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ABSTRACT

Existing work on graph generation has, so far, mainly focused on undirected graphs.
In this paper we propose a denoising autoencoder-based generative model that
exploits the global structure of directed graphs (also called digraphs) via their
Laplacian dynamics and enables one-shot generation. Our noising encoder uses
closed-form expressions based on the heat equation to corrupt its digraph input
with uniform noise. Our decoder reconstructs the corrupted representation by
exploiting the global topological information of the graph included in its random
walk Laplacian matrix. Our approach generalizes a special class of exponential
kernels over discrete structures, called diffusion kernels or heat kernels, to the non-
symmetric case via Reproducing Kernel Banach Spaces (RKBS). This connection
with heat kernels provides us with a geometrically motivated algorithm related to
Gaussian processes and dimensionality reduction techniques such as Laplacian
eigenmaps. It also allows us to interpret and exploit the eigenproperties of the
Laplacian matrix. We provide an experimental analysis of our approach on different
types of synthetic datasets and show that our model is able to generate directed
graphs that follow the distribution of the training dataset even if it is multimodal.

1 INTRODUCTION

The representation of directed graphs (or digraphs) has recently attracted interest from the machine
learning community (Clough & Evans, 2017; Sim et al., 2021; Law & Lucas, 2023) as they can
naturally describe causal relations (Bombelli et al., 1987), spatiotemporal events using chronological
order (Law & Lucas, 2023) or some stochastic processes such as Markov chains (Norris, 1998).
Existing work in digraph representation has focused on discriminative tasks such as classification or
link prediction. In this work, we consider the task of digraph generation. One possible application is
the modeling of new causal systems that follow the same distribution as some given training set.

Most of the machine learning literature on graph generation focuses on undirected graphs (You et al.,
2018; Liao et al., 2019; Niu et al., 2020; Martinkus et al., 2022; Zhu et al., 2022; Vignac et al., 2023).
Their goal is to generate plausible graphs of the same nature as those from some given training dataset
(e.g., molecules (Vignac et al., 2023)). Existing approaches can be divided mostly into two categories:
auto-regressive and one-shot. Auto-regressive approaches (You et al., 2018; Liao et al., 2019) start by
generating small graphs to which sets of nodes and their corresponding edges are iteratively added
until the final graph reaches a certain criterion (e.g., size). On the other hand, one-shot approaches
generate all the nodes and edges of the generated graphs in a single step. One-shot approaches were
shown to be more efficient than auto-regressive ones due to the lack of intermediate steps that can
also lead to worse generative performance because of error accumulation at each step and the fact that
one-shot approaches can directly work with the global structure of the graph via its Laplacian matrix
instead of arbitrary subgraphs (Martinkus et al., 2022). Among the one-shot approaches, Spectre
(Martinkus et al., 2022) learns the distribution of the most informative eigenvectors of the Lapacian
matrices. Nonetheless, Spectre does not generalize to digraphs as it relies on properties of Laplacian
matrices that are satisfied only for undirected graphs (see explanation in Section 4). DiGress (Vignac
et al., 2023) considers separate representations for nodes and edges to which discrete noise is added.
DiGress is formulated as a classification problem such that a denoising decoder classifies the category
or existence of edges and nodes. However, DiGress also requires spectral features from Beaini
et al. (2021) that are valid only for undirected graphs as they rely on symmetric scalar products. In
conclusion, none of the existing one-shot approaches can be easily adapted to digraphs.
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Figure 1: Our framework can be viewed as a noisy autoencoder. Our heat diffusion encoder maps a
perturbed adjacency matrix Ã ∈ {0, 1}n×n to a noisy node representation matrix X(T ) ∈ [0, 1]n×d

that is given as input of a decoder that reconstructs the edges. (n = 5, d = 7 in the figure)

Contributions. We propose a one-shot approach that generates digraphs in a single step (see Fig. 1).
Unlike previous one-shot approaches, we exploit the eigenproperties of the Laplacian matrix that
are valid even when the graph is directed, so we can effectively use its global structure during the
diffusion process. To this end, we propose a denoising autoencoder approach (Vincent et al., 2008)
whose noising process is not learned by a neural network but exploits closed-form expressions based
on the heat equation for digraphs (Veerman & Lyons, 2020), which effectively encodes the global
topological information of the graph into node features. We propose to add noise by introducing a
nonhomogeneous term that makes our node representations tend to a stochastic matrix with all its
elements equal. Our denoising decoder is trained to reconstruct the original node representations and
adjacency matrix of the graph. In Appendix E, we explain how our diffusion process generalizes a
special class of exponential kernels over discrete structures, called diffusion kernels or heat kernels
(Kondor & Lafferty, 2002). This provides us with a geometrical interpretation of the model and
motivates the study of the column space of our representations. To generate novel digraphs, we
propose a sampling algorithm that first generates discrete adjacency matrices and perturbs them with
standard data augmentation techniques (Ding et al., 2022) before giving them as input of our model
to predict nodes and edges. We experimentally show that its performance is competitive with its
continuous alternatives in Appendix H.2. We validate our approach on different datasets and show
that our framework is able to generate digraphs that follow the distribution of the training dataset.

2 HEAT DIFFUSION ON DIRECTED GRAPHS

This section introduces our notation, some background about Laplacian dynamics, and our proposed
heat-diffusion encoder. We refer the reader to Veerman & Lyons (2020) for a study of Laplacian
matrices of digraphs, to Chung & Yau (1999); Kondor & Lafferty (2002); Belkin & Niyogi (2003) for
heat diffusion kernel-based methods on undirected graphs and discrete input spaces in general, and to
Appendix C for the details of our equations in this section. One main difference with other types of
data such as images is that graphs lie in a discrete space whose topology depends on the adjacency of
its nodes, and graphs are often sparse in terms of connectivity. Heat kernel approaches (Chung &
Yau, 1999; Kondor & Lafferty, 2002) propose to express the notion of discrete local neighborhood of
nodes in terms of a global similarity function over the whole set of nodes of an undirected graph. We
explain in Appendix E how our approach generalizes heat kernels to digraphs.

We consider a graph G = (V,E) defined by its set of n nodes V = {vi}ni=1 and its set of edges
E ⊆ V × V . Its adjacency matrix A ∈ {0, 1}n×n satisfies Aij = 1 iff (vi, vj) ∈ E and Aij = 0
otherwise. IfG is undirected, then we can simply consider that A is symmetric (i.e., ∀i, j,Aij = Aji).
However, we consider the more general case where A is not constrained to be symmetric. Although
optional, we add self-loops by constraining A to satisfy ∀i,Aii = 1. The in-degree diagonal matrix
D ∈ Rn×n

+ is defined so that ∀i,Dii =
∑

j Aji. Let us define the matrix S := AD−1. S is column
stochastic (i.e., ∀i,

∑
j Sji = 1 and ∀i, j, Sij ≥ 0). We denote the identity matrix by I, the all-ones

vector by 1, and we consider in this section that we are given some matrix N := X(0) ∈ Rn×d where
the i-th row of N is the initial d-dimensional feature representation of vi (i.e., X(t) with t = 0). The
matrix N could be arbitrarily defined or given. In practice, we train N jointly with our denoising
decoder, and we explain its training process in Section 3 and Appendix B. N is fixed in this section.

Laplacian dynamics. Following Veerman & Lyons (2020), we define the negative of the random
walk Laplacian matrix as L := S− I = AD−1 − I. L can be viewed as a matrix form of the discrete
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Laplace operator which approximates the continuous Laplace–Beltrami operator in differential
geometry (Belkin & Niyogi, 2003). Given a twice-differentiable real-valued function f defined on
some manifold, the Laplace-Beltrami operator is defined as the divergence of the gradient gradf and
provides us with an estimate of how far apart f maps nearby points. Since L is not symmetric in
general, we can use both L or L⊤ as they have different left and right eigenvectors. We then denote
∆ ∈ {L,L⊤}. In the main paper, we focus on the case ∆ = L, which is called diffusion model
in Veerman & Lyons (2020). To avoid confusion with diffusion models in machine learning, we
call it heat diffusion. We give in Appendix D all the formulae to solve our problem when ∆ = L⊤

(called consensus model (DeGroot, 1974)). In this paper, we propose to include some heat source
term Q(t) ∈ Rn×d in order to generate noise over time t ≥ 0. If ∀t ≥ 0,Q(t) = 0, then Q is called
homogeneous. It is called nonhomogeneous otherwise. Our nonhomogeneous heat equation is:

∀t ≥ 0,
d

dt
X(t) = ∆X(t) +Q(t) where X(t) is the representation of nodes at time t. (1)

The solution of the above linear differential equation can be found in standard textbooks such as
Edwards et al. (2020) and is written in Equation 2. Let us define Z(t) := et∆X(0) and F(t) :=∫ t

0
e(t−s)∆Q(s)ds where et∆ is the matrix exponential of the matrix t∆. For any formulation of Q,

Equation 1 is solved by the following equation when ∆ is constant over time:

∀t ≥ 0, X(t) = et∆X(0) +

∫ t

0

e(t−s)∆Q(s)ds = Z(t) + F(t). (2)

Each column of X(0) contains some initial signal, and the information of the Laplacian matrix
and noise are both diffused in those signals following the heat equation. One difference with other
diffusion processes is the use of the global topological information of the graph via et∆ over time t.
The noise is introduced via the term F(t). If Q is homogeneous, then ∀t ≥ 0,F(t) = 0 (i.e., there is
no noise) and Equation 2 reduces to ∀t ≥ 0,X(t) = Z(t). As in standard denoising approaches in
machine learning, our goal is to define a noising process that maps our input X(0) to an informative
representation close enough to some analytically tractable distribution (from which we could sample
at inference time). To this end, we construct some noisy representation X(T ) where T > 0 is an
arbitrary time constant, and we define it so that X(T ) is similar to some matrix with all its elements
equal to the same value in order to approximate maximum entropy (or lack of information) in the
node representations when t = T . We call this matrix M. Finally, some denoising decoder is trained
to reconstruct the nodes and/or edges when given only X(T ) as input (see details in Section 3.1).

Formulation of the heat source term. Our goal is to formulate Q so that X(T ) tends to some
non-informative matrix M as T tends to +∞. To this end, we first notice that the matrix et∆ is
column stochastic for all t ≥ 0 (Veerman & Lyons, 2020) (see explanation in Appendix F). We then
first add the constraint that N = X(0) is column stochastic, which implies that Z(t) = et∆N is also
column stochastic for all t ≥ 0 (see proof in Appendix C.3). Since each column of the resulting
node representations is a probability distribution vector, we define each column of M as the uniform
probability distribution vector, which corresponds to the maximum entropy probability distribution
vector. In other words, we define the column stochastic uniform noise matrix as M := 1

n11
⊤ ∈

{ 1
n}

n×d. Each column of M also corresponds to the expected value of a random variable following a
flat Dirichlet distribution. To simplify the formulation of Q in the next proposition, we define some
matrix R := e−T∆M ∈ Rn×d for some arbitrary constant T > 0 defined in Section 3.

Proposition 1. To satisfy the goal mentioned above, we formulate Q and F as follows:

Q(s) := αe−αses∆(R− eβ∆X(0)) =⇒ F(t) = (1− e−αt)et∆(R− eβ∆X(0)) (3)

where α > 0 is a noise diffusivity rate hyperparameter, and β ≥ 0 is another hyperparameter that
can be tuned to control the Laplacian dynamics further. See Appendix C for details.

With the above proposition, X(t) can be written only as a function of X(0) and ∆ in Equation 2:

∀t ≥ 0, X(t) = et∆
(
X(0) + (e−αt − 1)eβ∆X(0) + (1− e−αt)R

)
(4)

If we set β = 0, we get a simpler formulation of Equation 4:

β = 0 =⇒ eβ∆ = I =⇒ ∀t ≥ 0, X(t) = e−αtZ(t) + (1− e−αt)et∆R. (5)
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In this case, X(T ) = e−αTZ(T ) + (1− e−αT )M is column stochastic, and we call 1− e−αT the
noise ratio at time T . In the following, we consider that β = 0, but our approach can be generalized
to any β ≥ 0. If ∆ is given, we can write X(t) as a function of X(t+ τ) for all time step τ ≥ 0:

β = 0 =⇒ ∀t ≥ 0, ∀τ ≥ 0, X(t) = eατe−τ∆X(t+ τ) + (1− eατ ) et∆R (6)
Equation 6 corresponds to the reverse process that removes noise in denoising models. However, we
assume that the denoising decoder that we train does not have access to ∆ at inference time, so the
decoder has to reconstruct the set of nodes and/or edges when given only X(T ). As explained in
Vignac et al. (2023), we can build an efficient generative model for the following reasons:

First, the noisy representation X(t) has a closed-form formula for all t ≥ 0 (see Equation 4) that
depends only on X(0) and ∆. We then directly calculate X(t) without adding noise iteratively.

Second, the denoised representation Z(t) can be written in closed-form when given only ∆ and
either X(0) or X(t). During training, we then set some arbitrary time T > 0 to construct a noisy
representation X(T ) = Z(T ) + F(T ) that is given as input of a denoising decoder whose goal is to
reconstruct the denoised representations Z(t) = et∆X(0) with some arbitrary t ∈ [0, T ]. It is worth
noting that our denoising decoder has to reconstruct Z(t) without being given ∆ at inference time.

Lastly, the limit distribution limT→+∞ X(T ) = M does not depend on X(0). It is also worth
noting that all the elements of X(T ) are in the interval [

(
1− e−αT

)
/n,
(
1 + (n− 1)e−αT

)
/n]. In

practice, we choose appropriate values of T and α so that sufficient information of the graph is
preserved in X(T ), and denoised edges can be recovered from it. Specifically, we diffuse toward a
distribution that can be well approximated by an analytic distribution (e.g., we can sample from a
(flat) symmetric Dirichlet distribution (Kotz et al., 2004)) while preserving sufficient information
about X(0) to perform denoising. Moreover, X(t) is column stochastic when t = 0 and t ≥ T , but
X(t) might contain some negative elements when t ∈ (0, T ) due to the formulation of R. This is not
a problem in practice since our goal is to reconstruct Z(t) which is column stochastic for all t ≥ 0.

3 PROPOSED DENOISING DECODER

The previous section defines a noising process (or encoder) that does not require learning a neural
network and is given an initial node representation matrix N = X(0) and a Laplacian matrix −∆ to
generate in closed form some noisy representation X(T ) at some arbitrary time T > 0.

We now propose a multi-task learning formulation for the decoder part of our denoising autoencoder.
We assume that the decoder is not given ∆ at test time, so it cannot directly apply the reverse process
in Equation 6. Instead, our first task learns a neural network (called node decoder) that predicts the
denoised node representation Z(t) where t ∈ [0, T ] (we recall that Z(0) = X(0)). This is similar to
the way link prediction tasks are solved, and in practice we observe that the learned representations
hold information from the graph in the form of the Laplacian singular vectors (see Section 5.1). Our
second and last task jointly learns another neural network (called edge decoder) to predict edges.

3.1 TRAINING OF THE DECODERS

Setup. We consider the task where, during training, we are given m digraphs {Gi = (Vi, Ei)}mi=1
drawn from some distribution G and of different sizes. Our goal is to generate graphs that follow the
same distribution as G. Each graph Gi is represented only by its adjacency matrix Ai ∈ {0, 1}ni×ni

and its Laplacian matrix −∆i where ni := |Vi| is the number of nodes.

Node representation. We explain here how we define the node representations of the training
graphs. Let us note nmax := maxi ni the size of the largest training graph. We define some matrix
O ∈ Rnmax×d where d > 0 is an arbitrary hyperparameter. For each graph Gi, we define its column
stochastic initial node representation matrix Ni = Xi(0) ∈ [0, 1]ni×d as the uppersubmatrix of O
whose columns are ℓ1-normalized with the softmax operator, which corresponds to applying a mask
and renormalizing. To simplify the notation, we write N instead of Ni since we consider that all the
graphs of same size share the same matrix N. N is trained by training O (see details in Appendix B).

We arbitrarily define some values of T > 0 and α > 0 such that the noise ratio defined as (1− e−αT )

is close to 1 (see Fig. 2). We then construct the matrix Xi(T ) = e−αT eT∆i

N+ (1− e−αT )M that
is given as input of a node decoder φ and edge decoder ψ during training as described below.
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Node decoding task. Our node decoder φ takes the noisy node representation Xi(T ) as input, and
its goal is to reconstruct some target node representation matrix Ti that does not contain noise. In
practice, we formulate the training loss of our node decoder as Lnode(i) := ∥φ(Xi(T )) − Ti∥2F
where ∥ · ∥F is the Frobenius norm, and we arbitrarily define Ti := Zi(1) = e∆

i

N. Since each row
of Xi(T ) represents a node of the graph, we ideally want our model to be invariant to the order of
the rows of Xi(T ). For this reason, we formulate φ as attention-based permutation-invariant neural
network called Set Transformer (Lee et al., 2019) that considers each row of Xi(T ) as the element of
a set of node representations. Implementation details can be found in Appendix B.1.

Edge decoding task. We call our edge decoder ψ and we denote the p-th row of ψ(Xi(T )) by
ψ(Xi(T ))p. Our edge decoder predicts whether or not there exists a directed edge between pairs of
nodes. We formulate the term: Ledge(i) :=

∑
p ̸=qH

(
ω
([
ψ(Xi(T ))p, ψ(X

i(T ))q
])
,Ai

pq

)
where

[·, ·] denotes concatenation, ω is a learned MLP, and H is the cross-entropy loss. Our edge decoder
and node decoder share a common backbone (see architecture details in Appendix B). It is worth
noting that if the goal is to generate undirected graphs, then the concatenation operation can be
replaced by a symmetric operation such as the addition. The training loss that we minimize is:∑m

i=1 Ledge(i) + γ Lnode(i) where γ ≥ 0 is a regularization parameter. (7)

Since both Ti and Xi(T ) depend on N, we optimize Equation 7 by training jointly φ, ψ and N via
gradient descent. See Appendix B for implementation details.

3.2 OPTIONAL DATA AUGMENTATION AND APPROXIMATIONS

Edge perturbation (Ding et al., 2022). Optionally, we can apply data augmentation via edge
perturbation which can be interpreted as injecting noise by considering the perturbed adjacency
matrix Ãi = Ai ⊕ C instead of Ai, and where ⊕ is the logical XOR operator, and the zero-
diagonal corruption matrix C ∈ {0, 1}ni×ni has its non-diagonal elements equal to 1 with probability
ρ ∈ [0, 1], and 0 with probability (1− ρ). Following Veličković et al. (2019), we set ρ ≈ 1/ni and
sample a new matrix C each time it is called. We call −∆̃i the Laplacian from Ãi. If ρ > 0, the
only change in Section 3.1 is the formulation of Xi(T ) = e−αT eT∆̃i

N+ (1− e−αT )M.

Permuted adjacency matrices. N is the same for all graphs of the same size. To promote model
permutation invariance, we can replace Ai and ∆i in Section 3.1 by P⊤AiP and P⊤∆iP where
P ∈ {0, 1}ni×ni is a permutation matrix. This is equivalent to replacing eT∆i

N by P⊤eT∆i

PN.
This can be seen as augmenting the training set with adjacency matrices of isomorphic digraphs. In
Appendix H.3, we experimentally show that using this kind of data augmentation technique does not
have a negative impact on the optimization of Equation 7. One reason is that the matrix N is jointly
learned with nonlinear decoders φ and ψ that are robust to this kind of transformation.

Class-conditional generation. To add class label information during generation, we give as input of
both decoders the concatenation of a matrix Yi ∈ [0, 1]ni×|C| to Xi(T ) where each row of Yi is
a one-hot vector whose nonzero index corresponds to the category of the graph Gi. This sampling
strategy is known as conditional sampling (Zhu et al., 2022). The rest of the method is similar.

0 1 2 3 4 5 6

t

0

0.2

0.4

0.6

0.8

1

f(
t)

 =
 1

-e
x
p

(-
 t
)

 = 5

 = 2

 = 1

 = 0.5

 = 0.25

 = 0.1

Figure 2: The noise ratio 1− e−αT in X(T )
as a function of T for different values of α.

Choice of the final step T . The matrix Xi(T ) is
given as input of decoders to reconstruct Gi. We
ideally want Xi(T ) = e−αTZi(T ) + (1− e−αT )M
to be similar to the matrix M. This similarity depends
on both T and α, and Xi(T ) tends to M as T or α
tend to +∞. We provide a detailed discussion about
the impact of T and α in Appendix F. We found
that setting T = 1 and choosing α large enough
works well in practice (e.g., α = 2.3 implies 1 −
e−αT ≈ 0.9, which means that about 90% of the
values of X(T ) are noise). However, the optimal
value of both T and α can be determined via cross-
validation depending on the task. Fig. 2 illustrates the
ratio of noise for different values of α as a function
of T .
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Algorithm 1 Generation of directed graphs at inference time
input: Node representations O ∈ Rnmax×d, hyperparameters T > 0, α > 0, Bernoulli factors µ, ρ ∈ [0, 1]

1: Sample n ≤ nmax. Define N ∈ Rn×d as upper submatrix of X(0) with ℓ1-normalized columns
2: Generate discrete adjacency matrix A ∈ {0, 1}n×n such that ∀i ̸= j,Aij ∼ Bernoulli(µ) and ∀i,Aii = 1

3: Apply data augmentation to obtain perturbed matrix Ã (e.g., Ã = A⊕C s.t. ∀i ̸= j,Cij ∼ Bernoulli(ρ))
4: Calculate the diagonal matrix D ∈ Rn×n

+ such that Dii =
∑

j Ãji. Define L := ÃD−1 − I.
5: Define B as eTL or optionally as the rank-s approximation of eTL via truncated SVD.
6: Give the matrix e−αTBN+ (1− e−αT )M as input of the edge decoder that returns an adjacency matrix

It is worth noting that we want Xi(T ) to be similar to M so that sampling a similar matrix at inference
time is easy. On the other hand, we also want Xi(T ) to preserve enough information so that our
neural networks can reconstruct Ti and Ai (i.e., the node and edge information of the graph) from it.

Learning N. It has been observed in the heat kernel community (Belkin & Niyogi, 2003; Chung &
Yau, 1999) that the coarse structure of an undirected graph is included in the subset of eigenvectors
of its Laplacian matrix that correspond to its smallest eigenvalues and can be used for dimensionality
reduction. Spectre (Martinkus et al., 2022) exploits this observation by generating a symmetric
Laplacian matrix spanned by a set of leading eigenvectors with bounded real eigenvalues. Since our
eigenvalues and eigenvectors are usually complex and not unitary (when the adjacency matrix is not
symmetric), we consider related linear algebra properties such as column spaces and singular vectors,
which allow us to work with real values. We experimentally observe in Section 5.1 that the leading
singular vectors of the learned matrix Zi(t) = et∆

i

N and of et∆
i

are strongly correlated, which
suggests that our model learns N so that it maps to the leading left singular vectors of et∆

i

. We also
observed that using a large number of columns d to represent N helps in practice to recover edges.

Approximations. We show in Appendix E that our approach corresponds to a non-symmetric
heat kernel method induced in a Reproducing Kernel Banach Space with a column stochastic and
non-symmetric kernel matrix K = e−αT eT∆i

+ 1−e−αT

ni
11⊤. From this observation and to scale

our method to large graphs, we also propose to replace et∆
i

by its rank-s approximation obtained
with truncated Singular Value Decomposition (SVD) where s ≤ ni. We then replace et∆

i

by the
product of two rectangular rank-s matrices, which greatly reduces memory if s≪ ni. Although the
obtained matrix is not stochastic when s < ni, we observe in Section 5.2 that the training graphs can
be fully reconstructed with our model while saving memory usage. The SVD can be preprocessed
offline before training. It is worth noting that heat kernels are generalizations of Gaussian Processes
(GPs) to graphs (Kondor & Lafferty, 2002). Using a truncated SVD corresponds to using a low-
rank approximation of the kernel matrix w.r.t. the Frobenius norm, which is similar to one of the
approximation methods for GPs mentioned in Chapter 8.1 of Williams & Rasmussen (2006).

3.3 GENERATION OF GRAPHS

Sampling. Our sampling algorithm is given in Algorithm 1 while our training algorithm is detailed
in Algorithm 2. During sampling at inference time, we do not have access to input graphs from the
dataset. We then need to construct graphs that, when given to our heat diffusion encoder, diffuse
toward noisy graphs similar to those encountered after diffusing graphs during training. In this way,
our denoising decoders can successfully produce denoised graphs similar to those of the dataset.
This is conceptually similar to variational autoencoders (Kingma & Welling, 2014), where during
sampling the encoding distribution is approximated by a simple prior distribution. How can we then
analytically construct suitable input graphs during inference time? One solution is to generate a
matrix with each column sampled from a flat Dirichlet distribution (Kotz et al., 2004) and give it as
input of the decoders to generate a digraph. This works well when the training graphs (of a given
category) are all similar to each other. However, it was observed in Vignac et al. (2023) that this kind
of continuous sampling tends to destroy the graph’s sparsity and creates completely noisy graphs
in practice. When the distribution of the graphs is multimodal, we found that sampling discrete
adjacency matrices and applying standard data augmentation techniques for graphs (Ding et al., 2022)
both during training and sampling allows our model to sample graphs from the different modes. Let
us note µ ∈ (0, 1] the ratio of pairs of distinct nodes that are adjacent in the training set. We first
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generate an adjacency matrix A ∈ {0, 1}n×n such that each of its non-diagonal elements is assigned
the value 1 with probability µ, and 0 otherwise. Our sampling algorithm is detailed in Algorithm 1.
Following the motivation of denoising autoencoders, our decoders are trained to reconstruct the
unperturbed values when given perturbed input that can be considered as noise.

4 RELATED WORK

Graph generative approaches can be divided into two categories which are auto-regressive models and
one-shot models. Auto-regressive models (You et al., 2018; Liao et al., 2019) generate a succession
of graphs G1, G2, . . . , GT such that ∀i, Gi ⊂ Gi+1 and return the last generated graph GT . At each
iteration, the graph Gi is given as input of a neural network that generates Gi+1 by adding new nodes
and their edges. Most of these models are typically slower than one-shot approaches that generate
all the nodes and edges of a graph in a single step. Three main one-shot approaches in the machine
learning literature are Top-n (Vignac & Frossard, 2022), Spectre (Martinkus et al., 2022) and DiGress
(Vignac et al., 2023). Other one-shot methods such as (Kwon et al., 2020; Mercado et al., 2021) are
dedicated to molecular graphs and do not generalize to other tasks. Although Top-n is one-shot, it
assumes symmetric similarity functions between nodes that are not appropriate for directed graphs.

Martinkus et al. (2022) consider the generation of undirected graphs via their normalized graph
Laplacian matrix Ln := I−D−1/2AD−1/2, which is symmetric positive semi-definite and admits an
eigen-decomposition of the form U−1ΛU where U−1 = U⊤ and both the diagonal matrix Λ and U
are real-valued. They exploit the intuition that coarse structure of the graph lies on a Stiefel manifold
that contains the eigenvectors of the k smallest eigenvalues of the Laplacian. Martinkus et al. (2022)
then train a neural network that generates an adjacency matrix by sampling the k smallest eigenvalues
and their corresponding eigenvectors by exploiting their Stiefel manifold structure. The authors
mention that their work can be extended to the random-walk Laplacian matrix Lr := I −AD−1

since its right eigenvectors are the same as D−1/2U (up to column-wise ℓ2 normalization), and its
left eigenvectors can be formulated in a similar way. However, when the graph is directed and A is
not symmetric, U is complex and not unitary. The information of the Laplacian matrix then does not
lie on a complex Stiefel manifold, and Spectre can then not easily be extended to digraphs.

Vignac et al. (2023) propose a denoising diffusion model for graphs. Instead of using the discrete
Laplacian operator as we propose, they represent their nodes as a function of time t ∈ N as follows:
X(t) = (αtI + (1−αt)

d 11⊤)X(t − 1) where X(t) is row-stochastic and α ∈ (0, 1). Nonetheless,
DiGress relies on spectral features from Beaini et al. (2021) that are designed for undirected graphs
by using a symmetric similarity function between nodes. It is then not appropriate for digraphs.

Connections and differences with diffusion models used in the machine learning literature (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) are discussed in Appendix G.

5 EXPERIMENTS

We evaluate the generative power of our method that we call Digraph Generation with Diffusion
Kernels (DGDK), focusing on directed graphs only, for which our method was designed. We use
Adam (Kingma & Ba, 2014) as optimizer. DGDK works better as the number of columns d of N is
larger. See Appendix B for more experiments and experimental details.

5.1 STUDY OF THE COLUMN SPACE OF THE LEARNED REPRESENTATIONS

We adapt the intuition of Spectre (Martinkus et al., 2022) to digraphs. To this end, we experimentally
show in this subsection that our learned representations are strongly correlated with the leading
singular vectors of et∆

i

. In our first qualitative experiment, we apply conditional sampling Zhu et al.
(2022) and consider two categories of digraphs: Erdős-Rényi (Erdős et al., 1960) with p = 0.6 , and
stochastic block model (Holland et al., 1983) with 3 main blocks that are connected to each other by
following the transition probabilities in the matrix of Equation 8. Each category contains m = 100
training graphs with n = 15 nodes each, and we set the number of columns of N to d = 150. In this
setup, our training graphs are directed and their adjacency matrices are not symmetric. As explained
in Section 4, standard baselines such as Spectre then cannot be exploited.
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(left) Erdős-Rényi graphs (right) stochastic block model graphs

Figure 3: Correlations between the left singular vectors of et∆
i

and et∆
i

N (more results in Fig. 5).

If we define Ti = e∆
i

N ∈ [0, 1]n×d (i.e., we consider t = 1), the goal of the node decoder in
Section 3.1 is to reconstruct Ti whose column space is by definition included in the column space
of e∆

i

(i.e., spanned by its columns). Ti is in general not a square matrix (i.e., n ̸= d) and thus
does not possess eigenvectors. We then consider its SVD et∆

i

N = U1Λ1V
⊤
1 , and we write the

SVD of et∆
i

= U2Λ2V
⊤
2 . The singular values of both Λ1 and Λ2 are ordered in descending order.

Figure 3 illustrates the absolute values of the following matrix product U⊤
2 U1. Since both U1 and

U2 have their columns ℓ2-normalized, each element of U⊤
2 U1 is the cosine between two singular

vectors. A cosine of 0 indicates orthogonality, hence independence, whereas higher absolute values
indicate (cosine) correlations. The top left part of each plot corresponds to the leading singular
vectors whereas the bottom right corresponds to the singular vectors with lower singular values. As
one can see, there is a strong cosine correlation between the leading singular vectors of et∆

i

and
of et∆

i

N. Therefore, N is learned to preserve the most informative singular vectors of et∆
i

. We
exploit this observation in the next subsection by working with a low-rank approximation of et∆

i

.

5.2 USING APPROXIMATIONS OF THE TARGET MATRIX

We now evaluate the generative power of DGDK in the class-conditional generation task. We use
a rank-s approximation of eT∆i

via a truncated SVD, and we formulate our target node matrix
Ti = Zi(T ) where T = 1 and α = 2.3. We consider the case where the number of nodes is
∀i, ni = 21, and s = 15. The two categories follow the same properties as in Section 5.1, and contain
a total of 3,000 non-isomorphic training graphs per category. During training, each mini-batch
contains 10 graphs per category. Our trained model manages to reconstruct all the edges of the
training graphs from the noisy representations Xi(T ) given as input.

We sample 10,000 test graphs per category by using Algorithm 1 with class-conditional generation
(i.e., we provide the desired category as input). None of the generated test graphs are isomorphic to
one another nor to the training graphs. This means that our model obtains a uniqueness and novelty
scores of 100%. We also report in Table 1 standard evaluation metrics based on the squared Maximum
Mean Discrepancy (MMD) (O’Bray et al., 2022) between the training set and the test set. These
evaluation metrics measure the distance between the training and test distributions w.r.t. some graph
properties. We adapt the descriptor functions in O’Bray et al. (2022) to directed graphs.

Degree distribution histogram. Given a graph G = (V,E), we create a n-dimensional histogram
by evaluating the in-degree deg(v) for v ∈ V . The i-th position of the resulting histogram is the
number of nodes with in-degree i. We ℓ1-normalize the histogram so that it sums to 1.

Clustering coefficient. The local clustering coefficient for a directed graph of a node vi is formulated:
Ci :=

|{(vj ,vk)∈E:vj∈Ni,vk∈Ni}|
|Ni|(|Ni|−1) ∈ [0, 1] where Ni = {vj : (vi, vj) ∈ E or (vj , vi) ∈ E}. It

measures to what extent vi forms a clique. The different values C1, . . . , Cn are binned into a
b-dimensional histogram. We set b = 100 in our experiments.

Laplacian spectrum. In the directed case, the eigenvalues of S = L + I are complex but their
absolute value is upper bounded by 1. We bin their absolute values into a 100-dimensional histogram.

We report in Table 1 the scores of DGDK and GRAN (Liao et al., 2019) (the state-of-the-art auto-
regressive baseline that can be extended to digraphs). It is worth noting that we train a different GRAN
model for each category instead of using a class-conditional generation approach. Our MMD scores

8
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Table 1: Squared MMD distances.
Dataset Erdős-Rényi (p = 0.6) Stochastic block model (3 blocks)
MMD metric Degree Clustering Spectrum Degree Clustering Spectrum

DGDK (ours) 1.1× 10−4 1.0× 10−3 1.3× 10−5 1.2× 10−4 2.0× 10−4 6.2× 10−6

GRAN 1.5× 10−4 5.6× 10−2 1.9× 10−4 1.3× 10−4 8.3× 10−2 3.6× 10−4

Figure 4: Digraphs generated when the training set contains from one to four disconnected blocks.
Our edge decoder generates disjoint blocks similar to the training distribution. More results in Fig. 8.

are close to 0, which means that the training and test graphs follow similar distributions. Moreover,
DGDK outperforms GRAN in the clustering and spectrum evaluation metrics. This suggests that
learning the global structure of the graph via its Laplacian in a single shot is beneficial for generation
(compared to GRAN that sequentially considers multiple local subproblems). In Appendix H.2, we
consider another experiment with larger graphs of different sizes. We compare different sampling
strategies and show that those that exploit the learned matrix N tend to perform better.

5.3 MULTIMODAL CATEGORIES

In Section 5.2, the different categories are unimodal and it is assumed that they can be conditioned
over at test time. We now show that if the distribution of the training set is multimodal and the modes
are not given to the model, our model is able to sample graphs from the different modes. We consider
the following training set containing four modes of same size: (1) a single block stochastic model
with probability p = 0.28, (2) two (disjoint and connected) components of same size with p = 0.48
each, (3) three components of same size with p = 0.78 each, (4) and four components of same size
with p = 0.97. This corresponds to an average edge ratio of µ ≈ 0.24. Fig. 4 illustrates some graphs
generated with Algorithm 1 when γ = 1 and α = 1, they follow the training distribution. Due to lack
of space, we report quantitative results in Appendix H.4 but we summarize our observations below.

Impact of γ. The regularization parameter γ in Equation 7 acts as a tradeoff between learning the
edge decoder and the node decoder. If γ = 0, then the node decoder is not trained. Our goal is to
predict the adjacency matrix from a random matrix in [0, 1]n×d given as input of the decoders. Only
the edge decoder is useful for this task. We found that the loss function does not converge during
training when γ = 0. In our experiments, a positive value of γ (typically in [1, 100]) is necessary
for the loss to decrease during training and learn meaningful decoders. This implies that the node
decoder learns the global structure of the graph by reconstructing node representations that depend
on the Laplacian. This is beneficial to the edge decoder as both decoders share a common backbone.

Impact of α. Using α = 0 results in generated samples with only one block. As α increases, the
number of components per sample increases. This is because the sampled adjacency matrices in
Algorithm 1 generated with a Bernoulli distribution correspond to one component. As α increases, the
information of the sampled adjacency matrix gets partially lost and the decoder is able to reproduce
graphs similar to the training distribution, and it samples graphs uniformly from all the modes.

6 CONCLUSION

We have proposed a one-shot generative model that samples digraphs and is similar in essence to
denoising autoencoders. Our encoder exploits closed-form expressions to add noise to a digraph, and
our decoder is trained to recover the global structure of the graph via its Laplacian dynamics. We
show how our framework generalizes heat kernels and is able to simulate the training distribution.
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Algorithm 2 Training algorithm (for each mini-batch)
input: Node representations O ∈ Rnmax×d, hyperparameters T > 0, α > 0, t ≥ 0, Bernoulli factor ρ ∈ [0, 1]

1: Initialize mini-batch loss as Lmini-batch = 0
2: for Graph Gi with Adjacency matrix Ai and Laplacian matrix ∆i in the mini-batch do
3: if Promote permutation invariance then
4: Generate random permutation matrix P ∈ {0, 1}ni×ni .
5: Ai ← P⊤AiP.
6: ∆i ← P⊤∆iP
7: end if
8: if Data augmentation matrix then
9: Generate perturbation matrix C ∈ {0, 1}ni×ni s.t. ∀i,Cii = 0 and ∀i ̸= j,Cij ∼ Bernoulli(ρ)

10: Ãi ← Ai ⊕C.

11: ∆̃i ← Ãi
(

diag(1⊤Ãi)
)−1

− I
12: else
13: ∆̃i ←∆i.
14: end if
15: Define N ∈ Rni×d as upper submatrix of X(0) with ℓ1-normalized columns
16: Define B as eT∆̃i

or optionally as the rank-s approximation of eT∆̃i

via truncated SVD.
17: Xi(T )← e−αTBN+ (1− e−αT )M

18: Define E as et∆
i

or optionally as the rank-s approximation of et∆
i

via truncated SVD.
19: Ti ← e−αtEN
20: Lmini-batch ← Lmini-batch + Ledge(i) + γ Lnode(i) where γ ≥ 0 is a regularization parameter.
21: end for
22: Optimize Lmini-batch with Adam Kingma & Ba (2014).

A SUMMARY

Our appendix is structured as follows:

• Section B provides experimental details including the architecture of the neural networks.

• Section C provides the details of our equations for our heat diffusion encoder.

• Section D provides the necessary details to solve the consensus problem.

• Section E explains the connection of our method with heat kernels.

• Section F studies the impact of T and α on the eigenvalues of the different matrices that are involved
in our model.

• Section G explains the connection and differences with diffusion models

• Section H presents additional experimental results.

B EXPERIMENTAL DETAILS

Setup. We ran all our experiments on a single desktop with a NVIDIA GeForce RTX 3090 GPU
(with 24 GB of VRAM) and 64 GB of RAM. We coded our project in Pytorch. We use double
precision format to define our tensors. This is important in the current version of Pytorch to obtain an
accurate version of the matrix exponential.

Our training algorithm is illustrated in Algorithm 2 and follows the different data augmentation
techniques mentioned in Section 3.

Node representation matrix N. We define nmax ∈ N as the maximum number of nodes in a graph
of the training set, and d as the number of columns of the initial node representation O ∈ Rnmax×d.
In practice, we set d = 150 and we initialize each element of O by sampling from the normal
distribution parameterized by a mean of 1 and standard deviation of 1. Other hyperparameter values
could be used. For a given graph Gi of ni nodes, we define N ∈ Rni×d as the upper submatrix of
O, and it is ℓ1-normalized by using a column-wise softmax operator. Equation 7 is minimized via
standard gradient descent by training jointly ψ, φ and N (and hence O).
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In Section 5.2, we train the model for 60,000 iterations. The training algorithm takes about one hour
for 10,000 iterations. We use a regularization parameter of λ = 100, and a step size/learning rate of
0.0001. Following O’Bray et al. (2022), we calculate our MMD evaluation metric by using a radial
basis function (RBF) kernel with σ = 10.

B.1 MODEL ARCHITECTURE

Backbone. The common backbone of the node and edge decoder is:

• a linear layer Rd → Rd′
where d′ = 1000.

• a set transformer (Lee et al., 2019) with four attention blocks, each of dimensionality 1000,
with one head, 20 inducing points and 20 seed vectors. Each row-wise feedforward layer of
an attention block contains 3 linear layers d′ × d′ with ReLU activation function. We choose
one head so that the global structure of the Laplacian matrix is not separately processed by
the different heads.

• an MLP with one linear layer Rd′ → Rd′′
(with d′′ = 600), followed by four linear layers

Rd′′ → Rd′′
, and one linear layer Rd′′ → Rd′′′

where d′′′ = 200.

The head of the node decoder is an MLP with an initial layer Rd′′′ → Rd′′′′
followed by one linear

layer Rd′′′′ → Rd′′′′
, and one linear layer Rd′′′′ → Rd. If the input is of size Rni×d, this returns a

matrix of same size. We also use column-wise normalization with softmax on the output.

Edge decoder. The output of the backbone described above are node representations of size d′′′ = 200
for each node. We concatenate them (as described in Section 3.1) to obtain representations of
pairs of nodes of size 2d′′′ = 400. They are given as input of an MLP with one linear layer
R2d′′′ → Rd′′′′′

(with d′′′′′ = 600), followed by 5 linear layers Rd′′′′′ → Rd′′′′′
, followed by a linear

layer Rd′′′′′ → R2 that is used for cross-entropy loss (one element is used for the absence of edge,
and the other element is used for the existence of edge). Alternatively, one could output a real value
for each pair of nodes and use a binary cross entropy loss.

We use ReLU as an activation function between all the linear layers.

In all our experiments, we give the same weighting for the positive and negative edges (i.e., presence
or absence of edge).

B.2 DIGRAPH CATEGORIES

The first category is a Erdős-Rényi (Erdős et al., 1960) model with probability p = 0.6.

The second category contains 3 main stochastic blocks (Holland et al., 1983) that are connected to
each other. Their probability of transition is:

Π =

(
0.9 0.35 0.2
0.2 0.75 0.2
0.2 0.25 0.8

)
(8)

The above transition matrix Π between blocks cannot correspond to undirected graphs since undi-
rected graphs would require that Π is symmetric. The size of the first two blocks is mi = ⌊ni

4 ⌋ each
(i.e., mi = 5 if ni = 21) and the size of the last block is ni − 2mi (i.e., 11 if ni = 21).

C DETAILS OF EQUATIONS FOR THE HEAT DIFFUSION ENCODER

C.1 NONHOMOGENEOUS HEAT SOURCE TERM

We now give the details of the equations in Section 2. We recall the formulation of Q in Proposition 1:

Q(s) = αe−αses∆(R− eβ∆X(0)) (9)
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which implies the following formulation of F:

F(t) :=

∫ t

0

e(t−s)∆Q(s)ds = et∆
∫ t

0

e−s∆Q(s)ds (10)

=

∫ t

0

αe(t−s)∆es∆e−αs(R− eβ∆X(0))ds = et∆
∫ t

0

αe−αs(R− eβ∆X(0))ds (11)

= et∆
(
−e−αs(R− eβ∆X(0))

) ∣∣∣∣s=t

s=0

= (1− e−αt)et∆(R− eβ∆X(0)) (12)

C.2 NODE REPRESENTATION OVER TIME

We assume in this subsection that t ≥ 0. Equation 4 is written:

X(t) = et∆
(
X(0) + (e−αt − 1)eβ∆X(0) + (1− e−αt)R

)
(13)

For any nonnegative time step τ ≥ 0, we can write X(t+ τ) as a function of X(t) and vice versa.

X(t+ τ) = e(t+τ)∆
(
X(0) + (e−α(t+τ) − 1)eβ∆X(0) + (1− e−α(t+τ))R

)
= eτ∆

(
et∆

(
X(0) + (e−αt − 1)eβ∆X(0) + (1− e−αt)R+ (e−α(t+τ) − e−αt)(eβ∆X(0)−R)

))
= eτ∆

(
X(t) +

(
e−αt − e−α(t+τ)

)
et∆

(
R− eβ∆X(0)

))
From the equation above, we find:

X(t) = e−τ∆X(t+ τ)−
(
e−αt − e−α(t+τ)

)
et∆

(
R− eβ∆X(0)

)
(14)

When β = 0, we have:

X(T ) = e−αT eT∆X(0) + (1− e−αT )eT∆R = e−αTZ(T ) + (1− e−αT )M (15)

Let us assume that β = 0, Equation 13 can be written as:

X(t) = et∆
(
e−αtX(0) + (1− e−αt)R

)
(16)

which implies

X(0) = eαte−t∆X(t) + (1− eαt)R (17)

Equation 17 implies the following formulation of X(0) as a function of X(t+ τ):

X(0) = eα(t+τ)e−(t+τ)∆X(t+ τ) + (1− eα(t+τ))R (18)

From Equation 14, and by setting β = 0, we obtain:

X(t) = e−τ∆X(t+ τ)−
(
e−αt − e−α(t+τ)

)
et∆ (R−X(0)) (19)

= e−τ∆X(t+ τ) +
(
e−α(t+τ) − e−αt

)
et∆R+

(
e−αt − e−α(t+τ)

)
et∆X(0) (20)

By using Equation 18, the last term of Equation 20 can be rewritten:(
e−αt − e−α(t+τ)

)
et∆X(0) (21)

=
(
e−αt − e−α(t+τ)

)
et∆

(
eα(t+τ)e−(t+τ)∆X(t+ τ) + (1− eα(t+τ))R

)
(22)

=(eατ − 1) e−τ∆X(t+ τ) +
((
e−αt − e−α(t+τ)

)(
1− eα(t+τ)

)
et∆R

)
(23)

Equation 20 is then rewritten:

X(t) = eατe−τ∆X(t+ τ) +
(
e−α(t+τ) − e−αt +

(
e−αt − e−α(t+τ)

)(
1− eα(t+τ)

))
et∆R

(24)

= eατe−τ∆X(t+ τ) +
(
e−α(t+τ) − e−αt + e−αt − eατ − e−α(t+τ) + 1

)
et∆R (25)

X(t) = eατe−τ∆X(t+ τ) + (1− eατ ) et∆R (26)
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C.3 STOCHASTICITY OF THE NODE REPRESENTATION MATRIX

In Section 2, we mention that if the matrices et∆ and N are both column stochastic for all t ≥ 0
(Veerman & Lyons, 2020), then Z(t) = et∆N is also column stochastic for all t ≥ 0.

This is easily verified. Let us assume that two matrices B and C are column stochastic. This means
that they have nonnegative elements and 1⊤B = 1⊤ and 1⊤C = 1⊤. The matrix (BC) is column
stochastic because it has nonnegative elements and satisfies 1⊤(BC) = 1⊤BC = 1⊤C = 1⊤.

D CONSENSUS

We now give the formulae and constraints for the consensus model (i.e., when ∆ = L⊤) (DeGroot,
1974).

In this model, the matrix et∆ is row stochastic for all t ≥ 0. We then constrain both N = X(0)
and the matrix M := 1

d11
⊤ ∈ { 1

d}
n×d to be row stochastic, this implies Z(t) row stochastic for all

t ≥ 0. In this case, we have ∀t ≥ 0, et∆M = M. We then also define R := M. In the consensus
model, X(t) = e−αtZ(t) + (1− e−αt)M is also row stochastic for all t ≥ 0.

A detailed comparison between the diffusion and consensus models is discussed in Section 6 of Veer-
man & Lyons (2020). The consensus model would be appropriate in contexts where each row of
X(0) is a one-hot vector corresponding to the category of the node. However, it might suffer from
degenerate cases where some rows of X(t) do not depend on the same rows at their initial time t = 0
due to the properties of the left eigenvectors of L.

E NON-SYMMETRIC HEAT KERNELS

We explain how the heat kernel framework in Kondor & Lafferty (2002) is a special case of our
encoder (see Section 2) when the kernel function is symmetric and the source term Q is homogeneous.
This connection motivates the study of the column space of the Laplacian matrix that is the foundation
of many heat kernel methods (Belkin & Niyogi, 2003; Kondor & Lafferty, 2002).

Heat kernels (Kondor & Lafferty, 2002). We first explain how our approach can be seen as a non-
symmetric heat kernel when the term Q is homogeneous. We recall that a function K : X × X → R
defined on some nonempty set X is called a kernel function if it satisfies Mercer’s theorem (Mercer,
1909). In other words, it satisfies

∫
X
∫
X K(p, q)f(p)f(q)dpdq ≥ 0 for every function f(p) of

integrable square, or
∑

p∈X
∑

q∈X K(p, q)fpfq ≥ 0 for all sets of real coefficients {fp} in the
discrete case, which is the case we are interested in.

Kernel functions are usually defined to be symmetric (i.e., K(p, q) = K(q, p)) to define a Repro-
ducing Kernel Hilbert Space (Smola & Schölkopf, 1998), and the symmetry of the kernel function
between pairs of nodes is reasonable when the graph is undirected. However, kernels are not nec-
essarily symmetric (Seely, 1919) and one can define a Reproducing Kernel Banach Space (RKBS)
on X ⊇ V equipped with the ℓ1 norm (Song et al., 2011; Zhang et al., 2009) by considering the
kernel matrix K ∈ [0, 1]n×n defined such that K = eT∆ with Kpq = K(p, q). Let us define
[0, 1]X := {f : X → [0, 1]} the Banach space of functions mapping X into [0, 1]. We also define the
linear operators f(·) :=

∑n
i=1 αiK(xi, ·), g(·) :=

∑m
j=1 βjK(·, x′j) and the bilinear form ⟨f, g⟩ :=∑n

i=1

∑m
j=1 αiβjK(xi, x

′
j) where n ∈ N,m ∈ N, αi ∈ R, βj ∈ R, x1, . . . , xn, x′1, . . . , x′m ∈ X

are arbitrary. The resulting RKBS generalizes the heat kernels in Kondor & Lafferty (2002) to
directed graphs although it restricts the functions to map into [0, 1] instead of R.

When Q is nonhomogeneous, we have X(T ) = e−αTZ(T ) + (1 − e−αT )M =(
e−αT eT∆ + (1− e−αT )/n11⊤)N since 1

n11
⊤N = M when N is column stochastic. This

leads to the kernel matrix K = e−αT eT∆ + 1−e−αT

n 11⊤. As in Laplacian eigenmap approaches for
dimensionality reduction (Chung & Yau, 1999), K can be thought of as an operator on functions
defined on nodes of the graph and we obtain the node representation matrix KN ∈ [0, 1]n×d. The
fact that KN is column stochastic allows us to upper bound the ℓ1 norm of its columns by 1 (it is
equal to 1), and then satisfy the properties of RKBS on X with the ℓ1 norm (Song et al., 2011).
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We now explain how our framework falls into the framework of Song et al. (2011); Zhang et al.
(2009).

Let us consider the case V = X , which implies |X | = n. We consider the non-symmetric function
K as Kpq = K(p, q) where the kernel matrix K = e−αT eT∆ + (1− e−αT )/n11⊤ ∈ [0, 1]n×n is
column stochastic.

Since K(p, q) is nonnegative for all p ∈ X and q ∈ X , a sufficient condition to satisfy∑
p∈X

∑
q∈X K(p, q)fpfq ≥ 0 is to constrain {fp}p∈X to be a set of nonnegative coefficients.

In our experiments, we set {fp} to be a set of nonnegative coefficients that sum to 1 (i.e., column
stochastic).

The above explanation did not require the notion of RKBS. We can nonetheless use Proposition 5 of
Zhang et al. (2009) which is stated as follows: If the input space X is a finite set, then any nontrivial
function K on X × X is the reproducing kernel of some RKBS on X .

In our case, K is nontrivial because K is full rank. Our kernel matrix (that is full rank, and column
stochastic hence with nonnegative elements) naturally satisfies the first three requirements of Song
et al. (2011). It also satisfies the relaxation of their fourth requirement in their Section 6. We recall
their requirements:

• (A1) for all sequences {xp : p ∈ {1, . . . , n}} ⊆ X of pairwise distinct sampling points, the matrix
K := [K(p, q)] ∈ Rn×n is non singular.

- (A1) is satisfied because K is full rank in our case.

• (A2) K is bounded, namely, |K(s, t)| ≤M for some positive constant M and all s, t ∈ {1, . . . , n}.

- (A2) is satisfied because K is column stochastic, so |K(s, t)| ≤ 1. This is satisfied if 1 ≤M .

• (A3) for all pairwise distinct p ∈ X , j ∈ N and c having its ℓ1-norm finite,
∑∞

j=1 cjK(xj , x) = 0
for all x ∈ X implies c = 0.

- (A3) is satisfied because ∀j,K(xj , xj) > 0 and ∀j ̸= i,K(xj , xi) ≥ 0 in our case. Therefore, (A3)
can be satisfied only if c = 0.

• the relaxation of (A4) in their Section 6 can be formulated as follows: let us write K as follows:

K =

(
K1:(n−1),1:(n−1) K1:(n−1),n

Kn,1:(n−1) Kn,n

)
(27)

where K1:(n−1),1:(n−1) ∈ [0, 1](n−1)×(n−1) and K1:(n−1),n ∈ [0, 1]n−1 are submatri-
ces of K. The relaxation of (A4) is satisfied if there exists some βn such that:
∥(K1:(n−1),1:(n−1))

−1K1:(n−1),n∥ℓ1 ≤ βn is satisfied. Since K1:(n−1),n has its values in [0, 1],
we have to be able to bound the values of (K1:(n−1),1:(n−1))

−1. We can bound them by exploiting
the (inverse of the) eigenvalues of K that depend on T and α (see Equation 29) since we know that
∀r, |λr + 1| ≤ 1.

It is worth noting that this section has proven that it is possible to formulate a RKBS to represent our
node similarities. However, the kernel matrix K is given as input of our algorithm via the adjacency
matrix A. One could define some node representation space that would induce the matrix K by using
the theory of RKBS instead of considering that K is given as input of the algorithm.

F DIFFERENCE BETWEEN T AND α

To understand the difference of impact between T and α, we need to study the eigenvalues of the
kernel matrix described in Appendix E: K = e−αT eT∆ + (1− e−αT )/n11⊤ ∈ [0, 1]n×n.

It is worth noting that S, ∆ = L and eT∆ all have the same set of right and left eigenvectors. The
only difference is their set of eigenvalues. Since S is column stochastic, it is diagonalizable, its
spectral radius is 1 and it has at least one eigenvalue equal to 1 with 1 as left eigenvector. The number
of eigenvalues of S that are equal to 1 is the number of reaches of the graph (Veerman & Lyons,
2020). A reach of a directed graph is a maximal unilaterally connected set (see Veerman & Lyons
(2020) for details). By definition of ∆ = S − I, ∆ and S have the same eigenvectors and those
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that correspond to the eigenvalue 1 of S, correspond to the eigenvalue 0 of ∆, and to the eigenvalue
e0 = 1 of et∆ for all t ∈ R. The matrix et∆ is column stochastic for all t ≥ 0, because its spectral
radius is then 1, it has at least one eigenvalue equal to 1 with 1 as left eigenvector, and it has the same
eigenvectors as the column stochastic matrix S.

Let us note ∆ = UΛU−1 the eigendecomposition of ∆. The eigendecomposition of S is S =
U(Λ + I)U−1, and the eigendecomposition of et∆ is et∆ = UetΛU−1. Let us consider that the
first row of U−1 is γ1⊤ where γ ̸= 0 is an appropriate factor (i.e., the first row of U−1 is collinear
to 1⊤), and let us note:

Λ =



λ1 0 . . . 0 . . . 0
0 λ2 0 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 0 λn−1 0
0 . . . 0 . . . 0 λn


(28)

We know that λ1 = 0 since S is column stochastic. Moreover, both 1
n11

⊤ and eT∆ have 1 as left
eigenvector with corresponding eigenvalue equal to 1, so K = e−αT eT∆ + (1− e−αT ) 1n11

⊤ also
has 1 as left eigenvector with corresponding eigenvalue equal to 1. The eigendecomposition of K
is then K = VΦV−1 where V ̸= U in general, but the first row of V−1 is collinear to 1⊤. The
diagonal matrix Φ is written:

Φ =



1 0 0 0 . . . 0
0 eT (λ2−α) 0 . . . . . . 0

0 0
. . .

...
...

. . . 0 0
0 . . . . . . 0 eT (λn−1−α) 0
0 . . . 0 0 0 eT (λn−α)


(29)

It is worth noting that all the nonzero eigenvalues λr of ∆ have negative real part by definition of S
(i.e., since the spectral radius of S is 1). If α = 0, then ∀r, λr = 0 =⇒ eT (λr−α) = 1. If α > 0
and T > 0, then the real part of λr − α is negative for all r, which implies |eT (λr−α)| < |e0| = 1. If
α > 0 and T > 0, we also have for all r, limT→+∞ |eT (λr−α)| = 0 and limα→+∞ |eT (λr−α)| = 0.

From Equation 29, the main difference between T > 0 and α > 0 is that T acts as a multiplicative
factor on the eigenvalues inside the exponential, whereas α > 0 only has an impact on the real part
of the eigenvalue inside the exponential.

G CONNECTION AND DIFFERENCES WITH DIFFUSION MODELS

Diffusion processes have been used in score-based generative models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021) to generate undirected graphs (Niu et al., 2020; Jo et al., 2022).
However, both Jo et al. (2022) and Niu et al. (2020) exploit Graph Neural Network architectures
that require a symmetric adjacency matrix so these methods are not easily adaptable to digraphs.
Moreover, both approaches perturb each data dimension independently (i.e., without accounting
for the global structure of the graph via its Laplacian). Generally, in such score-based generative
diffusion models, the input converges towards an entirely uninformative pure noise distribution, and
generation requires a slow and iterative denoising process. In contrast, our approach encodes the
global structure of the graph into the node representations via the Laplacian dynamics and effectively
encodes the graph topology in a noisy, yet informative distribution when t = T , from which the
denoised nodes and edges can be efficiently predicted in one shot. In other words, in contrast to
score-based diffusion models, where the role of the diffusion process is purely to gradually perturb
the data and destroy information, in our model the primary role of the (Laplacian) diffusion process
is to additionally encode the graph structure into the node representations. Heat diffusion for the
purpose of information propagation in that fashion has, for instance, been used for learning on curved
3D surfaces (Sharp et al., 2022). Our method is a distinctly different and novel approach compared to
the widely used score-based diffusion models and specifically designed to avoid their slow, iterative
synthesis process.
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Instead, our model can be seen as a denoising autoencoder (Vincent et al., 2008), since it corrupts
the input data with optional edge perturbation and with a nonhomogoneous heat diffusion process.
During sampling, we also approximate the encoding distribution at t = T by using an analytically
tractable distribution, which is similar to variational autoencoders (Kingma & Welling, 2014), where
a simple prior distribution in latent space models the encoding distribution. Hence, our approach can
be seen as related to GraphVAE (Simonovsky & Komodakis, 2018), which, however, uses learned
encoder neural networks instead of a heat diffusion process to encode small graphs in a latent space.
Moreover, GraphVAE only tackles undirected graph synthesis.

It is worth noting that it was shown in Vincent (2011) that score matching techniques (Hyvärinen &
Dayan, 2005) can be seen as training a specific type of denoising autoencoder. Our approach could be
adapted to a score-based generative model with iterative synthesis. This could be done by replacing
our deterministic nonhomogeneous heat source term by a Wiener process using a Dirichlet diffusion
score as done in Avdeyev et al. (2023). However, the method would be computationally expensive
for a large number of nodes since (1) each node would be associated with a different beta distribution,
(2) there exists no known closed-form solution for this kind of linear stochastic differential equation,
(3) and each intermediate time step would require calculating some matrix exponential involving ∆
in our case. Instead, we propose a framework similar to Martinkus et al., 2022 to efficiently work
with singular vectors of the Laplacian matrix and generate (directed) graphs in a one-shot manner.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 STUDY OF THE COLUMN SPACE OF THE LEARNED REPRESENTATIONS

Fig 5 illustrates additional qualitative results from the experiments in Section 5.1 showing cosine
values between the singular vectors (ordered by magnitude of their singular values) of et∆

i

and
et∆

i

N. To improve visualization, we set all the absolute values lower than 0.3 to 0. One can see
that most cosine correlations appear along the diagonal. This shows that the singular vectors of the
different matrices are correlated. Although some absolute values are high in the bottom right corner,
their corresponding singular values are much smaller compared to those in the top left corner, so the
overall importance of their correlation is weaker.

It is worth noting that we use conditional sampling in this experiment so our model has to jointly
learn representations that are relevant for both categories.

H.2 APPROXIMATION TECHNIQUES FOR LARGER GRAPHS

In this subsection, we consider a task similar to the one described in Section 5.2. The goal in
Section 5.2 was to show that digraphs could be entirely reconstructed with our approach by using
low-rank approximations of the Laplacian for small graphs. In other words, if we give some training
adjacency matrix A ∈ {0, 1}n×n to our noising encoder, then our decoder is able to reconstruct all
the elements of A. For simplicity, we did not consider data augmentation techniques in Section 5.2.

We now describe our experimental setup to generate larger graphs of different sizes. As in Section 5.2,
we consider the class-conditional digraph generation with two categories. We use the following
categories Erdős-Rényi with p = 0.4, and a stochastic block model with 5 blocks and the following
transition matrix between the blocks:

Π =


0.9 0.2 0.4 0.2 0.4
0.3 0.9 0.15 0.5 0.45
0.4 0 0.95 0.05 0.4
0 0.3 0.4 0.75 0.45
0.1 0.4 0.4 0.15 0.7

 (30)

All the graphs contain ni nodes where ni ∈ {180, 181, . . . , 200}. The first block contains 40 nodes,
the second block contains 20 nodes, the third and fourth blocks contain 35 nodes each, and the
last block contains from 50 to 70 nodes. We set µ = 0.4, ρ = 1/ni and s = 50 for the rank-s
approximation of eT∆i ∈ [0, 1]ni×ni in this experiment.
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(left) Erdős-Rényi graphs (right) stochastic block model graphs

Figure 5: Correlations between the left singular vectors of et∆
i

and et∆
i

N.

Table 2: Squared MMD distances.
Dataset Erdős-Rényi (p = 0.4) Stochastic block model (5 blocks)
MMD metric Degree Clustering Spectrum Degree Clustering Spectrum

σ
2
=

1
0
0 Sampling from flat Dirichlet distribution 0.00104 0.0094 0.00165 0.00044 0.0078 0.00155

Continuous DGDK (with data augmentation) 0.00077 0.0071 0.00092 0.00025 0.0058 0.00065
Discrete DGDK (with data augmentation) 0.00074 0.0067 0.00092 0.00022 0.0023 0.00062
Discrete DGDK (without data augmentation) 0.00084 0.0068 0.00100 0.00038 0.0033 0.00064
GRAN 0.00123 0.0148 0.00137 0.00051 0.0673 0.02745

σ
2
=

1
0

Sampling from flat Dirichlet distribution 0.0127 0.098 0.0184 0.0036 0.081 0.017
Continuous DGDK (with data augmentation) 0.0077 0.070 0.0092 0.0026 0.063 0.0065
Discrete DGDK (with data augmentation) 0.0074 0.066 0.0092 0.0022 0.057 0.0062
Discrete DGDK (without data augmentation) 0.0087 0.069 0.0105 0.0035 0.059 0.0065
GRAN 0.0134 0.150 0.0143 0.0054 0.693 0.3232

σ
2
=

1

Sampling from flat Dirichlet distribution 0.173 0.67 0.16 0.035 0.84 0.15
Continuous DGDK (with data augmentation) 0.082 0.62 0.093 0.028 0.70 0.067
Discrete DGDK (with data augmentation) 0.072 0.55 0.090 0.022 0.49 0.061
Discrete DGDK (without data augmentation) 0.089 0.61 0.108 0.037 0.53 0.067
GRAN 0.157 1.43 0.138 0.054 1.79 1.264

At test time, we sample graphs that contain ni nodes where ni ∈ {180, 181, . . . , 200}. Quantitative
results are reported in Table 2. Once again, DGDK outperforms GRAN in evaluation metrics that
take into account global properties of the graph. Data augmentation slightly improves performance.

In Table 2, we report the MMD evaluation metrics for different values of the variance parameter in
the RBF kernel: σ2 = 100, 10 and 1. We recall that we use σ2 = 100 in Table 1. We call Discrete
DGDK the sampling strategy described in Algorithm 1 where we sample discrete adjacency matrices
A ∈ {0, 1}n×n as described in line 2 of Algorithm 1. Continuous DGDK corresponds to the same
sampling strategy except that we sample non-diagonal elements of A uniformly in the continuous
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Figure 6: Loss values obtained when optimizing Equation 7 with or without data augmentation by
adding permutations of training adjacency matrices.

interval [0, 1] instead of {0, 1}, while keeping the constraint ∀i,Aii = 1. The two methods are
competitive with baselines.

On the other hand, we also report scores when we sample each column of the input directly from a
flat Dirichlet distribution. This strategy does not exploit the learned matrix N and is outperformed by
our other sampling strategies although it still outperforms the GRAN deadline.

H.3 DATA AUGMENTATION BY USING PERMUTATIONS OF LAPLACIAN MATRICES

In this subsection, we study the impact of the data augmentation technique adding adjacency matrices
of isomorphic digraphs as explained in Section H.3. Figure 6 illustrates the loss value of Equation 7
as a function of the number of iterations with and without this data augmentation technique. In this
setup, we use γ = 100.

We use the experimental setup described in Section 5.2 with 3,000 training graphs per category, 10
graphs per category per batch. Each epoch corresponds to 300 iterations. Both loss curves follow
similar patterns, although the one corresponding to data augmentation has a slightly higher loss value.

One reason of the low impact of this data augmentation technique is that the matrix N is jointly
learned with nonlinear decoders φ and ψ that are robust to this kind of transformation.

H.4 IMPACT OF THE HYPERPARAMETERS

We provide some ablation study on the impact of the noise diffusivity rate hyperparameter α ≥ 0.

When α = 0, more than 97% of the generated graphs contain only one block. Some generated graphs
with α = 0 are illustrated in Figure 7.

When α = 1 (i.e., 1 − e−αT ≈ 0.63), 19% of the generated graphs contain a single block, 26%
contain 2 blocks, 30% contain 3 blocks, 20% contain 4 blocks, 2% contain 5 blocks, 2% contain 6
blocks, 1% contain 7 blocks. The distribution is similar to the training set that is uniformly distributed
(i.e., 25% for each mode). Some generated graphs when α = 1 are illustrated in Figure 8.

When α = 2.3 (i.e., 1 − e−αT ≈ 0.9), 17% of the generated graphs contain a single block, 14%
contain 2 blocks, 20% contain 3 blocks, 20% contain 4 blocks, 8% contain 5 blocks, 5% contain 6
blocks, 8% contain 7 blocks, and the remaining 8% contains up to 15 blocks. Some graphs generated
when α = 2.3 are illustrated in Figure 9. Many generated graphs contain nodes that are isolated.

We report in Table 3 the MMD scores that compare the training set with the generated graphs for
different values of α. The performance shows that α has to be chosen carefully so that noise is
introduced, but not in excess. It is worth noting that GRAN is not appropriate in this experiment
since it has to be given the maximum number of nodes in the graph. Our model is given a number of
nodes and has to generate one or multiple (disconnected) graphs that follow the training distribution.
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Figure 7: Digraphs generated when α = 0.

Table 3: Squared MMD distances for the experiments on the multimodal dataset in Section 5.3 for
different values of α.

Dataset Multimodal dataset
MMD metric Degree Clustering Spectrum

α = 0 2.6× 10−3 1.7× 10−3 3.3× 10−4

α = 1 0.9× 10−3 6.3× 10−4 2.3× 10−4

α = 2.3 1.6× 10−3 1.0× 10−3 5.9× 10−4

Figure 8: Digraphs generated when α = 1.0.
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Figure 9: Digraphs generated when α = 2.3.
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