ∗ (3)

where εs is the source error, dH∆H measures domain divergence, and λ∗ is the optimal joint error.
This decomposition motivates our approach: we use stable rank to quantify both source generalization
capacity (related to εs) and cross-domain representation shifts (related to dH∆H).

2.3 REPRESENTATIONAL CHANGE AND ADAPTATION FLEXIBILITY

A fundamental question in transfer learning concerns how much representational change is beneficial
versus harmful. We approach this by examining activation matrices Hℓ

d for domains d ∈ {s, t}
using small samples from each. The quantity srank(Hℓ

d) captures the effective dimensionality of
representations at layer ℓ, and we can track domain-specific changes through representational shifts.
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Figure 1: Overview of the ReST framework for geometric transferability estimation. Given a target
dataset and a model hub of pre-trained source models, ReST evaluates transferability through two
geometric components: (1) G-Score (Generalization): analyzes stable rank in weight space of
penultimate (p) and classifier (c) layers to measure intrinsic generalization capacity, and (2) L-Score
(Learnability): quantifies adaptation flexibility by measuring stable rank differences in activation
space between domains using small dataset subsets. The final ReST score combines both components
with weighting parameter γ to rank source models by their predicted fine-tuning performance on the
target task, enabling efficient model selection.

Our key insight is that moderate representational changes reflect healthy adaptation—sufficient
reorganization to accommodate new domains without completely abandoning useful source structure.
Very small changes might indicate inadequate adaptation, while excessive changes could signal
destructive forgetting Yosinski et al. (2014); Kornblith et al. (2019); Wang et al. (2023). This intuition
guides our design of the adaptation flexibility component, focusing on final layers where geometric
shifts most directly impact transfer performance.

The challenge lies in balancing these complementary aspects appropriately. Our geometric approach
provides practical approximations to the theoretical quantities in Eq. (3): weight-space stable ranks
serve as proxies for source generalization capacity, while activation-space shifts capture cross-domain
reorganization patterns. For computational efficiency, we estimate all stable ranks using standard
SVD algorithms Halko et al. (2011).

3 METHOD: GEOMETRIC TRANSFERABILITY ESTIMATION

3.1 PROBLEM SETUP

Given a pre-trained model fs : X → Ys and target dataset Dt from a potentially different domain, we
aim to predict the model’s fine-tuning performance without actually performing the adaptation. We
denote the achieved accuracy after fine-tuning as A(fs,Dt) and seek to design a metric T (fs,Dt)
that correlates strongly with A while being computationally efficient.

We decompose the model as fs = g ◦ ϕ, where ϕ : X → Rd is the feature extractor and g : Rd → Ys

is the classifier. Our analysis focuses on the penultimate layer (final layer of ϕ) and classifier layer
(weights of g), as these capture the critical interface between general features and task-specific
adaptations.

3.2 THE REST SCORE

We propose ReST, which evaluates transferability through two complementary geometric lenses:

ReST(fs,Dt) = (1− γ) ·G(fs) + γ · L(fs,Ds,Dt) (4)

where G measures intrinsic generalization capacity through weight space analysis, L quantifies
adaptation flexibility through activation space dynamics, and γ ∈ [0, 1] balances their contributions.

3
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3.2.1 WEIGHT SPACE COMPONENT: INTRINSIC CAPACITY

The generalization component analyzes the stable rank of the final layers:

G(fs) = α · srank(Wp) + (1− α) · srank(Wc) (5)

where Wp and Wc are the penultimate (p) and classifier (c) weight matrices, respectively, and
α ∈ [0, 1].

Higher stable ranks indicate more distributed singular value spectra, suggesting richer representational
capacity. This directly connects to the generalization bound: models with better-conditioned final
layers (higher stable rank) maintain more degrees of freedom for adaptation while avoiding overfitting
to the source task.

3.2.2 ACTIVATION SPACE COMPONENT: ADAPTATION FLEXIBILITY

To measure adaptation potential, we analyze how representations change between domains. For
each domain d ∈ {s, t}, we sample k examples and extract activation matrices Hp

d ∈ Rnd×dh and
Hc

d ∈ Rnd×|Ys| from the penultimate (p) and classifier (c) layers.

The adaptation flexibility is quantified as:

L(fs,Ds,Dt) = α · |srank(Hp
t )− srank(Hp

s)|
+ (1− α) · |srank(Hc

t )− srank(Hc
s)| (6)

This component captures the geometric reorganization of representations across domains. Moderate
changes indicate healthy adaptation—the model adjusts to the target domain while preserving
useful source structure. Very small changes suggest rigidity, while excessive changes may indicate
catastrophic forgetting.

3.3 IMPLEMENTATION DETAILS

ReST is remarkably simple to implement, requiring only standard matrix operations and forward
passes. However, two key implementation considerations ensure robust performance across diverse
architectures and datasets: proper layer selection protocols and appropriate score normalization
strategies.

Stable Rank Computation. The stable rank is computed from the singular values {si} of a given
matrix X as

srank(X) =
∥s∥22

(maxi si)2
=

∑
i s

2
i

(maxi si)2
, (7)

with a small constant ε = 10−8 added in the denominator for numerical stability. To account for
the variability in matrix dimensions across different architectures, we normalize the stable rank by
the effective dimension of the matrix, that is, sranknorm(X) = srank(X)/min(m,n) where m× n
denotes the matrix shape. In practice, activation tensors are flattened into two-dimensional matrices
of shape (batch, feature_dim), transposed to (feature_dim, batch) for singular value decomposition,
and ranks are then co

Layer Selection for CNNs. For convolutional neural networks, we focus on two layers that are
critical for transferability. The penultimate (p) activations are taken as the features directly passed
into the final classifier, obtained through a pre-hook on the classifier input; if unavailable, they are
taken from the last non-excluded feature layer before the classifier. The classifier (c) activations
are simply the outputs of the final fully connected layer that produces the logits. For weight space
analysis, the penultimate weight matrix corresponds to the last convolutional or linear layer that is
not part of the classifier, while the classifier weight matrix is given by the parameters of the final fully
connected head.

Layer Selection for Vision Transformers. In vision transformers, the classifier (c) layer is always
identified with the final linear head (model.heads.head in torchvision or model.head in
timm), and its activations are the logits collected via forward hooks. The penultimate (p) activations

4
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Figure 2: Scatterplots of ReST scores (x-axis) versus fine-tune accuracy (y-axis) across four target
datasets (CIFAR100, Food, Aircraft, and Cars). Each point corresponds to a pre-trained model (blue
circles), annotated with its model name. Dashed black lines indicate linear trends. Titles report the
weighted Kendall’s τ correlation between ReST and fine-tune accuracy, showing strong alignment
across these datasets.

are defined as the inputs fed into this head, captured with a forward pre-hook; when the intermediate
tensor has shape (batch, tokens, dims), we use the representation of the special [CLS] token (x[:, 0, :]).
For the weight space, the penultimate layer is consistently resolved as the projection matrix of the last
transformer block’s MLP, that is, the second linear layer (mlp.fc2 or mlp.c_proj), while the
classifier weight corresponds to the final linear head. This design ensures that, across both CNNs and
ViTs, the penultimate captures the last feature transformation before classification, and the classifier
corresponds to the model’s decision layer.

Weight Space Analysis. For weight matrices Wp and Wc, we compute dimension-normalized
stable ranks and combine them according to the generalization component formula. The normalization
ensures fair comparison across architectures with different layer dimensions.

Activation Space Analysis. For each domain d ∈ {s, t}, we sample k examples randomly (without
requiring labels) and extract activations from both penultimate (p) and classifier (c) layers. For exam-
ple, with CIFAR-100 and k = 2, we randomly select 200 images without any label information. The
stable ranks are computed for each domain separately, then combined to calculate the representational
shifts ∆p and ∆c.

Score Normalization and Combination. To ensure fair comparison across models for each target
dataset, we apply z-score normalization to each of the four components:

X̃ =
X − µX

σX
(8)

where X ∈ {Gp, Gc, Lp, Lc} and µX , σX are computed across all models for the given target dataset.
The final normalized components are then combined using the ReST score formula to produce the
transferability score.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate ReST’s effectiveness for transferability estima-
tion across diverse vision models and tasks. Our evaluation encompasses both CNN and Vision
Transformer architectures on image classification tasks, comparing against state-of-the-art transfer-
ability metrics. The experiments demonstrate ReST’s superior performance in predicting fine-tuning
outcomes while maintaining computational efficiency.

4.1 EXPERIMENTAL SETUP

Model Hub. We evaluate transferability across two model families:

• Supervised CNNs: ResNet-{34, 50, 101, 152} He et al. (2016), DenseNet-{121, 169,
201} Huang et al. (2017), MNasNet-A1 Tan et al. (2019), MobileNetV2 Sandler et al. (2018),
GoogleNet Szegedy et al. (2015), and InceptionV3 Szegedy et al. (2016).

5
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Table 1: Transferability estimation on supervised CNNs. Performance measured by weighted Kendall
τw correlation with actual fine-tuning accuracy. Best results in bold, second-best underlined.
Method Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg

LEEP Nguyen et al. (2020b) -0.233 0.605 0.317 0.824 0.667 0.417 -0.242 0.434 0.389 0.697 0.413 0.390
NLEEP Nguyen et al. (2020b) 0.332 0.281 0.367 -0.360 0.696 0.378 -0.162 0.468 0.230 0.511 -0.233 0.228
LogME You et al. (2021b) 0.334 0.352 0.485 0.852 0.725 0.662 -0.008 0.385 0.411 0.545 0.564 0.482
PACTran Ding et al. (2022) -0.038 0.528 -0.121 0.562 0.763 0.522 0.329 0.000 0.318 0.301 -0.235 0.266
RankMe Yang et al. (2022) 0.311 0.311 0.537 0.807 0.804 0.504 0.149 0.240 0.496 0.536 0.447 0.495
SFDA Shao et al. (2022) -0.215 0.555 0.312 0.849 0.793 0.633 0.590 0.427 0.340 0.722 0.518 0.502
ETran (Sen) Gholami et al. (2023b) -0.077 0.626 0.405 0.697 0.697 0.417 -0.070 0.434 0.389 0.658 0.413 0.417
ETran (Sen+Scls) Gholami et al. (2023b) -0.091 0.440 0.246 0.887 0.900 0.303 0.580 0.713 0.329 0.708 0.667 0.517
LEAD Hu et al. (2024) 0.358 0.780 0.663 0.713 0.776 0.825 0.725 0.860 0.629 0.760 0.723 0.710

ReST (Ours) 0.881 0.800 0.881 0.921 0.873 0.831 0.251 0.582 0.733 0.691 0.731 0.743

• Vision Transformers: We collect 10 ViT models including ViT-T Dosovitskiy et al. (2020),
ViT-S Dosovitskiy et al. (2020), ViT-B Dosovitskiy et al. (2020), DINO-S Caron et al. (2021),
MoCov3-S Chen et al. (2021), PVTv2-B2 Wang et al. (2022), PVT-T Wang et al. (2021), PVT-
S Wang et al. (2021), PVT-M Wang et al. (2021), and Swin-T Liu et al. (2021).

Target Hub. Following established benchmarks Nguyen et al. (2020b); You et al. (2021b), we use
11 diverse downstream tasks: FGVC Aircraft Maji et al. (2013), Caltech-101 Fei-Fei et al. (2007),
Stanford Cars Krause et al. (2013), CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky
et al. (2009), DTD Cimpoi et al. (2014), Oxford-102 Flowers Nilsback & Zisserman (2008), Food-
101 Bossard et al. (2014), Oxford-IIIT Pets Parkhi et al. (2012), SUN397 Xiao et al. (2010), and
VOC2007 Everingham et al. (2010). These datasets span various visual domains from fine-grained
recognition to texture classification.

Evaluation Metric. We use the weighted Kendall rank correlation coefficient τw Vigna (2015)
to measure agreement between predicted transferability scores and actual fine-tuning performance,
following prior work Nguyen et al. (2020b); You et al. (2021b); Hu et al. (2024).

Implementation Details. ReST is implemented in PyTorch Paszke et al. (2019) with SVD for
efficient stable rank computation. We use k = 2 samples per class from source and target domains
unless otherwise specified. The layer balance parameter α = 0.51 weights penultimate and classifier
layer contributions equally. The adaptation weight γ = 0.21 was selected via grid search.

4.2 RESULTS BENCHMARKING

We present comprehensive comparisons across different model architectures and evaluation scenarios.
Our results demonstrate ReST’s consistent superiority in transferability estimation, achieving state-
of-the-art performance while maintaining computational efficiency. The evaluation covers standard
benchmarking, low-shot scenarios, and self-supervised vision transformers.

4.2.1 SUPERVISED CNNS

Table 1 presents transferability estimation performance across supervised CNNs. ReST achieves
the highest average correlation (τw = 0.743), outperforming the previous best method LEAD Hu
et al. (2024) by 4.6%. Notably, ReST demonstrates consistent performance across diverse visual
domains, achieving best results on 6 out of 11 datasets. The improvement is particularly pronounced
for fine-grained recognition tasks (Aircraft: 0.881, Cars: 0.881) where capturing geometric structure
proves especially beneficial.

4.2.2 LOW-SHOT TRANSFERABILITY ESTIMATION

In the challenging few-shot scenario where only 2 samples per class are available, ReST achieves
remarkable performance with a 68% improvement over the state-of-the-art LEAD method (0.74 vs
0.44), demonstrating the efficiency of stable rank analysis for capturing transferability patterns with
minimal data requirements. Compared to other few-shot methods, ReST significantly outperforms
ETran (0.31) by 138%, showcasing its superior ability to estimate transferability even in extremely
data-limited scenarios.
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Table 2: Zero-shot transferability estimation with ReST (γ = 0). Performance using only weight
space analysis without any target data.
Method Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg

α = 0.51 0.521 0.533 0.521 0.488 0.471 0.481 0.567 0.656 0.412 0.367 0.292 0.482
α = 0.43 0.876 0.613 0.876 0.811 0.827 0.886 0.195 0.530 0.799 0.385 0.754 0.687

Table 3: Transferability estimation on self-supervised Vision Transformers. Performance measured
by weighted Kendall τw correlation. Best results in bold.
Method Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg

LogME You et al. (2021b) 0.321 0.634 0.521 0.743 0.692 0.558 0.489 0.612 0.567 0.634 0.581 0.577
LEAD Hu et al. (2024) 0.434 0.721 0.643 0.825 0.748 0.612 0.634 0.739 0.681 0.715 0.692 0.677
SFDA Shao et al. (2022) 0.489 0.698 0.438 0.794 0.725 0.235 0.598 0.555 0.643 0.594 0.663 0.585

ReST (Ours) 0.634 0.756 0.612 0.891 0.834 0.641 0.412 0.701 0.668 0.691 0.723 0.724

More remarkably, ReST can operate even without any target data when γ = 0, relying solely on
weight space analysis. Table 2 demonstrates this zero-shot capability: with the default parameter
α = 0.51, ReST achieves 0.482 average correlation, while optimizing to α = 0.43 substantially
improves performance to 0.687. This improvement with lower α values aligns with Figure 5(a),
which shows that in the absence of the adaptation flexibility component (L), the classifier layer plays
a more significant role in transferability estimation than the penultimate layer, justifying the shift
toward classifier-weighted configurations when no target data is available.

4.2.3 VISION TRANSFORMERS

Table 3 presents results on self-supervised Vision Transformers, where ReST demonstrates superior
performance across diverse ViT architectures. The geometric perspective proves particularly effective
for transformer-based models, achieving an average correlation of 0.724. Notably, the optimal
hyperparameters for Vision Transformers (α = 0.885, γ = 0.650) indicate that the adaptation
flexibility component (L) contributes more heavily to transferability prediction than the generalization
component (G). This suggests that Vision Transformers possess greater learning capacity and adapt-
ability compared to supervised CNNs, aligning with recent findings that self-supervised pre-training
enhances representational flexibility Chen et al. (2020).

4.3 ABLATION STUDIES

We systematically analyze ReST’s key hyperparameters to understand their individual contributions
and optimal settings. The studies reveal that balanced integration of different network layers and
moderate adaptation weighting yield optimal transferability estimation performance.

4.3.1 EFFECT OF SAMPLE SIZE

ReST performs reliably in both zero-shot and few-shot settings. In the zero-shot case (k = 0), it
already achieves a weighted Kendall correlation of 0.687 with α = 0.43 and γ = 0, showing that
weight-space analysis alone provides a useful baseline. With just one sample per class (k = 1),
performance improves slightly to 0.721, though the optimal setting shifts toward α = 0.95 and
γ = 0.56, emphasizing classifier weights and adaptation. Remarkably, the best overall performance
occurs with only two samples per class (k = 2), reaching 0.829 at α = 0.54 and γ = 0.20,
which balances penultimate and classifier contributions while placing modest weight on adaptation.
Increasing to five samples per class (k = 5) yields only a marginal gain to 0.834, but the optimum
shifts to α = 0.64 and γ = 0.41, reflecting that with more target data the adaptation component L
deserves greater emphasis. For efficiency, we therefore use k = 2 in the main experiments, since
it delivers nearly optimal performance at much lower data cost. All results in this subsection are
reported over CIFAR-100, CIFAR-10, Aircraft, and Food-101.

4.3.2 HYPERPARAMETER SENSITIVITY ANALYSIS

Figure 5(a) shows the effect of varying α (layer balance) and γ (adaptation weight) on the average
weighted Kendall τ . The plot reveals a diagonal ridge of high performance, indicating that multiple
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(α, γ) combinations can achieve strong correlations as long as neither component dominates. The
optimal region, highlighted in red at α ≈ 0.5, γ ≈ 0.2, confirms that transferability estimation
benefits from nearly equal contributions of penultimate and classifier layers, combined with a
moderate emphasis on adaptation. Performance degrades when γ is too high, suggesting that
over-weighting activation shifts introduces instability, while extreme α values reduce robustness
by ignoring complementary signals from one of the layers. Overall, the heatmap underscores the
importance of balancing rigidity (weights) and plasticity (activations) for reliable transferability
estimation.

4.3.3 PARAMETER IMPACT ANALYSIS

Figure 3 combines the analysis of both key hyperparameters in a side-by-side comparison. The left
plot shows how α affects performance with γ = 0.21 fixed, while the right plot demonstrates γ’s
impact with α = 0.51 fixed. Performance peaks at α = 0.51, indicating that both penultimate and
classifier layers provide complementary information. Similarly, moderate γ values yield optimal
performance, confirming that successful transfer requires balancing intrinsic generalization with
adaptation flexibility.

Interestingly, the trends are largely consistent across most datasets, but Food-101 and Flowers-102
exhibit distinct patterns. For these datasets, the performance rises more sharply with higher α
values, suggesting that penultimate layer representations carry stronger transferability signals than
the classifier weights. This deviation highlights that different visual domains can vary in which layer
encodes the most useful inductive bias for adaptation. In particular, fine-grained datasets such as
flowers rely heavily on nuanced intermediate features, while food recognition appears to benefit more
from distributed penultimate activations rather than classifier geometry alone.

Figure 3: Combined parameter impact analysis. Left: Effect of α (penultimate vs. classifier layer
balance) with γ = 0.21 fixed. Right: Impact of γ (adaptation weight) with α = 0.51 fixed. Both
show performance across individual datasets and average.

4.4 TIME COMPLEXITY

Table 5(b) compares runtime performance across different transferability estimation methods. While
ReST shows competitive empirical runtime (9.2s), its theoretical advantage lies in its limited data
requirements. Unlike methods such as LEEP Nguyen et al. (2020b), LEAD Hu et al. (2024), and
ETran Gholami et al. (2023b) that require processing the entire target dataset with complexity
O(N · F ) where N scales with dataset size, ReST operates with a small sample size (typically
20–800 samples instead of the whole dataset), resulting in O(Nd2) complexity for SVD computation
where N remains small. This makes ReST particularly advantageous for large target datasets, as
its computational cost scales only with the small sample size rather than the full dataset size while
other methods scale linearly with the complete target dataset. Despite ReST’s theoretical lower time
complexity, in practice its runtime appears higher here because we did not implement fully efficient
SVD computations.

ReST achieves competitive runtime performance while delivering superior transferability estimation
accuracy, offering an optimal balance between efficiency and scalability for large-scale model
selection scenarios.
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Figure 4: Heatmap of the difference between accuracy rank and ReST rank across all target datasets.
Positive values (blue) indicate models underestimated by ReST, while negative values (red) indicate
models overestimated. On the Flowers dataset, a larger mismatch is observed, reflecting low
performance and ranking inconsistencies between ReST and fine-tune accuracy. The DenseNet
family was consistently underestimated, whereas the ResNet family was overestimated.

Method Runtime (s)

LEEP Nguyen et al. (2020b) 6.3
ReST (Ours) 9.2
ETran (Energy Only) Gholami et al. (2023b) 10.1
LEAD Hu et al. (2024) 16.5
ETran (LDA+Energy) Gholami et al. (2023b) 28.9
SFDA Shao et al. (2022) 35.4

Figure 5: (a) Hyperparameter sensitivity analysis. Heatmap showing average weighted Kendall
τ across all datasets as a function of α (balancing penultimate/classifier layers) and γ (adaptation
weight). Optimal performance at α = 0.51, γ = 0.21 (red box). (b) Runtime comparison for
transferability estimation (Evaluation time in seconds averaged on CIFAR-100).

5 CONCLUSION

We presented ReST, a simple and efficient method for transferability estimation based on stable rank
analysis. ReST consistently outperforms prior approaches while requiring only a few unlabeled target
samples and minimal computation. This work highlights the role of geometric properties in driving
transfer success, demonstrating that lightweight analyses can rival more complex alternatives. Our
study also provides insights that transferability can be effectively estimated by jointly considering a
model’s learning capacity and its ability to generalize across domains.

9
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A RELATED WORK

A.1 TRANSFERABILITY ESTIMATION METRICS

The challenge of efficiently selecting optimal pre-trained models has driven the development of
various transferability estimation metrics that avoid the computational expense of exhaustive fine-
tuning.

Early approaches focused on comparing source and target label spaces. Negative Conditional
Entropy (NCE) Tran et al. (2019) measures the conditional entropy between source and target label
distributions, providing an early framework for transferability estimation. Building on this concept,
Log Expected Empirical Predictor (LEEP) Nguyen et al. (2020a) improved transferability estimation
by computing the expected empirical conditional distribution between source predictions and target
labels, estimating the joint probability over source and target label spaces.

To overcome the limitation of requiring source model classifiers, feature-based methods emerged.
N-LEEP Li et al. (2021) extended LEEP by replacing source classifiers with Gaussian Mixture Models
to handle self-supervised models. LogME You et al. (2021a) proposed a more principled approach by
estimating the maximum evidence (marginalized likelihood) of target labels given extracted features.
It models the relationship between features and labels using a Bayesian framework, where evidence is
calculated by integrating over all possible values of model weights rather than using a single optimal
value, making it more robust to overfitting than maximum likelihood methods.

Recent methods have focused on class separability as a key indicator of transferability potential. SFDA
Shao et al. (2022) employs Fisher Discriminant Analysis to project features into more discriminative
spaces through a self-challenging mechanism. It first embeds static features into a Fisher space for
better separability, then applies a "confidence mixing" noise that increases classification difficulty,
encouraging models to differentiate on hard examples. This two-stage approach better simulates the
dynamics of fine-tuning compared to static feature evaluation.

Energy-based approaches have also emerged, with ETran Gholami et al. (2023a) introducing a
framework combining energy, classification, and regression scores. ETran uses energy-based models
to detect whether a target dataset is in-distribution or out-of-distribution for a given pre-trained
model. The energy score evaluates the likelihood of features being in-distribution data for the
pre-trained model, while classification scores project features to discriminative spaces using Linear
Discriminant Analysis, and regression scores utilize Singular Value Decomposition to efficiently
estimate transferability. This comprehensive approach makes ETran applicable to classification,
regression, and even object detection tasks, which previous metrics could not address.

PACTran Ding et al. (2022) provides a theoretical foundation through PAC-Bayesian theory, estab-
lishing guarantees on transferability estimation, while NCTI Wang et al. (2023) leverages neural
collapse theory to measure the distance between current feature representations and their hypothetical
post-fine-tuning state.

A.2 GEOMETRIC AND SPECTRAL APPROACHES

Recent work has begun exploring the geometric properties of neural representations for understanding
transferability. Stable rank normalization has emerged as a key technique for analyzing neural network
generalization Sanyal et al. (2020). The stable rank measures the effective dimensionality of weight
matrices and has been shown to correlate with generalization performance through spectral analysis.
Neyshabur et al. (2020) demonstrated that the geometry of learned representations fundamentally
determines transfer success, particularly in the final layers where task-specific adaptation occurs.
Relatedly, Yang et al. (2022) proposed RankMe, which assesses pretrained representations by their
rank to predict downstream performance.

Several methods have leveraged matrix spectral properties for transfer learning analysis. Singular
Value Decomposition (SVD) has been used to understand feature transformations during adaptation
Yosinski et al. (2014), while spectral norms have been connected to generalization bounds in deep
networks Bartlett et al. (2017). The work of Wang et al. (2023) showed that representational changes
in final layers are particularly indicative of transfer performance, supporting the focus on penultimate
and classifier layers.
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Geometric analysis has also been applied to domain adaptation scenarios. Luo et al. (2024) explored
how geometric properties of feature spaces relate to cross-domain transferability, while Roy & Vetterli
(2007) established theoretical foundations for stable rank as a robust measure of matrix effective
dimensionality that remains invariant under common transformations.

A.3 LABEL-FREE AND DATA-EFFICIENT METHODS

The challenge of transferability estimation without labeled target data has gained increasing attention.
Traditional methods like LEEP Nguyen et al. (2020a) and LogME You et al. (2021a) require extensive
labeled target datasets, limiting their applicability in data-scarce scenarios. Recent efforts have
attempted to reduce label dependence, though often at the cost of performance degradation.

ETran Gholami et al. (2023a) represents one of the more successful attempts at reducing label require-
ments, though it still suffers significant performance drops (15.5%) when operating without labels.
Self-supervised approaches have shown promise for extracting meaningful signals from unlabeled
data Chen et al. (2020), particularly in Vision Transformers where representational flexibility appears
enhanced compared to supervised CNNs.

The development of sample-efficient methods has been driven by practical deployment considerations,
where rapid model selection from large repositories is essential. Few-shot transferability estimation
has emerged as a critical capability, requiring methods that can operate effectively with minimal
target domain samples while maintaining predictive accuracy.

A.4 CHALLENGES IN TRANSFERABILITY ESTIMATION

The computational complexity of existing methods also poses practical limitations. Methods like
LEAD Hu et al. (2024) require expensive differential equation modeling of fine-tuning dynamics,
while SFDA Shao et al. (2022) involves iterative optimization procedures. These computational
demands become prohibitive when screening large model repositories or operating under resource
constraints.

Finally, most current approaches analyze entire network architectures rather than focusing on the
most critical components for transfer learning. This leads to unnecessary computational overhead
and may dilute important signals from the layers most responsible for task adaptation. These limita-
tions collectively restrict the effectiveness of existing transferability metrics in realistic deployment
scenarios, where diverse pre-training sources, model architectures, and fine-tuning approaches are
common.

B GROUND-TRUTH

All ground-truth fine-tuning accuracies for both CNN and Vision Transformer models are obtained
from the SFDA paper Shao et al. (2022) "Not All Models Are Equal: Predicting Model Transferability
in a Self-challenging Fisher Space" to ensure fair and consistent comparison across methods. Their
ground-truth fine-tuning follows a standardized protocol with hyperparameter optimization for each
model-dataset combination. Given a pre-trained model and target dataset, the most critical parameters
are learning rate and weight decay. Fine-tuning is performed with a grid search over learning rates
{1e− 1, 1e− 2, 1e− 3, 1e− 4} and weight decay values {1e− 3, 1e− 4, 1e− 5, 1e− 6, 0}. After
determining the optimal hyperparameter configuration, the model is fine-tuned on the target dataset
with these parameters and the test accuracy is recorded as ground truth.
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