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Abstract

Molecular dynamics (MD) is a crucial technique in materials science; though its
application to large systems and long timescales remains constrained by the pro-
hibitive computational cost of high-accuracy simulations. To address this issue, we
propose a multiscale MD approach that switches between two deep potential (DP)
models, a type of machine learning force field (MLFF), with different precisions
and speeds to optimally balance efficiency and accuracy. A high-precision DP
model with a 6 Å cutoff and a faster, lower-precision DP model with a 4 Å cutoff
are applied in a 1:3 ratio during integration. Evaluated on a TiO2 crystal system,
the proposed method preserved structural accuracy with Pearson correlation coef-
ficients ≥0.995 for radial distribution functions (RDFs), while delivering 1.32×
speedup higher than the high-precision baseline. Similarly, in a liquid polyethylene
glycol (PEG) system, the method maintained RDF correlations ≥0.997 with a
1.27× speedup. Furthermore, when combining the switching scheme with network-
size reduction (model compression) and mixed-precision (fp16) inference, RDF
correlations were maintained at ≥0.99, while delivering a 3.95× speedup. These
results demonstrate that the proposed method can substantially accelerate MD
simulations without compromising accuracy, thereby offering a robust approach
for artificial intelligence (AI)-assisted material design and large-scale simulations.
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1 Introduction

Molecular dynamics (MD) is a key computational method in materials science and chemistry for
analyzing atomic-scale phenomena [1]. However, performing high-accuracy force calculations
comparable to first-principles methods [2] incurs prohibitive computational costs, rendering simu-
lations of large systems and long timescales impractical. Recently, machine learning force fields
(MLFFs), exemplified by deep potential (DeePMD) [3], have emerged as potential approaches that
provide near–first-principles accuracy at a significantly reduced computational cost. This has enabled
simulations involving tens of thousands to millions of atoms that were previously infeasible [4, 5].
Nevertheless, a trade-off between accuracy and computational efficiency remains: high-accuracy mod-
els faithfully reproduce structures and properties but suffer from slower inference speeds, reducing
the efficiency of long-timescale simulations [6].

In this context, researchers at MIT have proposed a multiscale framework based on Allegro MLIPs [7–
9]. Their method separates short-range (fast) and long-range (slow) interactions and combines
them with a multiple time-step (MTS) integrator [10], achieving up to a three-fold acceleration
while maintaining accuracy in energy and structural properties. However, this approach requires the
co-training of the two models and involves a relatively complex workflow.

To address this issue, we propose a simpler and practical acceleration strategy. Specifically, our
method is based on DeePMD [11] and alternates between two independently trained models: a high-
accuracy model with a 6 Å cutoff and a fast model with a 4 Å cutoff. Because DeePMD generally
provides substantially faster inference than Allegro and is widely adopted in large-scale simulation
environments [12], this approach achieves substantial computational savings while maintaining the
overall accuracy, offering an efficient and practical acceleration scheme.

The effectiveness of the proposed method is validated on multiple material systems, including both
solid and liquid phases. This paper presents a novel acceleration strategy for MLFF-based MD
simulations with the potential to contribute to more efficient material design and molecular discovery.

2 Method
2.1 Overview
This study accelerated molecular dynamics (MD) simulations by switching between two Deep
Potential (DP) models with different precisions and speeds. Short-range interactions change rapidly
and are evaluated more frequently using a fast model, whereas long-range interactions evolve more
slowly and are evaluated less frequently using a high-precision model. This approach reduces the
computational cost while maintaining the overall precision (Fig. 1).

Figure 1: Overview of the proposed model-switching strategy in molecular dynamics simulations. A
low-precision, high-speed DP model (cutoff = 4 Å) is applied for three consecutive steps, followed by
one step using a high-precision, low-speed DP model (cutoff = 6 Å), yielding a 1:3 switching ratio.
At each timestep, inference is performed using the selected DP, and the resulting energy, forces, and
virial stress are used to update the system configuration and compute physical properties.

2



2.2 Models

DeePMD is a machine learning force field that predicts energy, forces, and virial stress by feeding
the relative positions of neighboring atoms within a cutoff radius into a neural network [13–15]. A
larger cutoff radius allows a more accurate reproduction of long-range interactions but increases
the computational cost owing to the increased neighboring atoms. In this study, we selected 6 Å as
the cutoff radius for the high-accuracy model, as it is considered a standard value in prior DeePMD
studies that balance accuracy and computational costs. By contrast, the fast model employed a cutoff
radius of 4 Å. Compared to 6 Å, this substantially reduces both the number of neighboring atoms and
thus computational cost, while still preserving the main structural features (e.g., RDF peak positions
and intensities). The accuracy degradation remained within an acceptable range. Both models were
independently trained on the same dataset.

2.3 Switching strategy
During the time integration, the fast model was applied for several consecutive steps, followed by
one step with the high-precision model. Furthermore, we tested multiple switching patterns and
adopted a 1:3 ratio because it offered the optimal balance between accuracy and efficiency [16].
This ratio was chosen as a practical compromise between maintaining structural fidelity (in terms of
RDF agreement) and improving computational efficiency. It also reflects the physical intuition that
short-range interactions vary more rapidly than long-range ones, making it reasonable to employ the
fast model more frequently. Switching was performed automatically at every simulation step and did
not require manual intervention from the user.

2.4 Implementation
The proposed method was implemented in LAMMPS using the DeePMD-kit [17, 18]. We modified
pair_deepmd.cpp to load multiple models and performed inferences according to a specified
switching ratio. The neighbor list update frequency was shared between the two models to avoid
redundant list construction during switching. All the simulations were performed on GPUs.

2.5 Additional optimization
We further evaluated the combination of model compression and mixed-precision (fp16) inference.
Model compression was performed by reducing the number of network layers and nodes, whereas
fp16 inference was used to accelerate GPU computation. In this configuration, we applied both
model compression and mixed-precision in tandem: the network was lightweighted by reducing
layers and nodes, and internal calculations (compute_prec) were performed in fp16 while outputs
(output_prec) were kept in fp32, enabling Tensor Core usage and lowering memory consumption.
Under these optimizations, MD simulations maintained stable energy and temperature, and no
numerical instabilities or divergence were observed. These optimizations can be combined with the
switching strategy to further reduce the computation time (details are provided in the Appendix).

3 Experiments

We conducted MD simulations on two representative systems to evaluate the effectiveness of the
proposed method. The first system was a solid-phase anatase TiO2 crystal with 12,000 atoms, which
is a stable polymorph of titanium dioxide [19]. The second system was a liquid-phase polyethylene
glycol (PEG) 150-mer consisting of 10,530 atoms. The PEG 150-mer corresponds to a polymer chain
composed of 150 repeating ethylene oxide units (–CH2–CH2–O–) [20].

For each system, equilibration simulations were performed in an NPT ensemble at 300 K and 1 bar
for 10 ps (10,000 time steps with a time step of 1 fs). All simulations were performed using the
DeePMD-kit with LAMMPS on the GPU hardware.

Evaluation metrics: This study evaluated performance from two perspectives. For structural
accuracy, the obtained structures were compared using radial distribution functions (RDFs) [21]. In
addition to a direct comparison of RDF shapes, the Pearson correlation coefficient between the RDFs
obtained by the proposed method and the reference data reported in the literature was calculated.
For computational performance, we measured the inference time required for each simulation and
reported the relative speedup compared to the high-precision 6 Å DP model. In addition, we evaluated
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the time evolution of temperature, density, and potential energy during equilibration and confirmed
that the simulations were thermodynamically stable.

4 Results
4.1 TiO2

Figure 2 shows a comparison of the RDFs of anatase TiO2. The RDFs were compared with the
reference data reported in the literature. When using the 4 Å model alone, discrepancies in peak
positions were observed, with a particularly notable loss of accuracy for the Ti–Ti pair (Pearson
correlation coefficient = 0.957). In contrast, the proposed method, which intermittently applies the
6 Å model, successfully corrected these discrepancies and reproduced RDFs nearly identical to those
of the 6 Å model alone. The comparison of Pearson correlation coefficients (Table 1) also confirms
that the proposed method achieves consistently high agreement, with all values above 0.995. This
represents a substantial improvement over the 4 Å model alone.

Furthermore, Table 2 summarizes the computational performance. The proposed method achieved
a 1.32× speedup over the high-precision 6 Å model. In addition, combining the switching scheme
with model compression and mixed-precision inference yielded a 3.95× speedup, while the RDF
correlation coefficients remained above 0.990 (details are provided in the Appendix). These results
demonstrate that the proposed method quantitatively preserves accuracy while significantly improving
computational efficiency.

Figure 2: Comparison of RDFs for anatase TiO2 under different models. A high-speed DP model
(cutoff = 4 Å) was used alone, and in the proposed method combined with a high-precision DP model
(cutoff = 6 Å) at a 1:3 ratio. The proposed method successfully reproduces RDFs consistent with the
6 Å DP model.

Table 1: Pearson correlation coefficients of RDFs
for anatase TiO2.

Method Ti–Ti Ti–O O–O

6 Å DP 1.000 1.000 1.000
4 Å DP 0.957 0.989 0.977
4–6 Å DP (proposed) 0.996 0.999 0.995

Table 2: Comparison of MD performance for
anatase TiO2.

Method Timesteps/s Speedup

6 Å DP (baseline) 12.03 1.00
4 Å DP 17.70 1.47
4–6 Å DP (proposed) 15.85 1.32

To evaluate the thermodynamic stability, we analyzed the time evolution of temperature, density, and
potential energy during the NPT simulations of the TiO2 system, as shown in Fig. 3. As illustrated in
the figure, all models (4 ÅDP, 6 ÅDP, and 4–6 ÅDP) exhibited overall stable behavior throughout
the simulations. The temperature quickly converged to the target value of 300 K after the initial
equilibration and then fluctuated within a physically reasonable range. Similarly, the density stabilized
after several thousand steps and remained nearly constant, with no significant differences observed
among the models. Regarding the potential energy, no noticeable drift was observed over the long
timescale, indicating stable energy conservation. On the shorter timescale, the 4–6 Å model showed
small-amplitude periodic variations corresponding to the switching cycle with a 3:1 ratio. These
oscillations reflect the periodic redistribution of energy but remained bounded, showing no cumulative
increase or decrease over time. Overall, these results confirm that the proposed method exhibits
thermodynamically stable behavior and does not introduce numerical instabilities or unphysical
fluctuations during the switching process.
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(a) (b)

(c) (d)

Figure 3: Time evolution of thermodynamic quantities for the anatase TiO2 system under the NPT
ensemble (300 K, 1 bar). All quantities show stable behavior after the initial equilibration, confirming
that the proposed 4–6 Å DP switching scheme maintains thermodynamic stability. (a) Temperature,
(b) Density, (c) Potential energy (long-term), and (d) Potential energy (short-term).

The proposed approach also maintained linear scaling with the system size, indicating its applicability
to large-scale simulations.

4.2 Polyethylene Glycol (PEG)
For the PEG system, the comparison of RDFs showed that the 4 Å model alone already provided
reasonably good accuracy overall. However, closer inspection reveals small discrepancies in the peak
positions and intensities. The proposed method successfully resolved these discrepancies, reproducing
RDFs that achieved near-perfect alignment with the reference 6 Å model. The comparison of Pearson
correlation coefficients further confirmed that the proposed method consistently achieved higher
agreement than the 4 Å model alone. For computational performance, the proposed method achieved
a 1.27× speedup relative to the high-precision 6 Å model. Moreover, during the simulations,
thermodynamic parameters such as temperature, density, and potential energy remained stable,
confirming that the method preserved a physically consistent behavior. These results demonstrated
that even for liquid systems such as PEG, the proposed method effectively balances accuracy and
efficiency (details are provided in the Appendix).

4.3 Discussion
The effectiveness of the proposed method depends on factors such as the proportion of high-precision
steps and switching frequency, which may require optimization depending on the system and simu-
lation conditions. Future work should explore adaptive switching algorithms that are dynamically
adjusted based on the system behavior.

5 Conclusion
This study proposes a multiscale MD method that switches between two DP models with different
cutoff radii. The effectiveness of the proposed method was validated on TiO2 and PEG systems.
It achieves a 1.32× acceleration compared to the high-precision model alone, and a 3.95× when
combined with model compression and mixed-precision inference. While maintaining RDF accuracy
and thermodynamic stability, the method also demonstrated linear scaling, suggesting its applicability
to large-scale simulations. These results indicate that the proposed approach is a robust strategy for
balancing accuracy and efficiency, contributing to the acceleration of AI-driven material design and
molecular discovery.
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A Appendix

A.1 Supplementary Results for PEG System

Due to space limitations, we present the supplementary results for the liquid polyethylene glycol
(PEG, 150-mer) system in this Appendix. Figure 4 compares the RDFs under different models,
Table 3 summarizes the Pearson correlation coefficients for each atomic pair, and Table 4 lists the
MD performance metrics.

These results confirm that the proposed method maintains high accuracy (Pearson correlation coeffi-
cients ≥0.997) while achieving approximately a 1.27× speedup for the PEG system.

Figure 4: Comparison of RDFs for liquid polyethylene glycol (PEG, 150-mer) under different
models. A high-speed DP model (cutoff = 4 Å) was evaluated on its own, and in the proposed method,
this model was combined with a high-precision DP model (cutoff = 6 Å) at a 1:3 switching ratio. The
proposed method successfully reproduces RDFs consistent with those obtained using the 6 Å DP
model.
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Table 3: Pearson correlation coefficients of RDFs for PEG 150-mer.

Method C–C C–O O–O C–H O–H H–H

6 Å DP (reference) 1.000 1.000 1.000 1.000 1.000 1.000
4 Å DP 0.998 0.997 0.993 0.996 0.995 0.993
4–6 Å DP (proposed) 0.999 0.999 0.997 0.998 0.997 0.997

Table 4: Comparison of MD performance for PEG 150-mer.

Method Timesteps/s Speedup

6 Å DP (baseline) 7.54 1.00
4 Å DP 10.86 1.44
4–6 Å DP (proposed) 9.61 1.27

A.2 Supplement: Details of Model Compression and Mixed-Precision Inference

In addition to the model-switching strategy, we incorporated model compression and mixed-precision
inference to further accelerate the simulations.

A.2.1 Model Compression

The computational cost of a Deep Potential model depends heavily on the architecture of its networks:
the descriptor network (which encodes local atomic environments) and the fitting network
(which predicts energies and forces). In this study, we reduced the number of layers and neurons
in both networks to create a lightweight model. This simplification improves the inference speed
without reducing the number of neighboring atoms considered, enabling more efficient simulations.

A.2.2 Mixed-Precision Inference

To better utilize GPU resources, we employed mixed-precision computation. Specifically, inter-
nal calculations (compute_prec) were performed in 16-bit floating point (fp16), while outputs
(output_prec) were kept in 32-bit (fp32). This configuration enabled the use of Tensor Cores for
acceleration and reduced memory usage.

A.2.3 Integrated Effect

By combining model compression and mixed-precision inference with the proposed model-switching
strategy, we observed additional performance improvements. In general, these additional optimization
techniques further improved the efficiency of MD simulations while maintaining accuracy at a
practically acceptable level. Figure 5, Table 5, and Table 6 present the RDF comparisons and
performance results achieved with this integrated optimization scheme.

Figure 5: RDF comparison for anatase TiO2 under the integrated optimization scheme. In this
scheme, the proposed 4–6 Å DP model is combined with model compression and mixed-precision
(fp16) inference.
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Table 5: Pearson correlation coefficients of RDFs with the integrated optimization scheme.

Method Ti–Ti Ti–O O–O

6 Å DP (reference) 1.000 1.000 1.000
4–6 Å DP (proposed, compressed + fp16) 0.991 0.997 0.994

Table 6: MD performance for anatase TiO2 with the integrated optimization scheme.

Method Timesteps/s Speedup

6 Å DP (baseline) 12.03 1.00
4–6 Å DP (proposed, compressed + fp16) 47.5 3.95
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