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ABSTRACT

Despite rapid advances in complex reasoning, large language models (LLMs)
largely operate in isolation, treating each problem as a fresh attempt without re-
taining or reusing prior experience. In contrast, expert problem solvers—such as
Olympiad or programming contest teams—leverage a rich tapestry of experience:
mentorship from coaches, intuition from past problems, mastery of tools and li-
braries, peer strategies, and continuous refinement through trial and error—even
drawing insights from related problems under competition conditions. Inspired by
this, we introduce Xolver—a training-free, generalist reasoning and problem solv-
ing framework that equips a black-box LLM with a persistent, evolving memory of
holistic experience. Xolver combines two key innovations: (i) a holistic experience-
learning paradigm that unifies external and self-retrieval, tool use, collaborative
agent interaction, agent-driven evaluation, and iterative reasoning refinement; and
(ii) a dynamic multi-agent collaboration schema that departs from orchestration
engineering, instead employing a federated learning strategy in which agents in-
dependently solve problems and aggregate their solutions. Extensive evaluations
across reasoning, agentic, and coding benchmarks show that Xolver consistently
outperforms specialized reasoning agents (e.g., OctoTools, Search-o1, AWorld,
OpenHands, OAgents, Agent S2.5). Even with lightweight backbones (e.g., QWQ-
32B), it frequently surpasses state-of-the-art proprietary models (Qwen3-235B,
Gemini 2.5 Pro, o3, Deep Research, o4-mini-high). With stronger backbones (e.g.,
o3-mini-high), Xolver achieves new state-of-the-art scores: 94.4 on AIME’24, 93.7
on AIME’25, 91.6 on LiveCodeBench, 90.1 on GAIA, 71.7 on BrowseComp, 74.4
on OSWorld, 84.9 on SWE-bench Verified (bash only), 57.3 on HLE, 94.6 on
GPQA Diamond, 84.4 on 2WIKI, and 82.3 on Bamboogle—highlighting holistic
and federated experience learning as a crucial step toward dynamic, generalist
agents capable of expert-level reasoning. We will open-source all code, and data.

1 INTRODUCTION

Recent advances in large language models (LLMs) have made remarkable progress in complex
reasoning and problem solving across domains including mathematics (Cobbe et al., 2021; Hendrycks
et al., 2021; Lewkowycz et al., 2022) and programming (Chen et al., 2021; Austin et al., 2021; Khan
et al., 2024). Yet despite these impressive capabilities, conventional LLM reasoning approaches
remain fundamentally limited: they standalone each problem instance, generating solutions from
scratch without accumulating or transferring insights from rich, diverse experiential knowledge.

This isolated reasoning paradigm marks a significant departure from how expert human problem
solvers operate. Expert problem solvers—such as an Olympiad or programming contest teams—rarely
approach problems in a vacuum. Instead, they draw upon a rich tapestry of cumulative experiences:
absorbing mentorship from coaches, developing intuition from past problems, leveraging knowledge
of tool usage and library functionality (e.g., calculator), adapting strategies based on peers’ expertise
and experiences, gaining insights through iterative trial and error, and learning from related problems
even during competition. This holistic experience empowers them to tackle new challenges not from
scratch, but by dynamically applying accumulated knowledge and adaptive strategies.

1
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Figure 1: Xolver Scaffold. At each iteration, agents receive their past reasoning history and top-
ranked exemplars to generate new thoughts and responses, using tools (e.g., code) as needed. A judge
model ranks outputs, and an intermediate memory maintains the best responses over time. Exemplars
are initialized via episodic retrieval and continually updated with high-quality solutions from the
memory. Iteration stops when convergence or max steps are reached, followed by final verification.

While numerous prior studies have enhanced LLM reasoning and problem solving through various
forms of experiential knowledge augmentation, they have predominantly operated within discrete
modalities—retrieving similar problems or relevant contexts (Parvez et al., 2021; Lewis et al., 2020;
Guu et al., 2020), leveraging external tools (Lu et al., 2025; 2024), or facilitating multi-agent
collaboration (Islam et al., 2025). Despite their individual strengths, these approaches address
distinct facets of experiential knowledge independently, preventing LLMs from accumulating and
synthesizing a comprehensive repertoire of learning signals across diverse experiential dimensions,
thereby limiting the development of the rich, interconnected knowledge structures that characterize
human expertise. This fragmentation is further compounded by the fact that most problem-solving
frameworks are designed for specific tasks or environments, limiting their generality and the ability
to transfer knowledge across domains.

In this paper, we introduce Xolver—a training-free, generalist reasoning and problem solving
framework that emulates the holistic experience-driven, collaborative reasoning of expert teams. At
its core, Xolver integrates planning, episodic retrieval from external and parametric memory, tool use,
multi-agent collaboration, agent evaluation, and iterative self-refinement within a unified architecture.
A planner agent coordinates specialized agents—such as mathematicians or programmers—that
collaborate on complex tasks. Initially, reasoning is guided by exemplars from episodic memory;
in subsequent iterations, agents rely on a shared memory that records trajectories, solutions, and
feedback. This evolving memory enables agents to build on prior successes, correct errors, and
progressively refine solutions. When necessary, agents invoke external tools (e.g., code execution),
while a judge agent evaluates outputs, ranks top responses, and enriches the shared memory with
curated traces. Iterations proceed until convergence or a fixed budget is reached, followed by a final
verification step. Additionally, by updating its episodic store with each newly solved problem and its
reasoning trace, Xolver can continually expand its knowledge base. Figure 1 illustrates the workflow.

In addition to its holistic experience-driven paradigm, Xolver differs fundamentally from existing
multi-agent workflows, which often reduce to orchestration engineering over cascaded agent commu-
nication (Yao et al., 2022; Hong et al., 2024; Wang et al., 2024; Lei et al., 2024; Wu et al., 2023).
In contrast, we introduce federated agent learning, a collaboration method in which each agent
independently solves the complete problem without peer-to-peer messaging (federated), while a
judge agent consolidates their reasoning, outputs, and evaluation feedback into a shared memory
for that iteration (aggregated). Agents then condition on this evolving memory to iteratively refine
their solutions. Finally, unlike task-specific frameworks, Xolver ’s human-aware design enables it to
operate as a generalist problem solver.

We conduct large-scale experiments across a range of math and programming benchmarks—including
GSM8K, Math-500, AIME (2024 and 2025), LiveCodeBench (v5), GAIA, BrowseComp, OSWorld,
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Humanities Last Exams (HLE), SWE-bench Verified (bash only), GPQA Diamond, SQuAD2.0,
2WIKI and Bamboogle—using both proprietary (o3-mini and o4-mini) and open-weight (QWQ-32B
and QVQ-72B-preview) backbone models. Xolver consistently outperforms specialized reasoning
systems such as OctoTools, Search-o1, OpenHands, Agentless, WebSailor, OAgents, Alita, AWorld,
GTA1, and Agent S2.5. Remarkably, even when instantiated with lightweight models such as QWQ-
32 or o3-mini-med, Xolver often outperforms substantially larger state-of-the-art LLMs, including
Qwen3-235B, Gemini 2.5 Pro, o3, and o4-mini-high. Moreover, with stronger backbones such as
o3-mini-high or o4-mini-high Xolver establishes new state-of-the-art results across all benchmarks.
Finally, our comprehensive ablations and analyses reveal how Xolver ’s experiential components
shape its performance, highlighting both its strengths and limitations.

2 THE XOLVER FRAMEWORK

Given a problem query q ∈ Q and a pretrained language model LLMθ(·), a conventional approach
generates a solution via single-step inference: y ∼ LLMθ(q). In contrast, Xolver executes a dynamic,
multi-agent reasoning process that iteratively accumulates and leverages symbolic experience to solve
complex problems more effectively. To support structured collaborative reasoning, Xolver maintains
two complementary forms of memory: an episodic memory DE , which stores a library of past
problems, solutions, and reasoning traces; and an intermediate dynamic shared memory DS , which
evolves during inference to retain high-quality agent trajectories—comprising reasoning thoughts,
responses, agent metadata, and feedback. In Xolver, a multi-agent team A is orchestrated adaptively
by a planner agent P , which assigns roles and configures memory access. During inference,A agents
leverage an external toolset T (e.g., Python interpreter) to support accurate computation. Finally,
a verifier or external debugger V is invoked to extract and format the final answer, and to validate
correctness for executable outputs. Below, we first describe the Xolver agents and tools in Section
2.1, followed by the memory components in Section 2.2, and the inference cycle in Section 2.3.

2.1 AGENTS AND TOOLS

Planner Agent P . The planner agent P is responsible for initiating, planning, and orchestrating the
Xolver multi-agent architecture. Given the problem q and the number of agents m, it constructs a
teamA of m dynamic agents, each assigned a distinct expert role (e.g., algebra solver, mathematician,
theorist, programmer, algorithm designer) tailored to the demands of q. To ensure sufficient task
coverage and role diversity, P first prompts the underlying LLM to over-generate M > m candidate
agents, from which it then selects the most effective subset A ⊂ {a1, . . . , aM} such that |A| = m. A
summary of the most frequently generated and selected roles is provided in Appendix E.12.

Dynamic Reasoning Agents A. The set A = {a1, a2, . . . , am} represents a team of dynamic
reasoning agents constructed by the planner agent P . Each agent aj ∈ A is assigned a distinct
expert role (e.g., algebra solver, programmer, counter-example generator) tailored to the task query q.
Agents are instantiated using a standardized prompting template (see Appendix B) that incorporates
the task description, assigned role, retrieved examples, prior reasoning attempts, and shared memory
feedback—enabling iterative self-correction and role specialization.

At each iteration i, agent aj receives a context Cji and generates a structured reasoning trace T j
i and a

response Rj
i . For the first iteration (i = 0), the context is initialized using the task query and relevant

retrieved exemplars:
A ← Cj0 = {q} ∪ R(DE). (BUILDCONTEXT)

For subsequent iterations (i ≥ 1), the context evolves by incorporating its prior generation (history)
and the shared memory:

A ← Cji = {q} ∪ {T j
i−1, R

j
i−1} ∪ DS . (BUILDCONTEXT)

Judge Agent J . The judge agent J evaluates intermediate outputs from each agent and returns
structured feedback to guide refinement and memory updates. Given a query q, a reasoning trace
T , and a response R, it produces a feedback tuple S = (TS , s), where TS is a natural language
explanation (e.g., critique, justification, correction), and s is a scalar quality score. The interpretation
of s is task-dependent: for math and other tasks, s ∈ [0, 1] reflects an LLM-estimated correctness

3
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probability; for code tasks, s ∈ {0, 1, . . . , Ntest}, where Ntest denotes the total number of test cases
including problem-provided samples and 10 synthesized test cases (LiveCodeBench) generated using
AceCode-RM-32B (Zeng et al., 2025). This structured feedback enables agents to identify failures,
receive localized corrections, and improve reasoning over iterations.

Verifier Agent V . Due to linguistic complexity and varying answer specification formats, a response
may be incorrect even when the underlying reasoning or open-ended response is valid. For instance,
answer formats may require multiple-choice letters (e.g., “(A)” or “Choice B”). Such challenges
are even more pronounced in code generation tasks, where predicted code may fail to execute or
pass any sample test cases. To mitigate this, Xolver includes a Verifier Agent V , which operates
differently based on the output type. For math and other problems, V extracts the final reasoning TF ,
response RF , and answer y from the response associated with the top-ranked entry BESTRESPONSE
in DS , ensuring adherence to the expected output format. For executable code, Xolver invokes an
external debugger (e.g., LDB (Zhong et al., 2024)), where V interacts with a Python runtime to
capture execution feedback and iteratively fix runtime errors.

Tools T . Integrating natural language reasoning with tools like Python execution is a proven way
to boost performance on complex reasoning tasks Moshkov et al. (2025); Toshniwal et al. (2024). We
observe that even advanced reasoning models often make mistakes in intermediate steps, particularly
when computations become non-trivial. To address this, each dynamic agent aj is explicitly instructed
to use Python execution during reasoning when needed. While for math and code tasks, Xolver
limits T to Python (e.g., numerical libraries, interpreters, debuggers), our prompting strategy is tool-
agnostic, allowed us an interface for extensions to richer toolsets such as (e.g., search engines, patch
zoomer, clicking, typing, scrolling web pages, image captioner, file handler, knowledge databases,
port transferer, reverse engineer) for other tasks. All prompts are 0-shot and provided in Appendix B.

2.2 MEMORY COMPONENTS

Episodic Memory DE . Xolver maintains two forms of episodic (long-term) memory: (1) an external
memory corpus Dext

E = {(q′, T ′, R′)}, which consists of past problem instances q′, their correspond-
ing reasoning traces T ′ (optional), and solution responses R′; and (2) the internal parametric memory
encoded in the weights of the agent-specific language model LLMj .

We define a general retrieval operatorR(DE) that returns a set of K examples relevant to the query
q. When Dext

E is available, retrieval is conducted using similarity-based search (e.g., BM25):

R(DE) = {(q′k, T ′
k, R

′
k)}Kk=1 ← Retrievej(q,Dext

E ).

Otherwise, Xolver falls back to internal self-retrieval by sampling from the agent model itself:

R(DE) = {(q′k, T ′
k, R

′
k)}Kk=1 ∼ LLMj(q).

In the case of an external episodic memory,DE can also be updated with UPDATEEPISODICMEMORY
by adding the top-ranked reasoning and response fromDS , paired with the problem q, into the external
corpus Dext

E . That is, Dext
E ← Dext

E ∪ (q, T,R), where (T,R, S, a) is the top-ranked entry in DS .

Intermediate Shared Memory DS . The shared memory DS maintains a fixed-size set of high-
quality intermediate reasoning, responses, and metadata generated by the dynamic agents during
inference on the current query q. For simplicity and to preserve the dynamic nature of the framework,
we constrain |DS | = m, where m is the number of dynamic agents in A. Initially, DS ← ∅. At each
iteration i, each agent aj ∈ A produces a reasoning trace T j

i , response Rj
i , and receives structured

feedback Sj
i = (T

(i,j)
S , si,j) from the judge agent J , where T

(i,j)
S is a natural language explanation

and si,j is a scalar score reflecting the quality of the tuple (T j
i , R

j
i ). After collecting the new outputs

τ ji = (T j
i , R

j
i , S

j
i , a

j), j = 1, . . . ,m, (RUNAGENTS)

we form the candidate poolM = DS ∪ {τ1i , . . . , τmi }. We then update the fixed-size shared memory
by keeping only the top-m tuples by score

DS ← TopK
(
M, m; key(e) = s(e)

)
, , (UPDATESHAREDMEMORY)

4
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where s(e) extracts the scalar score from e = (T,R, (TS , s), a).

This replacement mechanism ensures that DS always contains exactly m entries with the highest
observed scores across all iterations. By maintaining only the strongest reasoning-response-feedback
tuples, the shared memory facilitates knowledge transfer between agents and across iterations,
enabling collaborative improvement through exposure to diverse high-quality solutions.

2.3 INFERENCE PROTOCOL Algorithm 1 Xolver Inference Protocol

1: Input: Query q, Tools T , Episodic Memory DE ,
parameters m, k, I

2: Init: DS ← ∅
3: A ← PLANNER(q,m)
4: for i = 0 to I do
5: {Ci}mc=1 ← BUILDCONTEXT(A,DE ,DS , q, i)

6: {τ ji }mj=1 ← RUNAGENTS(A, Ci, T ,J )
7: DS ← UPDATESHAREDMEMORY(DS , {τ ji })
8: if CONVERGED(DS) then
9: break

10: end if
11: end for
12: y ← V(BESTRESPONSE(DS))
13: UPDATEEPISODICMEMORY(DE , q,DS)
14: Return y

Algorithm 1 summarizes the Xolver in-
ference protocol, which operates in three
structured stages. Stage-1, which emu-
lates initialization with prior experience,
involves the planner constructing a team of
agents A (lines 2–3). Stage-2, embodying
symbolic federated experience accumula-
tion and refinement, iterates for I rounds
(lines 4–10). In each round, all agents re-
ceive access to DS and DE , build their
symbolic aggregated contexts, and gener-
ate structured trajectories and responses.
(DE is only used for context construction
at the first iteration). These are evaluated
by the judge agent J , and DS is updated
with the resulting feedback tuples (line 7).
Upon convergence1 or after I rounds, Stage-3 invokes the verifier agent V , which extracts the final
answer from the top-ranked entry in DS (line 11), and updates DE with the new experience.

3 EXPERIMENTS

3.1 EVALUATION SETUP

Evaluation Benchmarks. We evaluate Xolver on math, coding, open-ended, multimodal, browsing,
multihop, and agentic tasks. Math: GSM8K (Cobbe et al., 2021), Math-500 (Hendrycks et al.,
2021), AIME 2024 (MAA, 2024), and AIME 2025 (MAA, 2025) (multi-step high-school competition
problems). Coding: SWE-bench Verified (bash only) (Jimenez et al., 2023) and LiveCodeBench
v5 (Jain et al., 2024) (dynamic, no-leakage). Open-ended: GPQA Diamond (Rein et al., 2024),
SQuAD2.0 (Rajpurkar et al., 2018). Multimodal: GAIA (Mialon et al., 2023), HLE (Phan et al.,
2025). Tool-integrated browsing: BrowseComp (Wei et al., 2025). Multihop: 2WIKI (Ho et al.,
2020), Bamboogle (Press et al., 2022). Agentic: OSWorld (Xie et al., 2024). These span arithmetic,
algebra, number theory, geometry, combinatorics, and algorithmic problem solving.

Baselines and Metrics. We compare Xolver to: (a) proprietary reasoning models—Gemini 2.5
(Pro, Flash Think) (DeepMind, 2025), Grok-3 Beta Think/Mini (Beta) Think (xAI, 2025), Claude
3.7 Sonnet Think (Anthropic, 2025), o1 (OpenAI, 2024b), o3-mini/o3/o4-mini (OpenAI, 2025); (b)
open-weight LLMs—Qwen3-235B (Qwen Team, 2024), QWQ-32B (Qwen Team, 2025), DeepSeek-
R1 (DeepSeek-AI, 2025); (c) specialized models—AlphaOne (Zhang et al., 2025), OpenMath-
Reason (Moshkov et al., 2025), rStar-Math (Guan et al., 2025), rStar-Coder (Liu et al., 2025),
OpenCodeReason (Ahmad et al., 2025), Kimi-K1-1.6 (Kimi Team, 2025), Kimi-k2-0905 (Team
et al., 2025), Deep Research, ChatGPT Agent, and OpenCua-Qwen2-7B/32B (Wang et al., 2025);
and (d) agent/framework baselines—Self-Reflexion (Shinn et al., 2023), Search-o1 (Li et al., 2025b),
OctoTools (Lu et al., 2025), CheatSheet (Suzgun et al., 2025), CodeSim (Islam et al., 2025), Open-
Hands (Wang et al., 2024), Agentless (Xia et al., 2024), WebSailor (Li et al., 2025a), OAgents (Zhu
et al., 2025), Alita (Qiu et al., 2025), AWorld (Yu et al., 2025), GTA1 (Yang et al., 2025), and Agent
S2.5 (Agashe et al., 2025). For (d) we re-implement with the same backbone LLMs as ours; for (a–c)
we report official numbers. Metrics: accuracy for math and agentic tasks (judged by GPT-4o (OpenAI,
2024a)) and pass@1 for code.

1Xolver converges when each dynamic agent in A holds the very same scores (same at max)—terminates
when each agent is at max possible scores in the intermediate shared memory DS or max iterations I elapsed.
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Inference Details. Backbones include open-weight QWQ-32B (Qwen Team, 2024), QVQ-72B-
preview, and proprietary o3-mini/o4-mini (medium/high) (OpenAI, 2025). To reduce variance, we
report averages over 32 runs on LIVECODEBENCH and AIME ’25, and 16 runs on AIME ’24, with
∼ 1% std. dev. (Appendix E.10). For simpler or instructional tasks—GSM8K, MATH-500, GAIA,
BrowseComp, OSWorld, SWE-bench, HLE, and GPQA Diamond—we follow DeepSeek-v3 (Liu
et al., 2024) with single greedy decoding. Defaults: temperature 0.2, agents m = 3, max iterations
I = 2; terminate on reaching I or when shared memory Ds converges (score 1.0 for non-code
tasks; all tests passed for code). For external retrieval in coding (LiveCodeBench), we build a
9M-token corpus of algorithmic problems with C++ solutions from GitHub2 (see Appendix D); for
math we use OPENMATHREASON (Moshkov et al., 2025). Other tasks use self-retrieval (SWE-
bench, SQuAD2.0, GPQA Diamond) or adaptive external retrieval (GAIA, OSWorld, HLE, 2WIKI,
Bamboogle, BrowseComp) with search engines. We evaluate two variants of Xolver: (i) Xolver
with in-competition cross-problem experience (Xolver (+)), which dynamically updates the episodic
memory after solving each problem to utilize accumulated knowledge across problems; and (ii)
Xolver (–), which keeps the episodic memory static, focusing solely on problem-specific experience.
By default, we refer to Xolver (+) as our method if not specified otherwise.

3.2 MAIN RESULTS

Table 1 evaluates Xolver across diverse agentic, reasoning, and coding tasks, compared to state-of-
the-art LLMs, specialized models, and other frameworks. Whereas, Table 2 (Appendix E.1) presents
results in more open-ended and multi-hop reasoning tasks, showing its effectiveness and generality.

Strong Gains Across Benchmarks. Across all datasets, both Xolver (–) and Xolver (+) surpass
the backbone LongCoT baselines: for o3-mini-medium, AIME’24 improves 75.8→93.8 and Live-
CodeBench 66.3→87.3; for o4-mini-medium, GAIA 54.7→85.6 and HLE 18.1→49.0; for QWQ-32B,
AIME’24 78.1→93.6 and LiveCodeBench 63.4→79.2; and for QVQ-72B-preview, GAIA 45.2→77.3
and HLE 11.7→38.5. Surpassing Prior Agents. Relative to Search-o1, OctoTools, CheatSheet,
Agent S2.5, and AWorld, Xolver (+) delivers consistent gains, exceeding the best baseline by +12.7
on AIME’25 and +13.5 on LiveCodeBench with o3-mini-medium, and by +14.8 on OSWorld and
+9.8 on GAIA with o4-mini-medium. In Comparison to Leading LLMs. Despite weaker backbones,
Xolver (+) matches or surpasses frontier models, outperforming o4-mini-high with o3-mini-medium
on AIME’24 (93.8 vs. 93.4) and substantially on LiveCodeBench (87.3 vs. 69.5). Backbone
Agnostic The framework yields consistent benefits across backbones, as Xolver (+) attains 97.1 on
GSM8K with o3-mini-medium and 98.0 with QWQ-32B, both markedly above their respective base-
lines. Effectiveness of Dynamic Episodic Memory. The cross-problem variant Xolver (+) reliably
outperforms the problem-specific Xolver (–), averaging +4.8 points across backbones, with the largest
gain of +8.2 on BrowseComp using o3-mini-medium. Scales with Backbone LLM’s Strength. Per-
formance scales with stronger backbones—as shown by o3-mini-high (GSM8K 98.1, AIME’24 94.4,
AIME’25 93.7, Math-500 99.8, LiveCodeBench 91.6, BrowseComp 71.7, SWE-bench 84.9, GPQA
94.6) and o4-mini-high (GAIA 90.1, OSWorld 74.4, HLE 57.3)—and remains backbone-agnostic,
with GSM8K reaching 97.1 on o3-mini-medium and 98.0 on QWQ-32B, collectively setting new
state-of-the-art results across all benchmarks.

4 ABLATION AND ANALYSES
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Figure 2: Performance drop when removing each component
from Xolver. Bars show average drop on Math (bottom),
Code (middle) and Agentic (top).

In Figure 2, we present an ablation
study quantifying the contribution of
individual components in Xolver to
overall performance, measured by the
average performance drop on math
reasoning (Math Avg) and program-
ming (LCB) tasks. Each compo-
nent plays a necessary role, with the
most significant degradation observed
when removing Multi-iteration and

2https://github.com/cp-algorithms/cp-algorithms
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Model Appr.
GSM

8K AIME
Math
-500

LCB
(v5) GAIA

Browse
Comp

OS
World

SWE-V
(bash) HLE

GPQA
Diam.

’24 ’25
Proprietary Models

Claude 3.7
Sonnet T. LongCoT – 61.3 49.5 96.2 51.4 53.0 4.8 35.6 52.8 8.0 75.3

Grok-3 Beta T. Direct – 83.9 77.3 – 70.6 – – – – – 73.7
Gemini 2.5 F. T. LongCoT – 88.0 78.0 – 63.5 12.1 79.0 – – – –
o1 LongCoT 96.4 74.3 79.2 96.4 71.0 – 9.9 – – 8.0 73.0
o3-mini-high LongCoT – 87.3 86.5 – 69.5
Gemini 2.5 Pro Direct – 92.0 86.7 – 70.4 – – – 45.0 21.6 84.4
o3 LongCoT 96.7 91.6 88.9 – – – 49.7 23.0 58.4 20.3 82.7
o4-mini-high LongCoT – 93.4 92.7 – 69.5 – 28.3 – – 18.1 81.4

Open Weights Models
DeepSeek-R1 LongCoT – 79.8 70.0 97.3 64.3 – 9.5 – – 8.5 81.3
Qwen3-235B-

A22B LongCoT – 85.7 81.5 – 70.7 – – – – 11.8 79.0

Specialized Models (with Best Reported Results)
rStar-Math 95.2 53.3 – 90.0 – – – – – – –
OpenMathReason – – 93.3 80.0 – – – – – – – –
AlphaOne – – 53.3 – 89.4 75.8 – – – – – –
OpenCodeReason – – – – – 61.8 – – – – – –
rStar-Coder – – – – – 62.5 – – – – – –
Kimi-k1.6-
IOI-high – – – – – 73.8 – – – – – –

Kimi-k2-0905 – – – – – – – – – – – 76.7
Deep Research – – – – – – 63.7 51.5 – – 26.6 –
ChatGPT Agent – – – – – – – 68.9 – – – –
OpenCua-32B – – – – – – – – – 34.8 – –

Reasoning Agents/Frameworks

o3-mini-
medium

LongCoT 95.2 75.8 70.4 97.3 66.3 54.7* 24.4 31.4* 56.2 18.1* 75.0
Self-Refl. 93.1 79.4 76.5 95.2 73.2 – – – – – –
OctoTools 95.4 81.7 75.3 97.5 – – – – – – –
Search-o1 95.8 81.8 76.7 97.6 73.6 – – – – 30.4* 81.2
Alita – – – – – 74.1* – – – – –
AWorld – – – – – 75.8* – – – – –
GTA1 – – – – – – – 55.3* – – –
Agent S2.5 – – – – – – – 59.0* – – –
CheatSheet 95.9 82.2 75.8 97.7 – – – – – – –
CodeSim – – – 73.8 – – – – – – –
OpenHands - – – – – – – – 62.4 – –
Agentless – – – – – – – – 70.0 – –
WebSailor – – – – – – 45.5 – – – –
OAgents – – – – – – 47.1 – – – –
Xolver(–) 95.6 87.2 85.1 97.7 79.6 82.4* 60.7 69.9* 73.9 42.6* 85.4
Xolver(+) 97.1 93.8 89.4 99.2 87.3 85.6* 68.9 73.8* 81.5 49.0* 89.1

QWQ-32B

LongCoT 96.1 78.1 65.8 83.2 63.4 45.2* 17.6 14.1* 30.1 11.7* 58.1
Self-Refl. 94.0 79.3 66.3 80.4 69.2 – – – – – –
OctoTools 96.3 83.0 71.7 86.1 – – – – – – –
Search-o1 96.4 84.4 71.8 87.1 69.3 – – – – 21.2* 63.6
Alita – – – – – 66.3* – – – – –
AWorld – – – – – 67.3* – – – – –
GTA1 – – – – – – – 37.1* – – –
Agent S2.5 – – – – – – – 39.2* – – –
CheatSheet 96.8 83.5 72.2 86.5 – – – – – – –
CodeSim – – – – 70.5 – – – – – –
OpenHands - – – – – – – – 50.7 – –
Agentless – – – – – – – – 57.4 – –
WebSailor – – – – – – 37.0 – – – –
OAgents – – – – – – 38.5 – – – –
Xolver(–) 96.5 89.9 79.5 93.1 76.2 75.6* 49.3 46.4* 68.2 30.9* 70.1
Xolver(+) 98.0 93.6 82.7 95.5 79.2 77.3* 57.4 50.9* 71.6 38.5* 75.4

o3-mini-high Xolver (+) 98.1 94.4 93.7 99.8 91.6 90.1* 71.7 74.4* 84.9 57.3* 94.6

Table 1: Comparison of Xolver against SoTA reasoning models, specialized models, and other
reasoning agents agentic, mathematical and coding tasks. Best results are boldfaced and second-best
results are underlined. F: Flash, T: Think models, LongCoT: standard prompting for reasoning
models, *: multimodal dataset, so we use o4-mini instead o3-mini and use QVQ-72-preview
instead QWQ-32B. "-" denotes either n/a (e.g., only specialized models) or results not reported.
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Multi-Agent followed by Judge Agent, highlighting their central importance. In contrast, removing
Verifier/Debugger and Tool leads to comparatively smaller drops, suggesting a more auxiliary role in
the overall system. Verifier is critical for Math tasks and cannot be removed, while Tool apply only to
Math and Agentic tasks, whereas Test only for Code tasks. Likewise retrieval where self-retrieval can
also work in-place of external retrieval with some drop in accuracy.

Figure 3: Impact of iterations and agents in
Xolver on AIME ’25 (QWQ-32B) and LIVE-
CODEBENCH (o3-mini-medium).

Impact of Agent and Tool Count with Iter-
ations, and Emerging Benefits of Collabora-
tion. Figure 3, performance improves consistently
on both AIME ’25 and LIVECODEBENCH with
more agents or iterations. From Figure 3, it is
evident that for coding tasks, increasing the num-
ber of iterations is more crucial than increasing
the number of agents. However, for mathemati-
cal tasks, both agents and iterations are similarly
important. To investigate further, we conducted
a more granular experiment on the AIME ’25
dataset. We found that, when keeping the total
budget (i.e., agents × iterations) constant, increasing the number of agents yields better perfor-
mance—achieving over 4% improvement compared to increasing iterations. More details as well as
the impact of tool count vs. iterations (see Figure 7) on Xolver performance are in Appendix E.3.

Effect of Retrieval Strategies on Xolver Performance. Figure 8 shows that, performance on both
AIME ’25 and LIVECODEBENCH follows the trend: External Retrieval > Self-Retrieval > No
Retrieval, indicating that external retrieval significantly enhances Xolver’s performance. Nevertheless,
our dual-memory design gives flexibility about the dependence on retrieval corpora: while external
retrieval gives the best results, self-retrieval from the model’s own parametric memory or even no
retrieval still gets SOTA results. More details can be found in Appendix E.4.

Figure 4: Performance comparison per difficulty
levels in GAIA.

Fine-grained Performance Analysis. In Figure 4,
we present fine-grained performance comparisons
on GAIA dataset, evaluating Xolver against the
agentic baseline framework AWorld. As observed,
Xolver consistently outperforms AWorld across all
difficulty levels using both QVQ-72B-preview and
o4-mini-medium backbones. The performance
gap is particularly notable with the open-weight
QVQ-72B-preview model and on more challeng-
ing problems where AWorld struggles—such as
Level 3 problems in GAIA. More details and further fine-grained analysis on MATH-500 (see
Figure 9), LCB (see Figure 10) and GPQA DIAMOND (see Figure 11) have shown in Appendix E.5.

Can a Self-Judge Replace a Judge Agent? As in self-reflection, each agent can also judge its
own reasoning and response without changing its role. We observe that this does not compensate
a different judge Agent, dropping average performance 8.7% in math, 4% in agentic and 7.4% in
coding. Further details can be found at Appendix E.6.

Cost Analysis and How Long Do Xolver Agents Think? In Figure 12, we summarize input,
reasoning, and output token usage for Xolver across all datasets. Token complexity scales as O(mI)
with m agents and I iterations, while runtime remains O(I) because agents run in parallel. This is
more efficient than self-consistency (Wang et al., 2022), which typically requires 32–64 generations
per example, and than the CheatSheet baseline, whose usefulness estimation induces O(n2) memory
updates. As a multi-agent system, Xolver allocates roughly 25% of tokens to core reasoning, with
the remainder spent on context sharing and inter-agent communication. Relative to the single-agent
baseline Search-o1, Xolver consistently uses about 2× more tokens, a cost offset by substantial
performance gains. More details can be found at Appendix E.7.

Does Data Shuffling Affect Xolver Performance? While we report without any shuffling, shuffling
can change the results but minimally (see Table 4). Further details can be found at Appendix E.8.
Qualitative Examples. As in Appendix C, we present examples of full cycle Xolver output on both
math and code reasoning tasks demonstrating a full view of how Xolver gradually accumulates.
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More Error Analysis. We analyze errors across math, code, and agentic tasks beyond accuracy or
pass@1. Although both backbone LLMs generate solution, that are not optimized and hence did not
pass. More details as well as further error analysis on math and code (see Figure 13) and agentic
tasks (see Figure 14) can be found at Appendix E.9.

Dynamics of Reasoning Patterns in Xolver Traces. We study how Xolver adapts its reasoning on
LCB by tracking reasoning-pattern frequencies across difficulty tiers (see Table 5). Details of pattern
collection are in Appendix E.10. As difficulty rises, Xolver increases self-evaluation and exploratory
strategies (e.g., trying new approaches). Correct solutions show reduced rephrasing and subgoal
decomposition, indicating more direct, confident reasoning; incorrect ones exhibit more subgoal setup
and rephrasing, reflecting failure recognition and restructuring. Unlike OPENCODEREASONING,
which stagnates or regresses in key patterns (e.g., self-evaluation), Xolver remains robust and adaptive,
aided by multi-agent collaboration and judge feedback, highlighting its generality and flexibility.

Case-Study: How Xolver Enhances Reasoning

To understand how Xolver enhances performance, we conducted case studies on AIME ’25 and
LIVECODEBENCH. As shown in our ablation study, at each iteration, the Judge Agent ranks the
responses, and in the following round, all agents attempt to match at least one of the previously
top-ranked outputs. As shown in Figure 15 (see Appendix E.11), over time, this leads to improved
outputs from the agents, increased agreement among them, and eventual convergence. Notably,
removing the Judge Agent significantly degrades performance, as demonstrated in our first ablation.

5 RELATED WORK

This section presents the concise view of related works. Full description can be found in Appendix A.

Memory-Augmented and Retrieval-Augmented LLMs. Memory augmentation progressed
from static retrieval (RAG, REALM) to dynamic self-reflection/scratch-space methods (Reflex-
ion, MemGPT, Scratchpads) but remains single-agent and task-isolated, limiting cross-problem
learning (Lewis et al., 2020; Guu et al., 2020; Shinn et al., 2024; Packer et al., 2023; Nye et al., 2021).
Xolver introduces a dual-memory design—episodic long-term plus dynamic intermediate—enabling
specialized agents to build a persistent, shared knowledge base beyond cross-trial sharing and multi-
source memory that still assume single agents (Zhao et al., 2023; Shinn et al., 2024; Yao et al., 2023c;
Feng et al., 2025). Multi-Agent Problem Solving. Collaborative frameworks (CAMEL, AgentVerse,
AutoGen, DyLAN), multi-agent code generation/problem solving, and debate improve specialization
yet typically address isolated tasks without experience retention (Guo et al., 2024; Li et al., 2023; Chen
et al., 2023; Wu et al., 2023; Liu et al., 2023; Islam et al., 2024; 2025; Du et al., 2023; Rahman et al.,
2025; Subramaniam et al., 2025; Feng et al., 2025). Xolver adds dual-memory, holistic experience
integration, judge-mediated selection, and continual episodic expansion to yield experience-aware
agents. LLM Reasoning Enhancement Techniques. Chain-of-Thought, Self-Consistency, and Tree
of Thoughts broaden reasoning search yet remain single-pass; self-reflective (Reflexion) and retrieval-
enhanced (CheatSheet, Search-o1) methods iterate or retrieve but stay single-agent (Wei et al., 2022;
Wang et al.; Yao et al., 2023a; Shinn et al., 2024; Suzgun et al., 2025; Li et al., 2025b). Xolver
unifies these within a multi-agent loop where judge-mediated iterations and dual memories support
cross-problem learning. Tool-Augmented Reasoning. Tool use evolved from single-tool browsing
and code execution (WebGPT, PAL) to multi-tool orchestration (ReAct, Chameleon, OctoTools), yet
execution is usually single-agent without persistent learning (Nakano et al., 2021; Gao et al., 2023;
Yao et al., 2023b; Lu et al., 2024; 2025). Xolver reframes tools as shared, memory-enriched assets:
agents coordinate tool calls, share outcomes, and accumulate reusable strategies across problems.

6 CONCLUSION

We present Xolver, an open-source multi-agent inference framework for experience-aware reasoning.
It combines: (1) episodic retrieval from external or self memory; (2) a growing shared memory of
reusable, high-quality reasoning traces; (3) tool invocation for complex computation; (4) coordinated
multi-agent reasoning; (5) self-evaluation with iterative refinement; (6) verification or external
debugging; and (7) cross-problem strategy transfer. Together, these enable adaptive, context-informed
problem solving and continual improvement across tasks. Current limits are higher token usage and
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dependence on backbone LLMs. To strengthen validity, we will add advanced external verifiers and
structured guardrails, moving Xolver toward more efficient, robust, and human-expert-like reasoning.
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A RELATED WORK

Memory-Augmented and Retrieval-Augmented LLMs. Memory-augmented language models
have evolved from static retrieval systems like RAG (Lewis et al., 2020) and REALM (Guu et al.,
2020) to dynamic approaches such as Reflexion (Shinn et al., 2024), MemGPT (Packer et al.,
2023), and Scratchpads (Nye et al., 2021). However, these systems operate on isolated tasks, lack
cross-problem experience accumulation, and employ single-agent architectures. Xolver addresses
these limitations through a novel dual-memory architecture combining episodic long-term memory
with dynamic intermediate memory, enabling specialized agents to collectively build and refine
experiential knowledge. While prior work has explored cross-trial information sharing (Zhao et al.,
2023; Shinn et al., 2024) and multi-source memory integration (Yao et al., 2023c), these approaches
remain confined to single-agent settings. Our framework creates a persistent knowledge base through
multi-agent collaboration (Feng et al., 2025), allowing agents to accumulate expertise from solved
problems and leverage collective experience for future tasks.

Multi-Agent Problem Solving. Multi-agent LLM systems address the limitations of single models
by leveraging collaborative approaches for improved reliability and task specialization (Guo et al.,
2024; Feng et al., 2025). From early frameworks like CAMEL (Li et al., 2023) with fixed role
assignments, the field progressed to dynamic role adjustment in AgentVerse (Chen et al., 2023) and
code execution in AutoGen (Wu et al., 2023). Recent advances include layered agent networks in
DyLAN (Liu et al., 2023), multi-agent code generation and problem solving (Islam et al., 2024; 2025)
and multi-agent debate frameworks (Du et al., 2023; Rahman et al., 2025; Subramaniam et al., 2025).
While these systems demonstrate effective collaboration, they operate on isolated problems without
cross-task experience accumulation. Xolver introduces dual-memory architecture, holistic experience
integration, judge-mediated selection, and continuous episodic corpus expansion—transforming
single-problem solvers into experience-aware agents.

LLM Reasoning Enhancement Techniques. Various techniques have emerged to enhance LLM
reasoning capabilities beyond standard prompting. Chain-of-Thought (Wei et al., 2022) introduced
step-by-step reasoning, Self-Consistency (Wang et al.) explores multiple reasoning paths with major-
ity voting, and Tree of Thoughts (Yao et al., 2023a) enables exploration of reasoning branches—yet
all remain limited to single-pass generation. Self-reflective approaches like Reflexion (Shinn et al.,
2024) enable iterative improvement but operate within single tasks, while retrieval-enhanced meth-
ods like CheatSheet (Suzgun et al., 2025) and Search-o1 (Li et al., 2025b) remain confined to
single-agent architectures. These approaches share fundamental limitations: no cross-problem learn-
ing, no persistent memory, and no multi-agent collaboration. Xolver unifies these enhancements
within a multi-agent framework where agents collaboratively refine solutions through judge-mediated
iterations and leverage dual memory systems for cross-problem learning.

Tool-Augmented Reasoning. Tool integration extends LLM capabilities beyond language processing.
Early systems like WebGPT (Nakano et al., 2021) introduced single-tool integration, while PAL (Gao
et al., 2023) enabled code execution for mathematical reasoning. Multi-tool frameworks evolved with
ReAct (Yao et al., 2023b) interleaving reasoning with actions, Chameleon (Lu et al., 2024) composing
multiple tools, and OctoTools (Lu et al., 2025) standardizing tool planning—yet all remain limited to
single-agent execution without iterative refinement or cross-problem learning. Xolver transforms tool
use into a collaborative, memory-enriched ecosystem where agents collectively execute tools, share
outcomes, and accumulate successful strategies across problems—creating an adaptive framework
that evolves with experience.

B LISTS OF PROMPTS

This section provides the list of prompts for planning, dynamic, judge, verifier and reasoning
segmentation we have used in the experimental period. These are crucial to ensure the reproducibility
(Laskar et al., 2024) of the framework Xolver.
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B.1 PLANNER AGENT

Prompt for PLANNER AGENT

You are a planner to solve a {coding/math/agentic} problem. Here is the problem for which you have to
plan:
{problem_dict[query[‘problem_id’]][‘description’]}

First draft required strictly greater than {m} specialized roles to solve the problem collaboratively with
reasoning behind your draft of each role.

Then select the highly influential {m} roles by re-checking the reasoning behind your selection and
assign them to each agent to solve the problem.

B.2 DYNAMIC AGENT

Prompt for DYNAMIC AGENT

You are a {role}. Your task is to solve a {coding/math/agentic} problem. Here is the problem that
you have to solve:
problem_dict[query[‘problem_id’]][‘description’]
——————————————————————————————————————
If external retrieval: You were also given a couple of similar problems to the problem above along
with their reasoning and solutions to aid you in solving the problem at hand. Here are the similar
problems you were given:
retrieved_dict[query[‘problem_id’]][‘retrieval_text’]

If self-retrieval: Further, recall a relevant and distinct problem (different from the problem
mentioned above) along with its reasoning and solution.
——————————————————————————————————————
And here was your original response:
query[[‘role’]][‘original_thought’,‘original_response’]
——————————————————————————————————————
If iteration i ≥ 1 (i.e., DS is not empty):
Also here is the leading responses with execution results from the response store:
response_dict[‘role’,‘thought’,‘response’,‘score’]
——————————————————————————————————————
If coding task:
Think carefully about where you went wrong, relating with responses in the response store. Then, try to
fix the solution producing a thought later reply with a {Python} solution to be executed and judged again.

Make sure to wrap your code in ```python ``` block and Markdown delimiters, and include
exactly one block of code with the entire solution (in the final code step).
——————————————————————————————————————
If math/agentic task:
Think carefully about where you went wrong, relating with responses in the response store.
Then, try to fix the solution producing a thought later reply with a solution to be executed and
judged again. You can integrate required tools to execute the task while replying your solution if required.

Make sure to wrap your final answer in \boxed{} block with the entire solution (in the final answer
step).
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B.3 JUDGE AGENT

Prompt for JUDGE AGENT

You are a judge. Your task is to judge the candidate solution of a {coding/math/agentic} problem. Here
is the problem for which the candidate solution you have to judge:
problem_dict[query[‘problem_id’]][‘description’]
——————————————————————————————————————
If coding task:
And here is the candidate response along with test cases against which to judge:
query[[‘candidate_role’]]
[‘candidate_thought’,‘candidate_response’,‘test_case’]

Please produce a score (based on the number of test cases passed) with reasoning behind your judgement
of the candidate solution to the problem.
——————————————————————————————————————
If math/agentic task:
And here is the candidate response which to judge:
query[[‘candidate_role’]][‘candidate_thought’,‘candidate_response’

Please produce a score (if the response is correct, it should be 1 otherwise should be 0) with reasoning
behind your judgement of the candidate solution to the problem.

B.4 VERIFIER AGENT

Prompt for VERIFIER AGENT

Your are an answer extractor. Your task is to extract answer from the response to a {coding/math/agentic}
problem. Here is the response for which the answer you have to extract:
response_dict[query{‘role’}]{‘thought’, ‘response’, ‘score’}
——————————————————————————————————————
If coding task:
Please extract the answer from inside ```python ``` block from the response.
——————————————————————————————————————
If math/agentic task:
Please extract the answer from inside \boxed{} block from the response.

B.5 REASONING SEGMENTATION

Prompt for INITIAL REASONING SEGMENTATION

Below is a chain of thought for solving a question. Figure out what are the different reasoning
patterns that are used like problem rephrasing, new approach, self-evaluation, verification,
backtracking, subgoal setup, solving a simpler problem first, and more. Then your task is to
segment the entire chain of thought into different reasoning patterns. Rewrite the chain of
thought in the following format:

<pattern> pattern name </pattern>
<content> the entire text
that corresponds to the pattern </content>

Thought: {thoughts}
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Prompt for FINAL REASONING SEGMENTATION

Below is a thought for solving a question. For the segment between the <unannotated>
and </unannotated> tags, figure out what is reasoning pattern used in that segment like
problem rephrasing, new approach, self-evaluation, verification, backtracking, subgoal setup,
solving a simpler problem first, or something else. Then your task is to identify the reasoning
pattern used in the unannotated segment. Rewrite the unannotated segment in the following
format:

<content> The text within the unannotated segment
that corresponds to the pattern. </content>
<reasoning> Reasoning for
what the pattern should be for the content </reasoning>
<pattern> *single* pattern name </pattern>

Thought: {thoughts}

C QUALITATIVE EXAMPLES

The subsequent section presents some qualitative examples–agentic interaction breakdown on how
Xolver can approach and solve a problem of math, agentic and coding tasks when it encounters.
These examples illustrate how Xolver initiates reasoning from external or self-retrieved exemplars,
engages in multi-agent collaboration, and incrementally accumulates experiences through inter-agent
propagation and refinement. The full interaction trace highlights Xolver’s ability to iteratively
decompose, solve, and adapt solutions across reasoning steps, showcasing its capacity for dynamic
knowledge construction and generalizable problem solving.

Example for CORRECT MATH TASK GREEN : CORRECT ANSWER. RED : WRONG ANSWER.

Query: Bob is in charge of doing laundry for a large hotel. Each room has two sheets, one comforter,
twice as many pillow cases as sheets and twice as many towels as pillow cases. How many pieces of
laundry are there in 80 rooms? Make sure to wrap your final answer in \boxed{} block with the
entire solution (in the final answer step).

Iteration 1

Mathematical Modeler: Each room contains 2 sheets, 1 comforter, 2 pillow cases (which is twice the
number of sheets), and 4 towels (which is twice the number of pillow cases). Hence, the total number of
laundry items in each room is:
2 + 1 + 2 + 4 = 9 pieces of laundry.
When considering 80 rooms, the total number of pieces of laundry is:
80× 9 = 720 pieces of laundry.
Thus, the final answer is: 720 .

Judge: The candidate’s solution contains an error in calculating the number of pillow cases and towels
per room. Here’s the breakdown:
Sheets: 2 (correct). Comforter: 1 (correct). Pillow Cases: The problem states “twice as many pillow
cases as sheets.” Since there are 2 sheets, pillow cases should be 2× 2 = 4. The candidate incorrectly
used 2 pillow cases (half the required amount). Towels: The problem states “twice as many towels as
pillow cases.” With the correct pillow case count (4), towels should be 2× 4 = 8. The candidate used 4
towels (based on their incorrect pillow case count of 2).
The correct per-room total is:
2 (sheets) + 1 (comforter) + 4 (pillow cases) + 8 (towels) = 15
items. The total for 80 rooms is:
80× 15 = 1200.

The candidate’s answer is incorrect due to miscalculating pillow cases and towels.
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Score: 0.

Numerical Analyst: For each room, Bob needs to wash 2 sheets, 1 comforter, 4 pillow cases (since
2× 2 = 4), and 8 towels (since 4× 2 = 8). Therefore, for each room, the total amount of laundry Bob
needs to wash is:
2 + 1 + 4 + 8 = 15 pieces of laundry.
For 80 rooms, the total number of pieces of laundry Bob must wash is:
80× 15 = 1200 pieces of laundry.
Thus, the final answer is: 1200 .

Judge: The candidate correctly interprets the problem’s relationships: sheets: 2 (given), comforter: 1
(given), pillow cases: twice the sheets, 2× 2 = 4 (correct), towels: twice the pillow cases, 2× 4 = 8
(correct). Total per room: 2 + 1 + 4 + 8 = 15 (correct). Total for 80 rooms: 80× 15 = 1200 (correct).
All steps align with the problem’s specifications, and the final answer is accurate. The candidate’s
solution is error-free.

Score: 1.

Mathematician: Every room is equipped with 2 sheets, 1 comforter, 4 pillow cases (calculated as
2× 2), and 8 towels (since 4× 2 = 8). Summing these, the total number of laundry items for one room
is:
2 + 4 + 8 = 14 pieces of laundry.
Multiplying by the number of rooms, the total quantity for 80 rooms becomes:
80× 14 = 1120 .

Judge: The candidate incorrectly omitted the comforter in their final sum. Here’s the breakdown:
sheets: 2 (correct), comforter: 1 (given but not included in the candidate’s calculation), pillow cases:
2× 2 = 4 (correct), towels: 2× 4 = 8 (correct). The candidate’s total per room was 2 + 4 + 8 = 14,
but the correct total should include the comforter: 2 + 1 + 4 + 8 = 15. Thus, the total for 80 rooms
should be 80× 15 = 1200, not 1120. The error stems from excluding the comforter in the summation.

Score: 0.

DS1 rank: [Numerical Analyst, Mathematical Modeler, Mathematician]

Iteration 2

Mathematical Modeler: Each room contains 2 sheets, 1 comforter, 2 pillow cases (which is twice the
number of sheets), and 4 towels (which is twice the number of pillow cases). Hence, the total number of
laundry items in each room is:
2 + 1 + 4 + 8 = 15 pieces of laundry.
When considering 80 rooms, the total number of pieces of laundry is:
80× 15 = 1200 pieces of laundry.
Thus, the final answer is: 1200 .
This confirms the accuracy of the revised calculation.

Judge: The candidate’s final answer is correct, and the mathematical calculations align with the
problem’s requirements: 1. Sheets: 2 (correct). 2. Comforter: 1 (included in the total). 3. Pillow Cases:
The problem states “twice as many pillow cases as sheets.” Since there are 2 sheets, this should be
2× 2 = 4. The candidate correctly uses 4 pillow cases in their total calculation (despite a typographical
inconsistency in the explanation, where they initially wrote “2 pillow cases”). 4. Towels: “Twice as
many towels as pillow cases” gives 2× 4 = 8 (correct).

The candidate’s total per room is 2 + 1 + 4 + 8 = 15 (correct), leading to 80× 15 = 1200 (correct).

While the explanation contains a minor inconsistency in wording (“2 pillow cases” instead of 4), the
numerical calculations are accurate. Since the final answer is correct and the mathematical steps resolve
the inconsistency, the solution is valid.

Score: 1.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Numerical Analyst: Based on the information provided, we know that each room includes 2 sheets, 1
comforter, 4 pillow cases (computed as 2× 2), and 8 towels (since 4× 2 = 8). Adding these together,
the total number of laundry items required for one room is:
2 + 1 + 4 + 8 = 15 pieces.
Multiplying by the total number of rooms, the overall amount of laundry for 80 rooms is:
80× 15 = 1200 .

Although the other agents correctly determined the number of laundry items required for each room,
there was an error in the concluding step–calculate the total number of laundry pieces.

Judge: The candidate’s calculations and final answer are correct: sheets: 2 (given), comforter: 1
(given), pillow cases: 2× 2 = 4 (twice the sheets), towels: 2× 4 = 8 (twice the pillow cases), total per
room: 2 + 1 + 4 + 8 = 15 (correct), total for 80 rooms: 80× 15 = 1200 (correct).

Score: 1.

Mathematician: According to the provided details, every room is equipped with 2 sheets, 1 comforter,
4 pillow cases (calculated as 2× 2), and 8 towels (since 4× 2 = 8). Summing these, the total number
of laundry items for one room is:
1 + 4 + 8 = 13 pieces of laundry.
Multiplying by the number of rooms, the total quantity for 80 rooms becomes:
80× 13 = 1040 .

Judge: The candidate incorrectly omitted the sheets in their final sum. Here’s the breakdown: 1.
Sheets: 2 (given but not included in the candidate’s calculation). 2. Comforter: 1 (included). 3. Pillow
Cases: 2 × 2 = 4 (correct). 4. Towels: 2 × 4 = 8 (correct). The candidate’s total per room was
1+4+8 = 13, but the correct total should include the sheets: 2+1+4+8 = 15. Thus, the total for 80
rooms should be 80×15 = 1200, not 1040. The error stems from excluding the sheets in the summation.

Score: 0.

DS2 rank: [Mathematical Modeler, Numerical Analyst, Mathematician]

Iteration 3

Mathematical Modeler: From the details provided, it is clear that each room contains 2 sheets, 1
comforter, 4 pillow cases (as 2× 2 = 4), and 8 towels (calculated as 4× 2 = 8). Adding these together,
the total number of laundry items per room amounts to:
2 + 1 + 4 + 8 = 15 items.
Consequently, for 80 rooms, the total number of laundry pieces becomes:
80× 15 = 1200 .

I agree with the other agent’s corrected calculation.

Judge: The candidate’s solution is mathematically accurate and complete: sheets: 2 (correct),
comforter: 1 (correct), pillow cases: 2 × 2 = 4 (twice the sheets), towels: 2 × 4 = 8 (twice the
pillow cases), total per room: 2+1+4+8 = 15 (correct), total for 80 rooms: 80×15 = 1200 (correct).

Score: 1.

Numerical Analyst: Given the information, we know that each room includes 2 sheets, 1 comforter, 4
pillow cases (computed as 2 × 2), and 8 towels (since 4 × 2 = 8). Adding these together, the total
number of laundry items required for one room is:
2 + 1 + 4 + 8 = 15 pieces.
Multiplying by the total number of rooms, the overall amount of laundry for 80 rooms is:
80× 15 = 1200 .

Although the other agent correctly determined the number of laundry items required for each room,
there was an error in the concluding step. Specifically, they incorrectly used 80 × 13 instead of the
appropriate multiplication of 80× 15 to calculate the total number of laundry pieces.
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Judge: The candidate’s solution is fully correct: sheets: 2 (given), comforter: 1 (given), pillow
cases: 2 × 2 = 4 (twice the sheets), towels: 2 × 4 = 8 (twice the pillow cases), total per room:
2 + 1 + 4 + 8 = 15 (correct), total for 80 rooms: 80× 15 = 1200 (correct). All steps align with the
problem’s specifications, and the final answer is accurate. No errors were made.

Score: 1.

Mathematician: According to the given details, each room contains 2 sheets, 1 comforter, 4 pillow
cases (calculated as 2 × 2), and 8 towels (determined by 4 × 2). Summing these amounts, the total
number of laundry items per room is:
2 + 1 + 4 + 8 = 15 pieces of laundry.
To find the total for 80 rooms, we multiply:
80× 15 = 1200 .

I concur with the other agents’ results and the computations they presented.

Judge: The candidate’s solution is fully correct and aligns with the problem’s requirements: sheets: 2
(given), comforter: 1 (given), pillow cases: 2 × 2 = 4 (twice the sheets), towels: 2 × 4 = 8 (twice
the pillow cases), total per room: 2 + 1 + 4 + 8 = 15 (correct), total for 80 rooms: 80× 15 = 1200
(correct). All calculations are accurate, and the final answer matches the problem’s constraints.

Score: 1.

DS3 rank: [Mathematician, Mathematical Modeler, Numerical Analyst]

Example for CORRECT CODING TASK GREEN : CORRECT SOLUTION. RED : WRONG SOLUTION.

Query: Yarik is a big fan of many kinds of music. But Yarik loves not only listening to music but also
writing it. He likes electronic music most of all, so he has created his own system of music notes, which,
in his opinion, is best for it.

Since Yarik also likes informatics, in his system notes are denoted by integers of 2k, where k ≥ 1 — a
positive integer. But, as you know, you can’t use just notes to write music, so Yarik uses combinations of
two notes. The combination of two notes (a, b), where a = 2k and b = 2l, he denotes by the integer ab.

For example, if a = 8 = 23, b = 4 = 22, then the combination (a, b) is denoted by the integer
ab = 84 = 4096. Note that different combinations can have the same notation, e.g., the combination
(64, 2) is also denoted by the integer 4096 = 642.

Yarik has already chosen n notes that he wants to use in his new melody. However, since their integers
can be very large, he has written them down as an array a of length n, then the note i is bi = 2ai . The
integers in array a can be repeated.

The melody will consist of several combinations of two notes. Yarik was wondering how many pairs
of notes bi, bj (i < j) exist such that the combination (bi, bj) is equal to the combination (bj , bi). In
other words, he wants to count the number of pairs (i, j) (i < j) such that bbji = bbij . Help him find the
number of such pairs.

Input

The first line of the input contains one integer t (1 ≤ t ≤ 104) — the number of test cases.

The first line of each test case contains one integer n (1 ≤ n ≤ 2 · 105) — the length of the arrays.

The next line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ 109) — array a.

It is guaranteed that the sum of n over all test cases does not exceed 2 · 105.
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Output

For each test case, output the number of pairs that satisfy the given condition.

Sample Input 1:

5

1

2

4

3 1 3 2

2

1000 1000

3

1 1 1

19

2 4 1 6 2 8 5 4 2 10 5 10 8 7 4 3 2 6 10

Sample Output 1:

0
2
1
3
19

Make sure to wrap your code in ```python ``` block and Markdown delimiters, and include exactly
one block of code with the entire solution (in the final code step).

Iteration 1

Implementation Specialist: To solve this problem, we need to determine the number of pairs of notes

(bi, bj) such that bbji = bbij . The notes are given as bi = 2ai , where ai is an integer. The key insight is

to recognize the conditions under which the equation b
bj
i = bbij holds. This equation can be broken

down into two main cases. The first case is when the values are the same, meaning ai = aj . In this
situation, the equation trivially holds because both sides will be identical. The number of such pairs is
given by the combination formula C(n, 2) = n(n−1)

2
for each group of identical values. The second

case occurs when the values are different but satisfy a special condition: the equation holds when one
value is 1 and the other is 2. This is derived from the mathematical simplification of the equation
ai · 2aj = aj · 2ai , which only holds true for ai = 1 and aj = 2 (or vice versa) when ai ̸= aj .

```python

import sys
from collections import Counter

def main():
# Read all input tokens at once
x = sys.stdin.read().split()
i = 0 # Index to track position in input list

t = int(x[i]) # Number of test cases
i += 1
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for _ in range(t):
n = int(x[i]) # Number of elements in this test case
i += 1

# Extract the list of integers for current test case
l = list(map(int, x[i:i+n]))
i += n

# Count frequencies of each element
c = Counter(l)

s = 0 # Sum of pairs

# Sum pairs of identical elements: count choose 2
for v in c.values():

s += v * (v - 1) // 2

# Add pairs formed by one element ’1’ and one element ’2’
s += c.get(1, 0) * c.get(2, 0)

print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes 5 test cases.

Score: 5.

Programmer: To solve this problem, we need to determine the number of pairs of notes such that the
combination of two notes (bi, bj) results in the same integer as the combination (bj , bi). The notes are
given as bi = 2ai , and we are looking for pairs (i, j) where b

bj
i = bbij . The condition b

bj
i = bbij can be

simplified to checking if ai · 2aj = aj · 2ai , which holds true in two scenarios: first, when ai = aj ,
producing identical pairs; and second, when one value is 1 and the other is 2, creating valid cross pairs.
To count the identical pairs, for each unique value x in the array, we use the combination formula(
count

2

)
, where count is the frequency of x. For cross pairs, which occur specifically between values 1

and 2, the number of such pairs is calculated as the product of the counts of 1 and 2.

```python
import sys
from collections import defaultdict

def main():
x = sys.stdin.read().split() # Read all input tokens
i = 0 # Input index pointer

t = int(x[i]) # Number of test cases
i += 1

for _ in range(t):
n = int(x[i]) # Number of elements
i += 1

# List of integers for this test
l = list(map(int, x[i:i+n]))
case
i += n

f = defaultdict(int) # Frequency dictionary

# Count occurrences of each number
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for v in l:
f[v] += 1

s = 0 # Count pairs of identical elements

# Sum pairs from frequencies (nC2)
for v in f.values():

s += v * (v - 1) // 2

# Count pairs formed by one ’1’ and one ’2’
c = f.get(1, 0) * f.get(2, 0)

print(s + c)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes 5 test cases.

Score: 5.

Data Structure Specialist: To solve this problem, we need to determine the number of pairs of music

notes, represented by integers of the form 2k, such that the combination of two notes (bi, bj) results in
the same value as (bj , bi). In other words, we seek pairs (i, j) where bbji = bbij . By applying logarithms
and using the properties of exponents, for notes defined as bi = 2ai and bj = 2aj , the condition
simplifies to ai · 2aj = aj · 2ai . Two key observations arise from this: first, if ai = aj , the equation
holds true, meaning all pairs of identical values satisfy the condition; second, the equation also holds
when one value is 1 and the other is 2, since 1 · 22 = 2 · 21 simplifies to 4 = 4. The algorithm to find
the number of such pairs involves two parts. For pairs with the same value v, we count the number of
pairs using the combination formula C(n, 2) = n(n−1)

2
, where n is the frequency of v. For cross-value

pairs where one note corresponds to 1 and the other to 2, the number of valid pairs is simply the product
of their counts.

```python
import sys
from collections import Counter

def main():
x = sys.stdin.read().split() # Read all input tokens at once
i = 0 # Input index pointer

t = int(x[i]) # Number of test cases
i += 1

for _ in range(t):
n = int(x[i]) # Number of elements
i += 1

# List of integers for this test
l = list(map(int, x[i:i+n]))
case
i += n

c = Counter(l) # Frequency counter

c1 = c.get(1, 0) # Count of 1’s
c2 = c.get(2, 0) # Count of 2’s

x = 0

# Combine counts of 1 and 2, calculate pairs among them
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m = c1 + c2
x += m * (m - 1) // 2

# Calculate pairs for other numbers except 1 and 2
for k in c:

if k not in (1, 2):
v = c[k]
x += v * (v - 1) // 2

print(x)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes 5 test cases.

Score: 5.

DS1 rank: [Implementation Specialist, Programmer, Data Structure Specialist]

Iteration 2
Implementation Specialist: : After reviewing the solutions provided by other agents, I agree that to

solve this problem, we need to determine the number of pairs of notes (bi, bj) such that bbji = bbij ,
where each note is given by bi = 2ai . We are interested in counting pairs (i, j) with i < j that satisfy
this condition. By applying properties of exponents and substituting bi = 2ai and bj = 2aj , the
condition simplifies to checking when 2ai

ai
= 2

aj

aj
. There are two key observations: first, if ai = aj , the

condition is automatically met; second, pairs where one value is 1 and the other is 2 also satisfy the
condition, since 21

1
= 2 and 22

2
= 2. The algorithm involves counting the frequency of each ai, then

calculating the number of valid pairs for identical values using the combination formula
(
f
2

)
, where f is

the frequency of the value. Finally, to account for the special case of pairs between 1 and 2, we add the
product of their counts to the total.

```python
import sys
from collections import Counter

def main():
x = sys.stdin.read().split() # Read all input tokens at once
i = 0 # Index pointer

t = int(x[i]) # Number of test cases
i += 1

for _ in range(t):
n = int(x[i]) # Number of elements in this test case
i += 1

l = list(map(int, x[i:i+n])) # List of elements
i += n

c = Counter(l) # Frequency count

s = 0 # Sum of pairs

# Calculate pairs from identical elements: nC2 for each count
for v in c.values():

s += v * (v - 1) // 2

# Add pairs formed by one ’1’ and one ’2’
s += c.get(1, 0) * c.get(2, 0)
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print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes 6 test cases.

Score: 6.

Programmer: I agree with the other agents that, to solve this problem, we need to determine the
number of valid pairs of notes such that the combination of two notes (bi, bj) results in the same integer
as the combination (bj , bi). This is equivalent to finding pairs (i, j) where bbji = bbij . The key insight is
that this equation holds under two conditions: first, when the exponents ai and aj are equal, the pairs
(bi, bj) will always satisfy the equation; second, when one exponent is 1 and the other is 2, the equation
also holds. To solve the problem, the approach involves three steps. First, use a frequency counter to
count the occurrences of each value in the array. Second, for each value x, compute the number of valid
pairs among identical values using the combination formula

(
f
2

)
, where f is the frequency of x. Third,

calculate the number of specific pairs where one value is 1 and the other is 2 by multiplying their counts.

```python

import sys
from collections import Counter

def main():
t = int(sys.stdin.readline()) # Number of test cases

for _ in range(t):
# Number of elements
n = int(sys.stdin.readline().strip())
# List of integers
l = list(map(int, sys.stdin.readline().split()))

c = Counter(l) # Frequency counter

s = 0 # Sum of pairs

# Calculate pairs among identical elements:
nC2 for each frequency
for v in c.values():

s += v * (v - 1) // 2

# Add pairs formed by one ’1’ and one ’2’
s += c.get(1, 0) * c.get(2, 0)

print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes 5 test cases.

Score: 5.

Data Structure Specialist: To solve this problem, we need to determine the number of valid pairs of
notes such that the combination of two notes (bi, bj) results in the same integer as the combination
(bj , bi). This is equivalent to finding pairs (i, j) where b

bj
i = bbij . The key insight comes from the

equation b
bj
i = bbij , where bi = 2ai and bj = 2aj . This equation simplifies to ai · 2aj = aj · 2ai .

To solve this efficiently, we follow several steps. First, for each ai, we perform prime factorization,
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expressing it as 2y × x, where x is the odd part of ai and y is the exponent of 2 in its factorization.
Next, we generate a key for each ai in the form (x, y − ai). This key is designed such that if two
numbers ai and aj share the same key, they satisfy the equation ai · 2aj = aj · 2ai . We then use a
frequency dictionary to count the occurrences of each key. Finally, for each key, we compute the number
of valid pairs using the combination formula

(
f
2

)
, where f is the frequency of that key.

```python

import sys
from collections import defaultdict

def main():
x = sys.stdin.read().split() # Read all input tokens at once
i = 0 # Input index pointer

t = int(x[i]) # Number of test cases
i += 1

for _ in range(t):
n = int(x[i]) # Number of elements in this test case
i += 1

l = list(map(int, x[i:i+n])) # List of integers
i += n

f = defaultdict(int) # Frequency dictionary

for v in l:
a = v
b = 0
# Count how many times 2 divides the number
while a % 2 == 0:

a //= 2
b += 1

# Key is tuple of (odd part, difference of exponents)
k = (a, b - v)
f[k] += 1

s = 0 # Result accumulator

# Count pairs for each unique key using nC2 formula
for c in f.values():

s += c * (c - 1) // 2

print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.

Score: 10.

DS2 rank: [Data Structure Specialist, Implementation Specialist, Programmer]

Iteration 3

Implementation Specialist: I concur with the other agent that to tackle this problem, our goal is to find
the number of valid pairs of notes (bi, bj) such that raising one note to the power of the other yields the
same result when the order is reversed; that is, pairs (i, j) satisfying b

bj
i = bbij . Given that each note

can be expressed as bi = 2ai , the problem reduces to analyzing the equation ai · 2aj = aj · 2ai . To
approach this effectively, we begin by decomposing each exponent ai into its prime factors, specifically
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writing it as 2y × x, where x is the odd component and y indicates the power of two within the
factorization. Using this factorization, we create a unique key for each ai defined by the pair (x, y− ai).
This construction ensures that any two exponents sharing the same key satisfy the original equation.
After generating these keys for all elements, we count their frequencies using a dictionary. Finally, to
determine the number of valid pairs, we apply the combination formula

(
f
2

)
for each key, where f is the

frequency of that key, summing these results to obtain the total count of valid pairs.

```python

import sys
from collections import defaultdict

def main():
d = sys.stdin.read().strip().split() # Read and split all input
t = int(d[0]) # Number of test cases
p = 1 # Current position in input list

for _ in range(t):
n = int(d[p]) # Number of elements in this test case
p += 1

l = list(map(int, d[p:p+n])) # Current list of elements
p += n

f = defaultdict(int) # Frequency dictionary

for v in l:
o = v # Original value
c = 0 # Count of factors 2

# Count how many times 2 divides the value
while v % 2 == 0:

v //= 2
c += 1

# Key: (odd part, count_twos - original_value)
k = (v, c - o)
f[k] += 1

s = 0 # Result accumulator

# Calculate pairs for each unique key using nC2
for x in f.values():

s += x * (x - 1) // 2

print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.

Score: 10.

Programmer: I agree with the other agent that to address this problem, we aim to find the number

of valid pairs of notes (bi, bj) such that the expression b
bj
i equals bbij . In other words, we seek

pairs (i, j) where the exponentiation relation b
bj
i = bbij holds true. Since each note is defined as

bi = 2ai , the equation simplifies to ai · 2aj = aj · 2ai . To efficiently solve this, we first factorize
each exponent ai into the form 2y × x, where x represents the odd component and y is the power
of two in its prime factorization. Using this decomposition, we construct a key for each ai as
(x, y − ai). This key is crafted so that if two exponents ai and aj share the same key, they satisfy the
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equality condition. Next, we tally the frequency of each key using a dictionary or hash map. Finally,
the number of valid pairs corresponding to each key is computed using the combination formula(
f
2

)
, where f denotes the frequency of that key. Summing these values yields the total count of valid pairs.

```python
import sys
from collections import defaultdict

def main():
d = sys.stdin.read().strip().split() # Read all input tokens
t = int(d[0]) # Number of test cases
p = 1 # Position pointer in input list

for _ in range(t):
n = int(d[p]) # Number of elements
p += 1

l = list(map(int, d[p:p+n])) # List of elements
p += n

f = defaultdict(int) # Frequency dictionary

for v in l:
b = v # Base value
c = 0 # Count of factors 2

# Count how many times 2 divides b
while b % 2 == 0:

b //= 2
c += 1

# Key is tuple: (odd part, power difference)
k = (b, c - v)
f[k] += 1

s = 0 # Result accumulator

# Count pairs for each frequency using nC2 formula
for x in f.values():

s += x * (x - 1) // 2

print(s)

if __name__ == "__main__":
main()

```

Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.

Score: 10.

Data Structure Specialist: To solve this problem, the goal is to identify the number of valid pairs

of notes (bi, bj) for which the value of bbji equals that of bbij . This translates to finding pairs (i, j)

satisfying the equation b
bj
i = bbij . Given that each note bi can be expressed as 2ai , the equation

simplifies to ai · 2aj = aj · 2ai . To approach this efficiently, each exponent ai is factorized into the
form 2y × x, where x denotes the odd part of ai and y is the exponent of 2 in its prime factorization.
Based on this factorization, we construct a unique key (x, y − ai) for each ai. This key is carefully
designed so that two numbers sharing the same key satisfy the given equality condition. Once the keys
are generated, a frequency map is used to count how many times each key appears. Finally, for each
key, the number of valid pairs is calculated using the combination formula

(
f
2

)
, where f represents the

frequency of that key. Summing these counts across all keys gives the total number of valid pairs.
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```python

import sys
from collections import defaultdict

def main():
d = sys.stdin.read().split() # Read all input tokens
i = 1 # Index pointer after reading t

t = int(d[0]) # Number of test cases

for _ in range(t):
n = int(d[i]) # Number of elements
i += 1

l = list(map(int, d[i:i+n])) # Current list of elements
i += n

f = defaultdict(int) # Frequency dictionary

for v in l:
x = v # Current value
p = 0 # Count of factor 2

# Count how many times 2 divides x
while x % 2 == 0:

x //= 2
p += 1

k = (x, p) # Key as (odd part, power of two)
f[k] += 1

s = 0 # Result accumulator

# Count pairs for each unique key using nC2 formula
for c in f.values():

s += c * (c - 1) // 2

print(s)

if __name__ == "__main__":
main()

```

While the previous codes are correct for the given problem constraints, it implicitly assumes that
only pairs of equal values or (1, 2) satisfy the equation later searching iteratively. However, explicitly
grouping all valid pairs using a mathematical key, making it more robust and efficient for all scenarios,
including possible edge cases not covered by the first approach.

Judge: There are 10 test cases. The candidate passes all 10 test cases with correct result.

Score: 10.

DS3 rank: [Data Structure Specialist, Programmer, Implementation Specialist]
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D EXTERNAL RETRIEVAL CORPUS FOR CODE

As shown in Figure 5, our coding external retrieval corpus has 156 fine grained algorithmic tutorials
with relevant problems along with their solutions collections from 10 different categories (algebrea,
data structure, dynamic programming, string processing, linear algebrea, combinatorics, numerical
methods, geometry, graphs and miscellaneous).

Figure 5: Coding External Retrieval Corpus Count per Subject Category.

E ADDITIONAL ANALYSIS

This section presents our multiple runs’ results which we tested and list of roles which LLMs selected
during the experiments.

E.1 ADDITIONAL RESULTS

Table 2 presents results against some open-ended and multi-hop reasoning tasks, highlighting Xolver’s
effectiveness on diverse domains.

Strong Gains Across Benchmarks. Overall, Xolver consistently delivers significant improvements
over the backbone LLMs’ standard LongCoT prompting. Both the problem-specific Xolver (–) and
the cross-problem Xolver (+) variants outperform their respective LongCoT baselines across all
datasets. For example, with the o3-mini-medium backbone, Xolver (+) improves from 84.8 to 95.9
EM on SQuAD2.0, from 41.8 to 78.9 EM on 2WIKI, and from 46.6 to 77.0 EM on Bamboogle.
Similarly, with the QWQ-32B backbone, Xolver (+) boosts EM from 79.4 to 90.2 on SQuAD2.0,
from 34.4 to 70.2 on 2WIKI, and from 38.4 to 64.1 on Bamboogle.

Surpassing Prior Agents. Compared to prior frameworks such as Search-o1, Xolver demonstrates
consistent and significant gains. With o3-mini-medium, Xolver (+) outperforms Search-o1 by +5.0
EM on SQuAD2.0 (95.9 vs. 90.9), +12.6 EM on 2WIKI (78.9 vs. 66.3), and +13.3 EM on Bamboogle
(77.0 vs. 63.7). With QWQ-32B, Xolver (+) also yields clear improvements, surpassing Search-o1
by +5.2 EM on SQuAD2.0, +12.2 EM on 2WIKI, and +8.1 EM on Bamboogle.

In Comparison to Leading LLMs. Despite using weaker backbones, Xolver (+) matches or
surpasses the strongest proprietary variants. For instance, with o3-mini-high, Xolver (+) achieves
state-of-the-art results across all benchmarks: 97.5 EM on SQuAD2.0, 84.4 EM on 2WIKI, and 82.3
EM on Bamboogle—outperforming all previously reported results.

Backbone Agnostic. Improvements from Xolver are consistent across different backbone LLMs.
Both o3-mini-medium and QWQ-32B benefit substantially from the framework, demonstrating its
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model-agnostic design. On 2WIKI, for example, Xolver (+) reaches 78.9 EM (o3-mini-medium) and
70.2 EM (QWQ-32B), a dramatic gain over the respective LongCoT baselines of 41.8 and 34.4.

Effectiveness of Dynamic Episodic Memory. While both variants excel, the cross-problem variant
Xolver (+) consistently outperforms the problem-specific version Xolver (–) in all benchmarks.
On average, episodic memory integration yields an improvement of +4.6 EM across datasets and
backbones, with the largest gain being +6.3 EM on 2WIKI with o3-mini-medium (78.9 vs. 72.6).

Scales with Backbone LLM’s Strength. Xolver’s performance scales consistently with the strength
of its backbone. With o3-mini-high, Xolver (+) achieves 97.5 EM / 98.8 F1 on SQuAD2.0, 84.4 EM /
97.6 F1 on 2WIKI, and 82.3 EM / 93.8 F1 on Bamboogle, setting new state-of-the-art results across
all multihop retrieval benchmarks.

Model Appr. SQuAD2.0 2WIKI Bamboogle

EM F1 EM F1 EM F1

o3-mini-medium LongCoT 84.8 87.3 41.8 48.3 46.6 60.3
Search-o1 90.9 93.0 66.3 78.0 63.7 74.9
Xolver(–) 92.2 96.3 72.6 87.5 70.9 81.1
Xolver (+) 95.9 98.3 78.9 96.3 77.0 88.7

QWQ-32B LongCoT 79.4 83.9 34.4 40.9 38.4 53.7
Search-o1 85.0 88.4 58.0 71.4 56.0 67.8
Xolver(–) 88.4 91.5 63.2 78.3 60.8 72.6
Xolver(+) 90.2 94.6 70.2 86.6 64.1 79.5

o3-mini-high Xolver (+) 97.5 98.8 84.4 97.6 82.3 93.8

Table 2: Comparison of Xolver against SoTA reasoning agents across multihop retrieval tasks. Best
results are boldfaced and second-best results are underlined. LongCoT: standard prompting for
reasoning models.

E.2 PERFORMANCE VARIANCE STATISTICS.

In this experiment on the variance of Xolver performance, we tested Xolver against multiple runs
(16 for AIME ’24 and 32 for AIME ’25 and LiveCodeBench) in AIME and LiveCodeBench dataset.
Results shows in Table 3 that it has small scale performance change with multiple runs which is a
strong sign on the robustness of Xolver.
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Figure 6: Results Summary on AIME ’24 (16 runs), AIME ’25 and LiveCodeBench (32 runs).
Our framework Xolver, built on o3-mini-medium and o3-mini-high backbones (denoted
(m) and (h)), achieves up to 30.9% gain over the baseline and often outperforms leading models on
both tasks.

As in Figure 6, Xolver (m) achieves 91.6% average accuracy on the AIME ’24 and ’25 bench-
marks—an 18.5-point gain over o3-mini-medium—while Xolver (h) reaches 94.1%, outperforming
o3-mini-high by 7.2 points. On LiveCodeBench, Xolver (m) improves upon its base by 21 points
(66.3% to 87.3%), with Xolver (h) achieving 91.6%, a 22.1-point lift over o3-mini-high.
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Model Appr. AIME ’24 AIME ’25 LiveCodeBench (v5)
o3-mini-medium Xolver (-) 87.2 ± 1.2 85.1 ± 1.3 79.6 ± 1.0

Xolver (+) 93.8 ± 0.3 89.4 ± 0.7 87.3 ± 0.4
QWQ-32B Xolver (-) 89.9 ± 0.8 79.5 ± 1.1 76.2 ± 0.9

Xolver (+) 93.6 ± 0.2 82.7 ± 0.8 79.2 ± 0.5
o3-mini-high Xolver (+) 94.4 ± 0.6 93.7 ± 0.5 91.6 ± 0.3

Table 3: Xolver average performance with multiple trials.

E.3 IMPACT OF AGENT AND TOOL COUNT WITH ITERATIONS, AND EMERGING BENEFITS OF
COLLABORATION
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Figure 7: Impact of tools and iterations in Xolver
on GAIA (left) and BAMBOOGLE (right).

We analyze the effect of varying the number of
agents , tools and reasoning iterations on Xolver’s
performance. In a controlled setup, we fix one
variable (e.g., 3 agents, 4 tools or 2 iterations)
and incrementally increase the other. As shown
in Figure 3, performance improves consistently
on both AIME ’25 and LIVECODEBENCH with
more agents or iterations, whereas Figure 7 (see
Section 4) shows steadily improving performance
on both GAIA and BAMBOOGLE with more tools or iterations, highlighting the advantage of
collaborative and iterative problem solving.

To probe deeper, we conduct a budget-controlled experiment on the AIME ’25 dataset, where the
total reasoning budget (i.e., number of agents × number of iterations) is fixed. While iterative
reasoning remains a crucial factor for Xolver’s performance, we find that increasing the number
of agents—particularly beyond a minimum of three—yields additional, emergent improvements,
leading to over a 4% performance gain. This suggests that agent diversity and parallelism complement
iterative depth, together producing stronger collaborative problem-solving benefits than either alone.

E.4 EFFECT OF RETRIEVAL STRATEGIES ON XOLVER PERFORMANCE

We evaluate the impact of different retrieval strategies on Xolver by comparing three settings: (1)
External Retrieval, where the model retrieves the top-k (e.g., k = 5) most similar problems and their
solutions from an external corpus using a BM25 retriever; (2) Self-Retrieval, where the model recalls
the top-k most similar problems and solutions from its own internal memory; and (3) No Retrieval,
where neither external nor self-retrieval is used. As shown in Figure 8 (see Section 4), performance on
both AIME ’25 and LIVECODEBENCH follows the trend: External Retrieval > Self-Retrieval
> No Retrieval, indicating that external retrieval significantly enhances Xolver’s performance.
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Figure 8: Impact of different retrievals in Xolver.

We note that for code tasks, although the
external retrieval corpus contains solutions
written in C++—a different language from
the target Python—external retrieval still
provides a substantial performance boost.
Nonetheless, while self-retrieval results in
a notable performance drop compared to
external retrieval, it still outperforms the
no-retrieval baseline with notable margins,
serving as a viable alternative when exter-
nal resources are unavailable.

E.5 FINE-GRAINED PERFORMANCE ANALYSIS

Figures shows that, on MATH-500 (Figure 9), LIVECODEBENCH (Figure 10) and GPQA
DIAMOND (Figure 11), Xolver (both o3-mini-medium and QWQ-32B) consistently outper-
forms CHEATSHEET across nearly all seven subject categories, despite the latter relying
on costly per-problem memory updates. The only exception is in Number Theory, where
o3-mini-medium scores 99.2 compared to CHEATSHEET’s 99.5. As for QWQ-32B,
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Figure 9: Fine-grained performance comparison in MATH-500.

Xolver achieves sub-
stantial accuracy gains
over CheatSheet across
all categories, with im-
provements of +9.0%
in Prealgebra, +8.5%
in Algebra, +11.0%
in Number Theory,
+8.5% in Counting and
Probability, +8.8% in
Geometry, +10.0% in
Intermediate Algebra,
and +7.5% in Precalcu-
lus. These consistent
gains highlight Xolver’s strong performance across both symbolic and numerical reasoning.
On LiveCodeBench, Xolver demonstrates even more pronounced gains. The o3-mini-medium variant
achieves 95.6%, 90.4%, and 85.8% accuracy on Easy, Medium, and Hard problems respectively,
significantly outperforming CodeSim by +4.5%, +11.9%, and a striking +32.3% margin on hard
examples. Even with a weaker QWQ-32B backbone, Xolver (95.2%, 87.5%, 70.0%) surpasses all
baselines and achieves similar gains. In contrast to CheatSheet and CodeSim, Xolver leverages
multi-agent collaborations and holistic experience learning.
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Figure 10: Performance comparison per diffi-
culty levels in LiveCodeBench.

Figure 11: Fine-grained performance compari-
son in GPQA Diamond.

On GPQA Diamond, Xolver improves accuracy across all three subjects for both backbones (see
Figure 11). With the o3-mini-medium backbone, Xolver attains 94.6% (Physics), 76.1% (Chemistry),
and 96.6% (Biology), outperforming Search-o1 by +3.5%, +15.9%, and +4.5% points, respectively.
Even with the weaker QVQ-32B backbone, Xolver reaches 83.9%, 57.3%, and 84.9%—gains of
+10.0%, +15.3%, and +10.0% points over the corresponding Search-o1 results. These consistent,
backbone-agnostic improvements highlight Xolver’s strong performance on multi-disciplinary scien-
tific QA task.

E.6 CAN A SELF-JUDGE REPLACE A JUDGE AGENT?

We analyze the effect of different judging mechanisms on Xolver’s performance by comparing two
setups: (1) self-judging, where each dynamic agent evaluates its own response through self-reflection
without altering its role, and (2) external judging, where a separate judge agent is used to assess
the responses. We find that self-judging agents tend to be biased in favor of their own outputs,
occasionally validating incorrect solutions. This self-bias leads to a noticeable drop in overall
performance—specifically, a 7.4% decrease in coding tasks, 4% decrease in agentic tasks and a 8.7%
decrease in math tasks, on average.

E.7 COST ANALYSIS AND HOW LONG DO XOLVER AGENTS THINK?

In Figure 12, we report input, reasoning, and output token statistics for Xolver across all datasets.
Token complexity scales as O(mI) (with m agents and I iterations), while runtime remains O(I)
because agents run in parallel. This is more efficient than self-consistency (Wang et al., 2022), which
typically needs 32–64 generations per example, and than the CheatSheet baseline with O(n2) memory
updates from usefulness estimation over prior examples. As a multi-agent system, Xolver spends
most tokens on context sharing and inter-agent communication; about 25% go to core reasoning.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

GSM8K AIME '24 MATH-500 LiveCodeBench BrowseComp0

50

100

150

200

To
ke

ns
 (

th
ou

sa
nd

s)

33.4 44.5 50.1

89.6
108.4

14.0

25.5 23.3

59.7

79.3

6.9

12.6 11.5

29.6

48.1

28.3 32.5 34.6

68.0
88.7

10.4
18.9 17.4

45.3

64.6

5.1
9.4 8.6

22.4

42.9

60.5
86.1 88.9

110.4
129.1

21.4

31.4 29.7

48.8

68.6

10.6

15.5 14.7

24.2

43.8

44.7
65.6 67.1

96.4
126.4

15.7

24.6 23.3

36.5

55.9

7.8

12.2 11.5

18.1

38.3

Average Token Usage (Input, Think, Output) per Dataset
Search-o1 (o3-mini-medium)
Search-o1 (QWQ-32B)

Xolver (o3-mini-medium)
Xolver (QWQ-32B)

Figure 12: Average numbers of token usage across datasets
in Xolver.

We also compare total token usage to
the single-agent Search-o1, counting
tokens with tiktoken (o3-mini-
medium) and AutoTokenizer
(QWQ-32B). Xolver uses roughly
1.5× more tokens, reflecting collab-
orative, iterative reasoning, yet this
moderate increase yields substantial
gains: +32.3% absolute on hard
coding with o3-mini-medium and
+9.05% accuracy across all Math-500
categories with QWQ-32B (see
Figure 9; Figure 10). Thus, Xolver ’s slightly higher reasoning cost is well justified by its broad,
superior performance.

E.8 IMPACT OF DATA-SHUFFLING IN XOLVER (+) PERFORMANCE

Xolver (+) updates its external memory incrementally after solving each new problem. To examine
whether the order of test instances impacts performance, we conduct an ablation study by randomly
shuffling the sequence of problems in each task. This helps determine if there is any dependency on
the data order. During this experiment on the impact of shuffling data on Xolver performance, we
randomly shuffled the test instances and conducted the experiment with 5 runs. Results shows in
Table 4 that Xolver has limited performance change (STD ∼ 1) with shuffling data–a strong sign on
the robustness of the framework.

Mean ± STD (With only 5 Runs, all STD ∼ 1)
Model GSM8K AIME ’24 AIME ’25 MATH-500 LiveCodeBench (v5)
o3-mini-medium 97.6 ± 1.3 92.2 ± 0.4 91.0 ± 0.3 98.3 ± 0.6 90.9 ± 1.1
QWQ-32B 97.2 ± 0.6 93.7 ± 0.5 82.7 ± 2.0 95.1 ± 0.6 83.6 ± 1.6

Table 4: Impact of using intermediate shared memory with shuffle of order in test set in Xolver.

E.9 MORE ERROR ANALYSIS

In Figure 13 and Figure 14, we present an error analysis across math, code
and agentic tasks that goes beyond simple accuracy or pass@1 metrics. While
Xolver significantly improves reasoning and generation capabilities in these
domains, both (o3-mini-medium and QWQ-32B equivalent) backbone LLMs
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Figure 13: Xolver Math and Code error distribution.

can still produce solutions
that are syntactically correct
yet semantically flawed, re-
sulting in failed executions
due to incorrect reasoning,
incomplete logic, unopti-
mized implementations, or
misaligned tool usage. In
agentic tasks, failure mode include mouse click, instructual, visual and other errors, whereas,
code tasks include incorrect final code, time limit exceeded (TLE), runtime errors (RTE), and
syntax issues. In math tasks, remaining errors are primarily due to flawed logical deriva-
tions or faulty intermediate calculations. Although Python-based tools are available, such
calculation errors often occur when agents choose not to invoke these tools—highlighting
that tool usage remains decoupled from the model’s core reasoning process (see Ap-
pendix B for our prompt design). These findings provide insights for future improve-
ments by exposing the variety of failure modes across domains, and further emphasize the
importance of robust self-verification and refinement mechanisms, as employed by Xolver.

E.10 PATTERNS IN XOLVER REASONING TRACES
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Figure 14: Xolver Code and Agentic task error distribution.

To understand how Xolver
adapts its reasoning process
to perform complex reason-
ing, we analyze the dynam-
ics of reasoning pattern fre-
quencies across difficulty
levels in LIVECODEBENCH, as shown in Table 5. Our analysis reveals that Xolver dynamically
increases self-evaluation and exploratory strategies (e.g., trying new approaches) as problem difficulty
grows. Correct solutions demonstrate a declining need for problem rephrasing and subgoal decompo-
sition, indicating more direct and confident reasoning. In contrast, incorrect solutions show increased
subgoal setup and rephrasing attempts—suggesting that the system recognizes failure and attempts
recovery through restructuring. Compared to OPENCODEREASONING, which shows stagnation
or regression in key patterns (e.g., self-evaluation), Xolver exhibits robust and adaptive reasoning
behavior, supported by multi-agent collaboration and judge feedback. This behavior highlights the
generality and flexibility of Xolver ’s reasoning model.

Reasoning Pattern Correct Solutions Incorrect Solutions
Easy→Medium Medium→ High Easy→Medium Medium→ High

(a) OpenCodeReasoning
Self-Evaluation (↓) 0.39→ 0.37 0.37→ 0.34 0.36→ 0.37 0.34→ 0.31
New Approach (↑) 0.16→ 0.20 0.20→ 0.23 0.16→ 0.22 0.22→ 0.25
Problem Rephrasing (↓↑) 0.21→ 0.20 0.20→ 0.20 0.21→ 0.22 0.22→ 0.23
Subgoal Setup (↓) 0.13→ 0.12 0.12→ 0.10 0.13→ 0.10 0.10→ 0.10
(b) Xolver
Self-Evaluation (↑) 0.35→ 0.38 0.38→ 0.40 0.35→ 0.37 0.32→ 0.35
New Approach (↑) 0.18→ 0.21 0.21→ 0.24 0.17→ 0.24 0.24→ 0.26
Problem Rephrasing (↓↑) 0.20→ 0.17 0.18→ 0.18 0.23→ 0.24 0.24→ 0.25
Subgoal Setup (↓↑) 0.14→ 0.13 0.13→ 0.11 0.11→ 0.12 0.11→ 0.11

Table 5: Demonstrating how the frequency of major reasoning pattern changes as problem difficulty
increases. Green indicates statistically significant increases and red indicates significant decreases
(p < 0.05). Gray boxes highlight opposing trends between OpenCodeReasoning (decrease) and
Xolver (increase). Direction arrows indicate the expected trend direction: ↑ = increase, ↓ = decrease,
↓↑ = mixed trend (minor decrease then elevated recovery), ↕ = fluctuating trend (major decrease then
recovery). While solving problems, OpenCodeReasoning struggles at Self-Evaluation and Subgoal
Setup whereas Xolver overcomes it with increasing Self-Evaluation in both correct and incorrect
solutions and elevated recovery in Subgoal Setup in incorrect solutions. Both OpenCodeReasoning
and Xolver adapts New Approach while struggles at Problem Rephrasing.

We employ the QWQ-32B model for the initial segmentation of the chain of thought, guided by
the first prompt, subsequently, for segments that remain unannotated, a second segmentation pass
is performed using the second prompt depicted in Section B.5. Reasoning patterns are identified
by extracting content enclosed within the <pattern> tags. Verification and reasoning patterns are
combined into a unified self-evaluation category. If the model assigns multiple patterns to a single
segment, that segment is excluded due to ambiguity in pattern classification. For each generated
output, we calculate the proportion of occurrences of each pattern relative to the total patterns
present, resulting in a frequency vector representing pattern distribution per generation. In examining
the relationship between pattern usage and problem difficulty, we compute the mean frequencies
separately for correct and incorrect generations and assess significance through a t-test. To evaluate
pattern prevalence on a per-problem basis, a binary matrix is constructed where rows correspond
to problems and entries indicate whether a pattern is more common in correct (1) or incorrect (0)
solutions. The statistical significance of these findings is evaluated using a binomial test.

E.11 CASE-STUDY: HOW XOLVER ENHANCES REASONING

To further understand the reasoning and problem-solving strategies behind our multi-agent, itera-
tive framework Xolver, we conduct an in-depth analysis combining qualitative runtime inspection
with controlled experiments. We begin by manually studying Xolver’s agent interaction traces
on AIME ’25 and LiveCodeBench. These case studies reveal that at each iteration, dynamic
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agents attempt to improve upon earlier failures by leveraging Judge agent feedback and by aligning
with top-ranked outputs stored in the shared memory DS . This process results in progressively
refined outputs, increased agent alignment, and eventual convergence toward correct solutions.
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Figure 15: Agents Accuracy and Agreement over iterations.

To verify this behavior systematically,
we conduct a controlled experiment
across both math and code tasks. We
instantiate two dynamic agents with
complementary strengths: a Coder
agent and a Mathematician agent,
each proficient in one domain but sub-
optimal in the other. We then mea-
sure their performance and agreement
across iterations—defined as the per-
centage of problems in which both
agents independently produce the same correct answer (for math) or code that passes the same
test cases (for code). As shown in Figure 15, both agents demonstrate consistent accuracy improve-
ments over time, accompanied by a rising agreement rate. This not only illustrates mutual influence
and learning-by-alignment but also validates the emergence of collaborative synergy.

Crucially, we observe that the presence of the Judge agent plays a vital role in this convergence
process. When the Judge agent is removed—as shown in our first ablation—performance degrades
significantly. These findings collectively affirm that Xolver’s iterative memory-sharing, feedback-
driven refinement, and role-specialized agents contribute to its strong reasoning performance across
domains, making it a compelling framework for general-purpose, self-improving problem solving.

E.12 LIST OF ROLES OF SELECTED BY DYNAMIC AGENTS

Table 6 shows some selected specialized roles by the dynamic agents while testing on math, coding
and agentic tasks along with their most frequently selected roles.

(a) Specialized Roles
Math Coding Agentic
Problem Analyzer Problem Analyzer Snippet Extractor
Mathematical Modeler Algorithm Designer Web Search Strategist
Algorithm Designer Solution Architect Evidence Collector
Numerical Analyst Implementation Specialist Source Credibility Assessor
Symbolic Solver Data Structure Specialist Multi-Document Synthesizer
Mathematician Optimization Engineer Verification Critic
Computational Tools Specialist Unit Tester Browser Orchestrator

Debugging Expert Automation Specialist
Programmer Workspace Manager
Debugging Expert User Interface Navigator
Code Reviewer Rubric Aligner

Query Rewriter
(b) Most Frequent Roles

Math Coding Agentic
Mathematical Modeler Algorithm Designer Web Search Strategist
Numerical Analyst Implementation Specialist Query Rewriting Strategist
Symbolic Solver Data Structure Specialist Evidence Extractor
Mathematician Programmer Consistency Verifier
Computational Tools Specialist Optimization Engineer Multi-Document Synthesizer

Table 6: List of math, coding and agentic roles selected by LLMs.

39


	Introduction
	The Xolver Framework
	Agents and Tools
	Memory Components
	Inference Protocol

	Experiments
	Evaluation Setup
	Main Results

	Ablation and Analyses
	Related Work
	Conclusion
	Related Work
	Lists of Prompts
	Planner Agent
	Dynamic Agent
	Judge Agent
	Verifier Agent
	Reasoning Segmentation

	Qualitative Examples
	External Retrieval Corpus for Code
	Additional Analysis
	Additional Results
	Performance Variance Statistics.
	Impact of Agent and Tool Count with Iterations, and Emerging Benefits of Collaboration
	Effect of Retrieval Strategies on Xolver Performance
	Fine-grained Performance Analysis
	Can a Self-Judge Replace a Judge Agent?
	Cost Analysis and How Long Do Xolver Agents Think?
	Impact of Data-Shuffling in Xolver (+) Performance
	More Error Analysis
	Patterns in Xolver Reasoning Traces
	Case-Study: How Xolver Enhances Reasoning
	List of Roles of Selected by Dynamic Agents


