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Figure 1: While generating a 1024×1024 image over 25 steps using a well-known text-to-image diffusion model
(Chen et al., 2023a), we analyze the latency contributions of its various components. The major computational bot-
tleneck is the attention mechanism, which exhibits a key pattern during inference: cross-attention is initially essential,
but its significance decreases over time. Conversely, self-attention has minimal initial impact but becomes crucial
over time. This allows for caching attention maps and reusing them when they are less crucial, thereby considerably
speeding up inference with slight impact on generation quality, as illustrated in (b).

Abstract

We explore the role of attention mechanism during inference in text-conditional diffusion models.
Empirical observations suggest that cross-attention outputs converge to a fixed point after several
inference steps. The convergence time naturally divides the entire inference process into two phases:
an initial phase for planning text-oriented visual semantics, which are then translated into images
in a subsequent fidelity-improving phase. Cross-attention is essential in the initial phase but almost
irrelevant thereafter. However, self-attention initially plays a minor role but becomes crucial in the
second phase. These findings yield a simple and training-free method known as temporally gating
the attention (TGATE), which efficiently generates images by caching and reusing attention outputs
at scheduled time steps. Experimental results show when widely applied to various existing text-
conditional diffusion models, TGATE accelerates these models by 10%–50%. The code of TGATE
is available at Placeholder.

1 Introduction

“ A small leak will sink a great ship.”
—Benjamin Franklin

Diffusion models (Jarzynski, 1997; Neal, 2001; Ho et al., 2020) have been widely used for image generation. Featuring
an attention mechanism (Vaswani et al., 2017; Schmidhuber, 1992c), they align different modalities (Rombach et al.,
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2022), including text, to generate high-quality images and videos. Several studies highlight the importance of attention
for spatial control (Xie et al., 2023; Hertz et al., 2023; Chefer et al., 2023); however, only a few have investigated its
role from a temporal perspective during denoising.

The attention module generally comprises self-attention, which processes the context across spatial positions, and
cross-attention, which integrates signals from various modalities. Understanding the roles of these components during
inference is key to comprehend the overall model behavior. We analyze their contributions at different time steps and
gained three critical insights:

• Cross-attention outputs convergence to a fixed point in first several steps. Accordingly, the time point of
convergence divides the denoising of diffusion models into two phases: i) an initial phase, during which the
model relies on cross-attention to plan text-oriented visual semantics; this is denoted as the semantic-planning
phase, and ii) a subsequent phase, during which the model learns to generate images from previous semantic
planning; this is referred to as the fidelity-improving phase.

• Cross-attention is redundant in the fidelity-improving phase. During the semantics-planning phase, cross-
attention plays a crucial role in creating meaningful semantics. However, in the latter phase, it converges and
has a minor impact on image generation. Bypassing cross-attention during the fidelity-improving phase can
indeed potentially reduce computational costs while maintaining the image generation quality.

• Self-attention is largely redundant in the semantics-planning phase. Unlike cross-attention, self-attention
evidently plays a significant role in the later phase. However, its contribution is limited in the early semantics-
planning phase. By selectively skipping self-attention during this phase, the inference process can be further
accelerated with only minor impact on generation.

Notably, the scaled dot product in the attention mechanism is a quadratic complexity operation. As the resolution and
token length in modern models increase, attention mechanism inevitably increases computational costs and becomes
a significant source of latency (Li et al., 2024). Thus, the role of attention mechanism must be re-evaluated; moreover,
the aforementioned shortcoming inspires us to design a simple, effective, and training-free method, i.e., , temporally
gating the attention (TGATE), to improve the efficiency and maintain the quality of images generated by off-the-shelf
diffusion models. The principal observations with respect to TGATE are as follows:

• TGATE increases efficiency by caching and reusing the cross-attention outcomes when they are rendered
useless, thereby eliminating the calculation of redundant attention. This strategy does not affect the model
performance, as the predictions of cross-attention converge and are potentially redundant.

• TGATE is training-free and has broad applicability in text-to-image and text-to-video models, and supports
U-Net and transformer-based architectures. It is also orthogonal to different noise schedulers and acceleration
methods.

• TGATE can further accelerate diffusion models by dynamically caching and reusing self-attention predictions
during the initial phase. In extreme cases, TGATE reduces the multiply-accumulate (MAC) operation of
PixArt-Alpha from 107 T to 64 T and cuts its latency from 62 s to 33 s on a 1080Ti commercial card, thereby
enhancing the efficiency without considerably impacting the performance.

2 Preliminary

Diffusion technique has a rich history, dating back to nonequilibrium statistical physics (1997) (Jarzynski, 1997) and
annealed importance sampling (Neal, 2001). This mechanism characterized by its scalability and stability, (Dhariwal
& Nichol, 2021; Ho et al., 2020), has been widely used in modern text-conditional generative models (Rombach et al.,
2022; Ramesh et al., 2022; 2021; Saharia et al., 2022; Chen et al., 2023b; Brooks et al., 2024).

Learning Objective. Herein, the formulation introduced by LDM (Rombach et al., 2022) is used to construct a latent
diffusion model comprising four main components: an image encoder E(·), an image decoder D(·), a denoising model
ϵθ(·), and a text embedding c. The learning objective for this model is defined as follows:

Lθ = Ez0∼E(x),t,c,ϵ∼N (0,1)
[
||ϵ − ϵθ(zt, t, c)||22

]
, (1)
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where ϵθ(·) is designed to accurately estimate noise ϵ added to the current latent representation zt at time step t ∈ [1, n],
that is conditioned on text embedding c. During inference, ϵθ(zt, t, c) is called multiple times to recover z0 from zt,
where z0 is decoded into an image x using D(z0).

Inference Stage. In this stage, classifier-free guidance (CFG) (Ho & Salimans, 2022) is commonly employed to
incorporate conditional guidance as follows:

ϵc,θ(zt, t, w, c) = ϵθ(zt, t,∅) + w(ϵθ(zt, t, c) − ϵθ(zt, t,∅)), (2)

where ∅ represents the embedding of a null text, i.e., “”, w is the guidance scale parameter, and ϵc,θ implicitly esti-
mates p(c|z) ∝ p(z|c)/p(z) to guide conditional generation p̃(z|c) ∝ p(z|c)pw(c|z). In particular, ∇log(p(c|z)) ∝
∇zlog(p(z|c)) − ∇zlog(p(z)), which is identical to Eq. 2.

Attention Mechanism. In the denoising model ϵθ, each block extensively integrates the attention mechanism. Specif-
ically, the self-attention module captures context across spatial positions, whereas the cross-attention module enables
interactions with various input modalities, including text. The attention process is mathematically defined as follows:

Ct
c = Softmax(Qt

z · K√
d

) · V, (3)

where Qt
z represents a projection of zt. For cross-attention, K and V are projections of the text embedding c. However,

in self-attention, they are derived from zt. d denotes the feature dimension of K. Despite its effectiveness, the attention
mechanism acts as a significant computational bottleneck when processing high-resolution features due to its quadratic
computational complexity. This complexity is as illustrated in Fig. 1 and SnapFusion (Li et al., 2024).

3 Temporal Analysis of Attention Mechanism

Inference Steps
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Figure 2: Difference in cross-attention maps between
two consecutive inference steps on the MS-COCO
dataset. Each data point in the figure is an average of
1,000 captions and all cross-attention maps within the
model. The shaded area indicates the variance, whereas
the curve demonstrates that the difference between con-
secutive steps progressively approaches zero.

Here, the role and functionality of attention mechanism
in the inference stage of a well-trained diffusion model
are discussed. First, an empirical observation of cross-
attention map convergence is discussed in Section 3.1, fol-
lowed by a systematic analysis of this observation in Sec-
tion 3.2. Section 3.3 concludes with a follow-up analysis
of self-attention.

3.1 Convergence of Cross-Attention Map

Cross-attention mechanisms provide textual guidance at
each step in diffusion models. However, the shifts in the
noise input across these steps pose this question: Do the
feature maps generated by cross-attention exhibit temporal
stability, or do they fluctuate over time?

To find an answer, we randomly collect 1,000 captions
from the MS-COCO dataset and generate images using a
pre-trained SD-2.1 model1 with CFG. During inference,
we calculate the L2 distance between Ct and Ct+1, where
Ct represents the cross-attention maps at time step t. The difference in cross-attention between the two steps is
calculated by averaging L2 distances among all input captions, conditions, and depths.

Fig. 2 shows the variation in cross-attention differences across various inference steps. A clear trend is visible, showing
a gradual convergence of differences toward zero. Convergence always appears within 5-10 inference steps. Therefore,
cross-attention maps converge to a fixed point and do not offer dynamic guidance for image generation. This finding
supports the effectiveness of CFG with respect to cross-attention, demonstrating that despite varying conditions and

1https://huggingface.co/stabilityai/stable-diffusion-2-1
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initial noise, unconditional and conditional batches can converge toward a single, consistent result (Castillo et al.,
2023). We also track the cross-attention differences across different blocks; refer to Appendix E for details.

This phenomenon shows that the impact of cross-attention during inference process is not uniform and inspires the
temporal analysis of cross-attention.

3.2 Role of Cross-Attention in Inference

Analytical Tool. Existing analysis (Ma et al., 2024) shows that the consecutive inference steps of diffusion models
have similar denoising behaviors. Inspired by behavioral explanation (Bau et al., 2020; Liu et al., 2023), we measure
the impact of cross-attention by effectively “removing” it at a specific phase and observing the resulting difference in
the image generation quality. In practice, this removal is approximated by substituting the original text embedding
with a placeholder for a null text, i.e., “”. We formalize the standard denoising trajectory as a sequence as follows:

S = {ϵc(zn, c),ϵc(zn−1,c), ..., ϵc(z1, c)}, (4)

where we omit the time step t and guidance scale w for simplicity. The image generated from sequence S is denoted by
x. This standard sequence is then modified by replacing the conditional text embedding c with the null text embedding
∅ over a specified inference interval, resulting in two new sequences, SF

m and SL
m, based on a scalar m as follows:

SF
m = {ϵc(zn, c), · · · , ϵc(zm,c), · · · , ϵc(z1,∅)},

SL
m = {ϵc(zn,∅), · · · , ϵc(zm,∅), · · · , ϵc(z1, c)}.

(5)

Here, m serves as a gate step that splits the trajectory into two phases. In sequence SF
m, the null text embedding

∅ replaces the original text embedding c for the steps from m + 1 to n. In contrast, in sequence SL
m, the steps

from 1 to m use the null text embedding ∅ instead of the original text embedding c, whereas the steps from m to n
continue to use the original text embedding c. The images generated from these two trajectories are denoted as xF

m and
xL

m, respectively. To determine the impact of cross-attention at different phases, the differences in generation quality
among x, xL

m, and xM
m are compared. If the image generation quality among x and xF

m, are considerably different,
it indicates the importance of cross-attention at that phase. If the quality does not vary considerably, the inclusion of
cross-attention may not be necessary.

Herein, SD-2.1 is used as the model, and the DPM solver (Lu et al., 2022) is used for noise scheduling. The total
inference step in all experiments is set as 25. The text prompt “High quality photo of an astronaut riding a horse in
space.” is used for visualization.

Results and Discussions. Fig. 3(a) shows the trajectory of the mean of predicted noise, which empirically shows that
denoising converges after 25 inference steps. Therefore, analyzing the impact of cross-attention within this interval
is difficult. As shown in Fig. 3(b), the gate step m is set to 10, which yields three trajectories: S, SF

m and SL
m. The

visualization illustrates that ignoring the cross-attention after 10 steps does not influence the final outcome. However,
a notable disparity is observed after bypassing cross-attention in the initial steps. As shown in Fig. 3(c), the image
generation quality (Fréchet inception distance, FID) considerably deteriorates in the MS-COCO validation set due to
this elimination. The resulting quality is even worse than the weak baseline that generates images without CFG. We
then generalize these assessments to a range of gate steps, inference numbers, noise schedulers, and base models.
The experimental results consistently show that the FIDs of SF

m are slightly better than the baseline S and outperform
SL

m by a wide margin. These empirical observations consistently underscore the broad applicability of the reported
findings over different configurations. Appendix A details these results.

These analyses can be summarized as follows:

• Cross-attention converges early during inference, which can be characterized by semantics-planning and
fidelity-improving phases. The impact of cross-attention is not uniform in these two phases.

• Cross-attention in the semantics-planning phase is significant for generating semantics aligned with the text
conditions.

• The fidelity-improving phase mainly improves the image quality without requiring cross-attention. FID
scores can be slightly improved via null-text embedding in this phase.
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Figure 3: Impact of cross-attention on the inference steps in a pre-trained diffusion model, i.e., , stable diffusion
2.1 (SD-2.1). (a) The mean of the noise predicted at each inference step. (b) Images generated by the diffusion model
at different inference steps. The first row, S, in (b) feeds text embedding to cross-attention modules for all steps,
the second row, SF

m, only uses text embedding from the first step to the m-th step, and the third row, SL
m, inputs

text embedding from the m-th to the n-th step. (c) Zero-shot FID scores based on these three settings on the MS-
COCO validation set (Lin et al., 2014), with the baseline defined as conditional generation without CFG. Here, FID is
calculated using the full COCO validation set (Lin et al., 2014).

3.3 Role of Self-Attention in Inference

Based on the aforementioned observations, the role of self-attention is explored at various phases. The analysis
is detailed in Appendix B. Empirical findings reveal that self-attention plays a significant role during the fidelity-
improving phase but contributes less in the semantics-planning phase, as opposed to that of cross-attention.

4 Proposed Method - TGATE

Results of the empirical study show that self-attention and cross-attention in the initial and last inference steps, respec-
tively, are redundant. However, it is nontrivial to drop/replace attention modules without retraining the model. To this
end, an effective and training-free method is proposed herein: TGATE. This method caches the attention outcomes and
reuses them throughout the scheduled time steps.

4.1 Skipping Cross-Attention in the Fidelity-Improving Phase

Caching Cross-Attention Maps. Suppose m is the gate step for the phase transition. In the m-th step and i-th cross-
attention module, two cross-attention maps, Cm,i

c and Cm,i
∅ , can be accessed from CFG-based inference. The average

of these two maps is calculated to serve as an anchor and store it in a first-in-first-out feature cache F. After traversing
all the cross-attention blocks, F can be written as follows:

F = {1
2(Cm,i

∅ + Cm,i
c )|i ∈ [1, l]}, (6)

where l denotes the total number of cross-attention modules.

Re-using Cached Cross-Attention Maps. In each step of the fidelity-improving phase, when a cross-attention op-
eration is performed during the forward pass, it is omitted from the computation graph. Instead, the cached F[i] is
fed into subsequent computations. This approach does not yield identical predictions at each step, as a residual con-
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nection (Hochreiter, 1991; Srivastava et al., 2015; He et al., 2016) in the neural networks allows the model to bypass
cross-attention.
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Figure 4: Pipeline of TGATE for accelerating inference. During the semantics-planning phase, cross-attention
(CA) is continuously active, whereas self-attention (SA) is applied every k steps following an initial warm-up period
to conserve computational resources. In the fidelity-improving phase, cross-attention is substituted with a caching
mechanism, and self-attention remains operational.

4.2 Skipping Self-Attention in Semantics-Planning Phase

The analysis described in Appendix B demonstrates that self-attention contributes mainly to the second phase, sug-
gesting a reduction in its usage in the first phase. However, unlike cross-attention, self-attention cannot be entirely
bypassed without considerably degrading the capacity and performance of the model. An interval caching strategy is
introduced to preserve the generation performance. In particular, after activating self-attention with initial warm-up
steps, output from all blocks is cached and reused for every k step in the semantics-planning phase. In the fidelity-
improving phase, self-attention is fully operational. The pipeline of TGATE is detailed in Fig. 4.

5 Related Works

Herein, the role and functionality of cross-attention within diffusion trajectories are analyzed. These factors have
been previously studied from different perspectives. Spectral diffusion (Yang et al., 2023) traces diffusion trajectory
via frequency analysis and finds that the diffusion model restores an image from varying frequency components at
each step. T-stitch (Pan et al., 2024) shows that at the beginning of the inference, different models generated similar
noise. This finding suggests that a smaller model can produce the same noise as a larger one, thereby considerably
reducing the computational costs. Adaptive guidance (Castillo et al., 2023) models diffusion trajectory as a graph
and applies neural architecture search (NAS) to automatically identify the importance of each step. This approach
identifies CFG (Ho & Salimans, 2022) as a redundant operator in some inference steps, suggesting the removal of
unconditional batch for accelerating the generation speed. As per DeepCache (Ma et al., 2024), predictions from
each block contain temporal similarities in consecutive time steps. Thus, reutilizing predictions from these blocks can
improve the efficiency of the inference. Wimbauer et al. (Wimbauer et al., 2023) propose a contemporary work for
caching block features; however, it requires a resource-friendly training process.

To the best of our knowledge, this study is orthogonal to the existing studies. We observe that cross-attention and
self-attention non-uniformly yet independently (almost complementarily) contribute to the final generated samples
across various time steps. Therefore, attention outcomes can be selectively copied and reused in certain inference
steps without affecting the generation performance. This may inspire several new studies toward developing faster
diffusion models.

6 Experimental Results

The proposed method is integrated into several state-of-the-art diffusion models, including SD-series (Rombach et al.,
2022; Podell et al., 2023; Blattmann et al., 2023), PixArt (Chen et al., 2023a), and OpenSora (Lab & etc., 2024).
Following established evaluation protocols (Podell et al., 2023; Li et al., 2023; Lab & etc., 2024), comprehensive
experiments are conducted using the MS-COCO (Lin et al., 2014), MJHQ (Li et al., 2023), OpenSora-Sample (Lab
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Figure 5: Samples generated from (a) PixArt-Alpha and (b) SDXL with or without TGATE given the same initial
noise and captions. The visualization of PixArt is generated using two configurations, i.e., m=15 or (m=15,k=5).
For SDXL, the configuration is m=10 and (m=10,k=5). Refer to Appendix E for visualizations with different hyper-
parameters (m and k).

& etc., 2024) and DPG-Bench (Hu et al., 2024) datasets. Additionally, the proposed method is compared with other
accelerating methods, such as the latent consistency model (Luo et al., 2023), adaptive guidance (Castillo et al., 2023),
and DeepCache (Ma et al., 2024). Latency and MACs are considered the metrics for efficiency. The generation
performance is evaluated using FID (Heusel et al., 2017), CLIP score (Radford et al., 2021), and DPG-Score (Hu
et al., 2024). More details are given in Appendix C.

Table 1: Computational complexity, latency, and FID on the MJHQ-10K (Li et al., 2023) using the base model of
PixArt-Alpha (Chen et al., 2023a). MACs stand for Multiply–Accumulate Operations per image, which is auto-
matically generated using Calflops (xiaoju ye, 2023). The latency of generating one image is tested on a 1080 Ti
commercial card. FID (Heusel et al., 2017) is used to test the performance of PixArt and CLIP score (Radford et al.,
2021) for OpenSora (Lab & etc., 2024).

Inference Method Caching Modules MACs Latency Generation Performance

PixArt-Alpha - 107.031T 61.502s 9.653
PixArt-Alpha + TGATE (m=10) CA 70.225T 40.648s 11.268
PixArt-Alpha + TGATE (m=15) CA 82.494T 47.599s 9.548

PixArt-Alpha + TGATE (m=10, k=3) CA,SA 65.355T 34.391s 11.789
PixArt-Alpha + TGATE (m=10, k=5) CA,SA 64.138T 32.827s 12.738
PixArt-Alpha + TGATE (m=15, k=3) CA,SA 73.971T 36.650s 10.289
PixArt-Alpha + TGATE (m=15, k=5) CA,SA 71.536T 33.521s 11.298

OpenSora (250 inference steps) - 8417.500T 178.913m 31.211
OpenSora + TGATE (m=100) CA 5696.500T 120.826m 30.779
OpenSora + TGATE (m=100, k=3) CA,SA 5370.790T 94.393m 30.766
OpenSora + TGATE (m=100, k=5) CA,SA 5298.410T 88.519m 30.683
OpenSora + TGATE (m=100, k=10) CA,SA 5246.710T 84.323m 30.161

6.1 Improvement over Transformer-based Models

The proposed method is integrated into PixArt-Alpha (Chen et al., 2023a), a text conditional model based on trans-
former architecture (Peebles & Xie, 2023; Vaswani et al., 2017) 2. As shown in Table 1, TGATE considerably accel-
erates the inference speed across various configurations. Notably, by setting m to 15, TGATE enhances the efficiency

2A technology with rich history, which can be dated back to the principles of the 1991 unnormalized linear Transformer (Schmidhuber, 1992a;
Schlag et al., 2021).
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and slightly reduces the FIDs to 9.548. Additionally, configuring TGATE with m = 10 and k = 5 further reduces
computational demands while only moderately impacting the performance. This configuration only requires 64.138T
MACs to generate a single image, thereby reducing the latency by nearly in half—from 61.502s to 32.827s. Notably,
existing studies such as DeepCache (Ma et al., 2024) and BlockCache (Wimbauer et al., 2023) rely on the skipping
architecture of U-Net (Ronneberger et al., 2015) to cache features for acceleration. However, these approaches are
unsuitable for transformers due to their different architectural demands. To address this research gap, TGATE decom-
poses the contribution of attention mechanisms and reuses the features in redundant steps. This represents the first step
to freely accelerate transformers by caching features.

Additionally, TGATE and its base models are qualitatively compared herein. Fig. 5 shows the images generated
by different base models with or without TGATE. Although TGATE increases FID scores in some configurations,
changes in generated samples are nearly imperceptible and demonstrate the effectiveness of TGATE in maintaining
performance. More visualizations are available in Appendix E, and more analysis, including frame consistency, text-
image alignment and memory cost analysis, is provided in Appendices H, I and J.

Table 2: Computational complexity, latency, and FID on the MS-COCO validation set using the base model of SD-
1.5, SD-2.1, and SDXL. MACs stands for Multiply–Accumulate Operations per image. These terms are automatically
generated using Calflops. The latency of generating one image is tested on a 1080 Ti commercial card. FID (Heusel
et al., 2017) is used to test the performance of text-to-image models (Rombach et al., 2022; Podell et al., 2023) and
CLIP score (Radford et al., 2021) for video models (Blattmann et al., 2023).

Inference Method MACs Latency Generation Performance ↓
SD-1.5 16.938T 7.032s 23.927
SD-1.5 + TGATE (m=5) 9.875T 4.313s 20.789
SD-1.5 + TGATE (m=10) 11.641T 4.993s 23.269

SD-2.1 38.041T 16.121s 22.609
SD-2.1 + TGATE (m=5) 22.208T 9.878s 19.940
SD-2.1 + TGATE (m=10) 26.166T 11.372s 21.294

SDXL 149.438T 53.187s 24.628
SDXL + TGATE (m=5) 84.438T 27.932s 22.738
SDXL + TGATE (m=10) 100.688T 34.246s 23.433

SDXL + TGATE (m=5 k=3) 83.498T 27.412s 22.306
SDXL + TGATE (m=10 k=3) 96.928T 32.164s 22.763
SDXL + TGATE (m=10 k=5) 95.988T 31.643s 23.839

SVD 1609.250T 645.842s 31.322
SVD + TGATE (m=5) 935.650T 408.485s 31.176
SVD + TGATE (m=10) 1104.050T 467.824s 31.334

SVD + TGATE (m=5 k=3) 932.780T 402.044s 31.167
SVD + TGATE (m=10 k=3) 1092.570T 442.060s 31.358
SVD + TGATE (m=10 k=5) 1089.700T 435.619s 31.343

6.2 Improvement over U-Net-based Models

TGATE can also be applied to U-Net-based models (Rombach et al., 2022; Podell et al., 2023). For all settings shown
in Table 2, TGATE enhances the performance of the base models in terms of computational efficiency and FID scores.
In particular, TGATE works better when the parameter size of the base model increases. In SDXL, TGATE can reduce
the latency by half on the commercial GPU card (from 53.187 to 27.412 s). This indicates the effectiveness and
scalability of TGATE on U-Net-based diffusion models. Qualitative analysis is given in Fig. 5 and Appendix E, and
the evaluation of text alignment is discussed in Appendix H.
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Table 3: Computational complexity, latency, and FID us-
ing the LCM distilled from SDXL Podell et al. (2023)
and PixelArt-Alpha Chen et al. (2023a).

Inference Method MACs Latency FID ↓
LCM (SDXL, n=4) 11.955T 3.805s 25.044
LCM (SDXL, n=6) 17.933T 5.708s 25.630
LCM (SDXL, n=8) 23.910T 7.611s 27.413
+ TGATE (m=1) 11.171T 3.533s 25.028

+ TGATE (m=2) 11.433T 3.624s 24.595

LCM(PixArt, n=4) 8.563T 4.733s 36.086
+ TGATE (m=1) 7.623T 4.448s 38.574
+ TGATE (m=2) 7.936T 4.543s 37.048

Table 4: Comparison with Adaptive Guidance (Castillo
et al., 2023) on the MS-COCO validation set based on
SDXL and Pixart-Alpha.

Inference Method MACs Latency FID ↓
SDXL 149.438T 53.187s 24.628

w/ Adaptive Guidance 104.606T 35.538s 23.301

w/ TGATE (m=5, k=3) 83.498T 27.412s 22.306

PixelAlpha 107.031T 61.502s 38.669

w/ Adaptive Guidance 74.922T 42.684s 35.286

w/ TGATE (m=8) 65.318T 37.867s 35.825
w/ TGATE (m=10) 70.225T 40.648s 35.726
w/ TGATE (m=10,k = 5) 64.138T 32.827s 38.415

6.3 Improvement over Acceleration Models

Improvement over Consistency Model. TGATE is implemented using a distillation-based method (Schmidhuber,
1992b; Hinton et al., 2015), namely the latent consistency model (LCM). The LCM distilled from SDXL 3 is first used
as the base model, and a grid search is performed for different inference steps. Table 3 reveals that the generation
performance is improved in fewer inference steps (i.e., four). To incorporate TGATE into the LCM, the cross-attention
prediction of the first or second step (m = 1, 2) is cached and reused in the remaining inference steps. Due to limited
inference steps, self-attention is not cached. Table 3 shows the experimental results of the LCM models distilled
from SDXL and PixArt-Alpha4. Although the trajectory is deeply compressed into a few steps, TGATE functions
well, and further decreases PixArt-based LCM computation. Thus, the MACs and latency are reduced by 10.98%
and 6.02%, respectively, with comparable generation results. As TGATE does not incur any training costs, integrating
it with consistency models is valuable and promising. As a reasonable blueprint, distillation-based methods require
sampling trajectories from the teacher model; contrarily, TGATE can enhance sampling efficiency, thereby accelerating
the learning process. This aspect will be further discussed in a future study. The visualization is provided in Appendix
E.

Comparison with Adaptive Guidance. Adaptive guidance (Castillo et al., 2023) offers a strategy for the early
termination of CFG. The efficiency of TGATE surpasses that of adaptive guidance, as it innovatively caches and reuses
attention. On terminating the CFG in PixArt-Alpha, adaptive guidance yields 2.14T MACs/step, whereas TGATE
skips cross-attention and further reduces this value to 1.83T MACs/step. This optimization moderately reduces the
computational overhead, as shown in Table 4. Notably, recent trends have shifted toward distillation-based techniques
(Song et al., 2023; Salimans & Ho, 2022) to accelerate inference. These methods compress the denoising process into
fewer steps, often achieving single-digit iterations. The student model learns to mimic the CFG-based output during
distillation; therefore, CFG decreases during inference, rendering adaptive guidance inapplicable. In contrast, TGATE
can fill this gap and further accelerate the distillation-based models, as shown in Table 3. Beyond current capabilities,
the superior scalability of TGATE is compared with that of adaptive guidance, particularly with increasing input sizes.
This scalability feature of TGATE is further explored in Appendix D.

Table 5: Computational complexity, latency, and FID
on the MS-COCO validation set using DeepCache (Ma
et al., 2024).

Inference Method MACs Latency FID ↓
SDXL 149.438T 53.187s 24.628

TGATE 83.498T 27.412s 22.306
DeepCache 57.888T 19.931s 23.755
DeepCache + TGATE 43.868T 14.666s 23.999

Table 6: Zero-shot FIDs on the MS-COCO validation set
using the base model of SDXL and different noise sched-
ulers (Karras et al., 2022; Lu et al., 2022; Song et al.,
2020).

Scheduler Base Model TGATE(CA) TGATE(CA,SA)

EulerD 23.084 21.883 21.857
DDIM 21.377 21.783 21.821
DPMSolver 24.628 22.738 22.306

3https://huggingface.co/latent-consistency/lcm-sdxl
4https://huggingface.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS
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Improvement over DeepCache. Table 5 compares the performance of DeepCache (Ma et al., 2024) and TGATE
based on SDXL. Although DeepCache is more efficient, TGATE outperforms it in terms of generation quality. TGATE
is integrated with DeepCache by reusing cross-attention maps, thereby yielding superior results: MACs and latency of
43.868 T and 14.666 s. Remarkably, DeepCache caches the mid-level blocks to decrease computational load, which
is specific to the U-Net architecture. However, its generalizability to other architectures, such as the transformer-
based architecture, remains underexplored. Beyond DeepCache, TGATE has wider applications and can considerably
improve transformer-based diffusion models, as shown in Table 1. Owing to this adaptability, TGATE is a versatile
and potent enhancement for various architectural frameworks. Self-attention is fully operational in the experiment
conducted herein and aligned with the DeepCache strategy, as it is not included in the first and last blocks.

Improvement over Different Schedulers. The generalizability of TGATE is evaluated on different noise schedulers.
As shown in Table 6, three advanced schedulers (Karras et al., 2022; Lu et al., 2022; Song et al., 2020), are considered
that could compress the generation process of a diffusion model to 25 inference steps. Results show that TGATE
could consistently achieve stable generation performance in all settings, further indicating its potential for a broad
application.

Additional Comparison with other methods. Beyond the previously discussed methods, we explore integrating
our approach with other accelerated diffusion models: (1) SSD (Gupta et al., 2024), which reduces model size via
distillation from a larger model, and (2) ToMe (Bolya & Hoffman, 2023), which accelerates inference by compressing
token counts. Further details are provided in Appendix G.

7 Conclusion and Discussion

The cross-attention and self-attention in the inference process of text-conditional diffusion models are empirically
analyzed here, offering the following: i) In the first few inference steps, cross-attention is the primary contributor;
however, its influence diminishes in later steps. ii) In contrast, self-attention plays a secondary role initially but gains
significance as denoising progresses. iii) By caching and reusing attention maps during scheduled inference steps,
TGATE reduces computational demands while still achieving competitive outcomes. These findings encourage further
analysis of the role of attention in text-conditional diffusion models.

Limitations We acknowledge the challenge of further improving a distilled diffusion model when working with few
inference steps. In such cases, TGATE can only offer a 10% reduction in computation cost (MACs) for models with
highly compressed inference steps, such as LCM. However, considering that a model may be used billions of times
daily, this reduction is significant. The proposed TGATE is particularly valuable since it does not require additional
training costs or result in significant performance drops. Furthermore, TGATE can also be integrated into the distillation
process, where it accelerates the generation process of the teacher model, potentially speeding up the training of the
student model.

Empirical studies suggest that using TGATE may cause a slight decline in text-image alignment performance (Sec.
H) but generally improves the FID score (Sec. 6.1). Based on visualizations, we speculate that although TGATE-
generated images are similar to those without it, they tend to produce simpler patterns and objects, akin to outcomes
seen in other acceleration methods. To address this, we provide a set of parameters (k and m) to balance efficiency
and performance, allowing adaptation to different application scenarios. Despite these trade-offs, TGATE reduces
inference time by nearly half, making it an effective solution for most cases.

Broader Impacts

Positive Broader Impacts The text-conditional diffusion model, which may be used billions of times daily, typically
requires extensive energy resources. Without incurring additional training costs, the computational demands of various
base models can be reduced by 10% – 50% using the proposed approach. Thus, it is an eco-friendly solution that
considerably reduces the electricity consumption associated with AI technologies.

Negative Broader Impacts This study is fundamental and not linked to specific applications. Therefore, the negative
social impacts associated with TGATE are consistent with those of other text-conditional diffusion models and do not
present unique risks that warrant a specific mention here.
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A Additional Experiments for Temporal Analysis of Cross-Attention

Table A1: Zero-shot FIDs on the MS-COCO valida-
tion set using the base model SD-2.1 with DPM-Solver
(Lu et al., 2022). m is the gate step.

Configuration FID ↓
SD-2.1(w/ CFG) 22.609

SF
m (m = 3) 29.282

SF
m (m = 5) 20.859

SF
m (m = 10) 21.816

Table A2: Zero-shot FIDs on the MS-COCO valida-
tion set using the base model SD-2.1 with DPM-Solver
(Lu et al., 2022). m is the gate step and n is the total
inference number.

Configuration S SF
m SL

m

n=15, m=6 23.380 22.315 58.580
n=25, m=10 22.609 21.816 53.265
n=50, m=20 22.445 21.557 48.376
n=100, m=25 22.195 20.391 26.413

Table A3: Zero-shot FIDs on the MS-COCO validation
set using the base model SD-2.1 with different noise
schedulers. The total inference number is set as 50, and
the gate step is 20.

Configuration S SF
m SL

m

EulerD (Karras et al., 2022) 22.507 21.559 47.108
DPMSolver (Lu et al., 2022) 22.445 21.557 48.376
DDIM (Song et al., 2020) 21.235 20.495 53.150

Table A4: Zero-shot FIDs on the MS-COCO validation
set using different models: SD-1.5, SD-2,1, and SDXL.
The total inference number is set as 25, and the gate step
is 10.

Configuration S SF
m SL

m

SD-1.5 (Rombach et al., 2022) 23.927 22.974 37.271
SD-2.1(Rombach et al., 2022) 22.609 21.816 53.265
SDXL (Podell et al., 2023) 24.628 23.195 108.676

Additional experiments are performed for different gate steps of {3,5,10} to support the analysis on cross-attention.
As shown in Table A1, when the gate step is larger than five steps, the model that ignores cross-attention can achieve
better FIDs. To further justify the generalization of these findings, experiments are conducted under various conditions,
including a range of total inference numbers, noise schedulers, and base models. Table A2, A3, and A4 show that FIDs
of S, SF

m, and SL
m on the MS-COCO validation set.

B Temporal Analysis of Self-Attention

Table A5: Zero-shot FIDs on MJHQ-10k using the base model PixArt-Alpha with different caching and re-using
strategies.

Trajectory k m Total Inference Steps FIDs

S 1 - 25 9.653

Inference steps in the semantics-planning phase is less than that in the fidelity-improving phase.

S 1 10 25 11.268

SF 3 10 25 19.205
SL 3 10 25 11.789

SF 5 10 25 29.507
SL 5 10 25 12.738

Inference steps in the semantics-planning phase is larger than that in the fidelity-improving phase.

S 1 15 25 9.548

SF 3 15 25 11.436
SL 3 15 25 10.289

Inference steps in the semantics-planning phase is equal to that in the fidelity-improving phase.

S 1 10 20 10.105

SF 3 10 20 17.000
SL 3 10 20 11.482

Here, the functionality of self-attention in the denoising trajectories from a pre-trained diffusion model is explored.

Analytical Tool Unlike cross-attention, the direct removal of self-attention during inference is not a straightforward
process, as the performance deteriorates considerably. Thus, determining the specific contributions of each time step is
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challenging. To address this issue, a novel analytical approach involving caching and reusing features is proposed. As
our core premise, if the features of self-attention can be cached and reused across multiple steps without performance
decline, they may be considered less critical. Building on this concept, and drawing parallels with cross-attention
analysis, two distinct trajectories, SF and SL, are introduced.

In SF , self-attention features are cached and reused in the fidelity-improving phase using a gate step m and interval k.
Specifically, after m inference steps, self-attention is reused for k steps, and self-attention prediction is updated once
for the next k-step reuse cycle. Contrarily, SL skips self-attention during the initial semantics-planning phase for every
k steps after several warm-up steps, typically set at 2. Then, self-attention is fully integrated into inference after m
steps. The performance difference between SF and SL indicates the contribution of self-attention at different phases.

Inference steps

S

𝕊!

𝕊"

Figure A1: Illustration of the impact of self-attention on inference in Stable Diffusion 2.1 (SD-2.1). The base trajec-
tory, S, does not use cached self-attention features. In SF , these features are cached and reused during the fidelity-
improving phase. Conversely, SL bypasses self-attention in the initial semantics-planning phase. The interval is set to
5 and the gate step to 10. The visualization shows that caching self-attention in the semantics-planning phase does not
significantly affect the generation result. The input prompt is "paisaje montañoso nevado".

Results and Discussions For a comprehensive analysis, various experiments are conducted using different values of
gate step m and interval k. As shown in Table A5, the empirical results convincingly show that self-attention plays a
vital role in the latter phases of the process. This is evidenced by consistently higher FID score for SF than that for
SL across all tests. Note that we also provide a visualization (Fig. A1) for support.

The observations from the analysis can be summarized as follows:

• Unlike cross-attention, bypassing self-attention increases FID scores, indicating quality degradation. How-
ever, selectively skipping it during the semantics-planning phase results in a minor, manageable performance
drop.

• By increasing the interval for reusing the features, the efficiency can be improved but at the cost of perfor-
mance, suggesting that it cannot be removed totally in the semantics-planning phase.

C Implementation Details

Base Models. Several pre-trained models are used in the experiments: Stable Diffusion-1.5 (SD-1.5) (Rombach et al.,
2022), SD-2.1 (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt-Alpha (Chen et al., 2023a), SVD (Blattmann
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et al., 2023) and OpenSora (Lab & etc., 2024). Among them, the SD series are based on convolutional neural net-
works (Fukushima, 1979; 1980; Zhang et al., 1988; LeCun et al., 1989; Hochreiter, 1991; Srivastava et al., 2015; He
et al., 2016) (i.e., , U-Net (Ronneberger et al., 2015)). Pixart-Alpha and OpenSora work on the transformer (Vaswani
et al., 2017) (i.e., , DiT(Peebles & Xie, 2023)). This experimental setting covers several conditional generation tasks,
including text-to-image, text-to-video, and image-to-video tasks.

Acceleration Baselines. For a convincing empirical study, TGATE is compared with several acceleration baseline
methods: Latent Consistency Model (Luo et al., 2023), Adaptive Guidance (Castillo et al., 2023), DeepCache (Ma
et al., 2024), and multiple noise schedulers (Karras et al., 2022; Lu et al., 2022; Song et al., 2020). TGATE is orthogonal
to existing methods used to accelerate denoising inference; therefore, it can be trivially integrated to further accelerate
this process.

Evaluation Metrics. Similar to a previous study (Podell et al., 2023), 10k images from the MS-COCO validation
set (Lin et al., 2014) are used to evaluate the zero-shot generation performance. The images are generated using
DPM-Solver (Lu et al., 2022) with a predefined 25 inference steps and resized to 256 × 256 resolution to calculate
the FID (Heusel et al., 2017). TGATE is also tested on a high-resolution dataset, namely MJHQ (Li et al., 2023) to
evaluate its aesthetic quality. The generated images are set at a resolution of 1024 × 1024, with a total of 10k samples.
Following the protocol in ELLA (Hu et al., 2024), we utilize mPLUG-Large (Li et al., 2022) to score the generated
samples based on predefined questions. For video generation, the prompts from OpenSora-Sample (Lab & etc., 2024)
are used. 10 videos per prompt are generated, and their performance is evaluated based on the CLIP score (Radford
et al., 2021). As the text branch of SVD is unavailable, SDXL is used to create an image from a prompt, which is
then input into SVD to produce the corresponding video. To evaluate the efficiency, Calflops (xiaoju ye, 2023) is used
to count Multiple-Accumulate Operations (MACs) and the number of parameters (Params.). Furthermore, the latency
per sample is assessed on a platform equipped with a Nvidia 1080 Ti.

D Discussion on Scaling Token Length and Resolution

Table A6: MACs per inference step when scaling up the token lengths and image resolutions.

Tokens Scaling Factor
Resolution Method × 1 × 128 × 1024 × 4096

SD-2.1 (w/o CFG) 0.761T 1.011T 2.774T 8.820T768 Ours 0.73T

SD-2.1 (w/o CFG) 1.351T 1.601T 3.364T 9.410T1024 Ours 1.298T

SD-2.1 (w/o CFG) 5.398T 5.648T 7.411T 13.457T2048 Ours 5.191T

TGATE can improve efficiency by circumventing cross-attention, which motivated us to examine its contribution to the
overall computational cost based on the input size. Specifically, TGATE is compared with SD-2.1 w/o CFG per step to
determine the computational cost of cross-attention. Note that SD-2.1 w/o CFG is the computational lower bound for
existing methods (Castillo et al., 2023), as it can stop CFG early to accelerate diffusion process. As shown in Table A6,
MACs are used as a measure of efficiency. In the default SD-2.1 setting, the resolution is set as 768 with a maximum
token length of 77. Results show that cross-attention moderately contributes to the total computational load, which
increases exponentially with increasing resolution and token lengths. By omitting cross-attention calculations, TGATE
considerably mitigates its adverse effects. For example, in an extreme scenario with the current architecture targeting
an image size of 2048 and a token length of 4096 × 77, MACs can be decreased from 13.457 T to 5.191 T, achieving
more than two-fold reduction in computation.

One may argue that existing models do not support such high resolutions or token lengths. However, there is an
inevitable trend toward larger input sizes (Zhang et al., 2024; Esser et al., 2024; Chen et al., 2024). Furthermore, a
recent study (Li et al., 2024) has shown the difficulty in computing cross-attention on mobile devices, underscoring
the practical benefits of our approach.
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Figure A2: Generated samples by SDXL using the same initial noises and prompts, but with varying hyper-
parameters. The configurations are arranged from top to bottom in the order of decreasing latency.
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Figure A3: Samples generated by PixArt using the same initial noises and prompts and different hyperparame-
ters. The configurations, from top to bottom, are ordered by decreasing latency.
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Figure A4: Illustration of cross-attention map differences between consecutive inference steps. We sample cross-
attention maps from various blocks in SD-2.1 to monitor their convergence. The consistent convergence across differ-
ent blocks supports the generality of our observations.
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Figure A5: Illustration of cross-attention maps during different inference steps. We use
up_block.1.transformer_block.2.attn2 in SD-2.1 as a representative module to visualize its out-
put for a given prompt, "a delicious salad with beef, stock photo". During inference, the feature map converges rapidly
and stabilizes, which aligns with our observations.

E Additional Visualization

To support Sec. 3, we further analyze the distribution of different blocks’ attention modules. As shown in Fig. A4,
we sample the attention maps from down_blocks, mid_block, and up_blocks, and track their changes during
different steps. The convergence rates are slightly different, but they share the same trend, which further indicates that
this interesting phenomenon is common among different blocks. Meanwhile, as shown in Fig. A5, we also visualize
the feature map of up_block as the representative one during different inference steps.

We also provide visualizations of TGATE with different models and configurations. Fig. A6 shows the samples gener-
ated using different gate steps. Results show that larger gate steps produce generation results more similar to those of
the base models without TGATE. Moreover, the generated samples are visualized based on different steps. As shown
in Fig. A7, the difference caused by TGATE is invisible. Considering that different configurations have moderate
impacts on FIDs, the samples generated by SDXL and PixArt-Alpha are visualized under various settings, as shown
in Fig. A2 and Fig. A3. Although some configurations result in increased FIDs, the changes are nearly imperceptible.
These results demonstrate the effectiveness of TGATE.
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Figure A6: Samples generated by SD-2.1 (w/ CFG) and TGATE with two gate steps (i.e., 5 and 10) for the same initial
noises and captions.

(a) LCM (SD-XL)

Step = 1 Step = 2 Step = 3 Step = 4

(b) LCM (SD-XL)
w/ TGATE

(c) Pixel-wise
Difference

Figure A7: Generated samples of (a) LCM distilled from SDXL and (b) LCM with TGATE given the same initial noise
and captions. (c) represents the difference between (a) and (b).

Table A7: Generation performance on MJHQ-10k (Li et al., 2023) and MS-COCO (Lin et al., 2014) datasets with
different random seeds on PixArt (Chen et al., 2023a) and SDXL (Podell et al., 2023).

Dataset Caching Modules Seed 1 Seed 2 Seed 3 Mean ± S.d.

PixArt MJHQ-10K - 9.653 9.642 9.539 9.611 ± 0.051
TGATE MJHQ-10K CA 9.548 9.477 9.417 9.481 ± 0.054
TGATE MJHQ-10K CA, SA 10.289 10.108 10.138 10.178 ± 0.079

SDXL COCO-10K - 24.628 24.164 24.661 24.484 ± 0.227
TGATE COCO-10K CA 23.433 22.917 23.584 23.311 ± 0.286
TGATE COCO-10K CA, SA 23.839 22.759 23.967 23.522 ± 0.542
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F Error Bar

We provide error bars for the main experiments with configurations of m = 15, k = 3 for PixArt and m = 10, k = 5
for SDXL. Results in Table 1 and Table 2 are based on random seed 1.

G Additional Comparison

Table A8: Generation performance of ToMe (Bolya
& Hoffman, 2023) and SSD-1B (Gupta et al., 2024)
with and without with TGATE on MS-COCO-10k (Lin
et al., 2014) dataset. The base mode for ToMe is SD-
2.1(Rombach et al., 2022).

FID Latency

ToMe 24.763 12.240s
TGATE + ToMe 24.383 8.731s

SSD-1B 28.564 30.097s
TGATE 25.004 18.328s

We further incorporate our method into SSD-1B Gupta
et al. (2024), a lightweight model distilled from a larger
diffusion model. As shown in Table C, we test the models’
performance on the COCO Validation Set in terms of la-
tency and FID-10k. Latency is defined as the time required
to generate one image in a resolution of 768, and the results
are collected on a platform using an Nvidia 1080ti. The re-
sults demonstrate that our method is also compatible with
models distilled from larger models.

We also compare our method with ToMe Bolya & Hoffman
(2023). We set ToMe’s merging ratio to 50% and use SD-
2.1 as the base model. The model utilizes the DPM-Solver
with 25 inference steps as the noise scheduler. Our method achieves a latency of 11.372 seconds per image, slightly
outperforming ToMe. Given that our approach is orthogonal to ToMe, integrating TGATE with ToMe results in an
improved latency of 8.731 seconds. This empirical study demonstrates the effectiveness of our method and its potential
for broad application when combined with various acceleration techniques.

H Evaluation on Text-Image Alignment

Table A9: Generation performance on DPG-Bench (Hu et al., 2024). CA and SA represent cross-attention and self-
attention, respectively. For PixArt, parameters are set to m = 15 and k = 3, whereas for SDXL, we utilize m = 10
and k = 5. Evaluation scores are obtained using mPLUG-Large (Li et al., 2022) with predefined questions.

Method Global↑ Entity↑ Attribute↑ Relation↑ Other↑ Total Score↑
PixArt 78.81 79.46 80.61 78.22 80.24 72.53
TGATE (CA) 79.31 78.44 79.33 80.68 75.48 70.55
TGATE (CA, SA) 76.67 76.18 77.56 78.74 79.14 68.37

SDXL 81.87 82.50 82.46 83.50 61.45 74.92
TGATE (CA) 70.33 80.32 80.60 83.63 78.63 72.41
TGATE (CA, SA) 79.65 77.29 78.43 82.78 80.11 70.72

Table A10: Generation performance of SD-2.1 (Rombach et al., 2022) with TGATE on T2I-Compbench (Huang et al.,
2023). We set m as 10 and k as 5.

Color Shape Texture Spatial Non-Spatial Complex

SD-2.1 43.31 42.27 47.24 6.52 29.80 30.50
SD-2.1 + TGATE (CA) 41.97 41.16 45.28 5.73 29.55 29.45
SD-2.1 + TGATE (CA,SA) 40.72 40.01 44.22 5.14 29.32 29.44

The performance of TGATE in text-image alignment is assessed based on the protocol outlined by CLIP score Radford
et al. (2021), ELLA (Hu et al., 2024) and T2I-Compbench (Huang et al., 2023). Table A9 and Table A10 shows the
competitive performance of TGATE compared with the baseline across various evaluation dimensions, indicating its
effectiveness.
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Table A11: CLIP score of
TGATE on MJHQ (Li et al.,
2023) and MS-COCO (Lin et al.,
2014) datasets on PixArt (Chen
et al., 2023a) and SDXL (Podell
et al., 2023).

Method CLIP Score

SDXL 34.148
TGATE (m=10) 33.371
TGATE (m=10 k=5) 32.710

PixArt-Alpha 34.233
TGATE (m=15) 33.872
TGATE (m=15 k=3) 33.673

Table A12: Frame consistency
on Open-Sora sample dataset
(Lab & etc., 2024). The frame
consistency is calculated based
on the L2 distance between the
adjacent frames.

Model Frame Consistency

OpenSora 9.979
TGATE (m = 100) 7.597
TGATE (m = 100, k = 3) 9.987

SVD 30.686
TGATE (m = 10) 31.162
TGATE (m = 10,k = 5) 31.020

Table A13: Memory overhead caused by
TGATE. The base model is PixArt (Chen
et al., 2023a) and SDXL (Podell et al., 2023)
and the computational platform is a single
V100 GPU card with pytorch 2.2.

Memory Cost

SDXL 8515 MB
TGATE (m=10, k=5) 8531 MB

PixArt-Alpha 13705 MB
TGATE (m=15, k=3) 13707 MB

I Evaluation on Frame Consistency

The performance of TGATE in video generation is evaluated based on the frame consistency. The L2 distance between
different frames are obtained, where a smaller value indicates a smoother change between frames. As shown in Table
A12, TGATE does not cause significant differences in this metric, confirming its effectiveness.

J Evaluation on Memory Cost

We evaluate the memory overhead of TGATE, which accelerates inference by caching features and may increase GPU
usage. As shown in Table A13, using SDXL and Pixart-Alpha as baselines for U-Net and transformer models, TGATE
incurs only a minimal, single-digit memory cost, which is negligible in most cases, demonstrating its feasibility.
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