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Abstract

We investigate the problem of fixed-budget best
arm identification (BAI) for minimizing ex-
pected simple regret. In an adaptive experiment,
a decision maker draws one of multiple treatment
arms based on past observations and observes the
outcome of the drawn arm. After the experi-
ment, the decision maker recommends the treat-
ment arm with the highest expected outcome. We
evaluate the decision based on the expected sim-
ple regret, which is the difference between the
expected outcomes of the best arm and the rec-
ommended arm. Due to inherent uncertainty,
we evaluate the regret using the minimax crite-
rion. First, we derive asymptotic lower bounds
for the worst-case expected simple regret, which
are characterized by the variances of potential
outcomes (leading factor). Based on the lower
bounds, we propose the Two-Stage (TS)-Hirano-
Imbens-Ridder (HIR) strategy, which utilizes the
HIR estimator (Hirano et al., 2003) in recom-
mending the best arm. Our theoretical analysis
shows that the TS-HIR strategy is asymptotically
minimax optimal, meaning that the leading factor
of its worst-case expected simple regret matches
our derived worst-case lower bound. Addition-
ally, we consider extensions of our method, such
as the asymptotic optimality for the probabil-
ity of misidentification. Finally, we validate the
proposed method’s effectiveness through simula-
tions.
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1. Introduction
We consider adaptive experiments with multiple treatment
arms, such as slot machine arms, different therapies, and
distinct unemployment assistance programs. In industrial
applications, interactive learning with human feedback for
identifying a treatment arm with the highest expected out-
come (best treatment arm) is of great interest. This prob-
lem is known as the best arm identification (BAI) problem
and is a variant of the stochastic multi-armed bandit (MAB)
problem (Thompson, 1933; Lai & Robbins, 1985). In this
study, we investigate fixed-budget BAI, where we aim to
minimize the expected simple regret after a fixed number
of rounds of an adaptive experiment known as a budget
(Bubeck et al., 2009; 2011; Audibert et al., 2010). In partic-
ular, we focus on the worst-case performance of BAI strate-
gies to reflect the uncertainty of human feedback.

In our setting, a decision maker sequentially draws one
of the treatment arms based on past observations in each
round of an adaptive experiment and recommends an es-
timated best treatment arm for future experimental sub-
jects after the experiment. We measure the performance
of the decision maker’s strategy using the expected sim-
ple regret, which is the difference between the maximum
expected outcome that could be achieved with complete
knowledge of the distributions and the expected outcome
of the treatment arm recommended by the strategy. Due to
the inherent uncertainty, we evaluate the performance us-
ing the worst-case criterion among a given class of bandit
models (Bubeck et al., 2011). For nonparametric bandit
models with finite variances, we derive worst-case lower
bounds. The lower bound’s leading factor is characterized
by the variances of potential outcomes. We then propose
the Two-Stage (TS)-Hirano-Imbens-Ridder (HIR) strategy
and show that it is asymptotically minimax optimal, mean-
ing that the leading factor of its worst-case expected simple
regret matches that of the lower bound.

In Bubeck et al. (2011), worst-case lower bounds for the
expected simple regret are derived for bandit models with
bounded supports. These lower bounds only rely on the
boundedness of the bandit models and do not depend on
any other distributional information. In this study, we de-
rive lower bounds that depend on the variances of the bandit
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models, which require the use of distributional information
for an optimal strategy. Our lower bounds are based on
change-of-measure arguments using the Kullback-Leibler
(KL) divergence, which has been used to derive tight lower
bounds in existing studies (Kaufmann et al., 2016). Note
that the variance appears as the second-order expansion of
the KL divergence.

Furthermore, to improve efficiency in this task, we consider
a scenario where a decision-maker can draw a treatment
arm based on contextual information. We assume that the
contextual information can be observed just before draw-
ing a treatment arm and that arm draws can be optimized
using this information. Unlike in the conventional set-
ting of contextual bandits, our goal is to identify the treat-
ment arm with the highest unconditional expected outcome
rather than the conditional expected outcome. This setting
is motivated by the goals of ATE estimation (van der Laan,
2008; Hahn et al., 2011) and BAI with fixed confidence and
contextual information (Russac et al., 2021; Kato & Ariu,
2021). Our findings indicate that utilizing contextual infor-
mation can reduce the expected simple regret, even if our
focus is on the unconditional best treatment arm. Note that
this setting is a generalization of fixed-budget BAI without
contextual information, and our result holds novelty even
in the absence of contextual information.

In BAI, target sample allocation ratios play a critical role in
determining the proportion of times each treatment arm is
drawn. In many BAI settings, target allocation ratios do not
have closed-form solutions and require numerical analysis.
However, in our analysis, we derive analytical solutions for
several specific cases characterized by the standard devia-
tions or variances of the outcomes. When there are only
two treatment arms, the target allocation ratio is the ra-
tio of the standard deviation of outcomes. When there are
three or more treatment arms without contextual informa-
tion, the target allocation ratio is the ratio of the variance
of outcomes. This contrasts with the findings of Bubeck
et al. (2011), which explores the minimax evaluation for
bandit models with bounded outcome supports and finds
that a strategy of drawing each treatment arm with an equal
ratio and recommending a treatment arm with the highest
sample average of observed outcomes is minimax optimal.
Our results differ from theirs and suggest drawing treat-
ment arms based on the ratio of the standard deviations or
variances of outcomes.

Our problem is also closely related to theories of statis-
tical decision-making (Wald, 1949; Manski, 2000; 2002;
2004), limits of experiments (Le Cam, 1972; van der Vaart,
1998), and semiparametric theory (Hahn, 1998), not only
to BAI. Among them, semiparametric theory plays an es-
sential role because it allows us to characterize the lower
bounds with the semiparametric analogue of the Fisher in-

formation (van der Vaart, 1998). A more detailed survey is
presented in Appendix A.

In summary, our contributions include: (i) a lower bound
for the worst-case expected simple regret; (ii) an analyti-
cal solution for the target allocation ratio, characterized by
the variances of outcomes; (iii) the TS-HIR strategy; (iv)
an asymptotic minimax optimality of the TS-HIR strategy;
These findings contribute to a variety of subjects, including
statistical decision theory and causal inference, in addition
to BAI.

Organization. In Section 2, we formulate our problem.
In Section 3, we establish lower bounds for the worst-case
expected simple regret and a target allocation ratio. In Sec-
tion 4, we introduce the TS-HIR strategy. Then, in Sec-
tion 5, we demonstrate upper bounds of the strategy and its
asymptotic minimax optimality. Finally, we discuss related
literature in Section 6.

2. Problem Setting
We investigate the following setup of fixed-budget BAI.
Given a fixed number of rounds T , referred to as a bud-
get, in each round t = 1, 2, . . . , T , a decision maker ob-
serves contextual information (covariate) Xt ∈ X and
draws a treatment arm At ∈ [K] = {1, 2, . . . ,K}. Here,
X ⊂ RD is a space of contextual information1. The deci-
sion maker then immediately observes an outcome (or re-
ward) Yt linked to the drawn treatment arm At. This set-
ting is referred to as the bandit feedback or Neyman-Rubin
causal model (Neyman, 1923; Rubin, 1974), in which the
outcome in round t is Yt =

∑
a∈[K] 1[At = a]Y a

t , where
Y a
t ∈ R is a potential independent (random) outcome, and
Y 1
t , Y

2
t , . . . , Y

K
t are conditionally independent given Xt.

We assume that Xt and Y a
t are independent and identically

distributed (i.i.d.) over t ∈ [T ] = {1, 2, . . . , T}. Our goal
is to find a treatment arm with the highest expected out-
come marginalized over the contextual distribution of Xt

with a minimal expected simple regret after observing the
outcome in the round T .

We define our goal formally. Let P be a joint distribu-
tion of (Y 1, Y 2, . . . , Y K , X), and (Y 1

t , Y
2
t , . . . , Y

K
t , Xt)

be an i.i.d. copy of (Y 1, Y 2, . . . , Y K , X) in round t.
We refer to the distribution of the potential outcome
(Y 1, Y 2, . . . , Y K , X) a full-data bandit model (Tsiatis,
2007). For a given full-data bandit model P , let PP and EP

denote the probability law and expectation with respect to
P , respectively. Besides, let µa(P ) = EP [Y

a
t ] denote the

expected outcome marginalized over X . Let P denote the
set of all P . An algorithm in BAI is referred to as a strat-
egy, which recommends a treatment arm âT ∈ [K] after se-

1BAI without contextual information corresponds to case
where X is a singleton.
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quentially drawing treatment arms in t = 1, 2, . . . , T . With
the sigma-algebras Ft = σ(X1, A1, Y1, . . . , Xt, At, Yt),
we define a BAI strategy as a pair ((At)t∈[T ], âT ), where
(At)t∈[T ] is a sampling rule and âT is a recommendation
rule. The sampling rule draws a treatment arm At ∈ [K]
in each round t based on the past observations Ft−1 and
observed context Xt. The recommendation rule returns an
estimator âT of the best treatment arm â∗(P ) based on ob-
servations up to round T . Here, âT is FT -measurable. For
a bandit model P ∈ P and a strategy π ∈ Π, let us define
the simple regret as

rT (π)(P ) := max
a∈[K]

µa(P )− µâT (P ).

Our goal is to find a strategy that minimizes the worst-case
expected simple regret supP∈P̃ EP [rT (π)(P )], where the
expectation is taken over the randomness of âT ∈ [K] and
P̃ ⊆ P is a specific class of bandit models. First, we de-
rive the worst-case lower bounds in Section 3. Then, we
propose an algorithm in Section 4 and show the minimax
optimality for the expected simple regret in Section 5.

Notation. Let µa(P )(x) := EP [Y
a|X = x] be the con-

ditional expected outcome given x ∈ X for a ∈ [K]. Let
(σa(P ))

2 be the variance of Y a under P ∈ P . Let ∆a(P )
be a gap maxa∈[K] µ

a(P )− µâT (P ).

3. Lower Bounds for the Worst-case Expected
Simple Regret

In this section, we derive lower bounds for the worst-case
expected simple regret. The expected simple regret can be
expressed as

EP [rT (π)(P )] =
∑
b∈[K]

∆b(P )PP (âT = b) .

Here, for each fixed µa(P ), P ∈ P̃ , independent of T , the
probability of misidentification,

PP

(
âT /∈ argmax

a∈[K]

µa(P )

)
,

converges to zero with an exponential rate, while
∆âT (P ) is the constant. Therefore, we dis-
regard ∆âT (P ), and the convergence rate of
PP

(
âT /∈ argmaxa∈[K] µ

a(P )
)

dominates the ex-
pected simple regret. In this case, to evaluate the
convergence rate of PP

(
âT /∈ argmaxa∈[K] µ

a(P )
)

, we
utilize large deviation upper bounds. In contrast, if we
examine the worst case among P̃ , which includes a bandit
model such that the gaps between the expected outcomes
converge to zero with a certain order of the sample size T ,
a bandit model P whose gaps converge to zero at a rate of

O(1/
√
T ) dominates the evaluation of the expected simple

regret. In general, for the gap ∆b(P ), the worst-case
simple regret is approximately given as

sup
P∈P̃

EP [rT (π)(P )]

≈ sup
P∈P̃

∑
b∈[K]

∆b(P ) exp
(
− T

(
∆b(P )

)2
/Cb

)
,

where (Cb)b∈[b] are constants (Bubeck et al., 2011).

This is because PP (âT = b) is approximately exp
(
−

T
(
∆b(P )

)2
/Cb

)
. Then, the maximum is obtained when

∆b(P ) =
√

Cb

T for a constant Cb > 0, which balances the
regret caused by the gap ∆b(P ) and probability of misiden-
tification PP (âT = b).

3.1. Recap: Lower Bounds for Bandit Models with
Bounded Supports

Bubeck et al. (2011) shows a (non-asymptotic) lower
bound for bandit models with bounded support, where a
strategy with the uniform sampling rule is optimal. Let us
denote the class of bandit models with bounded outcomes
by P [0,1], where each potential outcome Y a

t is in [0, 1].
Then, the authors show that for all T ≥ K ≥ 2, any strat-

egy π ∈ Π satisfies supP∈P [0,1] EP [rT (π)(P )] ≥ 1
20

√
K
T .

For this worst-case lower bound, the authors show that
a strategy with the uniform sampling rule and empirical
best arm (EBA) recommendation rule is optimal, where
we draw At = a with probability 1/K for all a ∈ [K]
and t ∈ [T ] and recommend a treatment arm with the
highest sample average of the observed outcomes, which
is referred to as the uniform-EBA strategy. Under the
uniform-EBA strategy πUniform-EBM, for T = K⌊T/K⌋,

supP∈P[0,1] EP

[
rT
(
πUniform-EBM

)
(P )
]

≤ 2
√

K logK
T+K .

Thus, the upper bound matches the lower bound if we ig-
nore the logK and constant terms.

Although the uniform-EBA strategy is nearly optimal, a
question remains whether more knowledge about the class
of bandit models could be used to derive a tight lower
bound and propose another optimal strategy consistent with
the novel lower bound. As the worst-case lower bound in
Bubeck et al. (2011) is referred to as a distribution-free
lower bound, the lower bound does not utilize distribu-
tional information, such as variance. In this study, although
we still consider worst-case expected simple regret, we de-
velop lower and upper bounds depending on distributional
information. Specifically, we characterize the bounds by
the variances of potential outcomes. In a worst-case anal-
ysis of simple regret, the evaluation of the simple regret
is dominated by an instance of a bandit model such that
the gaps between the best and suboptimal treatment arms
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are O(1/
√
T ). Here, recall that tight lower bounds depend

on the KL divergence (Lai & Robbins, 1985; Kaufmann
et al., 2016). Additionally, the second-order Taylor series
expansion of the KL divergence with regard to the gaps
can be interpreted as the variance (inversed Fisher infor-
mation). Therefore, the tight lower bounds employing dis-
tributional information in the worst-case expected simple
regret should be characterized by the variances (the second-
order Taylor series expansion of the KL divergence). In the
following sections, we consider worst-case lower bounds
characterized by the variances of bandit models.

3.2. Local Location-Shift Bandit Models

In this section, we derive asymptotic lower bounds for the
worst-case expected simple regret. To derive lower bounds,
we often utilize an alternative hypothesis. We consider
a bandit model whose expected outcomes are the same
among the K treatment arms. We refer it to as the null
bandit model.
Definition 3.1 (Null bandit models). A bandit model P ∈
P∗ is called a null bandit model if the expected outcomes
are equal: µ1(P ) = µ2(P ) = · · · = µK(P ).

Then, we consider a class of bandit models with unique
fixed variances for null bandit models, called local
location-shift bandit models. Furthermore, we assume that
the moments of potential outcomes are bounded. We define
our bandit models as follows.
Definition 3.2 (Local location-shift bandit models). A
class of bandit models P∗ contains all bandit models that
satisfy the following conditions:
(i) Absolute continuity For all P,Q ∈ P∗ and a ∈ [K], let
P a and Qa be the joint distributions of (Y a, X) of a treat-
ment arm a under P and Q, respectively. The distributions
P a and Qa are mutually absolutely continuous and have
density functions with respect to the Lebesgue measure.
(ii) Invariant contextual information. For all P ∈ P∗, the
distributions of contextual informationX are the same. Let
EX be an expectation operator over X .
(iii) Lipschitz continuity. For all a ∈ [K], x ∈ X ,
there exists a constant C > 0 independent of T such
that for all P, P ′ ∈ P∗,

∣∣∣(σa(P )(x))
2 − (σa(P ′)(x))

2
∣∣∣ <

C |µa(P )(x)− µa(P ′)(x)|.
(iv) Unique conditional variance. For all null bandit mod-
els P ♯ ∈ P∗ such that µ1(P ♯) = µ2(P ♯) = · · · =
µK(P ♯), the conditional variance is uniquely determined
and lower bounded by a positive constant; that is, for
all P ♯ ∈ P∗, there exists a constant σa(x) > C such
that for all P ♯ ∈ P∗,

(
σa(P ♯)(x)

)2
= (σa(x))

2 and
ζP (x) = ζ(x), where C > 0 is a constant independent
of T .
(v) Boundedness of the moments. There exists a constant
C > 0 independent of T such that for all P ∈ P∗, a ∈ [K],

and γ ∈ N, EP [|Y a|γ ] < C.
(vi) Parallel shift. There exists a constant B > 0, indepen-
dent from P , such that for all P ∈ P∗ and a, b ∈ [K]2,∣∣(µa(P )(x)− µb(P )(x)

)∣∣ ≤ B
∣∣µa(P )− µb(P )

∣∣.
We refer to this class of bandit models as local location-
shift bandit models. Our lower bounds are characterized
by σa(x), a conditional variance of null bandit models.

Local location-shift models are a commonly employed
assumption in statistical analysis (Lehmann & Casella,
1998). Two key examples are Gaussian and Bernoulli dis-
tributions. Under Gaussian distributions with fixed vari-
ances, for all P , the variances are fixed and only mean pa-
rameters shift. Such models are generally called location-
shift models. Additionally, we can consider Bernoulli dis-
tributions if P∗ includes one instance of µ1(P ) = · · · =
µK(P ) to specify one fixed variance σa(x). Furthermore,
our bandit models are nonparametric within the class and
include a more wide range of bandit models, similar to the
approach of Barrier et al. (2022).

When contextual information is unavailable, condition (v)
can be omitted. Although condition (v) may seem restric-
tive, its inclusion is not essential for achieving efficiency
gains through the utilization of contextual information; that
is, the upper bound can be smaller even when this condi-
tion is not met. However, it is required in order to derive
a matching upper bound for the following lower bounds.
Note that the same lower bounds can be derived without
condition (v).

3.3. Asymptotic Lower Bounds for Local
Location-Shift Bandit Models

We consider a restricted class of strategies such that under
null bandit models, any strategy in this class recommends
one of the arms with an equal probability (1/K).

Definition 3.3 (Null consistent strategy). For any P ∈
P∗ such that µ1(P ) = µ2(P ) = · · · = µK(P ), any
null consistent strategy satisfies that for any a, b ∈ [K],∣∣∣PP (âT = a) − PP (âT = b)

∣∣∣ → 0 as T → ∞. This im-

plies that
∣∣PP (âT = a)− 1/K

∣∣ = o(1).

For each x ∈ X , let us define an average allocation ra-
tio under a bandit model P ∈ P and a strategy π ∈ Π
as κT,P (a|x) = 1

T

∑T
t=1 EP [1[At = a]|Xt = x]. This

quantity represents the average sample allocation to each
treatment arm a under a strategy. Let W be a set of
all measurable functions κT,P : X → (0, 1) such that∑

a∈[K] κT,P (a|x) = 1 for each x ∈ X . Then, we prove
the following lower bound. The proof is shown in Ap-
pendix D.

Theorem 3.4. Under any null consistent strategy, as T →
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∞,

sup
P∈P∗

√
TEP [rT (π)(P )]

≥ 1

12
inf

w∈W
max
a∈[K]

√
EX

[
(σd(X))

2
/w(a|X)

]
+ o(1).

We refer tow∗ = argminw∈W maxa∈[K]

√
EX

[
(σa(X))2

w(d|X)

]
as the target allocation ratio, which is an optimal sample
allocation ratio that an optimal strategy aims to achieve.
The target sample allocation ratios are used to define a
sampling rule in our proposed strategy. In some specific
cases, we can obtain analytical solutions for w∗. In this
study, we consider two cases. As an example, in the
following section, we consider a case without contextual
information.

Remark (Asymptotic Lower Bounds with Allocation Con-
straints). When we restrict target allocation ratio, we can
restrict the class W . For example, when we need to
draw specific treatment arms at a predetermined ratio,
we consider a class W† such that for all w ∈ W†,∑

a∈[K] w(a|x) = 1 and w(b|x) = C for all x ∈ X , some
b ∈ [K], and a constant C ∈ (0, 1).

3.4. Lower Bounds without Contextual Information

Our result generalizes BAI without contextual information,
where X is a singleton. Let (σa)2 be the unconditional
variance of Y a

t . When there is no contextual information,
we can obtain the following lower bound with an analytical
solution of the target allocation ratio w∗ ∈ W .

Corollary 3.5. Under any null consistent strategy,

sup
P∈P∗

√
TEP [rT (π)(P )] ≥

1

12

√∑
a∈[K]

(σa)
2
+ o(1)

as T → ∞, where the target allocation ratio is w∗(a) =
(σa)2∑

b∈[K](σ
b)2

.

When contextual information is available, for
w(a|x) = (σa(x))2∑

b∈[K](σ
b(x))2

, the lower bound is

1
12

√∑
a∈[K] EX

[
(σa(X))

2
]

+ o(1). It is worth

noting that by using the law of total variance,
(σa)2 ≥ EX

[
(σa(X))

2
]
. Therefore, by utilizing

contextual information, we can tighten the lower bounds

as
√∑

a∈[K] (σ
a)

2 ≥
√∑

a∈[K] EX
[
(σa(X))

2
]

≥

minw∈W maxd∈[K]

√
EX

[
(σd(X))2

w(d|X)

]
. This improvement

is efficiency gain by using contextual information.

3.5. Refined Lower Bounds for Two-Armed Bandits

For two-armed bandits (K = 2), we can refine the lower
bound as follows. In this case, we can also obtain an analyt-
ical solution of the target allocation ratio even when there
is contextual information.

Theorem 3.6. When K = 2, under any null consistent
strategy,

sup
P∈P∗

√
TEP [rT (π)(P )]

≥ 1

12

√
EX

[
(σ1(X) + σ2(X))

2
]
+ o (1)

as T → ∞, where the target allocation ratio is w∗(a|x) =
σa(x)/(σ1(x) + σ2(x)) for all x ∈ X .

Here, note that
√∑

a∈[2] (σ
a)

2 ≥
√

(σ1 + σ2)
2. This tar-

get allocation ratio is the same as that in Kaufmann et al.
(2016) for the probability of misidentification minimiza-
tion. Also see Section 6.1. The proofs is shown in Ap-
pendix F.

Note that for K ≥ 3, we have an analytical solution of
the target allocation ratio only when there is no contextual
information, and the target allocation ratio is the ratio of the
variances. In contrast, for K = 2, we can obtain analytical
solutions of the target sample allocation ratio even when
there is contextual information, and it is the ratio of the
(conditional) standard deviation.

4. The TS-HIR Strategy
This section introduces our strategy, which is inspired by
the adaptive experimental design of Hahn et al. (2011). Our
strategy comprises the following sampling and recommen-
dation rules: First, we divide the budget into two parts.
In the first stage, we uniformly randomly draw a treat-
ment arm. In the second stage, we draw treatment arms to
achieve the target allocation ratio. After the second stage,
we recommend the best arm using the HIR estimator. We
refer to this strategy as the TS-HIR strategy.

4.1. Target allocation ratio

First, we define a target allocation ratio, which is used to
determine our sampling rule. As discussed in Section 3, for
certain cases, the target allocation ratio has analytical solu-
tions: for a ∈ [K], w∗(a|x) = σa(x)

σ1(x)+σ2(x) if K = 2, and

w∗(a) = (σa)2∑
b∈[K](σ

b)2
if K ≥ 3 and there is no contextual

information. When the variances are unknown, this target
allocation ratio is also unknown. Therefore, we estimate it
during the adaptive experiment and use the estimator as the
probability of drawing a treatment arm.
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4.2. The TS-HIR Strategy

The TS-HIR strategy consists of the following two stage
experiments. For each a ∈ [K] and x ∈ X , let w(1)(a|x)
and w(2)(a|x) be sample allocation ratios in the first and
second stages, respectively. When there is no contextual
information, let w(s)(a|x) be w(s)(a) fore each s ∈ {1, 2}.
We first fix r ∈ (0, 1) independent from T and w(1)(a|x)
such that w(1)(a|x) > C and

∑
a∈[K] w

(1)(a|x) = 1,
where C is independent from T 2. In Stage 1, after drawing
each treatment arm 1, 2, . . . ,K at each round 1, 2, . . . ,K,
we draw treatment arm At = a with probability w(1)(a)
until ⌈rT ⌉.

After Stage 1, we draw treatment arms with probability
w(2), chosen to minimize empirical version of the lower
bounds as follows:

w(2) = argmin
w∈H

√
(σ̂1(Xt))

2

rw(1)(1|Xt)+(1−r)w(1|Xt)
+ (σ̂2(Xt))

2

rw(1)(2|Xt)+(1−r)w(2|Xt)

if K = 2

maxd∈[K]

√
1

⌈rT⌉
∑⌈rT⌉

t=1

{
(σ̂d(Xt))

2

rw(1)(d|Xt)+(1−r)w(d|Xt)

}
if K ≥ 3

,

(1)

where H is a class of models ofw(2) and can be constrained
if there are constraints on the target allocation ratio. Sup-
pose that r is sufficiently small. If K = 2 or K ≥ 3 and
there are not contextual information, we have the following
analytical solutions for each a ∈ [K]:

w(2)(a|x) =
{

σ̂a(x)

σ̂1(x) + σ̂2(x)
− rw(1)(a|x)

}
/(1− r)

if K = 2, and

w(2)(a) =

{
(σ̂a)

2∑
b∈[K] (σ̂

b)
2 − rw(1)(a)

}
/(1− r)

if K ≥ 3 and there is no contextual information. Specif-
ically, at each t ∈ [T ], we first draw γt from a uniform
distribution with support [0, 1]. Then, we draw At = 1
if γt ≤ w(2)(1|Xt) and At = a for a ≥ 2 if γt ∈(∑a−1

b=1 w
(2)(b|Xt),

∑a
b=1 w

(2)(b|Xt)
]
.

After Stage 2 (after round T ), for each a ∈ [K], we esti-
mate µa for each a ∈ [K] and recommend the maximum.
To estimate µa, we use the HIR (Hirano-Imbens-Ridder,
Hirano et al., 2003; Hahn et al., 2011) estimator defined as

µ̂HIR,a
T =

1

T

T∑
s=1

1[As = a]Y a
s

π̂(a|Xs)
, (2)

2Although r is assumed to be independent from T , we use r
such that ⌈rT ⌉ > K + 1 in the following sections.

Algorithm 1 TS-HIR strategy.

Parameter: Positive constants γ ∈ (0, 1).
Initialization: for t = 1 do Draw At = t. For each
a ∈ [K], set ŵt(a|Xt) = 1/K. end for
Stage 1:
for t = K + 1 to ⌈rT ⌉ do

Draw a treatment arm a with probability w(1), irre-
spective of the contextual information Xt.

end for
Construct w(2) by using the estimators of the variances
as (1).
Stage 2:
for t = ⌈rT ⌉+ 1 to T do

Observe Xt.
Draw γt from a uniform distribution with a support
[0, 1].
At = 1 if γt ≤ w(2)(1|Xt) and At = a for a ≥ 2 if
γt ∈

(∑a−1
b=1 w

(2)(b|Xt),
∑a

b=1 w
(2)(b|Xt)

]
.

end for
Construct µ̂HIR,a

T for each a ∈ [K] as (2).
Recommend âHIR

T = argmaxa∈[K] µ̂
HIR,a
T .

where π̂(a|x) =
∑T

s=1 1[As = a,Xs = x]∑T
s=1 1[Xs = x]

.

Then, we recommend âHIR
T ∈ [K] as

âHIR
T = argmax

a∈[K]

µ̂HIR,a
T .

Note that when there is no contextual information, the
HIR estimator is equivalent to the following Sample Aver-
age (SA) estimator: µ̂SA,a

T = 1∑T
s=1 1[As=a]

∑T
s=1 1[As =

a]Y a
s .

5. Asymptotic Minimax Optimality of the
TS-HIR Strategy

In this section, we derive upper bounds for the worst-
case expected simple regret under local location-shift mod-
els with our proposed TS-HIR strategy. Let us define
∆a,b(P ) = µa(P ) − µb(P ), ∆a,b(P )(x) = µa(P )(x) −
µb(P )(x), and ∆̂HIR,a,b

T = µ̂HIR,a
T − µ̂HIR,b

T for all a, b ∈
]K] and x ∈ X . The asymptotic normality of the HIR es-
timator, which is derived by Hahn et al. (2011) using argu-
ments of empirical process, plays an important role in our
proof.

Proposition 5.1 (Asymptotic normality of the HIR estima-
tor. From Theorem 1 of Hahn et al. (2011)). Assume that
w∗ smoothly depends on σa(x). Then,

√
T
(
∆̂HIR,a,b

T −∆a,b(P )
)

d−→ N
(
0, V a,b(P )

)
,
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where

V a,b(P ) = EX

[
(σa(P )(X))

2

w∗(a|X)
+

(
σb(P )(X)

)2
w∗(b|X)

+
(
∆a,b(P )(X)−∆a,b(P )

)2 ]
.

Then, to prove the upper bound for the expected simple re-
gret, we first derive the that for the probability of misiden-
tification by the Chernoff bound an Proposition 5.1. Af-
ter that, we derive the worst-case upper bound as well as
Bubeck et al. (2011).

5.1. Upper Bounds for the Probability of
Misidentification

First, we show the upper bound for the probability of
misidentification, which is needed for deriving the up-
per bound for the expected simple regret. Let V a(P ) =
V a∗(P ),a(P ) for each a ∈ [K].

Theorem 5.2 (Upper bound for the probability of misiden-
tification). For each P ∈ P∗, a ∈ [K]\{a∗(P )}, and any
ε > 0, there exists T0 > 0 such that for all T > T0,

PP

(
µ̂
HIR,a∗(P )
T ≤ µ̂HIR,a

T

)
≤ exp

(
−T (∆

a(P ))2

2V a(P )
+

{√
T∆a(P )√
V a(P )

+
T (∆a(P ))2

2V a(P )

}
ε

)
.

The asymptotic optimality for the probability of misideti-
fication is also intriguing problem. There are several ar-
guments for the lower bounds (Kaufmann, 2020). In Sec-
tion 6.1, we show that the upper bound in Theorem 5.2 is
asymptotically optimal when K = 2 and ∆1,2(P ) → 0.
Also see Section A. The proof is shown in Appendix G,
which utilizes the asymptotic normality of ∆̂HIR,a,b

T .

5.2. Upper Bounds for the Expected Simple Regret

Theorem 5.2 yields the following theorem on the upper
bound for the expected simple regret.

Theorem 5.3 (Upper bound for the expected simple regret).
For the TS-HIR strategy πHIR and any ε > 0, there exists
T0 > 0 such that for all T > T0,

EP

[
rT
(
πHIR

)
(P )
]
≤
∑

a∈[K]

∆a(P )

exp

(
− T (∆a(P ))2

2V a(P )
+

{√
T∆a(P )√
V a(P )

+
T (∆a(P ))2

2V a(P )

}
ε

)
.

5.3. Asymptotic Minimax Optimality

We first present an asymptotic worst-case upper bound of
our proposed TS-HIR strategy. Suppose that there is no
contextual information or X is discrete. We put the follow-
ing assumption on the convergence rate of estimators of
the nuisance parameters. We show the following theorem
on the worst-case upper bound and the asymptotic minimax
optimality. The proof is shown in Appendix H.

Theorem 5.4 (Asymptotic minimax optimality of the
TS-HIR Strategy). For the TS-HIR strategy πHIR, when
K ≥ 3, as T → ∞,

sup
P∈P∗

√
TEP

[
rT
(
πHIR

)
(P )
]

≤ max
a,b∈[K]:a̸=b

√√√√logKEX

[
(σa(X))

2

w∗(a|X)
+

(σb(X))
2

w∗(b|X)

]
+ o(1)

Because we can obtain an analytical solution of w∗ when
K = 2 with and without contextual information and K ≥
3 without contextual information, we have the following
upper bound in those case:

sup
P∈P∗

√
TEP

[
rT
(
πHIR

)
(P )
]

≤ 1

2

√
EX

[
σ1(X) + σ2(X)

)2]
+ o(1)

when K = 2, and

sup
P∈P∗

√
TEP

[
rT
(
πHIR

)
(P )
]

≤ 2 logK

√∑
a∈[K]

EX
[
(σa(X))

2
]+ o(1)

whenK ≥ 3, and there is no contextual information. Thus,
when T → ∞, the upepr and lower bound match.

6. Discussion and Related Work
6.1. On the Asymptotic Optimality for the Probability

of Misidentification

Although we do not discuss the lower bounds for the prob-
ability of misidentification, our upper bound for the proba-
bility of misidentification in Theorem 5.2 aligns with the
lower bound established by Kaufmann et al. (2016) for
two-armed Gaussian bandits. Let PG ⊂ P∗ denote two-
armed Gaussian bandits defined in Kaufmann et al. (2016)
with fixed variance (σ1)2.(σ2)2 > 0. Their work demon-
strates that lim supT→∞ − 1

T logPP (â
HIR
T ̸= a∗(P )) ≤

(∆1,2(P ))2/2
(
σ1 + σ2

)2
when P ∈ PG. Our upper

bound coincides with the lower bound when ∆1,2(P ) → 0.
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Figure 1: Experimental results. The y-axis and x-axis denote the expected simple regret EP [rT (π)(P )] under each strategy
and T , respectively.

Theorem 6.1 (Asymptotic optimally for the probability of
misidentification). For each P ∈ PG,

lim inf
T→∞

− 1

T
logPP

(
âHIR
T ̸= a∗(P )

)
≥
(
∆1,2(P )

)2
2(σ1 + σ2)2

− o
((

∆1,2(P )
)2)

From Theorem 5.2, − 1
T logPP

(
âHIR
T ̸= a∗(P )

)
≥

(∆1,2(P ))2

2V 1,2(P ) −
{

∆1,2(P )√
TV 1,2(P )

+ (∆1,2(P ))2

2V 1,2(P )

}
ε.

When for two-armed Gaussian bandits, the upper bound
matches the lower bound in Kaufmann et al. (2016). We do
not discuss the details of the lower bounds for probability
of misidentification for more general cases because there
are technical difficulties and many open problems. Also
see Kaufmann (2020), Ariu et al. (2021), Qin (2022), and
Degenne (2023) for the details.

6.2. The AS-AIPW Strategy

When the contextual information is continuous, we can-
not apply the TS-HIR strategy. In this case, we use the
AS-AIPW strategy, which consists of the Adaptive Sam-
pling (AS) and Augmented Inverse Probability Weighting
(AIPW) rules. Under the AS rule, at each t, we estimate
w∗ and draw treatment arm a with probability ŵt(a|Xt),
where ŵt is an estimates of w∗. Then, at each T , we es-
timate µa(P ) by using the AIPW estimator defined in Ap-
pendix I and recommend a treatment arm with the highest
estimate value as the best arm. The AIPW estimator de-
biases the sample selection bias resulting from arm draws
based on contextual information. The details is shown in
Appendix I.

7. Experiments
We compare our TS-HIR and AS-AIPW strategies with the
Uniform-EBA (Uniform, Bubeck et al., 2011), and Succes-
sive Rejection (SR, Audibert et al., 2010) (Gabillon et al.,
2012).

In this section, we investigate two setups with K =
2, 5 without contextual information. The best treatment
arm is arm 1 and µ1(P ) = 1. The expected out-
comes of suboptimal treatment arms are equivalent and
denoted by µ̃ = µ2(P ) = · · · = µK(P ). We use
µ̃ = 0.90. When K = 2, we fix the variances as
((σ1)2, (σ2)2) = (5, 1); when K = 5, we fix the variances
as ((σ1)2, (σ2)2, (σ3)2, (σ4)2, (σ5)2) = (5, 1, 2, 3, 4). We
continue the experiments until T = 5, 000 when µ̃ =
0.80 and T = 15, 000 when µ̃ = 0.90. We conduct
100 independent trials for each setting. At each t ∈
{1000, 2000, 3000, · · · , 14000, 15000}, we plot the empir-
ical simple regret in Figure 1. Additional results with other
settings, including contextual information, are presented in
Appendix M.

From Figure 1 and Appendix M, we can observe that our
proposed strategies perform well whenK = 2. When there
exists a contextual information, our methods tends to show
better performances than the others. Although our strate-
gies show preferable performances in many settings, other
strategies also perform well. We conjecture that our strate-
gies exhibit superiority against other methods when K is
small (mismatching term in the upper bound), the gap be-
tween the best and suboptimal arms is small, and the vari-
ances significantly vary across arms. As the superiority de-
pends on the situation, we recommend a practitioner to use
several strategies in a hybrid way.

8. Conclusion
We conducted an asymptotic worst-case analysis of the
simple regret in fixed-budget BAI with contextual infor-
mation. Initially, we obtained lower bounds for local
location-shift bandit models, where the variances of poten-
tial outcomes characterize the asymptotic lower bounds as
a second-order approximation of the KL divergence. Based
on these lower bounds, we derived target allocation ratios,
which were used to define a sampling rule in the TS-HIR
strategy. Finally, we demonstrated that the TS-HIR strat-
egy achieves minimax optimality for the expected simple
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regret.
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Chen, C.-H., Lin, J., Yücesan, E., and Chick, S. E. Sim-
ulation budget allocation for further enhancing theeffi-
ciency of ordinal optimization. Discrete Event Dynamic
Systems, 10(3):251–270, 2000. 12

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., Newey, W., and Robins, J. Double/debiased
machine learning for treatment and structural parame-
ters. The Econometrics Journal, 2018. 13

Degenne, R. On the existence of a complexity in fixed bud-
get bandit identification, 2023. 8

Dehejia, R. H. Program evaluation as a decision problem.
Journal of Econometrics, 125(1):141–173, 2005. 13

Deshmukh, A. A., Sharma, S., Cutler, J. W., Moldwin, M.,
and Scott, C. Simple regret minimization for contextual
bandits, 2018. 12

Even-Dar, E., Mannor, S., Mansour, Y., and Mahadevan,
S. Action elimination and stopping conditions for the
multi-armed bandit and reinforcement learning prob-
lems. Journal of machine learning research, 2006. 12

Gabillon, V., Ghavamzadeh, M., and Lazaric, A. Best arm
identification: A unified approach to fixed budget and
fixed confidence. In NeurIPS, 2012. 8, 43

Garivier, A. and Kaufmann, E. Optimal best arm identifi-
cation with fixed confidence. In Conference on Learning
Theory, 2016. 12

Glynn, P. and Juneja, S. A large deviations perspective on
ordinal optimization. In Proceedings of the 2004 Winter
Simulation Conference, volume 1. IEEE, 2004. 12, 28

Guan, M. and Jiang, H. Nonparametric stochastic contex-
tual bandits. AAAI Conference on Artificial Intelligence,
2018. 12

Gupta, S., Lipton, Z. C., and Childers, D. Efficient online
estimation of causal effects by deciding what to observe.
In Advances in Neural Information Processing Systems,
2021. 13

Hadad, V., Hirshberg, D. A., Zhan, R., Wager, S., and
Athey, S. Confidence intervals for policy evaluation
in adaptive experiments. Proceedings of the National
Academy of Sciences, 118(15), 2021. 28, 37, 38, 39

Hahn, J. On the role of the propensity score in efficient
semiparametric estimation of average treatment effects.
Econometrica, 66(2):315–331, 1998. 2, 21

Hahn, J., Hirano, K., and Karlan, D. Adaptive experimental
design using the propensity score. Journal of Business
and Economic Statistics, 2011. 2, 5, 6, 13, 26, 28, 30

Hall, P., Heyde, C., Birnbaum, Z., and Lukacs, E. Martin-
gale Limit Theory and Its Application. Communication
and Behavior. Elsevier Science, 1980. 13, 14

Hamilton, J. Time series analysis. Princeton Univ. Press,
1994. 13, 14

Hayashi, F. Econometrics. Princeton Univ. Press, Prince-
ton, NJ [u.a.], 2000. ISBN 0691010188. 14, 26



Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds

Hirano, K. and Porter, J. R. Asymptotics for statistical
treatment rules. Econometrica, 77(5):1683–1701, 2009.
12, 13

Hirano, K., Imbens, G., and Ridder, G. Efficient estimation
of average treatment effects using the estimated propen-
sity score. Econometrica, 2003. 1, 6, 30

Ito, S., Tsuchiya, T., and Honda, J. Adversarially robust
multi-armed bandit algorithm with variance-dependent
regret bounds. In Conference on Learning Theory, vol-
ume 178 of Proceedings of Machine Learning Research,
pp. 1421–1422, 2022. 13

Karlan, D. and Wood, D. H. The effect of effective-
ness: Donor response to aid effectiveness in a direct mail
fundraising experiment. Working Paper 20047, National
Bureau of Economic Research, April 2014. 13

Kasy, M. and Sautmann, A. Adaptive treatment assignment
in experiments for policy choice. Econometrica, 89(1):
113–132, 2021. 12

Kato, M. and Ariu, K. The role of contextual information
in best arm identification, 2021. 2

Kato, M. and Imaizumi, M. Fixed-budget best arm identi-
fication in two-armed gaussian bandits
with unknown variances under a small gap, 2023. Un-
publised. 12, 28

Kato, M., Ishihara, T., Honda, J., and Narita, Y. Adaptive
experimental design for efficient treatment effect estima-
tion. 2020. 13, 26, 28, 31, 37, 38

Kato, M., McAlinn, K., and Yasui, S. The adaptive dou-
bly robust estimator and a paradox concerning logging
policy. In Advances in Neural Information Processing
Systems, 2021. 28

Kaufmann, E. Contributions to the Optimal Solution of
Several Bandits Problems. Habilitation á Diriger des
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A. Related Work
In this section, we review the literature on the related field.

For the expected simple regret, Bubeck et al. (2011) shows that the Uniform-Empirical Best Arm (EBA) strategy is minimax
optimal for bandit models with bounded supports. Kock et al. (2020) extends the results to cases where parameters of
interest are functionals of the distribution, and finds that optimal sampling rules are not uniform sampling. Adusumilli
(2022; 2021) considers a different minimax evaluation of bandit strategies for both regret minimization and BAI problems,
which is based on a formulation using a diffusion process, as proposed by Wager & Xu (2021).

A.1. Literature of BAI

The MAB problem embodies an abstraction of the sequential decision-making process (Thompson, 1933; Robbins, 1952;
Lai & Robbins, 1985). BAI constitutes a paradigm of this problem (Even-Dar et al., 2006; Audibert et al., 2010; Bubeck
et al., 2011), with its variants dating back to the 1950s in the context of sequential testing, ranking, and selection problems
(Bechhofer et al., 1968). Additionally, ordinal optimization has been extensively studied in the field of operations research,
with a modern formulation established in the early 2000s (Chen et al., 2000; Glynn & Juneja, 2004). Most of these
studies have focused on determining optimal strategies under the assumption of known target allocation ratios. Within
the machine learning community, the problem has been reframed as the BAI problem, with a particular emphasis on
performance evaluation under unknown target allocation ratios. (Audibert et al., 2010; Bubeck et al., 2011).

For fixed-budget BAI has been extensively studied, with notable contributions fromBubeck et al. (2011) who demonstrates
minimax optimal strategies for the expected simple regret in a non-asymptotic setting, and Audibert et al. (2010) who
proposes the UCB-E and Successive Rejects (SR) strategies. Kock et al. (2020) generalizes the results of Bubeck et al.
(2011) to cases where parameters of interest are functionals of the distribution and find that target allocation ratios are not
uniform, in contrast to the results of Bubeck et al. (2011).

Kaufmann et al. (2016) also contributes to this field by deriving distribution-dependent lower bounds for BAI with fixed
confidence and a fixed budget, using the change-of-measure arguments and building upon the work of (Lai & Robbins,
1985). Garivier & Kaufmann (2016) proposes an optimal strategy for BAI with fixed confidence, however, in the fixed-
budget setting, there is currently a lack of strategies whose upper bound matches the lower bound established by Kaufmann
et al. (2016). Carpentier & Locatelli (2016) examines the lower bound and show the optimality of the method proposed by
Audibert et al. (2010) in terms of leading factors in the exponent.

The lower bound of Carpentier & Locatelli (2016) is based on a minimax evaluation of the probability of misidentification
under a large gap. Yang & Tan (2022) proposes minimax optimal linear BAI with a fixed budget by extending the result of
Carpentier & Locatelli (2016).

Kato & Imaizumi (2023) summarizes our result and discusses the asymptotic optimality of the AS-AIPW strategy for the
probabilty of misidentification in more details.

In addition to minimax evaluation, Komiyama et al. (2021) develops an optimal strategy whose upper bound for a simple
Bayesian regret lower bound matches their derived lower bound. Atsidakou et al. (2023) proposes a Bayes optimal strat-
egy for minimizing the probability of misidentification, which shows a surprising result that 1/

√
T -factor dominates the

evaluation.

In Russo (2016), Qin et al. (2017), and Shang et al. (2020) respectively, the authors propose Bayesian BAI strategies that
are optimal in terms of posterior convergence rate. However, it has been shown by Kasy & Sautmann (2021) and Ariu et al.
(2021) that such optimality does not extend to asymptotic optimality for the probability of misidentification in fixed-budget
BAI.

Adusumilli (2022; 2021) present an alternative minimax evaluation of bandit strategies for both regret minimization and
BAI, which is based on a formulation utilizing a diffusion process proposed by Wager & Xu (2021). Furthermore, Arm-
strong (2022) extends the results of Hirano & Porter (2009) to a setting of adaptive experiments. The results of Adusumilli
(2022; 2021) and Armstrong (2022) employ arguments on local asymptotic normality (Le Cam, 1960; 1972; 1986; van der
Vaart, 1991; 1998), where the class of alternative hypotheses comprises of “local models,” in which parameters of interest
converge to true parameters at a rate of 1/

√
T .

Tekin & van der Schaar (2015), Guan & Jiang (2018), and Deshmukh et al. (2018) consider BAI with contextual informa-
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tion, but their analysis and setting are different from those employed in this study.

A.2. Efficient Average Treatment Effect Estimation

Efficient estimation of ATE via adaptive experiments constitutes another area of related literature. van der Laan (2008)
and Hahn et al. (2011) propose experimental design methods for more efficient estimation of ATE by utilizing covariate
information in treatment assignment. Despite the marginalization of covariates, their methods are able to reduce the
asymptotic variance of estimators. Karlan & Wood (2014) applies the method of Hahn et al. (2011) to examine the
response of donors to new information regarding the effectiveness of a charity. Subsequently, Tabord-Meehan (2022) and
Kato et al. (2020) have sought to improve upon these studies, and more recently, Gupta et al. (2021) have proposed the use
of instrumental variables in this context.

A.3. Other Related Work

Our arguments are inspired by limit-of-experiments framework (Le Cam, 1986; van der Vaart, 1998; Hirano & Porter,
2009). Within this framework, we can approximate the statistical experiment by a Gaussian distribution using the CLT.
Hirano & Porter (2009) relates the asymptotic optimality of statistical decision rules (Manski, 2000; 2002; 2004; Dehejia,
2005) to the framework.

The AIPW estimator has been extensively used in the fields of causal inference and semiparametric inference (Tsiatis,
2007; Bang & Robins, 2005; Chernozhukov et al., 2018). More recently, the estimator has also been utilized in other MAB
problems, as seen in Kim et al. (2021) and Ito et al. (2022).

B. Preliminaries
Let Wi be a random variable with probability measure P . Let Fn = σ(W1,W2, . . . ,Wn).

Definition B.1. [Uniform integrability, Hamilton (1994), p. 191] Let Wt ∈ R be a random variable with a probability
measure P . A sequence {Wt} is said to be uniformly integrable if for every ϵ > 0 there exists a number c > 0 such that

EP [|Wt| · 1[|Wt| ≥ c]] < ϵ

for all t.

Proposition B.2 (Sufficient conditions for uniform integrability; Proposition 7.7, p. 191. Hamilton (1994)). Let Wt, Zt ∈
R be random variables. Let P be a probability measure of Zt. (a) Suppose there exist r > 1 and M < ∞ such that
EP [|Wt|r] < M for all t. Then {Wt} is uniformly integrable. (b) Suppose there exist r > 1 and M < ∞ such that
EP [|Zt|r] < M for all t. If Wt =

∑∞
j=−∞ hjZt−j with

∑∞
j=−∞ |hj | <∞, then {Wt} is uniformly integrable.

Proposition B.3 (Lr convergence theorem, p 165, Loeve (1977)). Let Wt be a random variable with probability measure
P and w be a constant. Let 0 < r < ∞, suppose that EP

[
|Wt|r

]
< ∞ for all t and that Wt

p−→ z as n → ∞. The
following are equivalent:

(i) Wt → w in Lr as t→ ∞;

(ii) EP

[
|Wt|r

]
→ EP

[
|w|r

]
<∞ as t→ ∞;

(iii)
{
|Wt|r, t ≥ 1

}
is uniformly integrable.

Definition B.4. For Ft equal to the σ-field generated by ξ1, . . . , ξt, {Wt,Ft, t ≥ 1}∞t=1 is a martingale if for all t ≥ 1, we
have

E[Wt+1|Ft] =Wt.

If E[Wt+1|Ft] = 0, {Wt,Ft, t ≥ 1}∞t=1 is a martingale difference sequence.

Proposition B.5 (Weak Law of Large Numbers for Martingale, Hall et al. (1980)). Let {St =
∑t

s=1Ws,Ft, t ≥ 1} be a
martingale and {bt} a sequence of positive constants with bt → ∞ as t → ∞. Then, writing Wts = Ws1[|Ws| ≤ bt],
1 ≤ s ≤ t, we have that b−1

t St
p−→ 0 as t→ ∞ if
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(i)
∑t

s=1 P (|Ws| > bt) → 0;

(ii) b−1
t

∑t
s=1 E[Wts|Fs−1]

p−→ 0, and;

(iii) b−2
t

∑t
s=1

{
E[W 2

ts]− E
[
E
[
Wts|Fs−1

]]2}→ 0.

Proposition B.6 (Central Limit Theorem for a Martingale Difference Sequence; from Proposition 7.9, p. 194, Hamilton
(1994); also see White (1984)). Let {(St =

∑t
s=1Wt,Ft)}∞t=1 be a martingale with Ft equal to the σ-field generated by

W1, . . . ,Wt. Suppose that

(a) E[W 2
t ] = σ2

t , a positive value with (1/T )
∑T

t=1 σ
2
t → σ2, a positive value;

(b) E[|Wt|r] <∞ for some r > 2;

(c) (1/T )
∑T

t=1W
2
t

p−→ σ2.

Then ST
d−→ N (0, σ2).

Proposition B.7 (Rate of convergence in the CLT; from Theorem 3.8, p 88, Hall et al. (1980)). Let {(St =∑t
s=1Wt,Ft)}∞t=1 be a martingale with Ft equal to the σ-field generated by W1, . . . ,Wt. Let

V 2
t =

t∑
s=1

E[W 2
s |Ft−1] 1 ≤ t ≤ T.

Suppose that for some α > 0 and constants M , C and D,

max
t≤T

EP [exp(|
√
tWt|α)] < M,

and

PP

(
|V 2

t − 1| > D/
√
t(log t)2+2/α

)
≤ Ct−1/4(log t)1+1/α.

Then, for T ≥ 2,

sup
−∞<x<∞

∣∣PP (ST ≤ x)− Φ(x)
∣∣ ≤ AT−1/4(log T )1+1/α,

where the constant A depends only on α, M , C, and D.

Proposition B.8 (Convergence in distribution and in moments. Lemma 2.1 of Hayashi (2000)). Let αs,n be the s-th
moment of zn, and limn→∞ αs,n = αs, where αs is finite. Suppose that for some δ > 0, E

[
|zn|s+δ

]
< M < ∞ for all n

and a constant M > 0 independent of n. If zn
d−→ z, then αs is the s-th moment of z.

C. Non-asymptotic Lower Bounds for Bandit Models with Bounded Supports
First, we introduce an existing lower bound for bounded bandit models. Let us denote the class of bandit models with
bounded outcomes by P [0,1], where each potential outcome Y a

t is in [0, 1]. Then, Bubeck et al. (2011) proposes the
following lower bound, which holds for P [0,1].

Proposition C.1. For all T ≥ K ≥ 2, any strategy π ∈ Π satisfies supP∈P [0,1] EP [rT (π)(P )] ≥ 1
20

√
K
T .

This lower bound only requires that the support of the bandit models in P [0,1] is bounded.

For this non-asymptotic lower bound, Bubeck et al. (2011) shows that a strategy with the uniform sampling rule and
empirical best arm (EBA) recommendation rule is optimal, where we draw At = a with probability 1/K for all a ∈ [K]
and t ∈ [T ] and recommend a treatment arm with the highest sample average of the observed outcomes. We call this
strategy the uniform-EBA strategy.
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Proposition C.2 (Non-asymptotic optimality of the uniform-EBA strategy). Under the uniform-EBA strategy

πUniform-EBM, for T = K⌊T/K⌋, supP∈P[0,1] EP

[
rT
(
πUniform-EBM

)]
≤ 2
√

K logK
T+K .

Thus, the upper bound matches the distribution-free lower bound if we ignore the logK and constant terms.

Although the uniform-EBA strategy is nearly optimal, a question remains whether more knowledge about the class of
bandit models could be used to derive a tight lower bound and propose another optimal strategy consistent with the novel
lower bound. To answer this question, we consider asymptotic evaluation and derive a tight lower bound for bandit models
with a fixed-variance.

D. Proof of the Asymptotic Lower Bound for Multi-Armed Bandits (Theorem 3.4)
In this section, we provide the proof of Theorems 3.4. Our lower bound derivation is based on arguments of a change-
of-measure and semiparametric efficiency. The change-of-measure arguments have been extensively used in the bandit
literature (Lai & Robbins, 1985). The semiparametric efficiency is employed for deriving the lower bound of the KL
divergence with a two-order Taylor expansion. Our proof is inspired by van der Vaart (1998), and Murphy & van der Vaart
(1997).

We prove the asymptotic lower bound through the following steps. We first introduce lower bounds for the probability
of misidentification, shown by Kaufmann et al. (2016). In Appendix D.1, we define observed-data bandit models, which
are distributions of observations that differ from full-data bandit models P ∈ P∗. In Appendix D.2, we define submodels
of the observed-data bandit models, which parametrize nonparametric bandit models by using parameters of gaps of the
expected outcomes of the best and suboptimal treatment arms. These parameters serve as technical devices for the proof.
In Appendix D.3, we then decompose the expected simple regret into the gap parameters and the probability of misiden-
tification, and apply the lower bound of Kaufmann et al. (2016) for the probability of misidentification. The lower bound
is characterized by the KL divergence of the observed-data bandit models, which we expand around the gap parameters in
Appendix D.4. We then derive the semiparametric efficient influence function, which bounds the second term of the series
expansion of the KL divergence in Appendix D.5, and compute the worst-case bandit model in Appendix D.6. Finally, we
derive the target allocation from the lower bound in Appendix D.7.

Let faP (y
a|x) and ζP (x) be a density function of Y a

t andXt under a model P . Kaufmann et al. (2016) derives the following
result based on change-of-measure argument, which is the principal tool in our lower bound. Let us define a density of
(Y 1, Y 2, . . . , Y K , X) under a bandit model P ∈ P∗ as

p(y1, y2, . . . , yK , x) =
∏

a∈[K]

faP (y
a|x)ζP (x)

Proposition D.1 (Lemma 1 and Remark 2 in Kaufmann et al. (2016)). For any two bandit model P,Q ∈ P∗ with K
treatment arms such that for all a ∈ [K], the distributions P a and Qa are mutually absolutely continuous. Then,

sup
E∈FT

∣∣PP (E)− PQ(E)
∣∣ ≤√EP [LT (P,Q)]

2

Recall that d(p, q) indicates the KL divergence between two Bernoulli distributions with parameters p, q ∈ (0, 1).

This “transportation” lemma provides the distribution-dependent characterization of events under a given bandit model P
and corresponding perturbed bandit model P ′.

Between two bandit models P,Q ∈ P∗, following the proof of Lemma 1 in Kaufmann et al. (2016), we define the log-
likelihood ratio as

LT (P,Q) =

T∑
t=1

∑
a∈[K]

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

faQ(Y
a
t |Xt)ζQ(Xt)

)
.

We consider an approximation of EQ[LT ] under an appropriate alternative hypothesis Q ∈ P∗ when the gaps between the
expected outcomes of the best treatment arm and suboptimal treatment arms are small.
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D.1. Observed-Data Bandit Models

For each x ∈ X , let us define an average allocation ratio under a bandit model P,Q ∈ P∗ as

1

T

T∑
t=1

EP [1[At = a]|Xt = x] = κT,P (a|x)

This quantity represents an average sample allocation to each treatment arm a under a strategy.
Lemma D.2. For P,Q ∈ P∗,

EP [LT (P,Q)] = T
∑

a∈[K]

EP

[
EP

[
log

faP (Y
a|X)ζP (X)

faQ(Y
a|X)ζQ(X)

|X

]
κT,P (a|X)

]
.

Here, recall that At is only based on the past observations Ft−1 and observed context Xt and independent from
(Y 1

t , . . . , Y
K
t ). According to this proposition, we can consider hypothetical observed-data generated as

(Ỹt, Ãt, Xt)
i.i.d∼

∏
a∈[K]

{faP (ya|x)κT,P (a|X)}1[d=a]
ζP (x).

We present the proof in Appendix E. Then, the expectation of LT (P,Q) =
∑T

t=1

∑
a∈[K] 1[At =

a] log
(

fa
P (Y a

t |Xt)ζP (Xt)
fa
Q(Y a

t |Xt)ζQ(Xt)

)
is the same as that under the original observation P . Also see (3). Note that this observed-

data is induced by the bandit model P ∈ P∗. For simplicity, we also denote (Ỹt, Ãt, Xt) by (Yt, At, Xt) without loss of
generality.

For a bandit model P ∈ P∗, we consider observed-data distribution RP with the density function given as

rκP (y, d, x) =
∏

a∈[K]

{faP (y|x)κT,P (a|x)}1[d=a]
ζP (x),

Let RP∗ =
{
RP : P ∈ P∗} be a set of all observed-data bandit models RP . Then, we have

EP [LT (P,Q)] = ERP∗ [LT (P,Q)] (3)

D.2. Parametric Submodels for the Observed-data Distribution and Tangent Set

The purpose of this section is to introduce parametric submodels for observed-data distribution, which is indexed by a real-
valued parameter and a set of distributions contained in the larger set R, and define the derivative of a parametric submodel
as a preparation for the series expansion of the log-likelihood; that is, we consider approximation of the log-likelihood
LT =

∑T
t=1

∑
a∈[K] 1[At = a] log

(
fa
P (Y a

t |Xt)ζP (Xt)
fa
Q(Y a

t |Xt)ζQ(Xt)

)
using µa(P ).

This section consists of the following three parts. In the first part, we define parametric submodels as (4). Then, in the
following part, we confirm the differentiability (6) and define score functions. Finally, we define a set of score functions,
called a tangent set in the final paragraph.

By using the parametric submodels and tangent set, in Section D.4, we demonstrate the series expansion of the log-
likelihood (Lemma D.5). In this section and Section D.4, we abstractly provide definitions and conditions for the parametric
submodels and do not specify them. However, in Section D.5, we show a concrete form of the parametric submodel by
finding score functions satisfying the conditions imposed in this section.

Definition of parametric submodels for the observed-data distribution First, we define parametric submodels for the
observed-data distribution RP with the density function rP (y, d, x) by introducing a parameter ∆ = (∆a)a∈[K] ∆

a ∈ Θ

with some compact space Θ. We denote a set of parametric submodels by
{
RP,∆ : ∆ ∈ ΘK

}
⊂ RP∗ , which is defined

as follows: for some g : R × [K] × X → RK satisfying EP [g
a(Yt, At, Xt)] = 0 and EP [(g

a(Yt, At, Xt))
2] < ∞, a

parametric submodel RP,∆ has a density such that

rκ∆(y, d, x) := 2c(y, d, x;∆)
(
1 + exp

(
−2∆⊤g(y, d, x)

))−1
raP (y, d, x), (4)
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ERP,∆
[Y d

t ] =

∫ ∫
yrκ∆(y, d, x)dydx = µa(P ) + ∆a +O((∆a)2). (5)

where c(y, d, x;∆) is some function such that c((y, d, x;0) = 1 and ∂
∂∆a

∣∣∣
∆=0

log c((y, d, x;∆) = 0 for all (y, d, x) ∈
R × [K] × X .3 Note that the parametric submodels are usually not unique. For a ∈ [K], the parametric submodel is
equivalent to rP (y, a, x) if ∆a = 0. Let fa∆a(y|x) and ζ∆(x) be the conditional density of Ỹ a

t given Xt and the density of
Xt, satisfying (4), as

rκ∆(y, d, x) =
∏

a∈[K]

{fa∆a(y|x)κ(a|x)}1[d=a]
ζ∆(x).

Differentiablity and score functions of the parametric submodels for the observed-data distribution. Next, we con-
firm the differentiablity of rκ∆(y, d, x). From the definition of the parametric submodel (4), because

√
rκ∆(y, d, x) is

continuously differentiable for every y, x given d ∈ [K], and
∫ ( ṙ

κ
∆(y,d,x)

rκ∆(y,d,x)

)2
rκ∆(y, d, x)dm are well defined and contin-

uous in ∆, where m is some reference measure on (y, d, x), from Lemma 7.6 of van der Vaart (1998), we see that the
parametric submodel has the score function g in the L2 sense; that is, the density rκ∆(y, d, x) is differentiable in quadratic
mean: ∫ [

r
κ,1/2
∆ (y, d, x)− r

κ,1/2
P (y, d, x)− 1

2
∆⊤g(y, d, x)r

κ,1/2
P (y, d, x)

]2
dm = o

(
∥∆∥2

)
. (6)

In other words, the parametric submodel rκ,1/2Q is differentiable in quadratic mean at ∆ = 0 with the score function g.

In the following section, we specify a measurable function g satisfying the conditions (4). For each ∆a a ∈ [K], we define
the score as

S(y, d, x) =
∂

∂∆

∣∣∣
∆=0

log rκ∆(y, d, x) =


1[d = 1]S1

f (y|x) + S1
ζ (x)

1[d = 2]S2
f (y|x) + S2

ζ (x)
...

1[d = K]SK
f (y|x) + SK

ζ (x)


where for each a ∈ [K], let Sa(y, d, x) = 1[d = a]Sa

f (y|x) + Sζ(x),

Sa
f (y|x) =

∂

∂∆a

∣∣∣
∆=0

log fa∆a(y|x), Sa
ζ (x) =

∂

∂∆a

∣∣∣
∆=0

log ζ∆(x).

Note that ∂
∂∆a log κT,P (a|x) = 0. Here, we specify g in (4) as the score function of the parametric submodel as

S(y, d, x) = g(y, d, x), where Sa(y, d, x) = ga(y, d, x). This relationship is derived from

∂

∂∆

∣∣∣
∆=0

log
1

1 + exp (−2∆⊤g(y, d, x))
=


2g1(y,d,x)

exp(2∆⊤g(y,d,x))+1
2g2(y,d,x)

exp(2∆⊤g(y,d,x))+1

...
2gK(y,d,x)

exp(2∆⊤g(y,d,x))+1


∣∣∣∣∣
∆=0

=


g1(y, d, x)
g2(y, d, x)

...
gK(y, d, x)

 .

Definition of the tangent set. Recall that parametric submodels and corresponding score functions are not unique. Here,
we consider a set of score functions. For a set of the parametric submodels

{
RP,∆ : ∆ ∈ ΘK

}
, we obtain a corresponding

set of score functions in the Hilbert space L2(RP ), which we call a tangent set of R at RP and denote it by Ṙ. Be-
cause ERP

[g2] is automatically finite, the tangent set can be identified with a subset of the Hilbert space L2(RP ), up to
equivalence classes. For our parametric submodels, the tangent set at RP in L2(RP ) is given as

Ṙ =




1[d = 1]S1
f (y|x) + S1

ζ (x)

1[d = 2]S2
f (y|x) + S2

ζ (x)
...

1[d = K]SK
f (y|x) + SK

ζ (x)


 .

3In (4), rκ∆(y, d, x) satisfies the definition of the probability density as discussed in Example 25.15 of van der Vaart (1998).
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A linear space of the tangent set is called a tangent space. We also define Ṙa =
{(
1[d = a]Sa

f (y|x) + Sa
ζ (x)

)}
.

D.3. Change-of-Measure

We consider a set of bandit models P† ⊂ P∗ such that P ∈ P†, a ∈ [K], and x ∈ X , µa(P )(x) = µa(P ). Before a bandit
process begins, we fix P ♯ ∈ P† such that µ1(P ♯) = · · · = µK(P ♯) = µ(P ♯). We choose one treatment arm d ∈ [K] as the
best treatment arm following a multinomial distribution with parameters (e1, e2, . . . , eK), where ea ∈ [0, 1] for all a ∈ [K]
and

∑
a∈[K] e

a = 1; that is, the expected outcome of the chosen treatment arm d is the highest among the treatment
arms. Let ∆ be a set of parameters such that ∆ = (∆c)c∈[K], where ∆c ∈ (0,∞). Let ∆(d) be a set of parameters
such that ∆(d) = (0, . . . ,∆d, . . . , 0). Then, for each chosen d ∈ [K], let Q∆(d) ∈ P† be another bandit model such that
d = argmaxa∈[K] µ

a(Q∆(d)), µb(Q∆(d)) = µ(P ♯) for b ∈ [K]\{d}, and µd(Q∆(d)) − µ(P ♯) = ∆d + O
(
(∆d)2

)
. For

each d ∈ [K], we consider RP ♯,∆(d) ∈ RP† ⊂ RP∗ such that the following equation holds:

LT (P
♯, Q∆(d)) =

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
faP ♯(Y

a
t |Xt)

faQ
∆(d)

(Y a
t |Xt)

)
+ log

(
ζP ♯(Xt)

ζQ
∆(d)

(Xt)

)}

=

T∑
t=1

{
1[At = d] log

(
fdP ♯(Y

d
t |Xt)

fdQ
∆(d)

(Y d
t |Xt)

)
+ log

(
ζP ♯(Xt)

ζQ
∆(d)

(Xt)

)}

=

T∑
t=1

{
1[At = d] log

(
fdP ♯(Y

d
t |Xt)

fd
∆(d)(Y

d
t |Xt)

)
+ log

(
ζP (Xt)

ζ∆(d)(Xt)

)}
.

Then, let La
T (P

♯, Q∆(d)) be
∑T

t=1

{
1[At = d] log

(
fd

P♯ (Y
d
t |Xt)

fd

∆(d)
(Y d

t |Xt)

)
+ log

(
ζP (Xt)

ζ
∆(d) (Xt)

)}
. Under the class of bandit mod-

els, we show the following lemma.
Lemma D.3. Any null consistent BAI strategy satisfies

sup
P∈P∗

EP [rT (π)(P )] ≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2
+O

(
∆d
) .

Proof of Lemma D.3. First, we decompose the expected simple regret by using the definition of P† as

sup
P∈P∗

EP [rT (π)(P )]

= sup
P∈P∗

∑
b∈[K]

{
max
a∈[K]

µa(P )− µb(P )

}
PP (âT = b)

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed
∑

b∈[K]\{d}

(
µd(Q∆(d))− µb(Q∆(d))

)
PQ

∆(d)
(âT = b)

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed
∑

b∈[K]\{d}

(
µd(Q∆(d))− µ(P ♯)

)
PQ

∆(d)
(âT = b)

= sup
∆∈(0,∞)K

∑
d∈[K]

ed

 ∑
b∈[K]\{d}

∆dPQ
∆(d)

(âT = b) +O
(
(∆d)2

)
= sup

∆∈(0,∞)K

∑
d∈[K]

ed
{
∆dPQ

∆(d)
(âT ̸= d) +O

(
(∆d)2

)}
= sup

∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}
.

From Propositions D.5 and D.1. and the definition of null consistent strategies,

sup
∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}
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= sup
∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PP ♯ (âT = d) + PP ♯ (âT = d)− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed

∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2

+O
(
(∆d)2

) .

The proof is complete.

D.4. Semiparametric Likelihood Ratio

In this section and next section (Appendix D.5), our goal is to prove the following lemma.

Lemma D.4.

EP ♯

[
Ld
T (P

♯, Q∆(d))
]
≤ T (∆a)

2

2EP

[
(σd(X))2

w(d|X)

] +O
(
T (∆a)

3
)
.

We consider series expansion of the log-likelihood ratio LT defined between P,Q ∈ P†. We consider an approximation
of LT around a parametric submodel. Because there can be several score functions for our parametric submodel due to
directions of the derivative, we find a parametric submodel that has a score function with the largest variance, called a
least-favorable parametric submodel (van der Vaart, 1998). Our series expansion is upper-bounded by the variance of the
score function, which corresponds to the lower bound for the probability of misidentification.

Inspired by the arguments in Murphy & van der Vaart (1997), we define the semiparametric likelihood ratio expansion to
characterize the lower bound for the probability of misidentification with the semiparametric efficiency bound. Note again
that the details are different from them owing to the difference of the parameters submodels.

As a preparation, we define a parameter ER
P,∆(a)

[Y a
t ] as a function ψa : R 7→ R such that ψa(RP,∆(a)) = ER

P,∆(a)
[Y a

t ].

The information bound for ψa(RP,∆(a)) of interest is called semiparametric efficiency bound. Let linṘ be the closure of
the tangent set. Then, ψa(RP,∆(a)) is pathwise differentiable relative to the tangent set Ṙa if and only if there exists a
function ψ̃ ∈ linṘ such that

∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) = ER
P,∆(a)

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
. (7)

This function ψ̃ is called the semiparametric influence function. Note that the RHS of (7) is calculated as follows:

ER
P,∆(a)

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
=

∫ ∫
ySa

f (y|x)fa∆a(y|x)ζ∆(a)(x)dydx+

∫
µa(x)Sζ(x)ζ∆(a)(x)dx.

Then, we prove the following lemma:

Lemma D.5. For P ∈ P†,

EP [L
a
T (P,Q)] ≤ 1

2

T (∆a)
2

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] +O
(
T (∆a)

3
)
.

To prove this lemma, we define

ℓa∆(y, d, x) = 1[d = a]
{
log fa∆a(ya|x)

}
+ log ζ∆(x).

Then, by using the parametric submodel defined in the previous section,

La
T (P,Q) =

T∑
t=1

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

faQ(Y
a
t |Xt)ζQ(Xt)

)
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=

T∑
t=1

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

fa∆a(Y a
t |Xt)ζ∆(Xt)

)

=

T∑
t=1

(
− ∂

∂∆a

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt)∆
a − ∂2

∂(∆a)2

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt)
(∆a)2

2
+O

(
(∆a)

3
))

.

Here, note that

∂

∂∆a

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt) = Sa(Yt, At, Xt) = ga(Yt, At, Xt)

∂

∂(∆a)2

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt) = − (Sa(Yt, At, Xt))
2
.

By using the expansion, we evaluate EP [La
T ]. Here, by definition, EP [Sa(Yt, At, Xt)] = 0. Therefore, we consider an

upper bound of 1

EP [(Sa(Yt,At,Xt))
2]

for S ∈ Ṙ.

Then, we prove the following lemma on the upper bound for 1

EP [(Sa(Yt,At,Xt))
2]

:

Lemma D.6. For P ∈ P†,

sup
S∈Ṙ

1

EP

[
(Sa(Yt, At, Xt))

2
] ≤ EP

[(
ψ̃a
P (Yt, At, Xt)

)2]

Proof. From the Cauchy-Schwarz inequality, we have

1 = EP

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
≤

√
EP

[(
ψ̃a
P (Yt, At, Xt)

)2]√
EP

[
(Sa(Yt, At, Xt))

2
]
.

Therefore,

sup
S∈Ṙ

1

EP

[
(Sa(Yt, At, Xt))

2
] ≤ EP

[(
ψ̃a
P (Yt, At, Xt)

)2]
.

According to this lemma, to derive the upper bound for 1

EP [(Sa(Yt,At,Xt))
2]

, let us define the semiparametric efficient score

Sa
eff(Yt, At, Xt) ∈ linṘa as

Sa
eff(Yt, At, Xt) =

ψ̃a
P (Yt, At, Xt)

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] .
Then, by using the semiparametric efficient score Sa

eff(Yt, At, Xt), we approximate the likelihood ratio as follows:

Proof of Lemma D.5.

EP ′ [La
T (P,Q)] = TEP

[
1

2
(Sa(Yt, At, Xt))

2
(∆a)

2
+O((∆a)3)

]
≤ TEP

[
1

2
(Sa

eff(Yt, At, Xt))
2
(∆a)

2
+O((∆a)3)

]
=

1

2

T (∆a)
2

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] +O
(
T (∆a)

3
)
.
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D.5. Observed-Data Semiparametric Efficient Influence Function

Our remaining is task is to find ψ̃a
P ∈ linṘ in (7). Our derivation mainly follows Hahn (1998). We guess that

ψ̃a
P (Yt, At, Xt) has the following form:

ψ̃a
P (y, d, x) =

1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P ). (8)

Then, as shown by Hahn (1998), the condition ∂
∂∆a

∣∣∣
∆(a)=0

ψa(RP,∆(a)) = ERQ

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]

holds
under (8) when the score functions are given as

Sa
f (y|x) =

(y − µa(P )(x))

κT,P (a|x)
/Ṽ a(κT,P ), Sa

ζ (x) =
(
µa(P )(x)− µa(P )

)
/Ṽ a(κT,P ) for a ∈ [K],

where

Ṽ a(κT,P ) :=EP

[(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)2
]
= EP

[
(σa(Xt))

2

κT,P (a|Xt)
+ (µa(P )(Xt)− µa(P ))

2

]
.

Therefore,

Sa(y, d, x) =

(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)
/Ṽ a(κT,P ).

Our specified score function satisfies (5) because we can confirm that

ψa(RP,0) = µa(P ),

and

∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) = ERQ

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]

= ERQ

[(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)2

/Ṽ a(κT,P )

]
= 1.

Then, from the first-order series expansion of ψa(RP,∆(a)) around ∆a = 0, we obtain

ψa(RP,∆(a)) = ψa(RP,0) + ∆a ∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) +O((∆a)2) = µa(P ) + ∆a +O((∆a)2).

Summarizing the above arguments, we obtain the following lemma.

Lemma D.7. For P ∈ P†, the semiparametric efficient influence function is

ψ̃a
P (y, d, x) = Ṽ a(κT,P )

(
1[d = a]Sa

f (y|x) + Sζ(x)
)

=
1[d = a](y − µa(P )(x))

κT,P (a|x)
+ µa(P )(x)− µa(P ).

Thus, under g with our specified score functions, we can confirm that the semiparametric influence function ψ̃a
P (y, d, x) =

Ṽ a(κT,P )
(
1[At = a]Sa

f (y|x) + Sζ(x)
)

belongs to linṘ. Note that ERQ
[Sa

eff(Yt, At, Xt)] = 0 and

ERQ

[(
Sa
eff(Yt, At, Xt)

)2]
=

(
ERQ

[(
ψ̃a
P (Yt, At, Xt)

)2])−1

.

In summary, from Lemmas D.5, D.6, and D.7, we obtain Lemma D.4. Note that because µa(P )(x) = µa for P ∈ P†,
Ṽ a(κT,P ) := EP

[
(σa(Xt))

2

κT,P (a|Xt)

]
.



Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds

D.6. The Worst Case Bandit Model

We show the final step of the proof.

Proof. Then, from Lemmas D.3 and D.7, for all d ∈ [K], and definition of the null consistent strategy, for any ϵ > 0, there
exists T0 > 0 such that for all T > T0,

sup
P∈P∗

EP [rT (π)(P )] ≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2
+O

(
∆d
)

≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− 1

K
−

√√√√ T (∆d)2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T ((∆d)

3
) +O

(
∆d
)− ϵ

≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1

2
−

√√√√ T (∆d)
2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T ((∆d)

3
) +O

(
∆d
)− ϵ.

The maximizer of sup∆∈(0,∞)K
∑

d∈[K] e
d∆d

 1
2 −

√
T (∆d)2

2E
P♯

[
(σd(Xt))

2

w(d|Xt)

]
 is given as ∆a = 1

4

√
2E

P♯

[
(σa(Xt))

2

w(a|Xt)

]
T . There-

fore,

sup
P∈P∗

EP [rT (π)(P )] ≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1

2
−

√√√√ T (∆d)
2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T (∆d)

3
) +O

(
∆d
)− ϵ

≥ 1

12
inf
wW

∑
d∈[K]

ed


√√√√EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
T

+O

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
T


− ϵ.

As T → ∞, letting ϵ→ 0,

sup
P∈P∗

√
TEP [rT (π)(P )] ≥

1

12
inf
wW

∑
d∈[K]

ed

√√√√EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
+ o (1) .

D.7. Characterization of the Target Allocation Ratio

Proof of Theorem 3.4. We showed that any null consistent BAI strategy satisfies

sup
P∈P∗

EP [rT (π)(P )] ≥
1

12
inf
wW

∑
d∈[K]

ed

√
(σd)

2

w(d)
+ o (1) .

In the tight lower bound, ed̃ = 1 for d̃ = argmaxd∈[K]
1
12

√
(σd)2

w(d) + o(1)4. Therefore, we consider solving

inf
w∈W

max
d∈[K]

√
(σd)

2

w(d)
.

4If there are multiple candidates of the best treatment arm, we choose one of the multiple treatment arms as the best treatment arm
with probability 1.
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If there exists a solution, we can replace the inf with the min. We consider the following constrained optimization:

inf
R∈R,w∈W

R

s.t. R ≥
(
σd
)2

w(d)
∀d ∈ [K]∑

a∈[K]

w(a) = 1.

For this problem, we derive the first-order condition, which is sufficient for the global optimality of such a convex pro-
gramming problem. For Lagrangian multipliers λd ∈ (−∞, 0] and γ ∈ R, we consider the following Lagrangian function:

L(λ, γ;R,w) = R+
∑
d∈[K]

λd

{(
σd
)2

w(d)
−R

}
+ γ

∑
d∈[K]

w(d)− 1

 .

Then, the optimal solutions w∗, λ∗d, γ∗, and R∗ of the original problem satisfies

1−
∑
d∈[K]

λd∗ = 0 ∀x ∈ X

− λd∗
(
σd
)2

(w∗(d))2
= γ∗ ∀d ∈ [K],

λd∗

{(
σd
)2

w(d)
−R∗

}
= 0

γ∗(x)

 ∑
a∈[K]

w∗(a)− 1

 = 0 ∀a ∈ [K].

Here, the solutions are given as

w∗(d) =

(
σd
)2∑

b∈[K] (σ
b)

2 ,

λd∗ = w∗(d),

γ∗(x) = −
∑
b∈[K]

(
σb
)2
.

Therefore,

inf
wW

∑
a∈[K]

ea
1

12

√√√√EP ♯

[
(σa(X))

2

w(a|X)

]
+ o(1) =

1

12

√√√√√EP ♯

 ∑
a∈[K]

(σa(X))
2

 ∑
a∈[K]

ea + o(1).

Since
∑

a∈[K] e
a = 1 and ζP (x) = ζ(x), the proof is complete.

Here, w̃(a|x) = (σa(x))2∑
b∈[K](σ

b(x))2
works as a target allocation ratio in implementation of our BAI strategy because it rep-

resents the sample average of 1[At = a]; that is, we design our sampling rule (At)t∈[T ] for the average to be the target
allocation ratio.

Although this lower bound is applicable to a case with K = 2, we can tighten the lower bound by changing the definiton
of the parametric submodel.
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E. Proof of Lemma D.2
Proof.

EQ[LT ] =

T∑
t=1

EQ

 ∑
a∈[K]

1{At = a} log
faQ(Y

a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0(Xt)


=

T∑
t=1

EXt,Ft−1

Q

 ∑
a∈[K]

EY a
t ,At

Q

[
1[At = a] log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0(Xt)
|Xt,Ft−1

]
=

T∑
t=1

EXt,Ft−1

Q

 ∑
a∈[K]

EQ [1[At = a]|Xt,Ft−1]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0(Xt)
|Xt,Ft−1

]
=

T∑
t=1

EXt

Q

EFt

Q

 ∑
a∈[K]

EQ [1[At = a]|Xt,Ft−1]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt

]
=

T∑
t=1

∫  ∑
a∈[K]

EFt

Q [EQ [1[At = a]|Xt = x,Ft−1]]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt = x

] ζQ(x)dx

=

∫ ∑
a∈[K]

(
EY a

Q

[
log

faQ(Y
a|X)ζQ(X)

faP0
(Y a|X)ζP0(X)

|X = x

] T∑
t=1

EFt

Q [EQ [1[At = a]|Xt = x,Ft−1]]

)
ζQ(x)dx

= EX
Q

 ∑
a∈[K]

EY a

Q

[
log

faQ(Y
a|X)ζQ(X)

faP0
(Y a|X)ζP0

(X)
|X
] T∑

t=1

EFt−1

Q [EQ [1[At = a]|X,Ft−1]]

 ,
where EZ

Q denotes an expectation of random variable Z over the distribution Q. We used that the observations
(Y 1

t , . . . , Y
K
t , Xt) are i.i.d. across t ∈ {1, 2, . . . , T}.

F. Proof of the Asymptotic Lower Bound for Two-Armed Bandits (Theorem 3.6)
When K = 2, we define different parametric submodels from those in Section D.

Parametric submodels for the observed-data distribution and tangent set. In a case with K = 2, we consider one-
parameter parametric submodels for the observed-data distributionRP with the density function rP (y, d, x) by introducing
a parameter ∆ ∈ Θ with some compact space Θ. We denote a set of parametric submodels by

{
RP,∆ : ∆ ∈ Θ

}
⊂ RP∗ ,

which is defined as follows: for some g : R× [2]×X → R satisfying EP [g(Yt, At, Xt)] = 0 and EP [(g(Yt, At, Xt))
2] <

∞, a parametric submodel RP,∆ has a density such that

rκ∆(y, d, x) := 2c(y, d, x; ∆) (1 + exp (−2∆g(y, d, x)))
−1
raP (y, d, x),

where c(y, d, x; ∆) is some function such that c((y, d, x; 0) = 1 and ∂
∂∆

∣∣∣
∆=0

log c((y, d, x; ∆) = 0 for all (y, d, x) ∈
R × [2] × X . Note that the parametric submodels are usually not unique. The parametric submodel is equivalent to
rP (y, a, x) if ∆ = 0.

Let fa∆(y|x) and ζ∆(x) be the conditional density of y given x and some density of x, satisfying (4) as

rκ∆(y, d, x) =
∏
a∈[2]

{fa∆(y|x)κ(a|x)}
1[d=a]

ζ∆(x).

For this parametric submodel, we develop the same argument in Section D. Note that we consider one-parameter parametric
submodel for two-armed bandits, while in Section D, we consider K-dimensional parametric submodels for K-armed
bandits.
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Change-of-measure. We consider a set of bandit models P†† ⊂ P∗ such that for all P ∈ P††, a ∈ [K], and x ∈ X ,
µa(P )(x) = µa. Before a bandit process begins, we fix P ♯♯ ∈ P†† such that µ1(P ♯♯) = µ2(P ♯♯) = µ(P ♯♯). We choose
one treatment arm d ∈ [2] as the best treatment arm following a Bernoulli distribution with parameter e ∈ [0, 1]; that is, the
expected outcome of the chosen treatment arm d is the highest among the treatment arms. We choose treatment arm 1 with
probability e and treatment arm 2 with probability 1 − e. Let ∆ ∈ (0,∞) be a gap parameter and Q∆ ∈ P†† be another
bandit model such that d = argmaxa∈[2] µ

a(Q∆), µb(Q∆) = µ(P ♯♯) for b ̸= d, and µd(Q∆) − µ(P ♯♯) = ∆ + O(∆2).
For the parameter ∆, we consider RP ♯♯,∆ ∈ RP†† ⊂ RP∗ such that the following equation holds:

LT (P,Q) =

T∑
t=1

{
1[At = 1] log

(
f1P (Y

1
t |Xt)

f1Q(Y
1
t |Xt)

)
+ 1[At = 2] log

(
f2P (Y

2
t |Xt)

f2Q(Y
2
t |Xt)

)
+ log

(
ζP (Xt)

ζQ(Xt)

)}

=

T∑
t=1

{
1[At = 1] log

(
f1P (Y

1
t |Xt)

fa∆(Y
1
t |Xt)

)
+ 1[At = 2] log

(
f2P (Y

2
t |Xt)

f2∆(Y
2
t |Xt)

)
+ log

(
ζP (Xt)

ζ∆(Xt)

)}
.

Proof of Theorem 3.6. First, we decompose the expected simple regret by using the definition of P†† as

sup
P∈P∗

EP [rT (π)(P )]

= sup
P∈P∗

∑
b∈[2]

{
max
a∈[2]

µa(P )− µb(P )

}
PP (âT = b)

≥ sup
∆∈(0,∞)

{
e
(
µ1(Q∆)− µ2(Q∆)

)
PQ∆

(âT = 2) + (1− e)
(
µ2(Q∆)− µ1(Q∆)

)
PQ∆

(âT = 1)
}

= sup
∆∈(0,∞)

{
e
(
µ1(Q∆)− µ(P ♯♯)

)
PQ∆

(âT = 2) + (1− e)
(
µ2(Q∆)− µ(P ♯)

)
PQ∆

(âT = 1)
}

= sup
∆∈(0,∞)

{
e
(
∆+O(∆2)

)
PQ∆ (âT = 2) + (1− e)

(
∆+O(∆2)

)
PQ∆ (âT = 1)

}
= sup

∆∈(0,∞)

{
e∆PQ∆

(âT = 2) + (1− e)∆PQ∆
(âT = 1) +O(∆2)

}
= sup

∆∈(0,∞)

{
e∆(1− PQ∆ (âT = 1)) + (1− e)∆ (1− PQ∆ (âT = 2)) +O(∆2)

}
.

From Propositions D.5 and D.1 and definition of the null consistent strategy,

sup
∆∈(0,∞)

{
e∆(1− PQ∆

(âT = 1)) + (1− e)∆ (1− PQ∆
(âT = 2)) +O(∆2)

}
= sup

∆∈(0,∞)

{
e∆(1− PP ♯♯ (âT = 1) + PP ♯♯ (âT = 1)− PQ∆ (âT = 1))

+ (1− e)∆ (1− PP ♯♯ (âT = 2) + PP ♯♯ (âT = 2)− PQ∆ (âT = 2)) +O(∆2)
}

= sup
∆∈(0,∞)

{
e∆

(
1− PP ♯♯ (âT = 1)−

√
EP ♯♯ [LT (P ♯♯, Q∆)]

2

)

+ (1− e)∆

(
1− PP ♯♯ (âT = 2)−

√
EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}

= sup
∆∈(0,∞)

{
e∆

(
1− 1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+ (1− e)∆

(
1− 1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}

= sup
∆∈(0,∞)

{
∆

(
1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}

≥ inf
w∈W

sup
∆∈(0,∞)

∆

1

2
−

√√√√ T∆2

2EP

[
(σ1(Xt))

2

w(1|X) + (σ2(X))2

w(2|Xt)

] +O
(
T∆3)

+O(∆2)

 .
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Let ∆ = 1
4

√
2EP

[
(σ1(X))2

w(1|X)
+

(σ2(X))2

w(2|X)

]
T . Then,

inf
w∈W

sup
∆∈(0,∞)

∆

1

2
−

√√√√ T∆2

2EP

[
(σ1(Xt))

2

w(1|X) + (σ2(X))2

w(2|Xt)

] +O
(
T∆3)

+O(∆2)


≥ 1

12
inf
wW

√√√√EP

[
(σ1(X))2

w(1|Xt)
+ (σ2(Xt))

2

w(2|Xt)

]
T

+O
(
∆2
)

≥ 1

12

√√√√EP

[
(σ1(X) + σ2(X))

2
]

T
+O

EP

[(
σ1(X) + σ2(X)

)2]
T

 .

Here, the minimizer regarding w is w̃(1|x) = σ1(x)
σ1(x)+σ2(x) (w̃(2|x) = 1− w̃(1|x)) (van der Laan, 2008; Hahn et al., 2011;

Kato et al., 2020). Because ζP (x) = ζ(x), supP ′∈P∗

√
EP ′ [rT (π)(P )] ≥ 1

12

√∫
(σ1(X) + σ2(X))

2
ζ(x)dx+ o(1).

G. Proof of Theorem 5.2
Proof. Let

ξa,bT (P ) =

√
T
(
∆̂HIR,a,b

T −∆a,b(P )
)

V a,b(P )
.

By applying the Chernoff bound, for any v ≥ 0 and any λ < 0,

PP

(
∆̂HIR,a,b

T −∆a,b(P ) ≤ v
)
≤ EP

[
exp

(
λ
√
Tξa,bT (P )

)]
exp (−λTv) .

By applying the Taylor series expansion for logEP

[
exp

(
λ
√
Tξa,bT (P )

)]
around λ√

T
= 0,

logEP

[
exp

(
λ
√
Tξa,bT (P )

)]
=

√
TλEP

[
ξa,bT (P )

]
+
Tλ2

2
EP

[(
ξa,bT (P )

)2]
+

∞∑
n=3

(
√
Tλ)n

n!
cn,T ,

where cn,T is the n-th cumulant of (ξa,bT (P ). From Lemma 2.1 of Hayashi (2000) (Proposition B.8 in Appendix), Propo-

sition 5.1, we have limT→∞ E
[
ξa,bT (P )

]
= 0, limT→∞ E

[(
ξa,bT (P )

)2]
= 1, and limT→∞ E

[(
ξa,bT (P )

)n]
= mn for

all n ≥ 3, where mn is the n-th moments. Then, we have limT→∞ cn,T = 0 because cumulants of centered normal

distributions are zero except for the second-order cumulant. Here, note that limT→∞
∑∞

n=3
(
√
Tλ)n−2

n! = − 1
2 . Therefore,

for any v, ε > 0, there exist T0 > 0 such that for all T > T0,

PP

(
T∑

t=1

ξa,bt (P ) ≤ v

)
≤ exp

(
Tλ2

2
− Tλv −

{√
Tλ+ Tλ2/2

}
ε

)
.

By substituting λ = v = − ∆a,b(P )√
V a,b(P )

< 0, the claim follows.

H. Proof of Theorem 5.4
We follow the proof of Corollary 3 of Bubeck et al. (2011). First, from Theorem 5.3,

PP

(
µ̂HIR,a
T ≤ µ̂HIR,b

T

)
≤ exp

(
−T (∆

a,b)2

2V a,b(P )
+

{ √
T∆a,b√
V a,b(P )

+
T (∆a(P ))2

2V a(P )

}
ε

)
.
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We consider two cases where a given ∆a is more or less than a threshold ℓ1, ℓ2, . . . , ℓK > 0. We have

EP

[
rT
(
πHIR

)
(P )
]
=
∑

a∈[K]

∆aPP

(
µ̂
HIR,a∗(P )
T ≤ µ̂HIR,a

T

)
≤
∑

a∈[K]

{
ℓaPP

(
µ̂
HIR,a∗(P )
T ≤ µ̂HIR,a

T

)
+ 1[∆a ≥ ℓa]∆aPP

(
µ̂
HIR,a∗(P )
T ≤ µ̂HIR,a

T

)}
≤ max

a∈[K]
ℓa +

∑
a∈[K]

{
1[∆a ≥ ℓa]∆aPP

(
µ̂
HIR,a∗(P )
T ≤ µ̂HIR,a

T

)}
Because x ∈ [0, C∆] 7→ z exp(−Cz2) is decreasing on [1/

√
2C,C∆], for any C > 0 and C∆, where ∆a < C∆ for all

a ∈ [K]. Therefore, taking C = ⌊ T
2V a(P )⌋, for ℓa ≥ 1/

√
2
⌊

T
2V a(P )

⌋
,

EP

[
rT
(
πHIR

)
(P )
]

≤ max
a∈[K]

ℓa +
∑

a∈[K]

ℓa exp

(
− T (ℓa)2

2V a(P )
+

{ √
Tℓa√
V a(P )

+
T (ℓa)2

2V a(P )

}
ε

)

≤ max
a∈[K]

ℓa + (K − 1) max
a∈[K]

ℓa exp

(
− T (ℓa)2

2V a(P )
+

{ √
Tℓa√
V a(P )

+
T (ℓa)2

2V a(P )

}
ε

)

≤ max
a∈[K]

{
ℓa + (K − 1)ℓa exp

(
− T (ℓa)2

2V a(P )
+

{ √
Tℓa√
V a(P )

+
T (ℓa)2

2V a(P )

}
ε

)}
.

Substituting ℓa =
√
logK/⌊ T

2V a(P )⌋, we have

EP

[
rT
(
πHIR

)
(P )
]
≤ max

a∈[K]

{√
logK/

⌊
T

2V a(P )

⌋

+ (K − 1)

√
logK/

⌊
T

2V a(P )

⌋
exp

−
T logK/

⌊
T

2V a(P )

⌋
2V a(P )


× exp


√
T logK/⌊ T

2V a(P )√
V a(P )

+
T logK/⌊ T

2V a(P )

2V a(P )

 ε

}.
Letting T → ∞ and ε→ 0, we conclude the proof.

I. Details of the AS-AIPW Strategy
. For a ∈ [K] and t ∈ [T ], let ŵt(a|x) be an estimated target allocation ratio at round t. In each round t, we obtain γt
from the uniform distribution on [0, 1] and draw a treatment arm At = 1 if γt ≤ ŵt(1|Xt) and At = a for a ≥ 2 if γt ∈
(
∑a−1

b=1 ŵt(b|Xt),
∑a

b=1 ŵt(b|Xt)]; that is, we draw a treatment arm a with a probability ŵt(a|Xt). As an initialization,
we draw a treatment arm At at round t ≤ K with an uniform probability; that is ŵt(a|Xt) = 1/K for all a ∈ [K]. In a
round t > K, for all a ∈ [K], we estimate the target allocation ratio w∗ using past observations Ft−1, such that for all
a ∈ [K] and x ∈ X , ŵt(a|x) > 0 and

∑
a∈[K] ŵt(a|x) = 1. We show a pseudo-code in Algorithm 1.

To construct an estimator ŵt(a|x) for all x ∈ X in each round t, we use bounded estimators of the conditional expected
outcome µa(P )(x) and νa(P )(x), denoted by µ̂a

t (x) and ν̂at (x), respectively. We denote an estimator of the conditional
variance (σa(x))

2 by (σ̂a
t (x))

2, which are estimated as follows. For t = 1, 2, . . . ,K, we set µ̂a
t = ν̂at = (σ̂a

t (x))
2 = 0.

For t > K, we estimate µa(P )(x) and νa(P )(x) using only past samples Ft−1 and converge to the true parameter
almost surely. We use a bounded estimator for µ̂a

t such that |µ̂a
t | < Cµ. Let (σ̂†a

t (x))2 = ν̂at (x) − (µ̂a
t (x))

2 for all
a ∈ [K] and x ∈ X . Then, we estimate the variance (σa(x))

2 for all a ∈ [K] and x ∈ X in a round t as (σ̂a
t (x))

2
=
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max{min{((σ̂†a
t (x))2, Cσ2}, 1/Cσ2} and define ŵt by replacing the variances inw∗ with corresponding estimators; that is,

when K = 2, for each a ∈ {1, 2}, ŵ(a|Xt) =
σ̂1
t (Xt)

σ̂1
t (Xt)+σ̂2

t (Xt)
; when K ≥ 3, for each a ∈ [K], ŵ(a|Xt) =

(σ̂a
t (x))

2∑
b∈[K](σ̂

b
t (x))

2 .

nonparametric estimators, such as the nearest neighbor regression estimator and kernel regression estimator, can be applied,
which have been proven to converge to the true function in probability under a bounded sampling probability ŵt by Yang
& Zhu (2002) and Qian & Yang (2016). Provided that these conditions are satisfied, any estimator can be used. It should
be noted that we do not assume specific convergence rates for estimators for µa(P )(x) and w∗ as the asymptotic optimality
of the AIPW estimator can be demonstrated without them (van der Laan, 2008; Kato et al., 2020; 2021).

The following part presents our recommendation rule. In the recommendation phase of round T , for each a ∈ [K], we
estimate µa for each a ∈ [K] and recommend the maximum. To estimate µa, the AIPW estimator is defined as

µ̂AIPW,a
T =

1

T

T∑
t=1

φa
t

(
Yt, At, Xt

)
, (9)

φa
t (Yt, At, Xt) =

1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt).

In the final round t = T , we recommend âT ∈ [K] as

âT = argmax
a∈[K]

µ̂AIPW,a
T . (10)

The AIPW estimator debiases the sample selection bias resulting from arm draws based on contextual information. Ad-
ditionally, the AIPW estimator possesses the following properties: (i) its components φa

t (Yt, At, Xt)
T
t=1 are a martingale

difference sequence, allowing us to employ the martingale limit theorems in derivation of the upper bound; (ii)it has the
minimal asymptotic variance among the possible estimators. For example, other estimators with a martingale property, such
as the inverse probability weighting (IPW) estimator, may be employed, yet their asymptotic variance would be greater than
that of the AIPW estimator. The t-th element of the sum in the AIPW estimator utilizes nuisance parameters (µa(P )(x)
and w∗) estimated from past observations up to round t − 1 for constructing a martingale difference sequence (van der
Laan, 2008; Hadad et al., 2021; Kato et al., 2020; 2021). A pseudo-code for this process is provided in Algorithm 1.

The AS-AIPW strategy constitutes a generalization of the Neyman allocation (Neyman, 1934), which has been utilized for
the efficient estimation of the ATE with two treatment arms (van der Laan, 2008; Hahn et al., 2011; Tabord-Meehan, 2022;
Kato et al., 2020)5 and two-armed fixed-budget BAI without contextual information (Glynn & Juneja, 2004; Kaufmann
et al., 2016; Adusumilli, 2022; Armstrong, 2022). For two treatment arms, Adusumilli (2022) demonstrates the minimax
optimality for the expected simple regret under the limit-of-experiment framework, utilizing a diffusion process framework.
Armstrong (2022) also analyzes the minimax optimal strategy under the limit-of-experiment framework and establishes that
the Neyman allocation is minimax optimal. Glynn & Juneja (2004) and Kaufmann et al. (2016) respectively illustrate the
asymptotic optimality for each P ∈ P when the standard deviations of the potential outcomes are known.

Kato & Imaizumi (2023) summarizes and introduces our result using the AS-AIPW strategy, focusing on the probability
of misidentification. They simplify the proof and explain the details of the strategy.

I.1. Asymptotic Minimax Optimality of the AS-AIPW Strategy

We next present an asymptotic worst-case upper bound of our proposed AS-AIPW strategy. It is enough to provide the
asymptotic normality. Under the asymptotic normality, the minimax optimality direct holds from the same procedure as
that in the TS-HIR strategy.

For a, b ∈ [K], define6

ξa,bt (P ) =
φa
t

(
Yt, At, Xt

)
− φb

(
Yt, At, Xt

)
−∆b(P )√

TV a,b∗(P )
,

5The AS-AIPW strategy is also similar to those proposed for efficient estimation of the ATE with multiple treatment arms (van der
Laan, 2008).

6More rigorously, ξa,bt (P ) should be denoted as double arrays such as ξa,bTt (P ) because they dependent on T . However, we omit the
subscript T for simplicity.
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Algorithm 2 AS-AIPW strategy.

Parameter: Positive constants Cµ and Cσ2 .
Initialization:
for t = 1 to K do

Draw At = t. For each a ∈ [K], set ŵt(a|x) = 1/K.
end for
for t = K + 1 to T do

Observe Xt.
Construct ŵt(1|Xt) by using the estimators of the variances.
Draw γt from the uniform distribution on [0, 1].
At = 1 if γt ≤ ŵt(1|Xt) and At = a for a ≥ 2 if γt ∈

(∑a−1
b=1 ŵt(b|Xt),

∑a
b=1 ŵt(b|Xt)

]
.

end for
Construct µ̂AIPW,a

T for each a ∈ [K] following (9).
Recommend âT following (10).

where

V a,b∗(P ) = EP

[
(σa(X))

2

w∗(a|X)
+

(
σb(X)

)2
w∗(b|X)

+
(
∆a,b(P )(X)−∆a,b(P )

)2 ]
.

Here, note that {ξa,bt (P )}Tt=1 is a martingale difference sequence because EP [ξ
a,b
t (P )|Ft−1] = 0 from

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt)|Xt,Ft−1

]
=
ŵt(a|Xt)

(
µa(Xt)(P )− µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt) = µa(Xt)(P ),

EP [ξ
a,b
t (P )|Ft−1] =

∫ {
µa(x)(P )− µb(x)(P )−∆b(P )√

TV a,b∗(P )

}
ζ(x)dx = 0.

We put the following assumption, which hold for a wide class of estimators (Yang & Zhu, 2002; Qian & Yang, 2016).

Assumption I.1. For all P ∈ P∗, a ∈ [K], as t→ ∞,

µ̂a
t (x)− µa(P )(x) = oP (1), ν̂

a
t (x)− νa(P )(x) = oP (1).

Let ∆̂AIPW,a,b
T := µ̂a,AIPW

T − µ̂b,AIPW
T . Then, by directly applying the martingale CLT, we obtain the following theorem.

Theorem I.2. Under Assumption I.1 and the AS-AIPW strategy,

√
T
(
∆̂AIPW,a,b

T −∆a,b(P )
)

d−→ N
(
0, V a,b(P )

)
,

where recall that

V a,b(P ) = EX

[
(σa(P )(X))

2

w∗(a|X)
+

(
σb(P )(X)

)2
w∗(b|X)

+
(
∆a,b(P )(X)−∆a,b(P )

)2]
.

For the TS-HIR strategy, we prove the asymptotic optimality for the expected simple regret as follows:

1. Confirm the asymptotic normality of the HIR estimator.

2. Derive the upper bound for the probability of misidentification of the TS-HIR strategy by using the asymptotic nor-
mality of the HIR estimator.

3. Derive the upper bound for the expected simple regret of the TS-HIR strategy for each P ∈ P∗.
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4. Obtain the worst-case upper bound for the expected simple regret of the TS-HIR strategy.

We show the worst-case asymptotic optimality for the expeted simple regret of the AS-AIPW strategy as well as the TS-HIR
strategy.

Here, unlike the TS-HIR strategy, which requires empirical process technique to show the asymptotic normality (Hirano
et al., 2003; Hahn et al., 2011), we can skip the proof of the asymptotic normality to obtain the upper bound for the
probability of misidentification of the AS-AIPW strategy. By employing martingale difference sequence arguments and
the Chernoff bound, we can directly obtain the upper bound for the probability of misidentification, which greatly simplify
the proof procedure. We show the proof in Appendix J.

I.2. Proof of Theorem I.2

Note that
∑T

t=1 ξ
a,b
t (P ) =

√
T
(
µ̂a,AIPW
T − µ̂b,AIPW

T −∆a,b(P )
)
/
√
V a,b(P ).

To prove Theorem I.2, we show the following lemma.

Lemma I.3. Under Assumption I.1 and the AS-AIPW strategy, the following properties hold:

(a)
∑T

t=1 EP [(ξ
a,b
t (P ))2] → 1, a positive value;

(b) EP [|
√
Tξa,bt (P )|r] <∞ for some r > 2 and for all t ∈ N;

(c)
∑T

t=1(ξ
a,b
t (P ))2

p−→ 1.

Proof of this lemma is shown in Appendix I.3. Then, we prove Theorem I.2.

Proof. The second statement directly holds from and large deviation bound. Therefore, we focus on the proof of the first

statement, P
(
µ̂a,AIPW
T − µ̂c,AIPW

T ≤ 0
)
− exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
≤ o(1). This inequality follows from the martingale

CLT of White (1984) (Proposition B.6) on
∑T

t=1 ξ
a,b
t (P ) because

P
(
µ̂a,AIPW
T − µ̂b,AIPW

T ≤ 0
)
= P

(√
T
(
µ̂a,AIPW
T − µ̂b,AIPW

T

)
−
√
T∆a,b(P ) ≤ −

√
T∆a,b(P )

)
= P

(√
T

V a,b∗(P )

(
µ̂a,AIPW
T − µ̂b,AIPW

T −∆a,b(P )
)
≤ −

√
T

V a,b∗(P )
∆a,b(P )

)

= P

(
T∑

t=1

ξa,bt (P ) ≤ −

√
T

V a,b∗(P )
∆a,b(P )

)
.

Thus, we are interested in = P
(∑T

t=1 ξ
a,b
t (P ) ≤ −

√
T

V a,b∗(P )
∆a,b(P )

)
and show the bound by using the martingale

CLT.

Under the following three conditions, we can apply the martingale CLT,

(a)
∑T

t=1 EP [(ξ
a,b
t (P ))2] → 1, a positive value;

(b) EP [|
√
Tξa,bt (P )|r] <∞ for some r > 2 and for all t ∈ N;

(c)
∑T

t=1(ξ
a,b
t (P ))2

p−→ 1.

By using the martingale CLT, as T → ∞,

T∑
t=1

ξa,bt (P )
d−→ N (0, 1) .
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I.3. Proof of Lemma I.3

We prove Lemma I.3. Our proof is inspired by Kato et al. (2020).

Proof. Recall that

φa
t (Yt, At, Xt) =

1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt)

ξa,bt (P ) =
φa
t

(
Yt, At, Xt

)
− φa,b

(
Yt, At, Xt

)
−∆b(P )√

TV a,b∗(P )
.

Step 1: Check of Condition (a)

Because
√
TV a,b∗(P ) is non-random variable, we consider the conditional expectation of φa

t

(
Yt, At, Xt

)
−

φa,b
(
Yt, At, Xt

)
−∆a,b(P ).

First, we rewrite EP

[
(ξa,bt (P ))2

]
as

EP

[
(ξa,bt (P ))2

]
=

1

TV a,b∗(P )
EP

(1[At = a]
(
Yt − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Yt − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


=
1

TV a,b∗(P )
EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


=
1

TV a,b∗(P )
EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]

+
1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]
.

Therefore, we prove that the RHS of the following equation varnishes asymptotically to show that the condition (a) holds.

EP

[
(ξa,bt (P ))2

]
− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]

=
1

TV a,b∗(P )
EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]
. (11)

For simplicity, we omit 1
TV a,b∗(P )

. For the first term of the RHS of (11),

EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


= EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)2

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+ EP

(1[At = b]
(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)2


+ EP

[(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2]

− 2EP

[(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)(
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)]

+ 2EP

[(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)]

− 2EP

[(
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)]
.

Because 1[At = a]1[At = b] = 0, 1[At = k]1[At = k] = 1[At = k] for k ∈ {a, b}, we have

EP

(1[At = k]
(
Y k
t − µ̂k

t (Xt)
)

ŵt(k|Xt)

)2
 = EP

[(
Y k
t − µ̂k

t (Xt)
)2

ŵt(k|Xt)

]
,

EP

[(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)(
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)]
= 0,

EP

[(
1[At = a]

(
Yt − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Yt − µ̂b

t(Xt)
)

ŵt(b|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)]

= EP

[
EP

[
1[At = a]

(
Yt − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Yt − µ̂b

t(Xt)
)

ŵt(b|Xt)
| Xt,Ft−1

] (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)]

= EP

[(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)]
.

Therefore, for the first term of the RHS of (11),

EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


= EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ]
.

Then, using these equations, the RHS of (11) can be calculated as

1

TV a,b∗(P )
EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2


− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]

=
1

TV a,b∗(P )
EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ]
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− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]
.

By taking the absolute value, we can bound the RHS as

1

TV a,b∗(P )
EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ]

− 1

TV a,b∗(P )
EP

[(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]

≤ 1

TV a,b∗(P )
EP

[∣∣∣∣∣
{(

Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)}

−

{(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2}∣∣∣∣∣
]
.

Then, from the triangle inequality, we have

EP

[∣∣∣∣∣
{(

Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)}

−

{(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2}∣∣∣∣∣
]

≤ EP

[∣∣∣∣∣
(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

∣∣∣∣∣
]
+ EP

[∣∣∣∣∣
(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

∣∣∣∣∣
]

+ EP

[∣∣∣∣∣(µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2∣∣∣∣∣
]

+ 2EP

[∣∣∣∣∣ (µa(P )(Xt)− µb(P )(Xt)− µ̂a
t (Xt) + µ̂b

t(Xt)
) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ∣∣∣∣∣
]
.

Because all elements are assumed to be bounded and b21 − b22 = (b1 + b2)(b1 − b2) for variables b1 and b2, there exist
constants C̃0, C̃1, C̃2, and C̃3 such that

∑
k∈{a,b}

EP

[∣∣∣∣∣
(
Y k
t − µ̂k

t (Xt)
)2

ŵt(k|Xt)
−
(
Y k
t − µk(P )(Xt)

)2
w∗(k|Xt)

∣∣∣∣∣
]

+ EP

[∣∣∣∣∣(µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2∣∣∣∣∣
]

+ 2EP

[∣∣∣∣∣ (µa(P )(Xt)− µb(P )(Xt)− µ̂a
t (Xt) + µ̂b

t(Xt)
) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ∣∣∣∣∣
]
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≤ C̃0

∑
k∈{a,b}

EP

[∣∣∣∣∣
(
Y k
t − µ̂k

t (Xt)
)√

ŵt(k|Xt)
−
(
Y k
t − µk(P )(Xt)

)√
w∗(k|Xt)

∣∣∣∣∣
]

+ EP

[∣∣∣∣∣(µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2∣∣∣∣∣
]

+ 2EP

[∣∣∣∣∣ (µa(P )(Xt)− µb(P )(Xt)− µ̂a
t (Xt) + µ̂b

t(Xt)
) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ∣∣∣∣∣
]

≤ C̃1

∑
k∈{a,b}

EP

[∣∣∣∣∣√w∗(k|Xt)
(
Yt − µ̂k

t (Xt)
)
−
√
ŵt(k|Xt)

(
Yt − µk(P )(Xt)

)∣∣∣∣∣
]

+ EP

[∣∣∣∣∣(µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2∣∣∣∣∣
]

+ 2EP

[∣∣∣∣∣ (µa(P )(Xt)− µb(P )(Xt)− µ̂a
t (Xt) + µ̂b

t(Xt)
) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
) ∣∣∣∣∣
]

≤ C̃1

1∑
k=0

EP

[∣∣∣√w∗(k|Xt)µ̂
k
t (Xt)−

√
ŵt(k|Xt)µ

k(P )(Xt)
∣∣∣]

+ C̃2

1∑
k=0

EP

[∣∣∣√w∗(k|Xt)−
√
ŵt(k|Xt)

∣∣∣]+ C̃3

1∑
k=0

EP

[∣∣∣µ̂k
t (Xt)− µk(P )(Xt)

∣∣∣] .
Then, from b1b2 − b3b4 = (b1 − b3)b4 − (b4 − b2)b1 for variables b1, b2, b3, and b4, there exist C̃4 and C̃5 such that

C̃1

∑
k∈{a,b}

EP

[∣∣∣√w∗(k|Xt)µ̂
k
t (Xt)−

√
ŵt(k|Xt)µ

k(P )(Xt)
∣∣∣]

+ C̃2

∑
k∈{a,b}

EP

[∣∣∣√w∗(k|Xt)−
√
ŵt(k|Xt)

∣∣∣]+ C̃3

∑
k∈{a,b}

EP

[∣∣∣µ̂k
t (Xt)− µk(P )(Xt)

∣∣∣]
≤ C̃4

∑
k∈{a,b}

EP

[∣∣∣√w∗(k|Xt)−
√
ŵt(k|Xt)

∣∣∣]+ C̃5

∑
k∈{a,b}

EP

[∣∣∣µ̂k
t (Xt)− µk(P )(Xt)

∣∣∣] .
From ŵt(k|x)− w∗(k|x) p−→ 0, we have

√
ŵt(k|x)−

√
w∗(k|x) p−→ 0. From the assumption that the point convergences

in probability, i.e., for all x ∈ X and k ∈ A,
√
ŵt(k|x) −

√
w∗(k|x) p−→ 0 and µ̂k

t (x) − µk(P )(x)
p−→ 0 as t → ∞, if√

ŵt(k|x), and µ̂k
t (x) are uniformly integrable, for fixed x ∈ X , we can prove that

EP

[
|
√
ŵt(k|Xt)−

√
w∗(k|Xt)||Xt = x

]
= EP

[
|
√
ŵt(k|x)−

√
w∗(k|x)|

]
→ 0,

EP

[
|µ̂k

t (Xt)− µk(P )(Xt)||Xt = x
]
= EP

[
|µ̂k

t (x)− µk(P )(x)|
]
→ 0,

as t→ ∞ using Lr-convergence theorem (Proposition B.3). Here, we used the fact that µ̂k
t (x) and

√
ŵt(k|x) are indepen-

dent from Xt. For fixed x ∈ X , we can show that
√
ŵt(k|x), and µ̂k

t (x) are uniformly integrable from the boundedness
of
√
ŵt(k|x), and µ̂k

t (x) (Proposition B.2). From the point convergence of E[|
√
ŵt(k|Xt)−

√
w∗(k|Xt)| | Xt = x] and

E[|µ̂k
t (Xt)− µk(P )(Xt)| | Xt = x], by using Lebesgue’s dominated convergence theorem, we can show that

EXt

[
EP

[
|
√
ŵt(k|Xt)−

√
w∗(k|Xt)| | Xt

]]
→ 0,

EXt

[
E[|µ̂k

t (Xt)− µk(P )(Xt)| | Xt]
]
→ 0.

Then, as t→ ∞,

TV a,b∗(P )EP

[
(ξa,bt (P ))2

]
− EP

[ ∑
k∈{a,b}

(
Y k
t − µk(P )(Xt)

)2
w∗(k|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]
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→ 0.

Therefore, for any ϵ > 0, there exists t̃ > 0 such that

1

TV a,b∗(P )

T∑
t=1

(
TV a,b∗(P )EP

[
(ξa,bt (P ))2

]
− EP

[ ∑
k∈{a,b}

(
Y k
t − µk(P )(Xt)

)2
w∗(k|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2])

≤ t̃

TV a,b∗(P )
+ ϵ.

Here,

EP

[ ∑
k∈{a,b}

(
Y k
t − µk(P )(Xt)

)2
w∗(k|Xt)

+
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2]

= EP

[ ∑
k∈{a,b}

(
Y k − µk(P )(X)

)2
w∗(k|Xt)

+
(
µa(P )(X)− µb(P )(X)−∆a,b(P )

)2]
= V a,b∗(P )

does not depend on t. Therefore,
∑T

t=1 EP

[
(ξa,bt (P ))2

]
− 1 ≤ t̃

TV a,b∗(P )
+ ϵ→ 0 as T → ∞.

Step 2: check of condition (b). We directly assumed that the condition holds from Definition 3.2.

Step 3: Check of Condition (c)

Let ut be an MDS such that

ut = (ξa,bt (P ))2 − EP

[
(ξa,bt (P ))2|Ft−1

]
=

1

TV a,b∗(P )

(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2

− 1

TV a,b∗(P )
EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2

| Ft−1

 .
We can apply the weak law of large numbers for an MDS (Proposition B.5 in Appendix B), and obtain

T∑
t=1

ut =
1

T

T∑
t=1

T
(
(ξa,bt (P ))2 − EP

[
(ξa,bt (P ))2|Ft−1

]) p−→ 0.

The conditions in the weak law of large numbers for an MDS (Proposition B.5) can be confirmed from Definition 3.2.

Next, we show that

T∑
t=1

EP

[
(ξa,bt (P ))2 | Ft−1

]
− 1

p−→ 0.

From Markov’s inequality, for ε > 0, we have

P

(∣∣∣∣∣
T∑

t=1

EP

[
(ξa,bt (P ))2 | Ft−1

]
− 1

∣∣∣∣∣ ≥ ε

)

≤
EP

[∣∣∣∑T
t=1 EP

[
(ξa,bt (P ))2 | Ft−1

]
− 1
∣∣∣]

ε
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≤
1

TV a,b∗(P )

∑T
t=1 EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
ε

.

Then, we consider showing EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]→ 0. Here, we have

EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
= EP

[∣∣∣∣∣EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Ft−1

]∣∣∣∣∣
]

= EP

[∣∣∣∣∣EP

[
EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Xt,Ft−1

]
| Ft−1

]∣∣∣∣∣
]
.

Then, by using Jensen’s inequality,

EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
≤ EP

[
EP

[∣∣∣∣∣EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Xt,Ft−1

]∣∣∣∣∣ | Ft−1

]]

= EP

[∣∣∣∣∣EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Xt,Ft−1

]∣∣∣∣∣
]
.

Because µ̂a
t , µ̂b

t and ŵt are constructed from Ft−1,

EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
≤ EP

[∣∣∣∣∣EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

−
(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Xt, f̂t−1, πt

]∣∣∣∣∣
]
.

From the results of Step 1, there exist C̃4 and C̃5 such that

EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
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≤ EP

[∣∣∣∣∣EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2
(
µa(P )(Xt)− µb(P )(Xt)− µ̂a

t (Xt) + µ̂b
t(Xt)

) (
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)}

−
(
Y a
t − µa(P )(Xt)

)2
w∗(a|Xt)

+

(
Y b
t − µb(P )(Xt)

)2
w∗(b|Xt)

−
(
µa(P )(Xt)− µb(P )(Xt)−∆a,b(P )

)2
| Xt, f̂t−1, πt

]∣∣∣∣∣
]

≤ C̃4

1∑
k=0

EP

[∣∣∣√w∗(k|Xt)−
√
ŵt(k|Xt)

∣∣∣]+ C̃5

1∑
k=0

EP

[∣∣∣µ̂k
t (Xt)− µk(P )(Xt)

∣∣∣] .
Then, from Lr convergence theorem, by using point convergence of µ̂a

t , µ̂b
t and ŵt, and the sub-Exponentiality of

(ξa,bt (P ))2, we have EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]→ 0. Therefore,

P

(∣∣∣∣∣
T∑

t=1

EP

[
(ξa,bt (P ))2 | Ft−1

]
− 1

∣∣∣∣∣ ≥ ε

)

≤
1

TV a,b∗(P )

∑T
t=1 EP

[∣∣TV a,b∗(P )EP

[
(ξa,bt (P ))2 | Ft−1

]
− V a,b∗(P )

∣∣]
ε

→ 0.

As a conclusion,

T∑
t=1

(
(ξa,bt (P ))2 − 1

)
=

T∑
t=1

(
(ξa,bt (P ))2 − EP

[
(ξa,bt (P ))2|Ft−1

]
+ EP

[
(ξa,bt (P ))2|Ft−1

]
− 1
)

p−→ 0.

J. Direct Proof for the Upper Bound for the Probability of Misidentification of the AS-AIPW
Strategy

For the AS-AIPW strategy, in the previous section, we discuss the asymptotic normality of the AS-AIPW strategy to obtain
the worst-case upper bound for the expected simple regret. However, for the AS-AIPW estimator, we can directly derive
the upper bound for the probability of misidentification more easily without going through the asymptotic normality, which
requires some specific techniques of empirical process in the proof.

In this section, we derive the following upper bound for the probability of misidentification of the TS-HIR estimator

Theorem J.1. Under Assumptions I.1, for any P0 ∈ P∗ and all a, b,

− lim inf
T→∞

1

T
logP0

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)
≥ (∆a(P ))2

2V a∗(P )
−O

(
(∆a(P ))3

)
.

J.1. Proof of Theorem J.1

Now, we consider proving Theorem J.1. Let us define

ξat (P ) =
φa∗(P )

(
Yt, At, Xt; µ̂

a∗(P )
t , ŵt

)
− φa

(
Yt, At, Xt; µ̂

a
t , ŵt

)
− (µa(P )− µb(P ))√

TV a∗(P )
,

V a∗(P ) = V a∗(P ),a∗(P )

The upper bound is derived from the Chernoff bound. Our proof is partially inspired by techniques in Hadad et al. (2021),
and Kato et al. (2020).



Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds

Step 1: the sequence {ξat (P )}Tt=1 is an MDS. We prove that {ξat (P )}Tt=1 is an MDS. Although this fact is well-known
in the literature of causal inference (van der Laan, 2008; Hadad et al., 2021; Kato et al., 2020), we show the proof for the
sake of completeness.

Lemma J.2. Under Assumptions I.1, for any P0 ∈ P∗, {ξat (P )}Tt=1 is an MDS; that is,

EP [ξat (P )|Ft−1] = 0.

Proof. For each t ∈ [T ],

EP [ξat (P )|Xt,Ft−1] =
1√

TV a∗(P )
EP

[
φa∗(P )

(
Yt, At, Xt; µ̂

a∗(P )
t , ŵt

)
− φa

(
Yt, At, Xt; µ̂

a
t , ŵt

)
− (µa∗(P )(P )− µa(P ))

∣∣Xt,Ft−1

]

=
1√

TV a∗(P )

EP [1[At = a∗(P )]|Xt,Ft−1]EP

[
Y ∗
t − µ̂

a∗(P )
t (Xt)|Xt,Ft−1

]
ŵt(a∗(P )|Xt)

+ µ̂
a∗(P )
t (Xt)

− EP [1[At = a]|Xt,Ft−1]EP [Y a
t − µ̂a

t (Xt)|Xt,Ft−1]

ŵt(a|Xt)
− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))

=
1√

TV a∗(P )

{(
µa∗(P )(P )(Xt)− µa(P )(Xt)

)
−
(
µa∗(P )(P )− µa(P )

)}
.

Therefore,

EP [ξat (P )|Ft−1] = EP [EP [ξat (P )|Xt,Ft−1] |Ft−1] =
1√

TV a∗(P )

{(
µa∗(P )(P )− µa(P )

)
−
(
µa∗(P )(P )− µa(P )

)}
= 0.

Step 2: the Chernoff bound. By applying the Chernoff bound, for any v ≥ 0 and any λ < 0,

P0

(
T∑

t=1

ξat (P ) ≤ v

)
≤ EP

[
exp

(
λ

T∑
t=1

ξat (P )

)]
exp (−λv) .

From the Chernoff bound and a property of an MDS, we have

EP

[
exp

(
λ

T∑
t=1

ξat (P )

)]
= EP

[
T∏

t=1

EP [exp (λξat (P )) |Ft−1]

]
= EP

[
exp

(
T∑

t=1

logEP [exp (λξat (P )) |Ft−1]

)]
.(12)

By applying the Taylor series expansion around λ = 0,

logEP [exp (λξat (P )) |Ft−1] =
λ2

2
EP

[
(ξat (P ))

2|Ft−1

]
+O

((
λ/

√
T
)3)

. (13)

Here, EP [exp (λξat (P )) |Ft−1] = 1+
∑∞

k=1(λ/
√
T )kEP

[
(
√
Tξat (P ))

k/k!|Ft−1

]
. Because EP

[
(
√
Tξat (P ))

k/k!|Ft−1

]
is bounded by a constant that is independent from T 7 for all k ≥ 1, EP [exp (λξat (P )) |Ft−1] = 1 +∑2

k=1(λ/
√
T )kEP

[
(
√
Tξat (P ))

k/k!|Ft−1

]
+ O

((
λ/

√
T
)3)

. Note that the Taylor series expansion of log(1 + z)

around z = 0 is given as log(1 + z) = z − z2/2 + z3/3− · · · . Therefore,

logEP [exp (λξat (P )) |Ft−1]

=

{
λ√
T
EP

[√
Tξat (P )|Ft−1

]
+
λ2

T
EP

[
(
√
Tξat (P ))

2/2!|Ft−1

]
+O

((
λ/

√
T
)3)}

7Note that
√
Tξat (P ) =

φa∗(P )

(
Yt,At,Xt;µ̂

a∗(P )
t ,ŵt

)
−φa

(
Yt,At,Xt;µ̂

a
t ,ŵt

)
−(µa∗(P )(P )−µa(P ))

√
V a∗(P )

.
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− 1

2

{
λ√
T
EP

[√
Tξat (P )|Ft−1

]
+O

((
λ/

√
T
)2)}2

=
λ2

T
EP

[
(
√
Tξat (P ))

2/2!|Ft−1

]
+O

((
λ/

√
T
)3)

.

Here, we used EP [ξat (P )|Ft−1] = 0. Thus, the (13) holds.

Step 3: convergence of the second moment. We next show that TEP

[
(ξat (P ))

2|Ft−1

]
− 1

a.s−−→ 0.

Lemma J.3. Under Assumptions I.1, for any P0 ∈ P∗,

TEP

[
(ξat (P ))

2|Ft−1

]
− 1

a.s−−→ 0 as t→ ∞.

Note that T (ξat (P ))
2 does not depend on T . The proof is shown in Appendix K.

This lemma immediately yields the following lemma.

Lemma J.4. Under Assumptions I.1, for any P0 ∈ P∗,

T∑
t=1

EP

[
(ξat (P ))

2|Ft−1

]
− 1

p−→ 0 as T → ∞.

Our proof refers to the proof of Lemma 10 in Hadad et al. (2021).

Proof. Let ut be ut = TEP

[
(ξat (P ))

2|Ft−1

]
− 1. Note that

∑T
t=1 EP

[
(ξat (P ))

2|Ft−1

]
− 1 = 1

T

∑T
t=1 ut.

From the proof of Lemma J.3, we can find that ut is a bounded random variable. Recall that

TV a∗(P )EP

[
(ξat (P ))

2|Ft−1

]
= EP

[
(σ∗(Xt))

2
+ (µa∗(P )(P )(Xt)− µ̂

a∗(P )
t (Xt))

2

ŵt(a∗(P )|Xt)
|Ft−1

]

+ EP

[
(σa(Xt))

2
+ (µa(P )(Xt)− µ̂a

t (Xt))
2

ŵt(a|Xt)
|Ft−1

]
− EP

[(
µ̂
a∗(P )
t (Xt) + µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2

|Ft−1

]
.

We assumed that (µa∗(P )(P )(Xt), µ
a(P )(Xt), µ̂

a∗(P )
t (Xt), µ̂

a
t (Xt), ŵt(a

∗(P )|Xt), ŵt(a|Xt)) are all bounded random
variables. Let C be a constant independent from T such that |ut| < C for all t ∈ N.

Fix some positive ϵ > 0 and δ > 0. Almost-sure convergence of ut to zero as t → ∞ implies that we can find a large
enough tϵ such that |ut| < ϵ for all t ≥ tϵ with probability at least 1− δ. Let E(ϵ) denote the event in which this happens;
that is, E(ϵ) = {|ut| < ϵ ∀ t ≥ tϵ}. Under this event, for T > tϵ,

T∑
t=1

|ut| ≤
tϵ∑
t=1

C +

T∑
t=tϵ+1

ϵ = tϵC + Tϵ.

Therefore,

P

(
1

T

T∑
t=1

|ut| > 2ϵ

)
= P

({
1

T

T∑
t=1

|ut| > 2ϵ

}
∩ E(ϵ)

)
+ P

({
1

T

T∑
t=1

|ut| > 2ϵ

}
∩ Ec(ϵ)

)

≤ P
(
tϵ
T
C + ϵ > 2ϵ

)
+ P (Ec(ϵ))

= P
(
tϵ
T
C > ϵ

)
+ P (Ec(ϵ)) .

Letting T → ∞, for arbitrarily small δ > 0, the statement follows.
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Then, from the continuous mapping theorem,
∑T

t=1 EP

[
(ξat (P ))

2|Ft−1

]
− 1

p−→ 0 as T → ∞ implies

exp

(
λ2

2

{
T∑

t=1

EP

[
(ξat (P ))

2|Ft−1

]
− 1

})
p−→ exp (0) = 1 as T → ∞.

Then, from Lr-convergence theorem, we obtain the following lemma.
Lemma J.5. Under Assumptions I.1, for any P0 ∈ P∗, for any ε > 0, there exist T0 > 0 such that for all T > T0,

EP

[
exp

(
λ

T∑
t=1

ξat (P )

)]
exp (−λv) ≤ (1 + ε) exp

(
λ2

2
+O(λ3/

√
T )− λv

)
.

Proof. Because EP

[
(ξat (P ))

2|Ft−1

]
is bounded, exp

(
λ2

2

{∑T
t=1 EP

[
(ξat (P ))

2|Ft−1

]
− 1
})

is uniformly integrable
(Proposition B.2 in Appendix B). Therefore, from Lr-convergence theorem (Proposition B.3 in Appendix B),

EP

[
exp

(
λ2

2

{
T∑

t=1

EP

[
(ξat (P ))

2|Ft−1

]
− 1

})]
→ 1

From (12) and (13), for any ε > 0, there exist T0 > 0 such that for all T > T0,

EP

[
exp

(
λ

T∑
t=1

ξat (P )

)]
exp

(
−λ

2

2

)

= EP

[
exp

(
λ2

2

{
T∑

t=1

EP

[
(ξat (P ))

2|Ft−1

]
− 1

}
+O(λ3/

√
T )

)]
≤ (1 + ε) exp

(
O(λ3/

√
T )
)

The proof is complete.

This lemma immediately yields the following lemma.
Lemma J.6. Under Assumptions I.1, for any P0 ∈ P∗ and any v, ε > 0, there exist T0 > 0 such that for all T > T0,

P0

(
T∑

t=1

ξat (P ) ≤ v

)
≤ (1 + ε) exp

(
−v

2

2
+O(−v3/

√
T )

)

Proof. For any v, ε > 0, there exist T0 > 0 such that for all T > T0, from the Chernoff bound,

P0

(
T∑

t=1

ξat (P ) ≤ v

)
≤ (1 + ε) exp

(
λ2

2
+O(λ3/

√
T )− λv

)
.

By substituting λ = −u < 0, the claim follows.

Then, by substituting u = −
√
T (µa∗(P )(P )−µa(P ))√

V a∗(P )
< 0, we obtain

− 1

T
logP0

(
T∑

t=1

ξat (P ) ≤ −
√
T (µa∗(P )(P )− µa(P ))√

V a∗(P )

)

≥ − 1

T
log

(
exp

(
−T (µ

a∗(P )(P )− µa(P ))2

2V a∗(P )
+O

(
T (µa∗(P )(P )− µa(P ))3

(V a∗(P ))3/2

)))
− 1

T
log(1 + ε).

Letting T → ∞ and ε→ 0,

− lim inf
T→∞

1

T
logP0

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)
≥ (µa∗(P )(P )− µa(P ))2

2V a∗(P )
−O

(
(µa∗(P )(P )− µa(P ))3

)
.

Thus, Theorem J.1 holds.
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K. Proof of Lemma J.3
Proof.

TV a∗(P )EP

[
(ξat (P ))

2|Ft−1

]
= EP

[(
φa∗(P )

(
Yt, At, Xt; µ̂

a∗(P )
t , ŵt

)
− φa

(
Yt, At, Xt; µ̂

a
t , ŵt

)
− (µa∗(P )(P )− µa(P ))

)2 ∣∣∣Ft−1

]

= EP

(1[At = a∗(P )]
(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)
ŵt(a∗(P )|Xt)

−
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂

a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))

)2 ∣∣∣Ft−1


= EP

[(
1[At = a∗(P )]

(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)
ŵt(a∗(P )|Xt)

−
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)2

+ 2

(
1[At = a∗(P )]

(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)
ŵt(a∗(P )|Xt)

−
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)

+
(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2

|Ft−1

]

= EP

[
1[At = a∗(P )]

(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)2
ŵt(a∗(P )|Xt)

+
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)

+ 2

(
1[At = a∗(P )]

(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)
ŵt(a∗(P )|Xt)

−
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

)(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)

+
(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2

|Ft−1

]

= EP

[(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)2
ŵt(a∗(P )|Xt)

|Ft−1

]
+ EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]

− EP

[(
µ̂
a∗(P )
t (Xt) + µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2

|Ft−1

]
.

Here, we used

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)2

(ŵt(a|Xt))2
|Ft−1

]
= EP

[
EP

[
ŵt(a|Xt)

(
Y a
t − µ̂a

t (Xt)
)2

(ŵt(a|Xt))2
|XtFt−1

]]

= EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]

and

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)
|Ft−1

]

= EP

[(
µ̂
a∗(P )
t (Xt)− µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)
EP

[
ŵt(a|Xt)

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
|Xt,Ft−1

]
|Ft−1

]
.

For d ∈ {a, a∗(P )}, we also have

EP

[(
Y d
t − µ̂d

t (Xt)
)2

ŵt(d|Xt)
|Xt,Ft−1

]
=

EP [(Y
d
t )

2|Xt]− 2µd(P )(Xt)µ̂
d
t (Xt) + (µ̂d

t (Xt))
2

ŵt(d|Xt)

=
EP [(Y

d
t )

2|Xt]− (µd(P )(Xt))
2 + (µd(P )(Xt)− µ̂d

t (Xt))
2

ŵt(d|Xt)
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=

(
σd(Xt)

)2
+ (µd(P )(Xt)− µ̂d

t (Xt))
2

ŵt(d|Xt)
,

where we used EP [(Y
d
t )

2|x]− (µd(P )(x))2 =
(
σd(x)

)2
. Therefore,

EP

[(
Y ∗
t − µ̂

a∗(P )
t (Xt)

)2
ŵt(a∗(P )|Xt)

|Ft−1

]
+ EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]

− EP

[(
µ̂
a∗(P )
t (Xt) + µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2

|Ft−1

]
= EP

[
(σ∗(Xt))

2
+ (µa∗(P )(P )(Xt)− µ̂

a∗(P )
t (Xt))

2

ŵt(a∗(P )|Xt)

]
+ EP

[
(σa(Xt))

2
+ (µa(P )(Xt)− µ̂a

t (Xt))
2

ŵt(a|Xt)

]

− EP

[(
µ̂
a∗(P )
t (Xt) + µ̂a

t (Xt)− (µa∗(P )(P )− µa(P ))
)2]

.

Because µ̂a
t (x)

a.s.−−→ µa(P )(x) and ŵt(a|x)
a.s.−−→ w∗(a|x), for each x ∈ X , with probability 1,

lim
t→∞

∣∣∣∣∣
(
(σ∗(x))

2
+ (µa∗(P )(P )(x)− µ̂

a∗(P )
t (x))2

ŵt(a∗(P )|x)

)

+

(
(σa(x))

2
+ (µa(P )(x)− µ̂a

t (x))
2

ŵt(a|x)

)
−
(
µ̂
a∗(P )
t (x) + µ̂a

t (x)− (µa∗(P )(P )− µa(P ))
)2

−

(
(σ∗(x))

2

w∗(a∗(P )|x)
+

(σa(x))
2

w∗(a|x)
+
(
µa∗(P )(P )(x)− µa(P )(x)− (µa∗(P )(P )− µa(P ))

)2)∣∣∣∣∣
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t→∞

∣∣∣∣∣ (σ∗(x))
2

ŵt(a∗(P )|x)
− (σ∗(x))

2

w∗(a∗(P )|x)

∣∣∣∣∣+ lim
t→∞

∣∣∣∣∣ (σa(x))
2

ŵt(a|x)
− (σa(X))

2

w∗(a|x)

∣∣∣∣∣
+ lim

t→∞

(µa∗(P )(P )(x)− µ̂
a∗(P )
t (x))2

ŵt(a∗(P )|x)
+ lim

t→∞

(µa(P )(x)− µ̂a
t (x))

2

ŵt(a|x)

+ lim
t→∞

∣∣∣∣(µ̂a∗(P )
t (x) + µ̂a

t (x)− (µa∗(P )(P )− µa(P ))
)2

−
(
µa∗(P )(P )(x)− µa(P )(x)− (µa∗(P )(P )− µa(P ))

)2∣∣∣∣
= 0.

Therefore, from Lebesgue’s dominated convergence theorem,

TV a∗(P )EP

[
(ξat (P ))

2|Ft−1

]
− V a∗(P )

= EP
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(σ∗(x))

2
+ (µa∗(P )(P )(Xt)− µ̂
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t (Xt))

2
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)2
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]
− EP

[
(σ∗(Xt))

2

w∗(a∗(P )|Xt)
+

(σa(Xt))
2

w∗(a|Xt)
+
(
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)2
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a.s.−−→ 0.
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Figure 2: Experimental results. The y-axis and x-axis denote the expected simple regret EP [rT (π)(P )] under each strategy
and T , respectively.

L. Non-asymptotic Upper Bound
When a specific convergence rate is assumed, a non-asymptotic convergence rate for the CLT can be derived for the AS-
AIPW strategy.

Corollary L.1. For all a, b ∈ [K]2, suppose that ξa,bt (P ) is conditionally sub-Gaussian; that is, there exits an absolute
constant Cξ > 0 such that for all P ∈ P and all λ ∈ R,

EP

[
exp

(
λξa,bt (P )

)
|Ft−1

]
≤ exp

(
λ2Cξ

2

)
.

Also suppose that some α > 0 and constants M , C and D,

max
t∈N

EP

[
exp

(∣∣∣√Tξa,bt (P )
∣∣∣α)] < M,

and

P
(
|Ωa,b

t (P )− 1| > D/
√
t(log t)2+2/α

)
≤ Ct−1/4(log t)1+1/α.

Then, for a, b ∈ [K] and T ≥ 2,

P
(
µ̂a,AIPW
T − µ̂b,AIPW

T ≤ 0
)
≤


exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
+AT−1/4(log T )1+1/α if E0 <

√
T∆a,b(P ) ≤ E;

exp

(
−T(∆a,b(P ))

2

2C2
ξ

)
if E0 <

√
T∆a,b(P ),

where the constant A depends only on α, M , C, and D, and E0 > E > 0 are some constants independent from T and
∆a,b(P ).

M. Additional Experimental Results
We show addition experimental results. In Appendix M.1, we show results with variances different from those in Section 7.
In Appendix M.2, we show the result with continuous contextual information.

M.1. Addition Experimental Results without Contextual Information

Under the same setting with that in Section 7, we draw the variances from a uniform distribution with support [10, 100].
We show the result in Figure 2.

M.2. Continuous Contextual Information

We compare our TS-HIR and AS-AIPW strategies with the Uniform-EBA (Uniform, Bubeck et al., 2011), and Successive
Rejection (SR, Audibert et al., 2010), and UGapEb (Gabillon et al., 2012).
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We consider cases with K = 2, 3, 5, 10 and D = 2-dimensional contextual information. We consider contextual informa-
tion; therefore, we only investigate the AS-AIPW strategy. Because we cannot obtain a closed-form solution for K ≥ 3,
for simplicity, we fix w∗(a|x) = (σa(x))2∑

b∈[K](σ
b(x))2

for K ≥ 3, which still reduces the expected simple regret better than

w∗(a) = (σa)2∑
b∈[K](σ

b)2
.

In each set up, the best treatment arm is arm 1. The expected outcomes of suboptimal treatment arms are equivalent
and denoted by µ̃ = µ2(P ) = µK(P ). We use µ̃ = 0.80, 0.90. We generate the variance from a uniform distribution
with a support [0.1, 5] and contextual information Xt = (Xt1, Xt2) from a multinomial distribution with mean (1, 1) and

variance
(

1 0.1
0.1 1

)
. Let (θ1, θ2) be random variables generated from a uniform distribution with a support [0, 1]. We

then generate µa(P )(Xt) = θ1X
2
t1 + θ2X

2
t2/c

a
µ and (σa(Xt))

2 = (θ1X
2
t1 + θ2X

2
t2)/c

a
σ , where caµ, c

a
σ are values that

adjust the expectation to align with µa(P ) and (σa)2. We continue the experiments until T = 5, 000 when µ̃ = 0.80 and
T = 10, 000 when µ̃ = 0.90. We conduct 100 independent trials for each setting. At each t ∈ [T ], we plot the empirical
simple regret in Figure 1. Additional results are presented in Appendix M.

From Figure 1 and Appendix M, we can observe that the AS-AIPW performs well when K = 2. When K ≥ 3, although
the AS-AIPW tends to outperform the Uniform, other strategies also perform well. We conjecture that the AS-AIPW
exhibits superiority against other methods when K is small (mismatching term in the upper bound), the gap between the
best and suboptimal arms is small, and the variances significantly vary across arms. As the superiority depends on the
situation, we recommend a practitioner to use the AS-AIPW with several strategies in a hybrid way.

We show experimental results with K = 2, 3, 5, 10 in Figures 4–6, respectively.
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Figure 3: Results when K = 2.
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Figure 4: Results when K = 3.
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Figure 5: Results when K = 5.
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Figure 6: Results when K = 10.
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