XOLVER: GENERALIST REASONING AND PROBLEM SOLVING THROUGH FEDERATED MULTI-AGENT DYNAMICS AND HOLISTIC EXPERIENCE LEARNING

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

034

037 038 039

040 041

042

043

044

045

046 047

048

051

052

ABSTRACT

Despite rapid advances in complex reasoning, large language models (LLMs) largely operate in isolation, treating each problem as a fresh attempt without retaining or reusing prior experience. In contrast, expert problem solvers—such as Olympiad or programming contest teams—leverage a rich tapestry of experience: mentorship from coaches, intuition from past problems, mastery of tools and libraries, peer strategies, and continuous refinement through trial and error—even drawing insights from related problems under competition conditions. Inspired by this, we introduce **Xolver**—a training-free, generalist reasoning and problem solving framework that equips a black-box LLM with a persistent, evolving memory of holistic experience. Xolver combines two key innovations: (i) a holistic experiencelearning paradigm that unifies external and self-retrieval, tool use, collaborative agent interaction, agent-driven evaluation, and iterative reasoning refinement; and (ii) a dynamic multi-agent collaboration schema that departs from orchestration engineering, instead employing a federated learning strategy in which agents independently solve problems and aggregate their solutions. Extensive evaluations across reasoning, agentic, and coding benchmarks show that Xolver consistently outperforms specialized reasoning agents (e.g., OctoTools, Search-ol, AWorld, OpenHands, OAgents, Agent S2.5). Even with lightweight backbones (e.g., QWQ-32B), it frequently surpasses state-of-the-art proprietary models (Qwen3-235B, Gemini 2.5 Pro, o3, Deep Research, o4-mini-high). With stronger backbones (e.g., o3-mini-high), Xolver achieves new state-of-the-art scores: 94.4 on AIME'24, 93.7 on AIME'25, 91.6 on LiveCodeBench, 90.1 on GAIA, 71.7 on BrowseComp, 74.4 on OSWorld, 84.9 on SWE-bench Verified (bash only), 57.3 on HLE, 94.6 on GPQA Diamond, 84.4 on 2WIKI, and 82.3 on Bamboogle—highlighting holistic and federated experience learning as a crucial step toward dynamic, generalist agents capable of expert-level reasoning. We will open-source all code, and data.

1 Introduction

Recent advances in large language models (LLMs) have made remarkable progress in complex reasoning and problem solving across domains including mathematics (Cobbe et al., 2021; Hendrycks et al., 2021; Lewkowycz et al., 2022) and programming (Chen et al., 2021; Austin et al., 2021; Khan et al., 2024). Yet despite these impressive capabilities, conventional LLM reasoning approaches remain fundamentally limited: they standalone each problem instance, generating solutions from scratch without accumulating or transferring insights from rich, diverse experiential knowledge.

This isolated reasoning paradigm marks a significant departure from how expert human problem solvers operate. Expert problem solvers—such as an Olympiad or programming contest teams—rarely approach problems in a vacuum. Instead, they draw upon a rich tapestry of cumulative experiences: absorbing mentorship from coaches, developing intuition from past problems, leveraging knowledge of tool usage and library functionality (e.g., calculator), adapting strategies based on peers' expertise and experiences, gaining insights through iterative trial and error, and learning from related problems even during competition. This holistic experience empowers them to tackle new challenges not from scratch, but by dynamically applying accumulated knowledge and adaptive strategies.

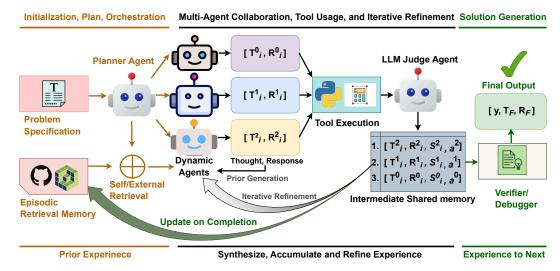


Figure 1: **Xolver Scaffold.** At each iteration, agents receive their past reasoning history and topranked exemplars to generate new thoughts and responses, using tools (e.g., code) as needed. A judge model ranks outputs, and an intermediate memory maintains the best responses over time. Exemplars are initialized via episodic retrieval and continually updated with high-quality solutions from the memory. Iteration stops when convergence or max steps are reached, followed by final verification.

While numerous prior studies have enhanced LLM reasoning and problem solving through various forms of experiential knowledge augmentation, they have predominantly operated within discrete modalities—retrieving similar problems or relevant contexts (Parvez et al., 2021; Lewis et al., 2020; Guu et al., 2020), leveraging external tools (Lu et al., 2025; 2024), or facilitating multi-agent collaboration (Islam et al., 2025). Despite their individual strengths, these approaches address distinct facets of experiential knowledge independently, preventing LLMs from accumulating and synthesizing a comprehensive repertoire of learning signals across diverse experiential dimensions, thereby limiting the development of the rich, interconnected knowledge structures that characterize human expertise. This fragmentation is further compounded by the fact that most problem-solving frameworks are designed for specific tasks or environments, limiting their generality and the ability to transfer knowledge across domains.

In this paper, we introduce **Xolver**—a training-free, generalist reasoning and problem solving framework that emulates the holistic experience-driven, collaborative reasoning of expert teams. At its core, Xolver integrates planning, episodic retrieval from external and parametric memory, tool use, multi-agent collaboration, agent evaluation, and iterative self-refinement within a unified architecture. A planner agent coordinates specialized agents—such as mathematicians or programmers—that collaborate on complex tasks. Initially, reasoning is guided by exemplars from episodic memory; in subsequent iterations, agents rely on a shared memory that records trajectories, solutions, and feedback. This evolving memory enables agents to build on prior successes, correct errors, and progressively refine solutions. When necessary, agents invoke external tools (e.g., code execution), while a judge agent evaluates outputs, ranks top responses, and enriches the shared memory with curated traces. Iterations proceed until convergence or a fixed budget is reached, followed by a final verification step. Additionally, by updating its episodic store with each newly solved problem and its reasoning trace, Xolver can continually expand its knowledge base. Figure 1 illustrates the workflow.

In addition to its holistic experience-driven paradigm, Xolver differs fundamentally from existing multi-agent workflows, which often reduce to orchestration engineering over cascaded agent communication (Yao et al., 2022; Hong et al., 2024; Wang et al., 2024; Lei et al., 2024; Wu et al., 2023). In contrast, we introduce federated agent learning, a collaboration method in which each agent independently solves the complete problem without peer-to-peer messaging (federated), while a judge agent consolidates their reasoning, outputs, and evaluation feedback into a shared memory for that iteration (aggregated). Agents then condition on this evolving memory to iteratively refine their solutions. Finally, unlike task-specific frameworks, Xolver's human-aware design enables it to operate as a generalist problem solver.

We conduct large-scale experiments across a range of math and programming benchmarks—including GSM8K, Math-500, AIME (2024 and 2025), LiveCodeBench (v5), GAIA, BrowseComp, OSWorld,

Humanities Last Exams (HLE), SWE-bench Verified (bash only), GPQA Diamond, SQuAD2.0, 2WIKI and Bamboogle—using both proprietary (o3-mini and o4-mini) and open-weight (QWQ-32B and QVQ-72B-preview) backbone models. **Xolver** consistently outperforms specialized reasoning systems such as OctoTools, Search-o1, OpenHands, Agentless, WebSailor, OAgents, Alita, AWorld, GTA1, and Agent S2.5. Remarkably, even when instantiated with lightweight models such as QWQ-32 or o3-mini-med, Xolver often outperforms substantially larger state-of-the-art LLMs, including Qwen3-235B, Gemini 2.5 Pro, o3, and o4-mini-high. Moreover, with stronger backbones such as o3-mini-high or o4-mini-high Xolver establishes new state-of-the-art results across all benchmarks. Finally, our comprehensive ablations and analyses reveal how Xolver 's experiential components shape its performance, highlighting both its strengths and limitations.

2 THE XOLVER FRAMEWORK

Given a problem query $q \in \mathcal{Q}$ and a pretrained language model $\mathrm{LLM}_{\theta}(\cdot)$, a conventional approach generates a solution via single-step inference: $y \sim \mathrm{LLM}_{\theta}(q)$. In contrast, \mathbb{X} **olver** executes a dynamic, multi-agent reasoning process that iteratively accumulates and leverages symbolic experience to solve complex problems more effectively. To support structured collaborative reasoning, \mathbb{X} olver maintains two complementary forms of memory: an *episodic memory* \mathcal{D}_E , which stores a library of past problems, solutions, and reasoning traces; and an intermediate dynamic *shared memory* \mathcal{D}_S , which evolves during inference to retain high-quality agent trajectories—comprising reasoning thoughts, responses, agent metadata, and feedback. In \mathbb{X} olver, a multi-agent team \mathcal{A} is orchestrated adaptively by a planner agent \mathcal{P} , which assigns roles and configures memory access. During inference, \mathcal{A} agents leverage an external toolset \mathcal{T} (e.g., Python interpreter) to support accurate computation. Finally, a verifier or external debugger \mathcal{V} is invoked to extract and format the final answer, and to validate correctness for executable outputs. Below, we first describe the \mathbb{X} olver agents and tools in Section 2.1, followed by the memory components in Section 2.2, and the inference cycle in Section 2.3.

2.1 AGENTS AND TOOLS

Planner Agent \mathcal{P} . The planner agent \mathcal{P} is responsible for initiating, planning, and orchestrating the Xolver multi-agent architecture. Given the problem q and the number of agents m, it constructs a team \mathcal{A} of m dynamic agents, each assigned a distinct expert role (e.g., algebra solver, mathematician, theorist, programmer, algorithm designer) tailored to the demands of q. To ensure sufficient task coverage and role diversity, \mathcal{P} first prompts the underlying LLM to over-generate M > m candidate agents, from which it then selects the most effective subset $\mathcal{A} \subset \{a_1, \ldots, a_M\}$ such that $|\mathcal{A}| = m$. A summary of the most frequently generated and selected roles is provided in Appendix E.12.

Dynamic Reasoning Agents \mathcal{A} . The set $\mathcal{A} = \{a^1, a^2, \dots, a^m\}$ represents a team of dynamic reasoning agents constructed by the planner agent \mathcal{P} . Each agent $a^j \in \mathcal{A}$ is assigned a distinct expert role (e.g., algebra solver, programmer, counter-example generator) tailored to the task query q. Agents are instantiated using a standardized prompting template (see Appendix B) that incorporates the task description, assigned role, retrieved examples, prior reasoning attempts, and shared memory feedback—enabling iterative self-correction and role specialization.

At each iteration i, agent a^j receives a context C_i^j and generates a structured reasoning trace T_i^j and a response R_i^j . For the first iteration (i=0), the context is initialized using the task query and relevant retrieved exemplars:

$$\mathcal{A} \leftarrow \mathcal{C}_0^j = \{q\} \cup \mathcal{R}(\mathcal{D}_E). \tag{BUILDCONTEXT}$$

For subsequent iterations ($i \ge 1$), the context evolves by incorporating its prior generation (history) and the shared memory:

$$\mathcal{A} \leftarrow \mathcal{C}_i^j = \{q\} \cup \{T_{i-1}^j, R_{i-1}^j\} \cup \mathcal{D}_S. \tag{BuildContext}$$

Judge Agent \mathcal{J} . The judge agent \mathcal{J} evaluates intermediate outputs from each agent and returns structured feedback to guide refinement and memory updates. Given a query q, a reasoning trace T, and a response R, it produces a feedback tuple $S = (T_S, s)$, where T_S is a natural language explanation (e.g., critique, justification, correction), and s is a scalar quality score. The interpretation of s is task-dependent: for math and other tasks, $s \in [0, 1]$ reflects an LLM-estimated correctness

probability; for code tasks, $s \in \{0, 1, \dots, N_{\text{test}}\}$, where N_{test} denotes the total number of test cases including problem-provided samples and 10 synthesized test cases (LiveCodeBench) generated using AceCode-RM-32B (Zeng et al., 2025). This structured feedback enables agents to identify failures, receive localized corrections, and improve reasoning over iterations.

Verifier Agent \mathcal{V} . Due to linguistic complexity and varying answer specification formats, a response may be incorrect even when the underlying reasoning or open-ended response is valid. For instance, answer formats may require multiple-choice letters (e.g., "(A)" or "Choice B"). Such challenges are even more pronounced in code generation tasks, where predicted code may fail to execute or pass any sample test cases. To mitigate this, \mathbb{X} olver includes a Verifier Agent \mathcal{V} , which operates differently based on the output type. For math and other problems, \mathcal{V} extracts the final reasoning T_F , response R_F , and answer y from the response associated with the top-ranked entry BESTRESPONSE in \mathcal{D}_S , ensuring adherence to the expected output format. For executable code, \mathbb{X} olver invokes an external debugger (e.g., LDB (Zhong et al., 2024)), where \mathcal{V} interacts with a Python runtime to capture execution feedback and iteratively fix runtime errors.

Tools \mathcal{T} . Integrating natural language reasoning with tools like Python execution is a proven way to boost performance on complex reasoning tasks Moshkov et al. (2025); Toshniwal et al. (2024). We observe that even advanced reasoning models often make mistakes in intermediate steps, particularly when computations become non-trivial. To address this, each dynamic agent a^j is explicitly instructed to use Python execution during reasoning when needed. While for math and code tasks, Xolver limits \mathcal{T} to Python (e.g., numerical libraries, interpreters, debuggers), our prompting strategy is toolagnostic, allowed us an interface for extensions to richer toolsets such as (e.g., search engines, patch zoomer, clicking, typing, scrolling web pages, image captioner, file handler, knowledge databases, port transferer, reverse engineer) for other tasks. All prompts are 0-shot and provided in Appendix B.

2.2 Memory Components

Episodic Memory \mathcal{D}_E . Xolver maintains two forms of episodic (long-term) memory: (1) an external memory corpus $\mathcal{D}_E^{\text{ext}} = \{(q', T', R')\}$, which consists of past problem instances q', their corresponding reasoning traces T' (optional), and solution responses R'; and (2) the internal parametric memory encoded in the weights of the agent-specific language model LLM_j .

We define a general retrieval operator $\mathcal{R}(\mathcal{D}_E)$ that returns a set of K examples relevant to the query q. When $\mathcal{D}_E^{\text{ext}}$ is available, retrieval is conducted using similarity-based search (e.g., BM25):

$$\mathcal{R}(\mathcal{D}_E) = \{(q_k', T_k', R_k')\}_{k=1}^K \leftarrow \text{Retrieve}_j(q, \mathcal{D}_E^{\text{ext}}).$$

Otherwise, Xolver falls back to internal self-retrieval by sampling from the agent model itself:

$$\mathcal{R}(\mathcal{D}_E) = \{(q_k', T_k', R_k')\}_{k=1}^K \sim \mathrm{LLM}_j(q).$$

In the case of an external episodic memory, \mathcal{D}_E can also be updated with UPDATEEPISODICMEMORY by adding the top-ranked reasoning and response from \mathcal{D}_S , paired with the problem q, into the external corpus $\mathcal{D}_E^{\text{ext}}$. That is, $\mathcal{D}_E^{\text{ext}} \leftarrow \mathcal{D}_E^{\text{ext}} \cup (q, T, R)$, where (T, R, S, a) is the top-ranked entry in \mathcal{D}_S .

Intermediate Shared Memory \mathcal{D}_S . The shared memory \mathcal{D}_S maintains a fixed-size set of high-quality intermediate reasoning, responses, and metadata generated by the dynamic agents during inference on the current query q. For simplicity and to preserve the dynamic nature of the framework, we constrain $|\mathcal{D}_S| = m$, where m is the number of dynamic agents in \mathcal{A} . Initially, $\mathcal{D}_S \leftarrow \emptyset$. At each iteration i, each agent $a_j \in \mathcal{A}$ produces a reasoning trace T_i^j , response R_i^j , and receives structured feedback $S_i^j = (T_S^{(i,j)}, s_{i,j})$ from the judge agent \mathcal{J} , where $T_S^{(i,j)}$ is a natural language explanation and $s_{i,j}$ is a scalar score reflecting the quality of the tuple (T_i^j, R_i^j) . After collecting the new outputs

$$\tau_i^j = (T_i^j, R_i^j, S_i^j, a^j), \quad j = 1, \dots, m, \tag{RUNAGENTS}$$

we form the candidate pool $\mathcal{M} = \mathcal{D}_S \cup \{\tau_i^1, \dots, \tau_i^m\}$. We then update the fixed-size shared memory by keeping only the top-m tuples by score

$$\mathcal{D}_S \leftarrow \text{TopK}(\mathcal{M}, m; \text{key}(e) = s(e)),,$$
 (UPDATESHAREDMEMORY)

where s(e) extracts the scalar score from $e = (T, R, (T_S, s), a)$.

This replacement mechanism ensures that \mathcal{D}_S always contains exactly m entries with the highest observed scores across all iterations. By maintaining only the strongest reasoning-response-feedback tuples, the shared memory facilitates knowledge transfer between agents and across iterations, enabling collaborative improvement through exposure to diverse high-quality solutions.

2.3 Inference Protocol

216

217

218

219

220

221 222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240241242

243244

245

246

247

248

249

250

251

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

Algorithm 1 summarizes the Xolver inference protocol, which operates in three structured stages. Stage-1, which emulates initialization with prior experience, involves the planner constructing a team of agents \mathcal{A} (lines 2–3). **Stage-2**, embodying symbolic federated experience accumulation and refinement, iterates for \mathcal{I} rounds (lines 4–10). In each round, all agents receive access to \mathcal{D}_S and \mathcal{D}_E , build their symbolic aggregated contexts, and generate structured trajectories and responses. (\mathcal{D}_E is only used for context construction at the first iteration). These are evaluated by the judge agent \mathcal{J} , and \mathcal{D}_S is updated with the resulting feedback tuples (line 7).

Algorithm 1 Xolver Inference Protocol

```
1: Input: Query q, Tools \mathcal{T}, Episodic Memory \mathcal{D}_E,
       parameters m, k, I
 2: Init: \mathcal{D}_S \leftarrow \emptyset
 3: \mathcal{A} \leftarrow \text{PLANNER}(q, m)
 4: for i = 0 to \mathcal{I} do
           \{\mathcal{C}_i\}_{c=1}^m \leftarrow \text{BuildContext}(\mathcal{A}, \mathcal{D}_E, \mathcal{D}_S, q, i)
           \{\tau_i^j\}_{j=1}^m \leftarrow \text{RunAgents}(\mathcal{A}, \mathcal{C}_i, \mathcal{T}, \mathcal{J})
           \mathcal{D}_S \leftarrow \text{UPDATESHAREDMEMORY}(\mathcal{D}_S, \{\tau_i^j\})
 7:
 8:
          if Converged(\mathcal{D}_S) then
 9:
               break
10:
          end if
11: end for
12: y \leftarrow \mathcal{V}(\text{BestResponse}(\mathcal{D}_S))
13: UPDATEEPISODICMEMORY(\mathcal{D}_E, q, \mathcal{D}_S)
14: Return y
```

Upon convergence¹ or after \mathcal{I} rounds, **Stage-3** invokes the verifier agent \mathcal{V} , which extracts the final answer from the top-ranked entry in \mathcal{D}_S (line 11), and updates \mathcal{D}_E with the new experience.

3 EXPERIMENTS

3.1 EVALUATION SETUP

Evaluation Benchmarks. We evaluate Xolver on math, coding, open-ended, multimodal, browsing, multihop, and agentic tasks. Math: GSM8K (Cobbe et al., 2021), Math-500 (Hendrycks et al., 2021), AIME 2024 (MAA, 2024), and AIME 2025 (MAA, 2025) (multi-step high-school competition problems). Coding: SWE-bench Verified (bash only) (Jimenez et al., 2023) and LiveCodeBench v5 (Jain et al., 2024) (dynamic, no-leakage). Open-ended: GPQA Diamond (Rein et al., 2024), SQuAD2.0 (Rajpurkar et al., 2018). Multimodal: GAIA (Mialon et al., 2023), HLE (Phan et al., 2025). Tool-integrated browsing: BrowseComp (Wei et al., 2025). Multihop: 2WIKI (Ho et al., 2020), Bamboogle (Press et al., 2022). Agentic: OSWorld (Xie et al., 2024). These span arithmetic, algebra, number theory, geometry, combinatorics, and algorithmic problem solving.

Baselines and Metrics. We compare Xolver to: (a) proprietary reasoning models—Gemini 2.5 (Pro, Flash Think) (DeepMind, 2025), Grok-3 Beta Think/Mini (Beta) Think (xAI, 2025), Claude 3.7 Sonnet Think (Anthropic, 2025), o1 (OpenAI, 2024b), o3-mini/o3/o4-mini (OpenAI, 2025); (b) open-weight LLMs—Qwen3-235B (Qwen Team, 2024), QWQ-32B (Qwen Team, 2025), DeepSeek-R1 (DeepSeek-AI, 2025); (c) specialized models—AlphaOne (Zhang et al., 2025), OpenMath-Reason (Moshkov et al., 2025), rStar-Math (Guan et al., 2025), rStar-Coder (Liu et al., 2025), OpenCodeReason (Ahmad et al., 2025), Kimi-K1-1.6 (Kimi Team, 2025), Kimi-k2-0905 (Team et al., 2025), Deep Research, ChatGPT Agent, and OpenCua-Qwen2-7B/32B (Wang et al., 2025); and (d) agent/framework baselines—Self-Reflexion (Shinn et al., 2023), Search-o1 (Li et al., 2025b), OctoTools (Lu et al., 2025), CheatSheet (Suzgun et al., 2025), CodeSim (Islam et al., 2025), OpenHands (Wang et al., 2024), Agentless (Xia et al., 2024), WebSailor (Li et al., 2025a), OAgents (Zhu et al., 2025), Alita (Qiu et al., 2025), AWorld (Yu et al., 2025), GTA1 (Yang et al., 2025), and Agent S2.5 (Agashe et al., 2025). For (d) we re-implement with the same backbone LLMs as ours; for (a-c) we report official numbers. Metrics: accuracy for math and agentic tasks (judged by GPT-4o (OpenAI, 2024a)) and pass@1 for code.

 $^{^1}$ Xolver converges when each dynamic agent in \mathcal{A} holds the very same scores (same at max)—terminates when each agent is at max possible scores in the intermediate shared memory $\mathcal{D}_{\mathcal{S}}$ or max iterations \mathcal{I} elapsed.

Inference Details. Backbones include open-weight QWQ-32B (Qwen Team, 2024), QVQ-72Bpreview, and proprietary o3-mini/o4-mini (medium/high) (OpenAI, 2025). To reduce variance, we report averages over 32 runs on LIVECODEBENCH and AIME '25, and 16 runs on AIME '24, with $\sim 1\%$ std. dev. (Appendix E.10). For simpler or instructional tasks—GSM8K, MATH-500, GAIA, BrowseComp, OSWorld, SWE-bench, HLE, and GPQA Diamond—we follow DeepSeek-v3 (Liu et al., 2024) with single greedy decoding. Defaults: temperature 0.2, agents m=3, max iterations $\mathcal{I}=2$; terminate on reaching \mathcal{I} or when shared memory \mathcal{D}_s converges (score 1.0 for non-code tasks; all tests passed for code). For external retrieval in coding (LiveCodeBench), we build a 9M-token corpus of algorithmic problems with C++ solutions from GitHub² (see Appendix D); for math we use OPENMATHREASON (Moshkov et al., 2025). Other tasks use self-retrieval (SWEbench, SQuAD2.0, GPQA Diamond) or adaptive external retrieval (GAIA, OSWorld, HLE, 2WIKI, Bamboogle, BrowseComp) with search engines. We evaluate two variants of Xolver: (i) Xolver with in-competition cross-problem experience (Xolver (+)), which dynamically updates the episodic memory after solving each problem to utilize accumulated knowledge across problems; and (ii) Xolver (-), which keeps the episodic memory static, focusing solely on problem-specific experience. By default, we refer to Xolver (+) as our method if not specified otherwise.

3.2 Main Results

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285 286

287 288

289

290 291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309310311

312

313

314

315

316

317

318

319

320

321

322

323

Table 1 evaluates Xolver across diverse agentic, reasoning, and coding tasks, compared to state-of-the-art LLMs, specialized models, and other frameworks. Whereas, Table 2 (Appendix E.1) presents results in more open-ended and multi-hop reasoning tasks, showing its effectiveness and generality.

Strong Gains Across Benchmarks. Across all datasets, both Xolver (-) and Xolver (+) surpass the backbone LongCoT baselines: for o3-mini-medium, AIME'24 improves 75.8 \rightarrow 93.8 and Live-CodeBench $66.3 \rightarrow 87.3$; for o4-mini-medium, GAIA $54.7 \rightarrow 85.6$ and HLE $18.1 \rightarrow 49.0$; for OWO-32B, AIME'24 78.1 \rightarrow 93.6 and LiveCodeBench 63.4 \rightarrow 79.2; and for QVQ-72B-preview, GAIA 45.2 \rightarrow 77.3 and HLE 11.7→38.5. Surpassing Prior Agents. Relative to Search-o1, OctoTools, CheatSheet, Agent S2.5, and AWorld, Xolver (+) delivers consistent gains, exceeding the best baseline by +12.7 on AIME'25 and +13.5 on LiveCodeBench with o3-mini-medium, and by +14.8 on OSWorld and +9.8 on GAIA with o4-mini-medium. In Comparison to Leading LLMs. Despite weaker backbones, Xolver (+) matches or surpasses frontier models, outperforming o4-mini-high with o3-mini-medium on AIME'24 (93.8 vs. 93.4) and substantially on LiveCodeBench (87.3 vs. 69.5). Backbone Agnostic The framework yields consistent benefits across backbones, as Xolver (+) attains 97.1 on GSM8K with o3-mini-medium and 98.0 with QWQ-32B, both markedly above their respective baselines. Effectiveness of Dynamic Episodic Memory. The cross-problem variant Xolver (+) reliably outperforms the problem-specific Xolver (-), averaging +4.8 points across backbones, with the largest gain of +8.2 on BrowseComp using o3-mini-medium. Scales with Backbone LLM's Strength. Performance scales with stronger backbones—as shown by o3-mini-high (GSM8K 98.1, AIME'24 94.4, AIME'25 93.7, Math-500 99.8, LiveCodeBench 91.6, BrowseComp 71.7, SWE-bench 84.9, GPQA 94.6) and o4-mini-high (GAIA 90.1, OSWorld 74.4, HLE 57.3)—and remains backbone-agnostic, with GSM8K reaching 97.1 on o3-mini-medium and 98.0 on QWQ-32B, collectively setting new state-of-the-art results across all benchmarks.

4 ABLATION AND ANALYSES

Ablation-Studies:

In Figure 2, we present an ablation study quantifying the contribution of individual components in **Xolver** to overall performance, measured by the average performance drop on math reasoning (Math Avg) and programming (LCB) tasks. Each component plays a necessary role, with the most significant degradation observed when removing Multi-iteration and

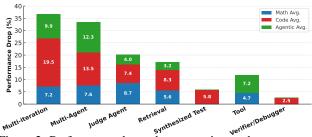


Figure 2: Performance drop when removing each component from Xolver. Bars show average drop on Math (bottom), Code (middle) and Agentic (top).

²https://github.com/cp-algorithms/cp-algorithms

Model	Appr.	GSM 8K	AIN	MЕ		LCB (v5)	GAIA	Browse Comp		SWE-V (bash)	HLE	GPQ/ Diam
			'24	'25								
				Propr	rietary	Mode	ls					
Claude 3.7					•							
Sonnet T.	LongCoT	_	61.3	49.5	96.2	51.4	53.0	4.8	35.6	52.8	8.0	75.3
Grok-3 Beta T.		_	83.9	77.3	_	70.6	_	_	_	-	_	73.7
Gemini 2.5 F. T.	LongCoT	-	88.0	78.0	_	63.5	12.1	79.0	-	_	_	_
o1	. 6	96.4	74.3	79.2	96.4		-	9.9	_	_	8.0	73.0
o3-mini-high		-	87.3	86.5	_	69.5						
Gemini 2.5 Pro		-	92.0	86.7	-	70.4	-	-	-	45.0	21.6	84.4
03	0	96.7	91.6	88.9	_	_	_	49.7	23.0	58.4	20.3	82.7
o4-mini-high	LongCoT	_	93.4	92.7	_	69.5	-	28.3	_	_	18.1	81.4
			(Open V	Weight	s Mod	els					
DeepSeek-R1 Qwen3-235B-	LongCoT	-	79.8	70.0	97.3	64.3	-	9.5	-	-	8.5	81.3
A22B	LongCoT	_	85.7	81.5	_	70.7	_	_	_	_	11.8	79.0
							enorte	d Results	g)			
rStor Moth		95.2	53.3	_	90.0	–	porte	. 1100416	-	_	_	_
rStar-Math		95.2	93.3	80.0	90.0	_	_	_	_	_	_	_
OpenMathReason AlphaOne		_	53.3	- 80.0	- 89.4	- 75.8	_	_	_	_	_	_
OpenCodeReason	_	_	33.3 -	_	89.4 –	61.8	_			_		_
rStar-Coder		_			_		_		_	_		
Kimi-k1.6-		_	_			02.5						
IOI-high	_	_	_	_	_	73.8	_	_	_	_	_	_
Kimi-k2-0905	_	_	_	_	_	_	_	_	_	_	_	76.7
Deep Research	_	_	_	_	_	_	63.7	51.5	_	_	26.6	_
ChatGPT Agent	_	_	_	_	_	_	_	68.9	_	_	_	_
OpenCua-32B	_	_	_	_	_	_	_	_	_	34.8	_	_
			Reaso	oning	Agents	/Fram	ework	s				
	LongCoT	95.2	75.8	70.4	97.3	66.3	54.7*		31.4*	56.2	18.1*	75.0
		93.2	79.4	76.5	95.2	73.2	_	24.4	-	J0.2 -	-	75.0
		95.1	81.7	75.3	97.5	-	_	_	_	_	_	_
		95.4	81.8	76.7	97.5	73.6	_	_	_	_	30.4*	- 81 2
		-	-	-	-	-	74.1*	_	_	_	30.4	-
		_	_	_	_	_	75.8*		_	_	_	_
		_	_	_	_	_	-	_	- 55.3*	_	_	_
o3-mini-		_	_	_		_		_	59.0*	_	_	_
medium	_	95.9	82.2	75.8	97.7	_	_	_	_	_	_	_
	~ . ~.	_	-	-	73.8	_	_	_	_	_	_	_
		_	_	_	-	_	_	_	_	62.4	_	_
		_	_	_	_	_	_	_	_	70.0	_	_
		_	_	_	_	_	_	45.5	_	_	_	_
	0.4	_	_	_	_	_	_	47.1	_	_	_	_
	Xolver(-)	95.6	87.2	85.1	<u>97.7</u>	<u>79.6</u>	82.43	<u>60.7</u>	<u>69.9*</u>	<u>73.9</u>	42.63	
		<u>97.1</u>	93.8	<u>89.4</u>	99.2	87.3	85.63	68.9	73.8*	81.5	49.0*	
		96.1	78.1	65.8	83.2	63.4	45.2*	17.6	14.1*	30.1	11.7*	
		94.0	79.3	66.3	80.4	69.2	-	_	_	-	_	-
		96.3	83.0	71.7	86.1	-	-	-	-	-	-	-
		96.4	84.4	71.8	87.1	69.3	-	_	_	_	21.2*	
		-	-	-	-	-	66.3*		_	_	_	_
	11110114	-	-	-	-	-	67.3*		- 27.1*	-	_	_
		-	-	-	-	-	-	_	37.1*	-	-	-
QWQ-32B		_ 06.9	- 92.5	- 72.2	- 06 5	-	-	_	39.2*	-	-	-
=		96.8	83.5	72.2	86.5	- 70.5	-	_	-	_	_	-
		-	-	-	-	70.5	-	_	-	- 50.7	-	-
	- I -	-	-	-	-	-	-	_	_	50.7	-	-
	8	_	-	-	-	-	-	- 27.0	-	57.4	_	_
		-	-	-	-	-	-	37.0	-	-	-	-
	0.150	- 06.5	- 20 0	- 70.5	- 02 1	76.2	- 75 6%	38.5	- 16 1*	-	- 20.08	- 70.1
		96.5	89.9	79.5	93.1	76.2	75.63		46.4*	68.2	30.9*	
	Xolver (+)	98.0	<u>93.6</u>	82.7	95.5	79.2	77.3*	37.4	50.9*	71.6	38.5*	13.4
o3-mini-high	Xolver (+)	98.1	94.4	93.7	99.8	91.6	90.1*		74.4*	84.9	57.3*	

Table 1: Comparison of **Xolver** against SoTA reasoning models, specialized models, and other reasoning agents agentic, mathematical and coding tasks. Best results are boldfaced and second-best results are underlined. F: Flash, T: Think models, LongCoT: standard prompting for reasoning models, *: multimodal dataset, so we use o4-mini instead o3-mini and use QVQ-72-preview instead QWQ-32B. "-" denotes either n/a (e.g., only specialized models) or results not reported.

Multi-Agent followed by Judge Agent, highlighting their central importance. In contrast, removing Verifier/Debugger and Tool leads to comparatively smaller drops, suggesting a more auxiliary role in the overall system. Verifier is critical for Math tasks and cannot be removed, while Tool apply only to Math and Agentic tasks, whereas Test only for Code tasks. Likewise retrieval where self-retrieval can also work in-place of external retrieval with some drop in accuracy.

Impact of Agent and Tool Count with Iterations, and Emerging Benefits of Collaboration. Figure 3, performance improves consistently on both AIME '25 and LIVECODEBENCH with more agents or iterations. From Figure 3, it is evident that for coding tasks, increasing the number of iterations is more crucial than increasing the number of agents. However, for mathematical tasks, both agents and iterations are similarly important. To investigate further, we conducted a more granular experiment on the AIME '25 dataset. We found that, when keeping the total

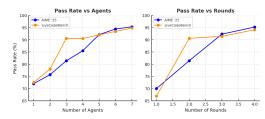


Figure 3: Impact of iterations and agents in Xolver on AIME '25 (QWQ-32B) and LIVE-CODEBENCH (o3-mini-medium).

budget (i.e., agents × iterations) constant, increasing the number of agents yields better performance—achieving over 4% improvement compared to increasing iterations. More details as well as the impact of tool count vs. iterations (see Figure 7) on Xolver performance are in Appendix E.3.

Effect of Retrieval Strategies on Xolver Performance. Figure 8 shows that, performance on both AIME '25 and LIVECODEBENCH follows the trend: *External Retrieval* > *Self-Retrieval* > *No Retrieval*, indicating that external retrieval significantly enhances Xolver's performance. Nevertheless, our dual-memory design gives flexibility about the dependence on retrieval corpora: while external retrieval gives the best results, self-retrieval from the model's own parametric memory or even no retrieval still gets SOTA results. More details can be found in Appendix E.4.

Fine-grained Performance Analysis. In Figure 4, we present fine-grained performance comparisons on GAIA dataset, evaluating Xolver against the agentic baseline framework AWorld. As observed, Xolver consistently outperforms AWorld across all difficulty levels using both QVQ-72B-preview and o4-mini-medium backbones. The performance gap is particularly notable with the open-weight QVQ-72B-preview model and on more challenging problems where AWorld struggles—such as

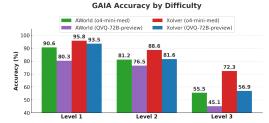


Figure 4: Performance comparison per difficulty levels in GAIA.

Level 3 problems in GAIA. More details and further fine-grained analysis on MATH-500 (see Figure 9), LCB (see Figure 10) and GPQA DIAMOND (see Figure 11) have shown in Appendix E.5.

Can a Self-Judge Replace a Judge Agent? As in self-reflection, each agent can also judge its own reasoning and response without changing its role. We observe that this does not compensate a different judge Agent, dropping average performance 8.7% in math, 4% in agentic and 7.4% in coding. Further details can be found at Appendix E.6.

Cost Analysis and How Long Do Xolver Agents Think? In Figure 12, we summarize input, reasoning, and output token usage for Xolver across all datasets. Token complexity scales as $O(m\mathcal{I})$ with m agents and \mathcal{I} iterations, while runtime remains $O(\mathcal{I})$ because agents run in parallel. This is more efficient than self-consistency (Wang et al., 2022), which typically requires 32–64 generations per example, and than the CheatSheet baseline, whose usefulness estimation induces $O(n^2)$ memory updates. As a multi-agent system, Xolver allocates roughly 25% of tokens to core reasoning, with the remainder spent on context sharing and inter-agent communication. Relative to the single-agent baseline Search-o1, Xolver consistently uses about $2\times$ more tokens, a cost offset by substantial performance gains. More details can be found at Appendix E.7.

Does Data Shuffling Affect Xolver Performance? While we report without any shuffling, shuffling can change the results but minimally (see Table 4). Further details can be found at Appendix E.8. **Qualitative Examples.** As in Appendix C, we present examples of full cycle Xolver output on both math and code reasoning tasks demonstrating a full view of how Xolver gradually accumulates.

More Error Analysis. We analyze errors across math, code, and agentic tasks beyond accuracy or pass@1. Although both backbone LLMs generate solution, that are not optimized and hence did not pass. More details as well as further error analysis on math and code (see Figure 13) and agentic tasks (see Figure 14) can be found at Appendix E.9.

Dynamics of Reasoning Patterns in Xolver Traces. We study how Xolver adapts its reasoning on LCB by tracking reasoning-pattern frequencies across difficulty tiers (see Table 5). Details of pattern collection are in Appendix E.10. As difficulty rises, Xolver increases *self-evaluation* and *exploratory strategies* (e.g., trying new approaches). Correct solutions show reduced rephrasing and subgoal decomposition, indicating more direct, confident reasoning; incorrect ones exhibit more subgoal setup and rephrasing, reflecting failure recognition and restructuring. Unlike OPENCODEREASONING, which stagnates or regresses in key patterns (e.g., self-evaluation), Xolver remains robust and adaptive, aided by multi-agent collaboration and judge feedback, highlighting its generality and flexibility.

Case-Study: How Xolver Enhances Reasoning

To understand how Xolver enhances performance, we conducted case studies on AIME '25 and LIVECODEBENCH. As shown in our ablation study, at each iteration, the Judge Agent ranks the responses, and in the following round, all agents attempt to match at least one of the previously top-ranked outputs. As shown in Figure 15 (see Appendix E.11), over time, this leads to improved outputs from the agents, increased agreement among them, and eventual convergence. Notably, removing the Judge Agent significantly degrades performance, as demonstrated in our first ablation.

5 RELATED WORK

This section presents the concise view of related works. Full description can be found in Appendix A.

Memory-Augmented and Retrieval-Augmented LLMs. Memory augmentation progressed from static retrieval (RAG, REALM) to dynamic self-reflection/scratch-space methods (Reflexion, MemGPT, Scratchpads) but remains single-agent and task-isolated, limiting cross-problem learning (Lewis et al., 2020; Guu et al., 2020; Shinn et al., 2024; Packer et al., 2023; Nye et al., 2021). Xolver introduces a dual-memory design—episodic long-term plus dynamic intermediate—enabling specialized agents to build a persistent, shared knowledge base beyond cross-trial sharing and multisource memory that still assume single agents (Zhao et al., 2023; Shinn et al., 2024; Yao et al., 2023c; Feng et al., 2025). Multi-Agent Problem Solving. Collaborative frameworks (CAMEL, AgentVerse, AutoGen, DyLAN), multi-agent code generation/problem solving, and debate improve specialization yet typically address isolated tasks without experience retention (Guo et al., 2024; Li et al., 2023; Chen et al., 2023; Wu et al., 2023; Liu et al., 2023; Islam et al., 2024; 2025; Du et al., 2023; Rahman et al., 2025; Subramaniam et al., 2025; Feng et al., 2025). Xolver adds dual-memory, holistic experience integration, judge-mediated selection, and continual episodic expansion to yield experience-aware agents. LLM Reasoning Enhancement Techniques. Chain-of-Thought, Self-Consistency, and Tree of Thoughts broaden reasoning search yet remain single-pass; self-reflective (Reflexion) and retrievalenhanced (CheatSheet, Search-o1) methods iterate or retrieve but stay single-agent (Wei et al., 2022; Wang et al.; Yao et al., 2023a; Shinn et al., 2024; Suzgun et al., 2025; Li et al., 2025b). Xolver unifies these within a multi-agent loop where judge-mediated iterations and dual memories support cross-problem learning. Tool-Augmented Reasoning. Tool use evolved from single-tool browsing and code execution (WebGPT, PAL) to multi-tool orchestration (ReAct, Chameleon, OctoTools), yet execution is usually single-agent without persistent learning (Nakano et al., 2021; Gao et al., 2023; Yao et al., 2023b; Lu et al., 2024; 2025). Xolver reframes tools as shared, memory-enriched assets: agents coordinate tool calls, share outcomes, and accumulate reusable strategies across problems.

6 Conclusion

We present Xolver, an open-source multi-agent inference framework for experience-aware reasoning. It combines: (1) episodic retrieval from external or self memory; (2) a growing shared memory of reusable, high-quality reasoning traces; (3) tool invocation for complex computation; (4) coordinated multi-agent reasoning; (5) self-evaluation with iterative refinement; (6) verification or external debugging; and (7) cross-problem strategy transfer. Together, these enable adaptive, context-informed problem solving and continual improvement across tasks. Current limits are higher token usage and

dependence on backbone LLMs. To strengthen validity, we will add advanced external verifiers and structured guardrails, moving Xolver toward more efficient, robust, and human-expert-like reasoning.

REFERENCES

- Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A compositional generalist-specialist framework for computer use agents. *arXiv preprint arXiv:2504.00906*, 2025.
- Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation for competitive coding. *arXiv preprint arXiv:2504.01943*, 2025.
- Anthropic. Claude 3.7 Sonnet, 2025. URL https://www.anthropic.com/news/claude-3-7-sonnet.
- Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021.
- Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. *arXiv preprint arXiv:2308.10848*, 2(4):6, 2023.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
- Google DeepMind. Gemini 2.5, 2025. URL https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
- Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. *arXiv preprint arXiv:2305.14325*, 2023.
- Shangbin Feng, Wenxuan Ding, Alisa Liu, Zifeng Wang, Weijia Shi, Yike Wang, Zejiang Shen, Xiaochuang Han, Hunter Lang, Chen-Yu Lee, Tomas Pfister, Yejin Choi, and Yulia Tsvetkov. When one Ilm drools, multi-Ilm collaboration rules. *ArXiv*, abs/2502.04506, 2025. URL https://api.semanticscholar.org/CorpusID:276235808.
- Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine Learning*, pp. 10764–10799. PMLR, 2023.
- Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL https://arxiv.org/abs/2501.04519.

- Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. *arXiv* preprint arXiv:2402.01680, 2024.
- Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM: Retrieval-augmented language model pre-training. In *International Conference on Machine Learning*. JMLR.org, 2020. URL https://dl.acm.org/doi/abs/10.5555/3524938.3525306.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021.
- Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*, 2020.
- Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a multi-agent collaborative framework. International Conference on Learning Representations, ICLR, 2024.
- Md. Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. MapCoder: Multi-agent code generation for competitive problem solving. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4912–4944, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.269. URL https://aclanthology.org/2024.acl-long.269/.
- Md. Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. CodeSim: Multi-agent code generation and problem solving through simulation-driven planning and debugging. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics:* NAACL 2025, pp. 5113–5139, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.285. URL https://aclanthology.org/2025.findings-naacl.285/.
- Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint arXiv:2310.06770*, 2023.
- Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez, and Shafiq Joty. XCodeEval: An execution-based large scale multilingual multitask benchmark for code understanding, generation, translation and retrieval. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6766–6805, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.367. URL https://aclanthology.org/2024.acl-long.367/.
- Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025.
- Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty, and Jimmy Huang. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 13785–13816, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main. 764. URL https://aclanthology.org/2024.emnlp-main.764/.

598

600

601 602

603

604

605

607

608

609

610

611

612 613

614

615

616

617

618

619 620

621

622

623

624

625

626

627

628

629 630

631

632

633

634

635

636 637

638

639

640 641

642

643

644 645

646

- Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang, and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage.
 arXiv preprint arXiv:2411.01114, 2024.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33: 9459–9474, 2020.
 - Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language models. *Advances in Neural Information Processing Systems*, 35:3843–3857, 2022.
 - Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents for" mind" exploration of large language model society. *Advances in Neural Information Processing Systems*, 36:51991–52008, 2023.
 - Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web agent. *arXiv preprint arXiv:2507.02592*, 2025a.
 - Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint arXiv:2501.05366*, 2025b.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
 - Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and Mao Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset. *arXiv* preprint arXiv:2505.21297, 2025.
 - Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-agent collaboration framework with agent team optimization. *arXiv preprint arXiv:2310.02170*, 2023.
 - Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic framework with extensible tools for complex reasoning. *arXiv preprint arXiv:2502.11271*, 2025.
 - MAA. American invitational mathematics examination aime. In American Invitational Mathematics Examination AIME2024. Febru-2024. **URL** https://maa.org/math-competitions/ ary american-invitational-mathematics-examination-aime.
 - MAA. American invitational mathematics examination aime. In Invitational Mathematics AIME2025, American Examination Febru-2025. URL https://maa.org/math-competitions/ arv american-invitational-mathematics-examination-aime.
 - Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark for general ai assistants. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathematical reasoning models with openmathreasoning dataset, 2025. URL https://arxiv.org/abs/2504.16891.

- Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv* preprint arXiv:2112.09332, 2021.
 - Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work: Scratchpads for intermediate computation with language models. *arXiv preprint arXiv:2112.00114*, 2021.
 - OpenAI. Hello GPT-40, 2024a. URL https://openai.com/index/hello-gpt-40/.
 - OpenAI. Learning to reason with llms, 2024b. URL https://openai.com/index/learning-to-reason-with-llms/.
 - OpenAI. Introducing openai o3 and o4-mini, 2025. URL https://openai.com/index/introducing-o3-and-o4-mini/.
 - Charles Packer, Vivian Fang, Shishir G. Patil, Kevin Lin, Sarah Wooders, and Joseph Gonzalez. Memgpt: Towards Ilms as operating systems. *ArXiv*, abs/2310.08560, 2023. URL https://api.semanticscholar.org/CorpusID:263909014.
 - Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Retrieval augmented code generation and summarization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp. 2719–2734, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.232. URL https://aclanthology.org/2021.findings-emnlp.232/.
 - Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv preprint arXiv:2501.14249*, 2025.
 - Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*, 2022.
 - Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning with minimal predefinition and maximal self-evolution. *arXiv* preprint arXiv:2505.20286, 2025.
 - Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL https://qwenlm.github.io/blog/qwq-32b-preview/.
 - Qwen Team. QwQ-32B: Embracing the power of reinforcement learning, March 2025. URL https://qwenlm.github.io/blog/qwq-32b/.
 - Salman Rahman, Sheriff Issaka, Ashima Suvarna, Genglin Liu, James Shiffer, Jaeyoung Lee, Md Rizwan Parvez, Hamid Palangi, Shi Feng, Nanyun Peng, et al. Ai debate aids assessment of controversial claims. arXiv preprint arXiv:2506.02175, 2025.
 - Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for squad. *arXiv preprint arXiv:1806.03822*, 2018.
 - David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.
 - Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2024.

- Vighnesh Subramaniam, Yilun Du, Joshua B. Tenenbaum, Antonio Torralba, Shuang Li, and Igor Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=JtGPIZpOrz.
- Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, and James Zou. Dynamic cheatsheet: Test-time learning with adaptive memory. *arXiv preprint arXiv:2504.07952*, 2025.
- Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint arXiv:2507.20534*, 2025.
- Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. *arXiv preprint arXiv:2402.10176*, 2024.
- Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as generalist agents. *arXiv preprint arXiv:2407.16741*, 2024.
- Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents. *arXiv* preprint arXiv:2508.09123, 2025.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *ArXiv*, abs/2203.11171, 2022.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
- Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation framework. *arXiv preprint arXiv:2308.08155*, 3(4), 2023.
- xAI. Grok 3 beta the age of reasoning agents, 2025. URL https://x.ai/news/grok-3.
- Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based software engineering agents. *arXiv preprint arXiv:2407.01489*, 2024.
- Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for open-ended tasks in real computer environments. *Advances in Neural Information Processing Systems*, 37:52040–52094, 2024.
- Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. *arXiv preprint arXiv:2507.05791*, 2025.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*, 2022.

- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *arXiv* preprint arXiv:2305.10601, 2023a.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023b.
- Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil L Mui, Haiquan Wang, Caiming Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy gradient optimization. *ArXiv*, abs/2308.02151, 2023c. URL https://api.semanticscholar.org/CorpusID:260611249.
- Chengyue Yu, Siyuan Lu, Chenyi Zhuang, Dong Wang, Qintong Wu, Zongyue Li, Runsheng Gan, Chunfeng Wang, Siqi Hou, Gaochi Huang, et al. Aworld: Orchestrating the training recipe for agentic ai. *arXiv preprint arXiv:2508.20404*, 2025.
- Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder: Acing coder rl via automated test-case synthesis. *arXiv preprint arXiv:2502.01718*, 2025.
- Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong Bai, Jitendra Malik, Saurabh Gupta, and Huan Zhang. Alphaone: Reasoning models thinking slow and fast at test time. 2025. URL https://arxiv.org/abs/2505.24863.
- Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Gaetan Lin, Y. Liu, and Gao Huang. Expel: Llm agents are experiential learners. In *AAAI Conference on Artificial Intelligence*, 2023. URL https://api.semanticscholar.org/CorpusID:261048772.
- Li Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via verifying runtime execution step-by-step. *arXiv preprint arXiv:2402.16906*, 2024.
- He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li, Ningning Wang, Pai Liu, et al. Oagents: An empirical study of building effective agents. *arXiv* preprint arXiv:2506.15741, 2025.

810 811	A	Rela	ted Work	17
812				
813	B	Lists	s of Prompts	17
814		B.1	Planner Agent	18
815		B.2	Dynamic Agent	18
816				
817		B.3	Judge Agent	19
818		B.4	Verifier Agent	19
819 820		B.5	Reasoning Segmentation	19
821				
822	C	Qual	litative Examples	20
823				
824	D	Exte	rnal Retrieval Corpus for Code	33
825			•	
826 827	E	Addi	itional Analysis	33
828		E.1	Additional Results	33
829		E.2	Performance Variance Statistics	34
830 831		E.3	Impact of Agent and Tool Count with Iterations, and Emerging Benefits of Collaboration	35
832		E.4	Effect of Retrieval Strategies on Xolver Performance	35
833		E.5	Fine-grained Performance Analysis	35
834 835		E.6	Can a Self-Judge Replace a Judge Agent?	36
836				
837		E.7	Cost Analysis and How Long Do Xolver Agents Think?	36
838		E.8	Impact of Data-Shuffling in \mathbb{X} olver (+) Performance	37
839		E.9	More Error Analysis	37
840		E.10	Patterns in Xolver Reasoning Traces	37
841			-	
842 843			Case-Study: How Xolver Enhances Reasoning	38
844		E.12	List of Roles of Selected by Dynamic Agents	39

A RELATED WORK

Memory-Augmented and Retrieval-Augmented LLMs. Memory-augmented language models have evolved from static retrieval systems like RAG (Lewis et al., 2020) and REALM (Guu et al., 2020) to dynamic approaches such as Reflexion (Shinn et al., 2024), MemGPT (Packer et al., 2023), and Scratchpads (Nye et al., 2021). However, these systems operate on isolated tasks, lack cross-problem experience accumulation, and employ single-agent architectures. **Xolver** addresses these limitations through a novel dual-memory architecture combining episodic long-term memory with dynamic intermediate memory, enabling specialized agents to collectively build and refine experiential knowledge. While prior work has explored cross-trial information sharing (Zhao et al., 2023; Shinn et al., 2024) and multi-source memory integration (Yao et al., 2023c), these approaches remain confined to single-agent settings. Our framework creates a persistent knowledge base through multi-agent collaboration (Feng et al., 2025), allowing agents to accumulate expertise from solved problems and leverage collective experience for future tasks.

Multi-Agent Problem Solving. Multi-agent LLM systems address the limitations of single models by leveraging collaborative approaches for improved reliability and task specialization (Guo et al., 2024; Feng et al., 2025). From early frameworks like CAMEL (Li et al., 2023) with fixed role assignments, the field progressed to dynamic role adjustment in AgentVerse (Chen et al., 2023) and code execution in AutoGen (Wu et al., 2023). Recent advances include layered agent networks in DyLAN (Liu et al., 2023), multi-agent code generation and problem solving (Islam et al., 2024; 2025) and multi-agent debate frameworks (Du et al., 2023; Rahman et al., 2025; Subramaniam et al., 2025). While these systems demonstrate effective collaboration, they operate on isolated problems without cross-task experience accumulation. **Xolver** introduces dual-memory architecture, holistic experience integration, judge-mediated selection, and continuous episodic corpus expansion—transforming single-problem solvers into experience-aware agents.

LLM Reasoning Enhancement Techniques. Various techniques have emerged to enhance LLM reasoning capabilities beyond standard prompting. Chain-of-Thought (Wei et al., 2022) introduced step-by-step reasoning, Self-Consistency (Wang et al.) explores multiple reasoning paths with majority voting, and Tree of Thoughts (Yao et al., 2023a) enables exploration of reasoning branches—yet all remain limited to single-pass generation. Self-reflective approaches like Reflexion (Shinn et al., 2024) enable iterative improvement but operate within single tasks, while retrieval-enhanced methods like CheatSheet (Suzgun et al., 2025) and Search-o1 (Li et al., 2025b) remain confined to single-agent architectures. These approaches share fundamental limitations: no cross-problem learning, no persistent memory, and no multi-agent collaboration. **Xolver** unifies these enhancements within a multi-agent framework where agents collaboratively refine solutions through judge-mediated iterations and leverage dual memory systems for cross-problem learning.

Tool-Augmented Reasoning. Tool integration extends LLM capabilities beyond language processing. Early systems like WebGPT (Nakano et al., 2021) introduced single-tool integration, while PAL (Gao et al., 2023) enabled code execution for mathematical reasoning. Multi-tool frameworks evolved with ReAct (Yao et al., 2023b) interleaving reasoning with actions, Chameleon (Lu et al., 2024) composing multiple tools, and OctoTools (Lu et al., 2025) standardizing tool planning—yet all remain limited to single-agent execution without iterative refinement or cross-problem learning. Xolver transforms tool use into a collaborative, memory-enriched ecosystem where agents collectively execute tools, share outcomes, and accumulate successful strategies across problems—creating an adaptive framework that evolves with experience.

B LISTS OF PROMPTS

This section provides the list of prompts for planning, dynamic, judge, verifier and reasoning segmentation we have used in the experimental period. These are crucial to ensure the reproducibility (Laskar et al., 2024) of the framework **Xolver**.

B.1 PLANNER AGENT

Prompt for PLANNER AGENT

You are a planner to solve a {coding/math/agentic} problem. Here is the problem for which you have to plan:

```
{problem_dict[query['problem_id']]['description']}
```

First draft required strictly greater than $\{m\}$ specialized roles to solve the problem collaboratively with reasoning behind your draft of each role.

Then select the highly influential $\{m\}$ roles by re-checking the reasoning behind your selection and assign them to each agent to solve the problem.

B.2 DYNAMIC AGENT

Prompt for DYNAMIC AGENT

You are a {role}. Your task is to solve a {coding/math/agentic} problem. Here is the problem that you have to solve:

```
problem_dict[query['problem_id']]['description']
```

If external retrieval: You were also given a couple of similar problems to the problem above along with their reasoning and solutions to aid you in solving the problem at hand. Here are the similar problems you were given:

```
retrieved_dict[query['problem_id']]['retrieval_text']
```

If self-retrieval: Further, recall a relevant and distinct problem (different from the problem mentioned above) along with its reasoning and solution.

```
And here was your original response:
```

```
query[['role']]['original_thought', 'original_response']
```

If iteration $i \geq 1$ (i.e., \mathcal{D}_S is not empty):

Also here is the leading responses with execution results from the response store:

```
response_dict['role', 'thought', 'response', 'score']
```

If coding task:

Think carefully about where you went wrong, relating with responses in the response store. Then, try to fix the solution producing a thought later reply with a {Python} solution to be executed and judged again.

Make sure to wrap your code in ```python ``` block and Markdown delimiters, and include exactly one block of code with the entire solution (in the final code step).

If math/agentic task:

Think carefully about where you went wrong, relating with responses in the response store. Then, try to fix the solution producing a thought later reply with a solution to be executed and judged again. You can integrate required tools to execute the task while replying your solution if required.

Make sure to wrap your final answer in \boxed{} block with the entire solution (in the final answer step).

B.3 JUDGE AGENT

973 974 975

976

977

978

979

980

981

982

983 984

985 986

987

988

989

990

991

972

Prompt for JUDGE AGENT

You are a judge. Your task is to judge the candidate solution of a {coding/math/agentic} problem. Here is the problem for which the candidate solution you have to judge:

problem_dict[query['problem_id']]['description']

If coding task:

And here is the candidate response along with test cases against which to judge:

```
query[['candidate_role']]
['candidate_thought', 'candidate_response', 'test_case']
```

Please produce a score (based on the number of test cases passed) with reasoning behind your judgement of the candidate solution to the problem.

If math/agentic task:

And here is the candidate response which to judge:

```
query[['candidate_role']]['candidate_thought', 'candidate_response'
```

Please produce a score (if the response is correct, it should be 1 otherwise should be 0) with reasoning behind your judgement of the candidate solution to the problem.

992 993

B.4 VERIFIER AGENT

994 995 996

997

Prompt for VERIFIER AGENT

998 999 1000

Your are an answer extractor. Your task is to extract answer from the response to a {coding/math/agentic} problem. Here is the response for which the answer you have to extract:

1001 1002 1003

response_dict[query{'role'}]{'thought', 'response', 'score'}

If coding task:

Please extract the answer from inside ``python `` block from the response.

1004

If math/agentic task:

1007 1008 Please extract the answer from inside \boxed{} block from the response.

1009 1010 1011

B.5 Reasoning Segmentation

1012 1013 1014

Prompt for Initial Reasoning Segmentation

Below is a chain of thought for solving a question. Figure out what are the different reasoning patterns that are used like problem rephrasing, new approach, self-evaluation, verification, backtracking, subgoal setup, solving a simpler problem first, and more. Then your task is to segment the entire chain of thought into different reasoning patterns. Rewrite the chain of thought in the following format:

19

```
1020
1021
1023
```

1024

1019

<pattern> pattern name </pattern> <content> the entire text that corresponds to the pattern </content>

1025

Thought: {thoughts}

Prompt for Final Reasoning Segmentation

Below is a thought for solving a question. For the segment between the <unannotated> and </unannotated> tags, figure out what is reasoning pattern used in that segment like problem rephrasing, new approach, self-evaluation, verification, backtracking, subgoal setup, solving a simpler problem first, or something else. Then your task is to identify the reasoning pattern used in the unannotated segment. Rewrite the unannotated segment in the following format:

```
<content> The text within the unannotated segment
that corresponds to the pattern. </content>
<reasoning> Reasoning for
what the pattern should be for the content </reasoning>
<pattern> *single* pattern name </pattern>
Thought: {thoughts}
```

C QUALITATIVE EXAMPLES

The subsequent section presents some qualitative examples—agentic interaction breakdown on how Xolver can approach and solve a problem of math, agentic and coding tasks when it encounters. These examples illustrate how Xolver initiates reasoning from external or self-retrieved exemplars, engages in multi-agent collaboration, and incrementally accumulates experiences through inter-agent propagation and refinement. The full interaction trace highlights Xolver's ability to iteratively decompose, solve, and adapt solutions across reasoning steps, showcasing its capacity for dynamic knowledge construction and generalizable problem solving.

Example for Correct Math Task Green: Correct Answer. Red: Wrong Answer.

Query: Bob is in charge of doing laundry for a large hotel. Each room has two sheets, one comforter, twice as many pillow cases as sheets and twice as many towels as pillow cases. How many pieces of laundry are there in 80 rooms? Make sure to wrap your final answer in \boxed{} block with the entire solution (in the final answer step).

Iteration 1

Mathematical Modeler: Each room contains 2 sheets, 1 comforter, 2 pillow cases (which is twice the number of sheets), and 4 towels (which is twice the number of pillow cases). Hence, the total number of laundry items in each room is:

2+1+2+4=9 pieces of laundry.

When considering 80 rooms, the total number of pieces of laundry is:

 $80 \times 9 = 720$ pieces of laundry.

Thus, the final answer is: | 720 |

Judge: The candidate's solution contains an error in calculating the number of pillow cases and towels per room. Here's the breakdown:

Sheets: 2 (correct). Comforter: 1 (correct). Pillow Cases: The problem states "twice as many pillow cases as sheets." Since there are 2 sheets, pillow cases should be $2 \times 2 = 4$. The candidate incorrectly used 2 pillow cases (half the required amount). Towels: The problem states "twice as many towels as pillow cases." With the correct pillow case count (4), towels should be $2 \times 4 = 8$. The candidate used 4 towels (based on their incorrect pillow case count of 2).

The correct per-room total is:

 $2 ext{ (sheets)} + 1 ext{ (comforter)} + 4 ext{ (pillow cases)} + 8 ext{ (towels)} = 15$

items. The total for 80 rooms is:

 $80 \times 15 = 1200.$

The candidate's answer is incorrect due to miscalculating pillow cases and towels.

1131 1132 1133

Score: 0. 1081 1082 Numerical Analyst: For each room, Bob needs to wash 2 sheets, 1 comforter, 4 pillow cases (since 1083 $2 \times 2 = 4$), and 8 towels (since $4 \times 2 = 8$). Therefore, for each room, the total amount of laundry Bob 1084 needs to wash is: 2+1+4+8=15 pieces of laundry. For 80 rooms, the total number of pieces of laundry Bob must wash is: $80 \times 15 = 1200$ pieces of laundry. 1087 Thus, the final answer is: | 1200 | 1089 Judge: The candidate correctly interprets the problem's relationships: sheets: 2 (given), comforter: 1 1090 (given), pillow cases: twice the sheets, $2 \times 2 = 4$ (correct), towels: twice the pillow cases, $2 \times 4 = 8$ (correct). Total per room: 2+1+4+8=15 (correct). Total for 80 rooms: $80\times15=1200$ (correct). All steps align with the problem's specifications, and the final answer is accurate. The candidate's 1093 solution is error-free. Score: 1. 1095 Mathematician: Every room is equipped with 2 sheets, 1 comforter, 4 pillow cases (calculated as $\overline{2} \times 2$), and 8 towels (since $4 \times 2 = 8$). Summing these, the total number of laundry items for one room 2+4+8=14 pieces of laundry. 1099 Multiplying by the number of rooms, the total quantity for 80 rooms becomes: 1100 $80 \times 14 = 1120$ 1101 1102 Judge: The candidate incorrectly omitted the comforter in their final sum. Here's the breakdown: 1103 sheets: 2 (correct), comforter: 1 (given but not included in the candidate's calculation), pillow cases: 1104 $2 \times 2 = 4$ (correct), towels: $2 \times 4 = 8$ (correct). The candidate's total per room was 2 + 4 + 8 = 14, but the correct total should include the comforter: 2+1+4+8=15. Thus, the total for 80 rooms 1105 should be $80 \times 15 = 1200$, not 1120. The error stems from excluding the comforter in the summation. 1106 1107 Score: 0. 1108 1109 \mathcal{D}_{S_1} rank: [Numerical Analyst, Mathematical Modeler, Mathematician] 1110 Iteration 2 1111 1112 Mathematical Modeler: Each room contains 2 sheets, 1 comforter, 2 pillow cases (which is twice the number of sheets), and 4 towels (which is twice the number of pillow cases). Hence, the total number of 1113 laundry items in each room is: 1114 2+1+4+8=15 pieces of laundry. 1115 When considering 80 rooms, the total number of pieces of laundry is: 1116 $80 \times 15 = 1200$ pieces of laundry. 1117 Thus, the final answer is: | 1200 | 1118 This confirms the accuracy of the revised calculation. 1119 Judge: The candidate's final answer is correct, and the mathematical calculations align with the 1120 problem's requirements: 1. Sheets: 2 (correct). 2. Comforter: 1 (included in the total). 3. Pillow Cases: 1121 The problem states "twice as many pillow cases as sheets." Since there are 2 sheets, this should be 1122 $2 \times 2 = 4$. The candidate correctly uses 4 pillow cases in their total calculation (despite a typographical 1123 inconsistency in the explanation, where they initially wrote "2 pillow cases"). 4. Towels: "Twice as 1124 many towels as pillow cases" gives $2 \times 4 = 8$ (correct). 1125 The candidate's total per room is 2+1+4+8=15 (correct), leading to $80 \times 15=1200$ (correct). 1126 1127 While the explanation contains a minor inconsistency in wording ("2 pillow cases" instead of 4), the 1128 numerical calculations are accurate. Since the final answer is correct and the mathematical steps resolve 1129 the inconsistency, the solution is valid. 1130 Score: 1.

1134 1135 Numerical Analyst: Based on the information provided, we know that each room includes 2 sheets, 1 1136 comforter, 4 pillow cases (computed as 2×2), and 8 towels (since $4 \times 2 = 8$). Adding these together, the total number of laundry items required for one room is: 1137 2+1+4+8=15 pieces. 1138 Multiplying by the total number of rooms, the overall amount of laundry for 80 rooms is: 1139 $80 \times 15 = |1200|$ 1140 1141 Although the other agents correctly determined the number of laundry items required for each room, 1142 there was an error in the concluding step-calculate the total number of laundry pieces. 1143 Judge: The candidate's calculations and final answer are correct: sheets: 2 (given), comforter: 1 1144 (given), pillow cases: $2 \times 2 = 4$ (twice the sheets), towels: $2 \times 4 = 8$ (twice the pillow cases), total per 1145 room: 2+1+4+8=15 (correct), total for 80 rooms: $80 \times 15=1200$ (correct). 1146 1147 Score: 1. 1148 Mathematician: According to the provided details, every room is equipped with 2 sheets, 1 comforter, 1149 $\overline{4}$ pillow cases (calculated as 2×2), and 8 towels (since $4 \times 2 = 8$). Summing these, the total number 1150 of laundry items for one room is: 1151 1 + 4 + 8 = 13 pieces of laundry. 1152 Multiplying by the number of rooms, the total quantity for 80 rooms becomes: 1153 $80 \times 13 = |1040|$ 1154 Judge: The candidate incorrectly omitted the sheets in their final sum. Here's the breakdown: 1. 1155 Sheets: 2 (given but not included in the candidate's calculation). 2. Comforter: 1 (included). 3. Pillow 1156 Cases: $2 \times 2 = 4$ (correct). 4. Towels: $2 \times 4 = 8$ (correct). The candidate's total per room was 1157 1+4+8=13, but the correct total should include the sheets: 2+1+4+8=15. Thus, the total for 80 1158 rooms should be $80 \times 15 = 1200$, not 1040. The error stems from excluding the sheets in the summation. 1159 1160 Score: 0. 1161 \mathcal{D}_{S_2} rank: [Mathematical Modeler, Numerical Analyst, Mathematician] 1162 1163 **Iteration 3** 1164 Mathematical Modeler: From the details provided, it is clear that each room contains 2 sheets, 1 1165 comforter, 4 pillow cases (as $2 \times 2 = 4$), and 8 towels (calculated as $4 \times 2 = 8$). Adding these together, 1166 the total number of laundry items per room amounts to: 1167 2+1+4+8=15 items. 1168 Consequently, for 80 rooms, the total number of laundry pieces becomes: 1169 $80 \times 15 = |1200|$ 1170 I agree with the other agent's corrected calculation. 1171 1172 Judge: The candidate's solution is mathematically accurate and complete: sheets: 2 (correct), 1173 comforter: 1 (correct), pillow cases: $2 \times 2 = 4$ (twice the sheets), towels: $2 \times 4 = 8$ (twice the 1174 pillow cases), total per room: 2+1+4+8=15 (correct), total for 80 rooms: $80\times15=1200$ (correct). 1175 Score: 1. 1176 1177 Numerical Analyst: Given the information, we know that each room includes 2 sheets, 1 comforter, 4 1178 pillow cases (computed as 2×2), and 8 towels (since $4 \times 2 = 8$). Adding these together, the total 1179 number of laundry items required for one room is: 1180 2 + 1 + 4 + 8 = 15 pieces. 1181 Multiplying by the total number of rooms, the overall amount of laundry for 80 rooms is: 1182 $80 \times 15 = |1200|$ 1183 Although the other agent correctly determined the number of laundry items required for each room, 1184 there was an error in the concluding step. Specifically, they incorrectly used 80×13 instead of the

appropriate multiplication of 80×15 to calculate the total number of laundry pieces.

1185

Under review as a conference paper at ICLR 2026 1188 1189 Judge: The candidate's solution is fully correct: sheets: 2 (given), comforter: 1 (given), pillow 1190 cases: $2 \times 2 = 4$ (twice the sheets), towels: $2 \times 4 = 8$ (twice the pillow cases), total per room: 2+1+4+8=15 (correct), total for 80 rooms: $80\times15=1200$ (correct). All steps align with the 1191 problem's specifications, and the final answer is accurate. No errors were made. 1192 1193 Score: 1. 1194 1195 Mathematician: According to the given details, each room contains 2 sheets, 1 comforter, 4 pillow cases (calculated as 2×2), and 8 towels (determined by 4×2). Summing these amounts, the total 1196 number of laundry items per room is: 1197 2+1+4+8=15 pieces of laundry. 1198 To find the total for 80 rooms, we multiply: 1199 $80 \times 15 = |1200|$ 1201 I concur with the other agents' results and the computations they presented. 1202 Judge: The candidate's solution is fully correct and aligns with the problem's requirements: sheets: 2 1203 (given), comforter: 1 (given), pillow cases: $2 \times 2 = 4$ (twice the sheets), towels: $2 \times 4 = 8$ (twice the pillow cases), total per room: 2+1+4+8=15 (correct), total for 80 rooms: $80\times15=1200$ 1205 (correct). All calculations are accurate, and the final answer matches the problem's constraints. 1206 1207 Score: 1. 1208 \mathcal{D}_{S_2} rank: [Mathematician, Mathematical Modeler, Numerical Analyst] 1209 1210 1211 1212 1213 1214 1215 1216 1217

Example for Correct Coding Task Green: Correct Solution. Red: Wrong Solution.

Query: Yarik is a big fan of many kinds of music. But Yarik loves not only listening to music but also writing it. He likes electronic music most of all, so he has created his own system of music notes, which, in his opinion, is best for it.

Since Yarik also likes informatics, in his system notes are denoted by integers of 2^k , where $k \ge 1$ — a positive integer. But, as you know, you can't use just notes to write music, so Yarik uses combinations of two notes. The combination of two notes (a,b), where $a=2^k$ and $b=2^l$, he denotes by the integer a^b .

For example, if $a = 8 = 2^3$, $b = 4 = 2^2$, then the combination (a, b) is denoted by the integer $a^b = 8^4 = 4096$. Note that different combinations can have the same notation, e.g., the combination (64, 2) is also denoted by the integer $4096 = 64^2$.

Yarik has already chosen n notes that he wants to use in his new melody. However, since their integers can be very large, he has written them down as an array a of length n, then the note i is $b_i = 2^{a_i}$. The integers in array a can be repeated.

The melody will consist of several combinations of two notes. Yarik was wondering how many pairs of notes b_i, b_j (i < j) exist such that the combination (b_i, b_j) is equal to the combination (b_i, b_i) . In other words, he wants to count the number of pairs (i,j) (i < j) such that $b_i^{b_j} = b_i^{b_i}$. Help him find the number of such pairs.

Input

1218

1219

1222

1223

1224

1225

1226

1227

1228 1229

1230

1231

1232 1233

1234

1236

1237

1239 1240

1241

The first line of the input contains one integer t ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains one integer n ($1 \le n \le 2 \cdot 10^5$) — the length of the arrays.

The next line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — array a.

It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^5$.

```
1242
             Output
1243
1244
             For each test case, output the number of pairs that satisfy the given condition.
1245
1246
             Sample Input 1:
1247
             5
1248
1249
1250
1251
             2
1252
1253
1254
             3132
1255
1256
1257
             1000 1000
1258
1259
             3
1260
1261
             1 1 1
1262
1263
1264
             2 4 1 6 2 8 5 4 2 10 5 10 8 7 4 3 2 6 10
1265
1266
             Sample Output 1:
1267
             0
1268
             2
1269
             1
1270
             3
1271
             19
1272
             Make sure to wrap your code in ```python ``` block and Markdown delimiters, and include exactly
1273
             one block of code with the entire solution (in the final code step).
1275
1276
             Implementation Specialist: To solve this problem, we need to determine the number of pairs of notes
1277
             (b_i, b_j) such that b_i^{b_j} = b_j^{b_i}. The notes are given as b_i = 2^{a_i}, where a_i is an integer. The key insight is
1278
             to recognize the conditions under which the equation b_i^{bj} = b_i^{bi} holds. This equation can be broken
1279
             down into two main cases. The first case is when the values are the same, meaning a_i = a_i. In this
1280
             situation, the equation trivially holds because both sides will be identical. The number of such pairs is
1281
             given by the combination formula C(n,2) = \frac{n(n-1)}{2} for each group of identical values. The second
1282
             case occurs when the values are different but satisfy a special condition: the equation holds when one
1283
             value is 1 and the other is 2. This is derived from the mathematical simplification of the equation
1284
             a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}, which only holds true for a_i = 1 and a_j = 2 (or vice versa) when a_i \neq a_j.
1285
             ```python
1286
1287
 import sys
 from collections import Counter
1288
1289
 def main():
1290
 # Read all input tokens at once
1291
 x = sys.stdin.read().split()
 i = 0 # Index to track position in input list
1293
 t = int(x[i]) # Number of test cases
1294
 i += 1
1295
```

```
1296
1297
 for _ in range(t):
1298
 n = int(x[i]) # Number of elements in this test case
 i += 1
1299
1300
 # Extract the list of integers for current test case
1301
 l = list(map(int, x[i:i+n]))
1302
 i += n
1303
 # Count frequencies of each element
1304
 c = Counter(1)
1305
1306
 s = 0 \# Sum of pairs
1307
 # Sum pairs of identical elements: count choose 2
1308
 for v in c.values():
1309
 s += v * (v - 1) // 2
1310
1311
 # Add pairs formed by one element '1' and one element '2'
1312
 s += c.get(1, 0) * c.get(2, 0)
1313
 print(s)
1314
1315
 if __name__ == "__main__":
1316
 main()
1317
1318
1319
 Judge: There are 10 test cases. The candidate passes 5 test cases.
1320
 Score: 5.
1321
1322
 Programmer: To solve this problem, we need to determine the number of pairs of notes such that the
1323
 combination of two notes (b_i, b_j) results in the same integer as the combination (b_j, b_i). The notes are
1324
 given as b_i = 2^{a_i}, and we are looking for pairs (i, j) where b_i^{b_j} = b_i^{b_i}. The condition b_i^{b_j} = b_i^{b_i} can be
1325
 simplified to checking if a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}, which holds true in two scenarios: first, when a_i = a_j,
1326
 producing identical pairs; and second, when one value is 1 and the other is 2, creating valid cross pairs.
1327
 To count the identical pairs, for each unique value x in the array, we use the combination formula
 \binom{count}{2}, where count is the frequency of x. For cross pairs, which occur specifically between values 1
1328
 and 2, the number of such pairs is calculated as the product of the counts of 1 and 2.
1329
1330
           ```python
1331
           import sys
1332
           from collections import defaultdict
1333
1334
           def main():
                x = sys.stdin.read().split() # Read all input tokens
1335
                i = 0 # Input index pointer
1336
1337
                t = int(x[i]) # Number of test cases
1338
                 i += 1
1339
                 for _ in range(t):
1340
                     n = int(x[i]) # Number of elements
1341
1342
1343
                      # List of integers for this test
                     l = list(map(int, x[i:i+n]))
1344
                     case
1345
                     i += n
1346
1347
                      f = defaultdict(int) # Frequency dictionary
1348
                      # Count occurrences of each number
1349
```

```
1350
                      for v in 1:
1351
                            f[v] += 1
1352
1353
                      s = 0 # Count pairs of identical elements
1354
1355
                       # Sum pairs from frequencies (nC2)
                      for v in f.values():
1356
                            s += v * (v - 1) // 2
1357
1358
                      # Count pairs formed by one '1' and one '2'
1359
                      c = f.get(1, 0) * f.get(2, 0)
1360
                      print(s + c)
1361
1362
            if __name__ == "__main__":
1363
                 main()
1364
1365
1366
            Judge: There are 10 test cases. The candidate passes 5 test cases.
1367
            Score: 5.
1368
1369
            Data Structure Specialist: To solve this problem, we need to determine the number of pairs of music
1370
            notes, represented by integers of the form 2^k, such that the combination of two notes (b_i, b_j) results in
1371
            the same value as (b_i, b_i). In other words, we seek pairs (i, j) where b_i^{b_j} = b_i^{b_i}. By applying logarithms
1372
            and using the properties of exponents, for notes defined as b_i = 2^{a_i} and b_j = 2^{a_j}, the condition
1373
            simplifies to a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}. Two key observations arise from this: first, if a_i = a_j, the equation
1374
            holds true, meaning all pairs of identical values satisfy the condition; second, the equation also holds
            when one value is 1 and the other is 2, since 1 \cdot 2^2 = 2 \cdot 2^1 simplifies to 4 = 4. The algorithm to find
1375
            the number of such pairs involves two parts. For pairs with the same value v, we count the number of
1376
            pairs using the combination formula C(n,2) = \frac{n(n-1)}{2}, where n is the frequency of v. For cross-value
1377
            pairs where one note corresponds to 1 and the other to 2, the number of valid pairs is simply the product
1378
            of their counts.
1379
1380
            ```python
1381
 import sys
1382
 from collections import Counter
1383
 def main():
1384
 x = sys.stdin.read().split()
 # Read all input tokens at once
1385
 i = 0 # Input index pointer
1386
1387
 t = int(x[i]) # Number of test cases
 i += 1
1388
1389
 for _ in range(t):
1390
 n = int(x[i]) # Number of elements
1391
 i += 1
1392
 # List of integers for this test
1393
 l = list(map(int, x[i:i+n]))
1394
 case
1395
 i += n
1396
1397
 c = Counter(1) # Frequency counter
1398
 c1 = c.get(1, 0) # Count of 1's
1399
 c2 = c.get(2, 0) \# Count of 2's
1400
1401
 x = 0
1402
 # Combine counts of 1 and 2, calculate pairs among them
1403
```

```
1404
 m = c1 + c2
1405
 x += m * (m - 1) // 2
1406
1407
 # Calculate pairs for other numbers except 1 and 2
1408
 for k in c:
 if k not in (1, 2):
1409
 v = c[k]
1410
 x += v * (v - 1) // 2
1411
1412
 print(x)
1413
 if __name__ == "__main__":
1414
 main()
1415
1416
1417
 Judge: There are 10 test cases. The candidate passes 5 test cases.
1418
1419
 Score: 5.
1420
 \mathcal{D}_{S_1} rank: [Implementation Specialist, Programmer, Data Structure Specialist]
1421
1422
 Iteration 2
1423
 Implementation Specialist: : After reviewing the solutions provided by other agents, I agree that to
1424
 solve this problem, we need to determine the number of pairs of notes (b_i, b_j) such that b_i^{b_j} = b_i^{b_i},
1425
 where each note is given by b_i = 2^{a_i}. We are interested in counting pairs (i, j) with i < j that satisfy
1426
 this condition. By applying properties of exponents and substituting b_i = 2^{a_i} and b_j = 2^{a_j}, the
1427
 condition simplifies to checking when \frac{2^{a_i}}{a_i} = \frac{2^{a_j}}{a_j}. There are two key observations: first, if a_i = a_j, the
1428
 condition is automatically met; second, pairs where one value is 1 and the other is 2 also satisfy the
1429
 condition, since \frac{2^1}{1} = 2 and \frac{2^2}{2} = 2. The algorithm involves counting the frequency of each a_i, then
1430
 calculating the number of valid pairs for identical values using the combination formula \binom{f}{2}, where f is
1431
 the frequency of the value. Finally, to account for the special case of pairs between 1 and 2, we add the
1432
 product of their counts to the total.
1433
1434
            ```python
1435
            import sys
1436
            from collections import Counter
1437
            def main():
1438
                 x = sys.stdin.read().split() # Read all input tokens at once
1439
                 i = 0 # Index pointer
1440
1441
                 t = int(x[i]) # Number of test cases
                 i += 1
1442
1443
                 for _ in range(t):
1444
                      n = int(x[i]) # Number of elements in this test case
1445
                       i += 1
1446
                       l = list(map(int, x[i:i+n])) # List of elements
1447
1448
1449
                       c = Counter(1) # Frequency count
1450
1451
                       s = 0 # Sum of pairs
1452
                       # Calculate pairs from identical elements: nC2 for each count
1453
                       for v in c.values():
1454
                            s += v * (v - 1) // 2
1455
1456
                       # Add pairs formed by one '1' and one '2'
                       s += c.get(1, 0) * c.get(2, 0)
1457
```

```
1458
1459
                       print(s)
1460
            if __name__ == "__main__":
1461
                 main()
1462
1463
1464
             Judge: There are 10 test cases. The candidate passes 6 test cases.
1465
1466
            Score: 6.
1467
             Programmer: I agree with the other agents that, to solve this problem, we need to determine the
1468
            number of valid pairs of notes such that the combination of two notes (b_i, b_j) results in the same integer
1469
            as the combination (b_j, b_i). This is equivalent to finding pairs (i, j) where b_i^{b_j} = b_j^{b_i}. The key insight is
1470
            that this equation holds under two conditions: first, when the exponents a_i and a_j are equal, the pairs
1471
            (b_i, b_j) will always satisfy the equation; second, when one exponent is 1 and the other is 2, the equation
1472
            also holds. To solve the problem, the approach involves three steps. First, use a frequency counter to
1473
            count the occurrences of each value in the array. Second, for each value x, compute the number of valid
1474
            pairs among identical values using the combination formula \binom{f}{2}, where f is the frequency of x. Third,
            calculate the number of specific pairs where one value is 1 and the other is 2 by multiplying their counts.
1476
            ···python
1477
            import sys
1478
             from collections import Counter
1479
1480
            def main():
1481
                  t = int(sys.stdin.readline()) # Number of test cases
1482
                  for _ in range(t):
1483
                       # Number of elements
1484
                       n = int(sys.stdin.readline().strip())
1485
                        # List of integers
1486
                       1 = list(map(int, sys.stdin.readline().split()))
1487
                       c = Counter(1) # Frequency counter
1488
1489
                       s = 0 # Sum of pairs
1490
1491
                        # Calculate pairs among identical elements:
1492
                       nC2 for each frequency
                        for v in c.values():
1493
                             s += v * (v - 1) // 2
1494
1495
                       # Add pairs formed by one '1' and one '2'
1496
                       s += c.qet(1, 0) * c.qet(2, 0)
1497
                       print(s)
1498
1499
            if .
                  _name__ == "__main__":
1500
                  main()
1501
1502
1503
             Judge: There are 10 test cases. The candidate passes 5 test cases.
1504
            Score: 5.
1505
1506
             Data Structure Specialist: To solve this problem, we need to determine the number of valid pairs of
1507
            notes such that the combination of two notes (b_i, b_j) results in the same integer as the combination
1508
            (b_j, b_i). This is equivalent to finding pairs (i, j) where b_i^{b_j} = b_i^{b_i}. The key insight comes from the
1509
            equation b_i^{b_j} = b_i^{b_i}, where b_i = 2^{a_i} and b_j = 2^{a_j}. This equation simplifies to a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}.
1510
            To solve this efficiently, we follow several steps. First, for each a_i, we perform prime factorization,
1511
```

```
expressing it as 2^y \times x, where x is the odd part of a_i and y is the exponent of 2 in its factorization.
1513
            Next, we generate a key for each a_i in the form (x, y - a_i). This key is designed such that if two
1514
            numbers a_i and a_j share the same key, they satisfy the equation a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}. We then use a
1515
            frequency dictionary to count the occurrences of each key. Finally, for each key, we compute the number
1516
            of valid pairs using the combination formula \binom{f}{2}, where f is the frequency of that key.
1517
            ```python
1518
1519
 import sys
 from collections import defaultdict
1520
1521
 def main():
1522
 x = sys.stdin.read().split() # Read all input tokens at once
1523
 i = 0 # Input index pointer
1524
1525
 t = int(x[i]) # Number of test cases
 i += 1
1526
1527
 for _ in range(t):
1528
 n = int(x[i]) # Number of elements in this test case
 i += 1
1530
 l = list(map(int, x[i:i+n])) # List of integers
1531
 i += n
1532
1533
 f = defaultdict(int) # Frequency dictionary
1534
 for v in 1:
1535
1536
 b = 0
1537
 # Count how many times 2 divides the number
1538
 while a % 2 == 0:
1539
 a //= 2
1540
 b += 1
 # Key is tuple of (odd part, difference of exponents)
1541
 k = (a, b - v)
1542
 f[k] += 1
1543
 s = 0 # Result accumulator
1545
 # Count pairs for each unique key using nC2 formula
 for c in f.values():
1547
 s += c * (c - 1) // 2
1548
1549
 print(s)
1550
 if _
 __name___ == "___main___":
1551
 main()
1552
1553
1554
 Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.
1555
1556
 Score: 10.
1557
 \mathcal{D}_{S_2} rank: [Data Structure Specialist, Implementation Specialist, Programmer]
1558
1559
 Iteration 3
1560
 Implementation Specialist: I concur with the other agent that to tackle this problem, our goal is to find
1561
 the number of valid pairs of notes (b_i, b_j) such that raising one note to the power of the other yields the
1562
 same result when the order is reversed; that is, pairs (i,j) satisfying b_i^{b_j} = b_i^{b_i}. Given that each note
1563
 can be expressed as b_i = 2^{a_i}, the problem reduces to analyzing the equation a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}. To
1564
 approach this effectively, we begin by decomposing each exponent a_i into its prime factors, specifically
```

```
1566
 writing it as 2^y \times x, where x is the odd component and y indicates the power of two within the
1567
 factorization. Using this factorization, we create a unique key for each a_i defined by the pair (x, y - a_i).
1568
 This construction ensures that any two exponents sharing the same key satisfy the original equation.
1569
 After generating these keys for all elements, we count their frequencies using a dictionary. Finally, to
1570
 determine the number of valid pairs, we apply the combination formula \binom{f}{2} for each key, where f is the
1571
 frequency of that key, summing these results to obtain the total count of valid pairs.
1572
            ```python
1573
            import sys
1574
            from collections import defaultdict
1575
1576
            def main():
1577
                 d = sys.stdin.read().strip().split() # Read and split all input
1578
                  t = int(d[0]) # Number of test cases
1579
                  p = 1 # Current position in input list
1580
                  for _ in range(t):
1581
                       n = int(d[p]) # Number of elements in this test case
1582
                       p += 1
1583
                       l = list(map(int, d[p:p+n])) # Current list of elements
1584
                       p += n
1585
1586
                       f = defaultdict(int) # Frequency dictionary
1587
1588
                       for v in 1:
                            o = v
                                     # Original value
1589
                             c = 0 # Count of factors 2
1590
1591
                             # Count how many times 2 divides the value
1592
                             while v % 2 == 0:
1593
                                  v //= 2
                                  c += 1
1594
1595
                             # Key: (odd part, count_twos - original_value)
1596
                             k = (v, c - o)
1597
                             f[k] += 1
1598
                       s = 0 # Result accumulator
1599
                       # Calculate pairs for each unique key using nC2
                       for x in f.values():
1602
                             s += x * (x - 1) // 2
1603
                       print(s)
1604
1605
            if __name__ == "__main__":
1606
                 main()
1607
1608
1609
             Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.
1610
            Score: 10.
1611
1612
            Programmer: I agree with the other agent that to address this problem, we aim to find the number
1613
            of valid pairs of notes (b_i, b_j) such that the expression b_i^{b_j} equals b_i^{b_i}. In other words, we seek
1614
            pairs (i,j) where the exponentiation relation b_i^{b_j}=b_j^{b_i} holds true. Since each note is defined as b_i=2^{a_i}, the equation simplifies to a_i\cdot 2^{a_j}=a_j\cdot 2^{a_i}. To efficiently solve this, we first factorize
1615
1616
            each exponent a_i into the form 2^y \times x, where x represents the odd component and y is the power
1617
            of two in its prime factorization. Using this decomposition, we construct a key for each a_i as
1618
            (x, y - a_i). This key is crafted so that if two exponents a_i and a_j share the same key, they satisfy the
```

```
1620
            equality condition. Next, we tally the frequency of each key using a dictionary or hash map. Finally,
1621
            the number of valid pairs corresponding to each key is computed using the combination formula
1622
            \binom{f}{2}, where f denotes the frequency of that key. Summing these values yields the total count of valid pairs.
1623
1624
            ```python
1625
 import sys
1626
 from collections import defaultdict
1627
 def main():
1628
 d = sys.stdin.read().strip().split() # Read all input tokens
1629
 t = int(d[0]) # Number of test cases
1630
 p = 1 # Position pointer in input list
1631
 for _ in range(t):
1632
 n = int(d[p]) # Number of elements
1633
 p += 1
1634
1635
 l = list(map(int, d[p:p+n])) # List of elements
1636
 p += n
1637
 f = defaultdict(int) # Frequency dictionary
1639
 for v in 1:
1640
 b = v
 # Base value
1641
 c = 0 # Count of factors 2
1642
 # Count how many times 2 divides b
1643
 while b % 2 == 0:
1644
 b //= 2
1645
 c += 1
1646
 # Key is tuple: (odd part, power difference)
1647
 k = (b, c - v)
1648
 f[k] += 1
1649
1650
 s = 0 # Result accumulator
1651
 # Count pairs for each frequency using nC2 formula
1652
 for x in f.values():
1653
 s += x * (x - 1) // 2
1654
 print(s)
1656
 if _
 _name__ == "__main__":
1657
 main()
1658
1659
1660
 Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.
1661
1662
 Score: 10.
1663
 Data Structure Specialist: To solve this problem, the goal is to identify the number of valid pairs
1664
 of notes (b_i, b_j) for which the value of b_i^{b_j} equals that of b_i^{b_i}. This translates to finding pairs (i, j)
1665
1666
 satisfying the equation b_i^{b_j} = b_i^{b_i}. Given that each note b_i can be expressed as 2^{a_i}, the equation
 simplifies to a_i \cdot 2^{a_j} = a_j \cdot 2^{a_i}. To approach this efficiently, each exponent a_i is factorized into the
1667
 form 2^y \times x, where x denotes the odd part of a_i and y is the exponent of 2 in its prime factorization.
1668
 Based on this factorization, we construct a unique key (x, y - a_i) for each a_i. This key is carefully
1669
 designed so that two numbers sharing the same key satisfy the given equality condition. Once the keys
1670
 are generated, a frequency map is used to count how many times each key appears. Finally, for each
1671
 key, the number of valid pairs is calculated using the combination formula \binom{1}{2}, where f represents the
 frequency of that key. Summing these counts across all keys gives the total number of valid pairs.
1673
```

```
1674
 ···python
1675
1676
 import sys
 from collections import defaultdict
1677
1678
 def main():
1679
 d = sys.stdin.read().split() # Read all input tokens
1680
 i = 1 # Index pointer after reading t
1681
 t = int(d[0]) # Number of test cases
1682
1683
 for _ in range(t):
1684
 n = int(d[i]) # Number of elements
1685
 i += 1
1686
 l = list(map(int, d[i:i+n])) # Current list of elements
1687
1688
1689
 f = defaultdict(int) # Frequency dictionary
1690
1691
 for v in 1:
 x = v \# Current value
1692
 p = 0 # Count of factor 2
1693
1694
 # Count how many times 2 divides x
1695
 while x % 2 == 0:
 x //= 2
1696
 p += 1
1697
1698
 k = (x, p)
 # Key as (odd part, power of two)
1699
 f[k] += 1
1700
 s = 0 # Result accumulator
1701
1702
 # Count pairs for each unique key using nC2 formula
1703
 for c in f.values():
1704
 s += c * (c - 1) // 2
1705
 print(s)
1706
1707
 if __name__ == "__main__":
1708
 main()
1709
1710
1711
 While the previous codes are correct for the given problem constraints, it implicitly assumes that
1712
 only pairs of equal values or (1, 2) satisfy the equation later searching iteratively. However, explicitly
 grouping all valid pairs using a mathematical key, making it more robust and efficient for all scenarios,
1713
```

including possible edge cases not covered by the first approach.

Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.

Score: 10.

1714 1715

1716 1717

1718

 $\mathcal{D}_{S_3}$  rank: [Data Structure Specialist, Programmer, Implementation Specialist]

#### D EXTERNAL RETRIEVAL CORPUS FOR CODE

As shown in Figure 5, our coding external retrieval corpus has 156 fine grained algorithmic tutorials with relevant problems along with their solutions collections from 10 different categories (algebrea, data structure, dynamic programming, string processing, linear algebrea, combinatorics, numerical methods, geometry, graphs and miscellaneous).

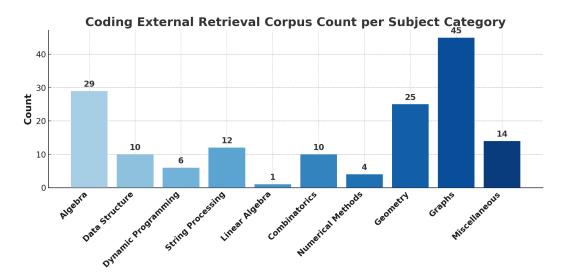


Figure 5: Coding External Retrieval Corpus Count per Subject Category.

#### E ADDITIONAL ANALYSIS

This section presents our multiple runs' results which we tested and list of roles which LLMs selected during the experiments.

#### E.1 ADDITIONAL RESULTS

Table 2 presents results against some open-ended and multi-hop reasoning tasks, highlighting Xolver's effectiveness on diverse domains.

Strong Gains Across Benchmarks. Overall, Xolver consistently delivers significant improvements over the backbone LLMs' standard LongCoT prompting. Both the problem-specific Xolver (–) and the cross-problem Xolver (+) variants outperform their respective LongCoT baselines across all datasets. For example, with the o3-mini-medium backbone, Xolver (+) improves from 84.8 to 95.9 EM on SQuAD2.0, from 41.8 to 78.9 EM on 2WIKI, and from 46.6 to 77.0 EM on Bamboogle. Similarly, with the QWQ-32B backbone, Xolver (+) boosts EM from 79.4 to 90.2 on SQuAD2.0, from 34.4 to 70.2 on 2WIKI, and from 38.4 to 64.1 on Bamboogle.

**Surpassing Prior Agents.** Compared to prior frameworks such as Search-o1, Xolver demonstrates consistent and significant gains. With o3-mini-medium, Xolver (+) outperforms Search-o1 by +5.0 EM on SQuAD2.0 (95.9 vs. 90.9), +12.6 EM on 2WIKI (78.9 vs. 66.3), and +13.3 EM on Bamboogle (77.0 vs. 63.7). With QWQ-32B, Xolver (+) also yields clear improvements, surpassing Search-o1 by +5.2 EM on SQuAD2.0, +12.2 EM on 2WIKI, and +8.1 EM on Bamboogle.

**In Comparison to Leading LLMs.** Despite using weaker backbones, Xolver (+) matches or surpasses the strongest proprietary variants. For instance, with o3-mini-high, Xolver (+) achieves state-of-the-art results across all benchmarks: 97.5 EM on SQuAD2.0, 84.4 EM on 2WIKI, and 82.3 EM on Bamboogle—outperforming all previously reported results.

**Backbone Agnostic.** Improvements from Xolver are consistent across different backbone LLMs. Both o3-mini-medium and QWQ-32B benefit substantially from the framework, demonstrating its

model-agnostic design. On 2WIKI, for example, Xolver (+) reaches 78.9 EM (03-mini-medium) and 70.2 EM (QWQ-32B), a dramatic gain over the respective LongCoT baselines of 41.8 and 34.4.

**Effectiveness of Dynamic Episodic Memory.** While both variants excel, the cross-problem variant Xolver (+) consistently outperforms the problem-specific version Xolver (–) in all benchmarks. On average, episodic memory integration yields an improvement of +4.6 EM across datasets and backbones, with the largest gain being +6.3 EM on 2WIKI with o3-mini-medium (78.9 vs. 72.6).

**Scales with Backbone LLM's Strength. Xolver's** performance scales consistently with the strength of its backbone. With o3-mini-high, Xolver (+) achieves 97.5 EM / 98.8 F1 on SQuAD2.0, 84.4 EM / 97.6 F1 on 2WIKI, and 82.3 EM / 93.8 F1 on Bamboogle, setting new state-of-the-art results across all multihop retrieval benchmarks.

Model	Appr. SQuAD2.0		AD2.0	2W	IKI	Bamboogle	
		EM	F1	EM	F1	EM	F1
o3-mini-medium	LongCoT	84.8	87.3	41.8	48.3	46.6	60.3
05-IIIIII-IIIediuiii	Search-o1	90.9	93.0	66.3	78.0	63.7	74.9
	$\mathbb{X}$ olver $(-)$	92.2	96.3	72.6	87.5	70.9	81.1
	Xolver (+)	95.9	98.3	78.9	96.3	77.0	88.7
OWO 22B	LongCoT	79.4	83.9	34.4	40.9	38.4	53.7
QWQ-32B	Search-o1	85.0	88.4	58.0	71.4	56.0	67.8
	$\mathbb{X}$ olver $(-)$	88.4	91.5	63.2	78.3	60.8	72.6
	$\mathbb{X}$ olver(+)	90.2	94.6	70.2	86.6	64.1	79.5
o3-mini-high	Xolver (+)	97.5	98.8	84.4	97.6	82.3	93.8

Table 2: Comparison of **Xolver** against SoTA reasoning agents across multihop retrieval tasks. Best results are boldfaced and second-best results are underlined. LongCoT: standard prompting for reasoning models.

#### E.2 Performance Variance Statistics.

In this experiment on the variance of Xolver performance, we tested Xolver against multiple runs (16 for AIME '24 and 32 for AIME '25 and LiveCodeBench) in AIME and LiveCodeBench dataset. Results shows in Table 3 that it has small scale performance change with multiple runs which is a strong sign on the robustness of Xolver.

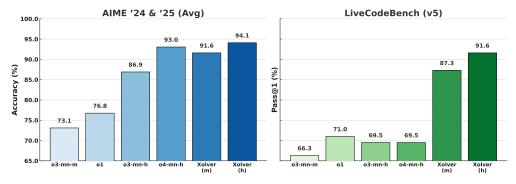


Figure 6: Results Summary on AIME '24 (16 runs), AIME '25 and LiveCodeBench (32 runs). Our framework Xolver, built on o3-mini-medium and o3-mini-high backbones (denoted (m) and (h)), achieves up to 30.9% gain over the baseline and often outperforms leading models on both tasks.

As in Figure 6, Xolver (m) achieves 91.6% average accuracy on the AIME '24 and '25 benchmarks—an 18.5-point gain over o3-mini-medium—while Xolver (h) reaches 94.1%, outperforming o3-mini-high by 7.2 points. On LiveCodeBench, Xolver (m) improves upon its base by 21 points (66.3% to 87.3%), with Xolver (h) achieving 91.6%, a 22.1-point lift over o3-mini-high.

Model	Appr.	AIME '24	AIME '25	LiveCodeBench (v5)
o3-mini-medium	Xolver (-)	$87.2 \pm 1.2$	$85.1 \pm 1.3$	$79.6 \pm 1.0$
	Xolver (+)	$93.8 \pm 0.3$	$89.4 \pm 0.7$	$87.3 \pm 0.4$
QWQ-32B	Xolver (-)	$89.9 \pm 0.8$	$79.5 \pm 1.1$	$76.2 \pm 0.9$
	Xolver (+)	$93.6 \pm 0.2$	$82.7 \pm 0.8$	$79.2 \pm 0.5$
o3-mini-high	Xolver (+)	$94.4 \pm 0.6$	$93.7 \pm 0.5$	$91.6 \pm 0.3$

Table 3: Xolver average performance with multiple trials.

# E.3 IMPACT OF AGENT AND TOOL COUNT WITH ITERATIONS, AND EMERGING BENEFITS OF COLLABORATION

We analyze the effect of varying the number of agents, tools and reasoning iterations on Xolver's performance. In a controlled setup, we fix one variable (e.g., 3 agents, 4 tools or 2 iterations) and incrementally increase the other. As shown in Figure 3, performance improves consistently on both AIME '25 and LIVECODEBENCH with more agents or iterations, whereas Figure 7 (see Section 4) shows steadily improving performance

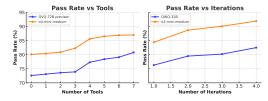


Figure 7: Impact of tools and iterations in Xolver on GAIA (left) and BAMBOOGLE (right).

on both GAIA and BAMBOOGLE with more tools or iterations, highlighting the advantage of collaborative and iterative problem solving.

To probe deeper, we conduct a budget-controlled experiment on the AIME '25 dataset, where the total reasoning budget (i.e., number of agents × number of iterations) is fixed. While iterative reasoning remains a crucial factor for Xolver's performance, we find that increasing the number of agents—particularly beyond a minimum of three—yields additional, emergent improvements, leading to over a 4% performance gain. This suggests that agent diversity and parallelism complement iterative depth, together producing stronger collaborative problem-solving benefits than either alone.

#### E.4 EFFECT OF RETRIEVAL STRATEGIES ON XOLVER PERFORMANCE

We evaluate the impact of different retrieval strategies on  $\mathbb{X}$  olver by comparing three settings: (1) *External Retrieval*, where the model retrieves the top-k (e.g., k=5) most similar problems and their solutions from an external corpus using a BM25 retriever; (2) *Self-Retrieval*, where the model recalls the top-k most similar problems and solutions from its own internal memory; and (3) *No Retrieval*, where neither external nor self-retrieval is used. As shown in Figure 8 (see Section 4), performance on both AIME '25 and LIVECODEBENCH follows the trend: *External Retrieval* > *Self-Retrieval* > *No Retrieval*, indicating that external retrieval significantly enhances  $\mathbb{X}$  olver's performance.

We note that for code tasks, although the external retrieval corpus contains solutions written in C++—a different language from the target Python—external retrieval still provides a substantial performance boost. Nonetheless, while self-retrieval results in a notable performance drop compared to external retrieval, it still outperforms the no-retrieval baseline with notable margins, serving as a viable alternative when external resources are unavailable.



Figure 8: Impact of different retrievals in Xolver.

#### E.5 FINE-GRAINED PERFORMANCE ANALYSIS

Figures shows that, on MATH-500 (Figure 9), LIVECODEBENCH (Figure 10) and GPQA DIAMOND (Figure 11), Xolver (both o3-mini-medium and QWQ-32B) consistently outperforms CHEATSHEET across nearly all seven subject categories, despite the latter relying on costly per-problem memory updates. The only exception is in *Number Theory*, where o3-mini-medium scores 99.2 compared to CHEATSHEET's 99.5. As for QWQ-32B,

Xolver achieves substantial accuracy gains over CheatSheet across all categories, with imof +9.0% provements +8.5% Prealgebra, in Algebra, +11.0% in in Number Theory, +8.5% in Counting and Probability, +8.8% in Geometry, +10.0% in Intermediate Algebra, and +7.5% in Precalcu-These consistent

1890

1892

1894

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916 1917

1918

1919

1920

1921

1922

1924

1925

1926 1927

1928 1929

1930

1931

1932

1933

1934

1935

1936

1938 1939

1940

1941

1942

1943

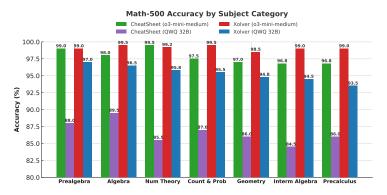
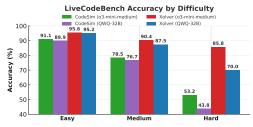


Figure 9: Fine-grained performance comparison in MATH-500.

gains highlight **Xolver**'s strong performance across both symbolic and numerical reasoning. On LiveCodeBench, Xolver demonstrates even more pronounced gains. The o3-mini-medium variant achieves 95.6%, 90.4%, and 85.8% accuracy on Easy, Medium, and Hard problems respectively, significantly outperforming CodeSim by +4.5%, +11.9%, and a striking +32.3% margin on hard examples. Even with a weaker QWQ-32B backbone, Xolver (95.2%, 87.5%, 70.0%) surpasses all baselines and achieves similar gains. In contrast to CheatSheet and CodeSim, Xolver leverages multi-agent collaborations and holistic experience learning.



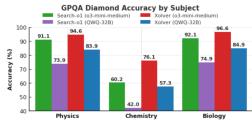


Figure 10: Performance comparison per difficulty levels in LiveCodeBench.

Figure 11: Fine-grained performance comparison in GPOA Diamond.

On GPQA Diamond, Xolver improves accuracy across all three subjects for both backbones (see Figure 11). With the o3-mini-medium backbone, Xolver attains 94.6% (Physics), 76.1% (Chemistry), and 96.6% (Biology), outperforming Search-o1 by +3.5%, +15.9%, and +4.5% points, respectively. Even with the weaker QVQ-32B backbone, Xolver reaches 83.9%, 57.3%, and 84.9%—gains of +10.0%, +15.3%, and +10.0% points over the corresponding Search-o1 results. These consistent, backbone-agnostic improvements highlight Xolver's strong performance on multi-disciplinary scientific QA task.

#### E.6 CAN A SELF-JUDGE REPLACE A JUDGE AGENT?

We analyze the effect of different judging mechanisms on Xolver's performance by comparing two setups: (1) *self-judging*, where each dynamic agent evaluates its own response through self-reflection without altering its role, and (2) *external judging*, where a separate judge agent is used to assess the responses. We find that self-judging agents tend to be biased in favor of their own outputs, occasionally validating incorrect solutions. This self-bias leads to a noticeable drop in overall performance—specifically, a 7.4% decrease in coding tasks, 4% decrease in agentic tasks and a 8.7% decrease in math tasks, on average.

#### E.7 COST ANALYSIS AND HOW LONG DO XOLVER AGENTS THINK?

In Figure 12, we report input, reasoning, and output token statistics for  $\mathbb{X}$  olver across all datasets. Token complexity scales as  $O(m\mathcal{I})$  (with m agents and  $\mathcal{I}$  iterations), while runtime remains  $O(\mathcal{I})$  because agents run in parallel. This is more efficient than self-consistency (Wang et al., 2022), which typically needs 32–64 generations per example, and than the CheatSheet baseline with  $O(n^2)$  memory updates from usefulness estimation over prior examples. As a multi-agent system,  $\mathbb{X}$  olver spends most tokens on context sharing and inter-agent communication; about 25% go to core reasoning.

We also compare total token usage to the single-agent Search-o1, counting tokens with tiktoken (o3-minimedium) and AutoTokenizer (QWQ-32B). Xolver uses roughly 1.5× more tokens, reflecting collaborative, iterative reasoning, yet this moderate increase yields substantial gains: +32.3% absolute on hard coding with o3-mini-medium and +9.05% accuracy across all Math-500 categories with QWQ-32B (see

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957 1958

1959 1960

1961

1962

1963

1964

1965

1973 1974 1975

1977

1978

1979

1981

1982

1984

1986

1987

1988

1989

1990

1991

1992

1993

1994

1996 1997

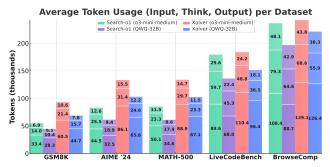


Figure 12: Average numbers of token usage across datasets in Xolver.

Figure 9; Figure 10). Thus, Xolver 's slightly higher reasoning cost is well justified by its broad, superior performance.

#### E.8 IMPACT OF DATA-SHUFFLING IN XOLVER (+) PERFORMANCE

Xolver (+) updates its external memory incrementally after solving each new problem. To examine whether the order of test instances impacts performance, we conduct an ablation study by randomly shuffling the sequence of problems in each task. This helps determine if there is any dependency on the data order. During this experiment on the impact of shuffling data on Xolver performance, we randomly shuffled the test instances and conducted the experiment with 5 runs. Results shows in Table 4 that Xolver has limited performance change (STD  $\sim$  1) with shuffling data—a strong sign on the robustness of the framework.

$\mathbf{Mean} \pm \mathbf{STD}$	(With only 5 Runs, all STD $\sim 1$ )				
Model	GSM8K	AIME '24	AIME '25	<b>MATH-500</b>	LiveCodeBench (v5)
o3-mini-medium	$97.6 \pm 1.3$	$92.2 \pm 0.4$	$91.0 \pm 0.3$	$98.3 \pm 0.6$	$90.9 \pm 1.1$
QWQ-32B	$97.2 \pm 0.6$	$93.7 \pm 0.5$	$82.7 \pm 2.0$	$95.1 \pm 0.6$	$83.6 \pm 1.6$

Table 4: Impact of using intermediate shared memory with shuffle of order in test set in Xolver.

#### E.9 MORE ERROR ANALYSIS

In Figure 13 and Figure 14, we present an error analysis across math, code and agentic tasks that goes beyond simple accuracy or pass@1 metrics. While reasoning generation Xolver significantly improves and capabilities these domains, both (o3-mini-medium and QWQ-32B equivalent) backbone **LLMs** 

can still produce solutions that are syntactically correct yet semantically flawed, resulting in failed executions due to incorrect reasoning, incomplete logic, unoptimized implementations, or misaligned tool usage. In

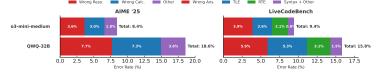


Figure 13: Xolver Math and Code error distribution.

agentic tasks, failure mode include mouse click, instructual, visual and other errors, whereas, code tasks include incorrect final code, time limit exceeded (TLE), runtime errors (RTE), and syntax issues. In math tasks, remaining errors are primarily due to flawed logical derivations or faulty intermediate calculations. Although Python-based tools are available, such calculation errors often occur when agents choose not to invoke these tools—highlighting that tool usage remains decoupled from the model's core reasoning process (see Appendix B for our prompt design). These findings provide insights for future improvements by exposing the variety of failure modes across domains, and further emphasize the importance of robust self-verification and refinement mechanisms, as employed by Xolver.

#### E.10 PATTERNS IN XOLVER REASONING TRACES

To understand how Xolver adapts its reasoning process to perform complex reasoning, we analyze the dynamics of reasoning pattern frequencies across difficulty

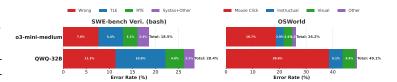


Figure 14: Xolver Code and Agentic task error distribution.

levels in LIVECODEBENCH, as shown in Table 5. Our analysis reveals that Xolver dynamically increases *self-evaluation* and *exploratory strategies* (e.g., trying new approaches) as problem difficulty grows. Correct solutions demonstrate a declining need for problem rephrasing and subgoal decomposition, indicating more direct and confident reasoning. In contrast, incorrect solutions show increased subgoal setup and rephrasing attempts—suggesting that the system recognizes failure and attempts recovery through restructuring. Compared to OpenCodeReasoning, which shows stagnation or regression in key patterns (e.g., self-evaluation), Xolver exhibits robust and adaptive reasoning behavior, supported by multi-agent collaboration and judge feedback. This behavior highlights the generality and flexibility of Xolver 's reasoning model.

Reasoning Pattern	Correct	Solutions	Incorrect Solutions		
_	$Easy \rightarrow Medium$	$Medium \to High$	$Easy \rightarrow Medium$	$Medium \rightarrow High$	
(a) OpenCodeReasoning					
Self-Evaluation (↓)	$0.39 \rightarrow 0.37$	$0.37 \to 0.34$	$0.36 \rightarrow 0.37$	$0.34 \to 0.31$	
New Approach (↑)	$0.16 \rightarrow 0.20$	$0.20 \to 0.23$	$0.16 \to 0.22$	$0.22 \to 0.25$	
Problem Rephrasing $(\downarrow \uparrow)$	$0.21 \rightarrow 0.20$	$0.20 \rightarrow 0.20$	$0.21 \rightarrow 0.22$	$0.22 \rightarrow 0.23$	
Subgoal Setup (↓)	$0.13 \rightarrow 0.12$	$0.12 \rightarrow 0.10$	$0.13 \to 0.10$	$0.10 \rightarrow 0.10$	
(b) Xolver					
Self-Evaluation (↑)	$0.35 \to 0.38$	$0.38 \to 0.40$	$0.35 \rightarrow 0.37$	$0.32 \to 0.35$	
New Approach (↑)	$0.18 \rightarrow 0.21$	$0.21 \to 0.24$	$0.17 \to 0.24$	$0.24 \to 0.26$	
Problem Rephrasing $(\downarrow \uparrow)$	$0.20 \rightarrow 0.17$	$0.18 \rightarrow 0.18$	$0.23 \rightarrow 0.24$	$0.24 \rightarrow 0.25$	
Subgoal Setup (↓↑)	$0.14 \rightarrow 0.13$	$0.13 \rightarrow 0.11$	$0.11 \to 0.12$	$0.11 \rightarrow 0.11$	

Table 5: Demonstrating how the frequency of major reasoning pattern changes as problem difficulty increases. Green indicates statistically significant increases and red indicates significant decreases (p < 0.05). Gray boxes highlight opposing trends between OpenCodeReasoning (decrease) and Xolver (increase). Direction arrows indicate the expected trend direction:  $\uparrow$  = increase,  $\downarrow$  = decrease,  $\downarrow$  † = mixed trend (minor decrease then elevated recovery),  $\updownarrow$  = fluctuating trend (major decrease then recovery). While solving problems, OpenCodeReasoning struggles at Self-Evaluation and Subgoal Setup whereas Xolver overcomes it with increasing Self-Evaluation in both correct and incorrect solutions and elevated recovery in Subgoal Setup in incorrect solutions. Both OpenCodeReasoning and Xolver adapts New Approach while struggles at Problem Rephrasing.

We employ the QWQ-32B model for the initial segmentation of the chain of thought, guided by the first prompt, subsequently, for segments that remain unannotated, a second segmentation pass is performed using the second prompt depicted in Section B.5. Reasoning patterns are identified by extracting content enclosed within the <pattern> tags. Verification and reasoning patterns are combined into a unified self-evaluation category. If the model assigns multiple patterns to a single segment, that segment is excluded due to ambiguity in pattern classification. For each generated output, we calculate the proportion of occurrences of each pattern relative to the total patterns present, resulting in a frequency vector representing pattern distribution per generation. In examining the relationship between pattern usage and problem difficulty, we compute the mean frequencies separately for correct and incorrect generations and assess significance through a t-test. To evaluate pattern prevalence on a per-problem basis, a binary matrix is constructed where rows correspond to problems and entries indicate whether a pattern is more common in correct (1) or incorrect (0) solutions. The statistical significance of these findings is evaluated using a binomial test.

#### E.11 CASE-STUDY: HOW XOLVER ENHANCES REASONING

To further understand the reasoning and problem-solving strategies behind our multi-agent, iterative framework Xolver, we conduct an in-depth analysis combining qualitative runtime inspection with controlled experiments. We begin by manually studying Xolver's agent interaction traces on AIME '25 and LiveCodeBench. These case studies reveal that at each iteration, dynamic

agents attempt to improve upon earlier failures by leveraging Judge agent feedback and by aligning with top-ranked outputs stored in the shared memory  $\mathcal{D}_S$ . This process results in progressively refined outputs, increased agent alignment, and eventual convergence toward correct solutions.

To verify this behavior systematically, we conduct a controlled experiment across both math and code tasks. We instantiate two dynamic agents with complementary strengths: a Coder agent and a Mathematician agent, each proficient in one domain but suboptimal in the other. We then measure their performance and agreement across iterations—defined as the percentage of problems in which both

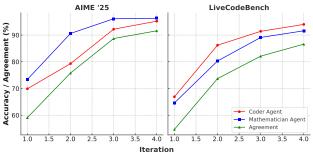


Figure 15: Agents Accuracy and Agreement over iterations.

agents independently produce the same correct answer (for math) or code that passes the same test cases (for code). As shown in Figure 15, both agents demonstrate consistent accuracy improvements over time, accompanied by a rising agreement rate. This not only illustrates mutual influence and learning-by-alignment but also validates the emergence of collaborative synergy.

Crucially, we observe that the presence of the Judge agent plays a vital role in this convergence process. When the Judge agent is removed—as shown in our first ablation—performance degrades significantly. These findings collectively affirm that **Xolver**'s iterative memory-sharing, feedback-driven refinement, and role-specialized agents contribute to its strong reasoning performance across domains, making it a compelling framework for general-purpose, self-improving problem solving.

#### E.12 LIST OF ROLES OF SELECTED BY DYNAMIC AGENTS

Table 6 shows some selected specialized roles by the dynamic agents while testing on math, coding and agentic tasks along with their most frequently selected roles.

(a) Specialized Roles					
Math	Coding	Agentic			
Problem Analyzer	Problem Analyzer	Snippet Extractor			
Mathematical Modeler	Algorithm Designer	Web Search Strategist			
Algorithm Designer	Solution Architect	Evidence Collector			
Numerical Analyst	Implementation Specialist	Source Credibility Assessor			
Symbolic Solver	Data Structure Specialist	Multi-Document Synthesizer			
Mathematician	Optimization Engineer	Verification Critic			
Computational Tools Specialist	Unit Tester	Browser Orchestrator			
	Debugging Expert	Automation Specialist			
	Programmer	Workspace Manager			
	Debugging Expert	User Interface Navigator			
	Code Reviewer	Rubric Aligner			
		Query Rewriter			
	(b) Most Frequent Roles				
Math	Coding	Agentic			
Mathematical Modeler	Algorithm Designer	Web Search Strategist			
Numerical Analyst	Implementation Specialist	Query Rewriting Strategist			
Symbolic Solver	Data Structure Specialist	Evidence Extractor			
Mathematician	Programmer	Consistency Verifier			
Computational Tools Specialist	Optimization Engineer	Multi-Document Synthesizer			

Table 6: List of math, coding and agentic roles selected by LLMs.