
Towards Bounding Causal Effects under Markov Equivalence

Alexis Bellot

Google DeepMind, London, UK

Abstract

Predicting the effect of unseen interventions is a
fundamental research question across the data sci-
ences. It is well established that in general such
questions cannot be answered definitively from
observational data. This realization has fuelled a
growing literature introducing various identifying
assumptions, for example in the form of a causal
diagram among relevant variables. In practice, this
paradigm is still too rigid for many practical appli-
cations as it is generally not possible to confidently
delineate the true causal diagram. In this paper,
we consider the derivation of bounds on causal ef-
fects given only observational data. We propose to
take as input a less informative structure known
as a Partial Ancestral Graph, which represents a
Markov equivalence class of causal diagrams and
is learnable from data. In this more “data-driven”
setting, we provide a systematic algorithm to de-
rive bounds on causal effects that exploit the in-
variant properties of the equivalence class, and that
can be computed analytically. We demonstrate our
method with synthetic and real data examples.

1 INTRODUCTION

Causal relations are a prominent paradigm to describe our
interactions with the world around us. We rely on them to
make sense of notions of fairness, extrapolation, and safety
in AI systems that play an increasingly important role in
society. At the center of the notion of causality lies the idea
of manipulation or intervention. A typical question in this
context could be: “What would happen to outcome Y if X
were set to x?”. For example, a physician might be interested
in how a biomarker Y responds to a new dosage x of drug
X; or, an economist might wonder about the trajectory of
economic indicators Y under an interest rate hike X “ x

in a given country Z “ z. These questions all appeal to the
same formal machinery, they aim at establishing facts about
(conditional) causal effects, e.g., written Pxpy | zq.

In general, it is impossible to infer the effect of interventions
from data alone (without physically manipulating reality)
as further domain knowledge or assumptions are typically
needed to uniquely pin down causal effects. This motivates
the study of a problem known as (partial) causal identi-
fication (Pearl, 2009). The idea is to combine data from
an observational distribution P pV q with partial knowledge
of the domain, articulated as a causal diagram, to bound
a causal effect Pxpy | zq within a tight interval. In other
words, the problem is to infer a set of values that contains all
effects implied by the causal models consistent with the data
and assumptions. If the effect can be uniquely determined
it is said to be point identified and the interval reduces to a
single value.

One of the foundational results in the literature is due to
Manski (1990); Robins (1989). The authors showed that
causal effects could be bounded with observational data
without making any assumptions on the structure or causal
diagram of the underlying data generating mechanisms. This
approach has since been generalized to bound causal effects
under instrumental variable assumptions (Robins, 1989),
and given more general causal diagrams (Zhang and Barein-
boim, 2019; Zhang, 2020). In parallel, several authors have
shown that with a sufficiently expressive parameterization of
the underlying causal model, bounds can also be computed
by making inference on model parameters, with recent pro-
posals developing polynomial optimization programs (Balke
and Pearl, 1997; Hu et al., 2021; Padh et al., 2022; Li and
Pearl, 2022) and Bayesian methods (Chickering and Pearl,
1996; Zhang et al., 2021; Finkelstein and Shpitser, 2020).
Many of these recent works develop bounds under various
assumptions about the structure and form of the underlying
data generating mechanism. In practice, this formulation
is often found too rigid for many practical applications as
assumptions are hard to justify and test, sometimes even
known to be unrealistic. A sensible concern is that forcing
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Figure 1: Examples of diagrams.

a single diagram or parametric model family may lead to
false modeling assumptions and misleading inferences on
causal effects.

In the spirit of designing more “data-driven” AI systems,
one approach to circumvent the need for prior knowledge is
to learn the causal diagram from data first, and then perform
identification from there. The statistical constrains found in
data (e.g. conditional independencies) can be leveraged to
infer a class of Markov equivalent (ME) causal diagrams
that is commonly represented as a Partial Ancestral Graph
(PAG) (Richardson and Spirtes, 2002; Spirtes et al., 2000;
Zhang, 2008b). For example, the PAG P in Fig. 1b encodes
the ME class of causal diagrams that would be consistent
with data generated according to the causal diagram G in
Fig. 1a. In the PAG P the directed edges encode ancestral
relations, not necessarily direct, and the circle marks stand
for structural uncertainty. Directed edges labeled with v sig-
nify the absence of unmeasured confounders. Identification
(determining whether causal effects may be uniquely com-
puted) from PAGs is of increasing interest. Several recent
techniques for the identification of causal effects have been
developed (Zhang, 2008a,b; Jaber et al., 2018a; Hyttinen
et al., 2015; Perkovic et al., 2018; Jaber et al., 2019b, 2018b)
including a calculus and complete algorithms (Jaber et al.,
2019a, 2022).

In this paper, we pursue a generalization of the partial iden-
tification task that consists of bounding causal effects with
more restricted domain knowledge in the form of a class
of ME causal diagrams (instead of a fully specified causal
diagram).This notion is “data driven” in the sense that equiv-
alence classes can, in principle, be inferred from observa-
tional data P pV q only, up to an assumption of faithfulness1.
Our main contributions is to show that the data entails con-
straints on the value of causal effects that can be exploited
to derive tighter bounds than previously considered. More
specifically, we summarize our contributions as follows.

• Section 4. We derive analytical expressions (closed-form,
in terms of P pV q) for lower and upper bounds on a causal
effect of interest given observational data based on the
structure of a PAG (Alg. 1). In particular, we show that the
proposed bounds outperform the bounds due to Manski

1In practice, an assumption of strong faithfulness is typically
required for consistently recovering (asymptotically, without error)
the True PAG from finite samples (Robins et al., 2003; Zhang and
Spirtes, 2012a).

(1990); Robins (1989) in general (Prop. 5) and provide
several examples.

• Section 5. We investigate enumeration strategies, i.e. the
strategy of listing ME causal diagrams and performing
partial identification on each diagram separately using ex-
isting “diagram-specific” bounding techniques. We show
that, in fact, a large portion of ME causal diagrams could
be shown to be “redundant” for the purpose of bounding
causal effects (Props. 7 and 8). Despite this simplifica-
tion, still, we conjecture that a large number of graphs
(increasing with the number of nodes) must be considered
in general (Prop. 9), which suggests that enumeration
strategies might be computationally intractable.

1.1 PRELIMINARIES

We use capital and small letters to denote random variables
and their values respectively, e.g. X and x, and bold capital
and small letters to denote sets of variables and their values,
e.g. X and x. We use P pxq as an abbreviation for probabil-
ity P pX “ xq, and similarly for conditional probabilities.
For sets of variables X,Y ,Z, conditional independence in
P is denoted pX |ù Y | ZqP and d-separation2 in a graph
G is denoted pX |ù Y | ZqG .

The framework that underpins causal effects and diagrams
rests on Structural Causal Models (SCMs) following (Pearl,
2009, Def. 7.1.1). A SCM M is a tuple xV ,U ,F , P pUqy,
where V is a set of endogenous (observed) variables, U
is a set of exogenous latent variables, and F “ tfV uV PV

is a set of functions such that fV determines values of V
taking as argument variables PaV Ď V and UV Ď U ,
i.e. V Ð fV pPaV ,UV q. Values of U are drawn from an
exogenous distribution P puq. We assume the model to be
recursive, i.e. that there are no cyclic dependencies among
the variables. An intervention on a subset X Ă V , denoted
by dopxq, induces a sub-model Mx in which X is set to
constants x, replacing the functions tfX : X P Xu that
would normally determine their values. The distribution of
a set of variables Y in Mx is denoted PxpY q. Domains of
V are discrete and finite.

An SCM induces a causal diagram G over V , where V Ñ

W if V appears as an argument of fW , and V L9999K W
if UV X UW ‰ H, (V and W share an unobserved con-
founder). In a causal diagram, two nodes are said to be in

2The criterion of d-separation follows (Pearl, 2009, Def. 1.2.3).

2



the same c-component C Ď V if and only if they are con-
nected by a bi-directed path, i.e., a path composed entirely
of edges “L9999K”. For any set C Ď V , QrCs :“ Pvzcpcq

denotes the post-interventional distribution of C under an
intervention on V zC. By definition QrV s “ P pvq and by
convention QrHs “ 1.

2 PROBLEM FORMULATION

In the setting of causal inference, we are interested in the
following causal effect.

Definition 1 (Causal effect). The causal effect from an
intervention dopX “ xq on an outcome Y is defined by
Pxpyq.

The challenge is that we cannot immediately use this ex-
pression to estimate the causal effect as we only have access
to the observational distribution P but not the experimen-
tal distribution Px that would define its value. In general,
there might exist multiple SCMs M that entail the same
data distribution P pV q that result in different values of the
causal effect Pxpyq (regardless of how many samples are
collected). This motivates the problem of partial identifica-
tion defined next.

Definition 2 (Partial Identification). The causal effect
Pxpyq is said to be partially identifiable from P pV q if it de-
termines a bound ra, bs for Pxpyq that is strictly contained
in r0, 1s and valid over all SCMs M that induce P .

We now introduce the so-called natural bounds (NB) due
to Manski (1990); Robins (1989) that define a function
of the observational data that consistently bounds Pxpyq,
irrespective of the causal structure of the system.

Definition 3. The natural bounds (NBs) for a causal effect
Pxpyq are given by,

P px,yq ď Pxpyq ď P px,yq ` 1 ´ P pxq. (1)

In words, this result states that causal effect are natu-
rally partially-identifiable. In particular, the NBs have been
shown to be tight in several examples (in the sense that there
exists two different models M1,M2 that entail P pV q and
evaluate to the lower and upper NBs, respectively). One
example is the query Pbpxq given G in Fig. 1a for which the
NBs are tight.

For other queries that involve variables that are more “sepa-
rated” in the underlying causal system, better bounds may
be derived by exploiting the implications of “separation” on
the entailed observational and interventional data distribu-
tions. For example, we would expect that if pZ |ù Y qP then
Px,zpyq “ Pxpyq also and therefore the NBs could be im-
proved. Statistical constraints of this type are an implication

of the structure of the underlying causal system onto the
observed data with distribution P pV q. More generally, a
d-separation between nodes in a causal diagram induces a
corresponding conditional independence between variables
in V . The reverse implication, i.e. that each conditional in-
dependence in data implies a corresponding d-separation in
the underlying causal diagram, is known as faithfulness. In
particular, for three sets of variables X,Y ,Z with a distri-
bution P pX,Y ,Zq induced by a causal model with causal
diagram G, faithfulness asserts that,

pX |ù Y | ZqP ñ pX |ù Y | ZqG .

This condition serves as a statistically testable constraint to
narrow the class of compatible causal models (Pearl, 1988;
Meek, 1995; Zhang, 2006). In this paper, we ask whether
tighter bounds could be inferred under the assumption of
faithfulness.

3 EQUIVALENCE CLASSES AND THEIR
IMPLICATIONS

One common graphical abstraction to represent sets of
causal diagrams with the same d-separation and non-
ancestral relations are so called Maximal Ancestral Graphs
(MAGs). “Ancestral” due to the fact that MAGs does not
contain directed cycles (directed paths that start and end
at the same node) or almost directed cycles (directed paths
X Ñ ¨ ¨ ¨ Ñ Y such that X L9999K Y ), and “maximal”
due to the fact that every pair of nonadjacent nodes tX,Y u,
there exists a set Z Ă V that d-separates them.

Two causal diagrams or MAGs are said to be Markov equiva-
lent (ME) if they entail the same set of d-separations3. A ME
class of graphs can be summarized in a PAG that includes
one additional edge tip “ ˝ ” that denotes undecidability, i.e.,
there are graphs in the equivalence class with both types of
edge tips (Zhang, 2006, 2008a)4. Directed edges X Ñ Y in
a MAG or PAG are said to be visible, denoted X

v
ÝÑ Y , if

unobserved confounding can be ruled out. For example, the
PAG in Fig. 1b encodes the ME class of the causal diagram
in Fig. 1a. The output of the FCI algorithm is a PAG that can
be recovered consistently under faithfulness (Spirtes et al.,
2000; Zhang, 2006, 2008a).

Notation. It will be useful to use standard graph-theoretic
family abbreviations to represent graphical relationships in
causal diagrams or equivalence classes. A path between X
and Y is potentially directed (causal) from X to Y if there
is no arrowhead on the path pointing towards X . Y is called
a possible descendant of X , i.e., Y P PossDepXq, and X
a possible ancestor of Y , i.e., X P PossAnpY q, if there

3The notion corresponding to d-separation in MAGs is called
m-separation.

4Selection bias, typically represented with undirected edges
(Zhang, 2008b) or extra variables is not considered in this paper.
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is a potentially directed path from X to Y . By stipulation,
X P PossAnpXq. A set X is ancestral if no node outside
X is a possible ancestor of any node in X . X is called
a possible parent of Y , i.e., X P PossPapY q, and Y a
possible child of X , i.e., Y P PossChpXq, if they are
adjacent and the edge is not into X . Further, X is called
a possible spouse of Y , i.e., X P PossSppY q, if they are
adjacent and the edge is not visible. For a set of nodes X ,
we have PossPapXq “

Ť

XPX PossPapXq. If the edge
marks on a path between X and Y are all circles, we call the
path a circle path. We refer to the closure of nodes connected
with circle paths as a bucket. For example, in Fig. 1b tC,Du

is a bucket.

The notion of pc-component, defined below, generalizes
that of c-components to equivalence classes and will be
important for the proposed approach.

Definition 4 (pc-component (Jaber et al., 2018a)). In a
PAG, or any induced sub-graph thereof, two nodes are in
the same possible c-component (pc-component) if there is a
path between them such that all non-endpoint nodes along
the path are colliders, and none of the edges is visible.

In words, the pc-component of a set A includes all the nodes
which could, in some causal diagram, be in the c-component
of some node in A. Following this definition, e.g., A,B and
X in Fig. 1b are in the same pc-component since X is a
collider on the path between them and none of the edges
are visible. By contrast, A and C are not in the same pc-
component since there is a visible edge on all paths that
connect them. Using these notions, a causal effect of the
form QrCs can be decomposed into a product of smaller
quantities, as shown in Prop. 1 using the Region construct.

Definition 5 (Region Jaber et al. (2019a)). Given a PAG P
over V , and A Ď C Ď V . Let the region of A with respect
to C be the union of the buckets that contain nodes in the
pc-component of A in the sub-graph PC .

Proposition 1 (Thm. 1 (Jaber et al., 2019a)). Given a PAG
P over V and A Ă C Ď V , let the region of A with
respect to C be denoted RA. QrCs can be decomposed as,

QrCs “ QrRAs ¨ QrRCzAs { QrRA
Ş

RCzAs. (2)

Identification of quantities Qr¨s given an equivalence class
P uses a notion of (partial) topological order over the nodes
in P . A partial topological order is defined on buckets rather
than individual nodes therefore extending the notion used in
single causal diagrams and is valid for all causal diagrams
in the Markov equivalence class (Jaber et al., 2018a, Lemma
1). For example, A ă B ă X ă tC,Du, is a partial
topological order over the buckets of P in Fig. 1b.

Conditional causal effects, of the form Pxpy | zq, can be
similarly be decomposed using the notion of Qr¨s by the

definition of conditional probability,

Pxpy | zq “
ÿ

czy

˜

QrC
Ť

Zs {
ÿ

c

QrC
Ť

Zs

¸

, (3)

where C “ PossAnpY
Ť

ZqPV zX
zX .

The decompositions of causal effects into pc-components
and partial topological orders play a critical role in system-
atic identification algorithms and will be important in our
work.

4 BOUNDING CAUSAL EFFECTS

This section aims to consider the separations between vari-
ables encoded in a PAG and the decomposition of causal
effects it implies to provide a systematic algorithm to bound
causal effects. After getting familiar with these decompo-
sitions our next task is to introduce a new notion of partial
identification for this setting.

Definition 6 (Partial Identification from a PAG). The causal
effect Pxpyq is said to be partially identifiable from a PAG
P and P pvq if they determine a bound ra, bs for Pxpyq

that is strictly contained in r0, 1s and is valid for any SCM
compatible with P .

An SCM is said to be compatible or consistent with a PAG
P if it induces a causal diagram that can be represented
with P . The following result shows that this notion of par-
tial identification is driven by the constraints in the data
distribution only, up to an assumption of faithfulness.

Proposition 2. Let P be the PAG underlying P pV q. Under
faithfulness, a causal effect is partially identifiable from
P pV q with bound ra, bs if and only if it is partially identifi-
able from P and P pV q with bound ra, bs.

In words, Prop. 2 relates the solution space of two classes of
models, namely the set of models compatible with a distribu-
tion P pV q and the set of models compatible with P pV q and
the true PAG P . It shows that the partial identification status
of a query is preserved across settings under an assumption
of faithfulness.

Our next results will be concerned with proposing a concrete
procedure to derive bounds for the partial identification prob-
lem in Def. 6. The strategy involves bounding unidentifiable
probabilities QrSs,S Ă C in terms of larger identifiable
probabilities QrCs. These will then be introduced into ex-
isting identification algorithms from a PAG based on the
decomposition in Prop. 1 to produce a systematic bounding
algorithm.

Proposition 3 (Lower bound). Given a PAG P , consider
sets S Ă C Ď V and define W “ PossAnpSqPC

, R “

W zS, and T “ PossSppSqPC
zS. Let A,B partition R

4



such that B “ PossDepT qPC

Ş

R,A “ RzB. QrSs is
lower bounded as follows:

QrSs ě max
z

QrW s
ř

s,b QrW s
, (4)

where Z “ PossPapW qPzPossPapSqP .

Proposition 4 (Upper bound). Given a PAG P , consider
sets S Ă C Ď V and let a partial topological ordering of
S be S1 ă ¨ ¨ ¨ ă Sk. Define W “ PossAnpSqPC

, R “

W zS, and T “ PossSppSqPC
zS. Let A,B partition R

such that B “ PossDepT qPC

Ş

R,A “ RzB. QrSs is
upper bounded as follows:

QrSs ďmin
z

#

QrW s
ř

s,b QrW s
´
ÿ

sk

QrW s
ř

s,b QrW s

+

` QrSzSks, (5)

where Z “ PossPapW qPzPossPapSqP .

These results use graph theoretic notation to distinguish be-
tween qualitatively different relationships among variables
in a PAG. The following example illustrates these results
more concretely.

Example 1 (Contrast with natural bounds). Consider the
evaluation of a query Pbpxq given the distribution P px, bq
that does not advertise any statistical independencies be-
tween X and B. The corresponding PAG is given by
tB ˝́ ˝ Xu. With the notation of the propositions above,
Pbpxq “ QrSs,S “ tXu,W “ tB,Xu,B “ tBu,Z “

H,Sk “ S, and therefore,

P pb, xq ď Pbpxq ď P pb, xq ´ P pbq ` 1, (6)

using the facts that QrW s “ P pb, xq,
ř

s QrW s “ P pbq.
These expressions recover the NBs. With additional in-
dependencies, tighter bounds could be given by the pro-
posed techniques. Continuing with this example, assume
that in addition to X,B we observe samples from variables
A,D,C whose conditional independencies are summarized
by the PAG in Fig. 1a. Consider now the query Pb,d,cpx, aq.
By inspecting the PAG we find that S “ tX,Au,W “

tA,B,Xu,B “ tA,Bu,Sk “ tXu,Z “ H, and,

P pb, x, aq ď Pb,d,cpx, aq ď P pb, x, aq ´ P pa, bq ` P paq.
(7)

In contrast, the NBs return P pb, x, a, c, dq ď Pb,d,cpx, aq ď

P pb, x, a, c, dq ´ P pb, c, dq ` 1. We can verify that the pro-
posed lower bound is tighter as

pNB “q P pb, x, a, c, dq ď P pb, x, aq. (8)

And, the upper bound is tighter as,

pNB “q P pb, x, a, c, dq ´ P pb, c, dq ` 1

p1q

ě
ÿ

c,d

!

P pb, x, a, c, dq ´ P pb, c, dq

)

` 1

“ P pb, x, aq ´ P pbq ` 1

“ P pb, x, aq `
ÿ

a

!

P paq ´ P pa, bq
)

p2q

ě P pb, x, aq ` P paq ´ P pa, bq. (9)

The first and last inequalities (1,2) hold by noting that
P pb, x, a, c, dq ´ P pb, c, dq ď 0 and P paq ´ P pa, bq ě 0,
respectively. ■

We can see that in some cases these bounds coincide with
the NBs, as in Eq. (6), while in others they improve upon
the NBs, as in Eqs. (8) and (9). The following result makes
this claim more concrete.

Proposition 5. Consider a query Pxpyq and let P be the
PAG over tX,Y u compatible with P . Then, under an as-
sumption of faithfulness, the bounds given in Props. 3 and 4
are at least as tight as the natural bounds.

It is worth emphasizing that this result does not come for
free. The assumption of faithfulness is critical: without it,
no d-separation could be guaranteed, the compatible PAG
would have to be fully connected (and non-informative),
and consequently the proposed bounds would revert to the
NBs in all cases.

We are now ready to describe a systematic algorithm for
bounding arbitrary causal effects that exploits the new
bounds. The procedure is given in Alg. 1. It extends the
identification algorithm IDP (Jaber et al., 2019a) with a call
to the propositions above (line 12) whenever a component
Qr¨s is not uniquely identifiable.

Proposition 6. Partial IDP (Alg. 1) terminates and is sound.

The proof follows from the soundness of IDP (Jaber et al.,
2019a) and Props. 3 and 4. A similar algorithm for partially
identifying conditional causal effects could be derived by
adapting CIDP (conditional IDP) due to Jaber et al. (2022)
with a call to the propositions above whenever a compo-
nent is not uniquely identifiable. To get more familiar with
the proposed procedure, we exemplify the various steps of
Partial IDP in several additional scenarios.

Example 2 (Steps of Partial IDP). Consider the query
Px,w,zpyq given P in Fig. 2. Notice that the effect is not
immediately identifiable as the path Z Ñ Y start with an
invisible edge (that doesn’t rule out unobserved confound-
ing between Z and Y (Jaber et al., 2019a, Thm. 3). The
first step in lines 1 and 2 of Alg. 1 involves identifying

5



Algorithm 1 Partial IDP

Input: A PAG P and disjoint sets X,Y Ă V
Output: Lower or upper bound expressions (type) for

Pxpyq

1: Let D :“ PossAnpY qPV zX

2: return
ř

dzy PIDpD,V , P, typeq

3: function PIDpC,T , Q “ QrT s, typeq

4: if C “ H then return 1.
5: if C “ T then return Q.

/* In PT , let B denote a bucket, and let CB denote
the pc-component of B */

6: if DB Ă T zC such that CB

Ş

PossChpBqPT
Ď B

then
7: Compute QrT zBs from QrT s via (Jaber et al.,

2018a, Prop. 2).
8: return PIDpC,T zB, QrT zBs, typeq

9: else if DB Ă C such that RB ‰ C then
10: if Lower bound desired then

11: return PIDpRB ,T ,Q,lowerq ¨ PIDpRCzRB
,T ,Q,lowerq

PIDpRB

Ş

RCzRB
,T ,Q,upperq

12: else
13: return PIDpRB ,T ,Q,upperq ¨ PIDpRCzRB

,T ,Q,upperq

PIDpRB

Ş

RCzRB
,T ,Q,lowerq

14: end if
15: else
16: return Lower or upper bounds (according to type)

for QrCs from QrT s via Props. 3 and 4.
17: end if

QrDs,D “ PossAnpY qPtS,Y u
“ tY u by running the

IDP procedure in line 3. The first if condition, on line
6, is triggered as B “ tSu Ă T zC “ tW,X,Z, Su

satisfies that CS

Ş

PossChpSqPT
“ H that is trivially

included in S. Following (Jaber et al., 2018a, Prop. 2),
in line 7 we can therefore evaluate QrW,X,Z, Y s from
QrT s “ P pw, x, z, y, sq that returns QrW,X,Z, Y s “

P pw, x, y, zq. Next we consider applying PID with the
set T “ tW,X,Z, Y u, finding that B “ tX,W u trig-
gers the if condition, as the intersection of CtX,W u “

tW,X,Zu and PossChptX,W uqPtW,X,Z,Y u
“ tX,Y u

equals tW,Xu which is included in B. This licenses
the evaluation of QrZ, Y s from QrW,X,Z, Y s to obtain
QrZ, Y s “ P py | z, xqP pzq, further simplifying the set
T “ tZ, Y u. The next call to PID reveals that none of the
if conditions in lines 6 and 9 are triggered and we have to
resort to the computation of bounds on QrY s from QrY,Zs

in line 16. A call to Props. 3 and 4 then returns:

QrY s ě QrY,Zs “ P py | z, xqP pzq, (10)

which implies Px,w,zpyq ě P py | z, xqP pzq. For the upper
bound,

QrY s ď QrY,Zs ´
ÿ

y

QrY,Zs ` 1, (11)

W X Y S

Z

v v

Figure 2: PAG for Example 2.

which implies Px,w,zpyq ď P py | z, xqP pzq ´ P pzq ` 1.

We could show, moreover, that these bounds are tighter than
the NBs as, for the lower bound,

pNB “q P py, z, x, wq

ď P py, z, xq

“ P py | z, xqP px | zqP pzq

p1q

ď P py | z, xqP pzq, (12)

which is the proposed lower bound. (1) holds because P px |

zq ď 1. For the upper bound,

pNB “q P py, z, x, wq ´ P pz, x, wq ` 1

p2q

ě 1 `
ÿ

w

␣

P py, z, x, wq ´ P pz, x, wq
(

“ 1 ` P px | zq
␣

P py | z, xqP pzq ´ P pzq
(

p3q

ě P py | z, xqP pzq ´ P pzq ` 1, (13)

which is the proposed upper bound. (2) holds because
P py, z, x, wq ´ P pz, x, wq ď 0 and (3) holds because
P px | zq ď 1 and the term in brackets t¨u ď 0. ■

Example 3 (Applications in biology). We illustrate next
the inference that could be made for decision making in
medicine and healthcare with a (publicly available) dataset
from the literature.

We revisit the protein signalling study of (Sachs et al., 2005).
Signalling pathways regulate the activity of a cell. The abil-
ity to precisely predict the effect of perturbations in sig-
nalling pathways, e.g., by knocking out a gene that inacti-
vates a protein in the network, on a phenotype of interest,
such as cell growth, can have important applications for the
treatment of disease. We consider computing bounds on the
effect of PKC inactivation on the RAF/MEK/ERK pathway
given the PAG in Fig. 3b recovered from phosphorylation
data (i.e. markers of pathway activation)5.

In this example, the query of interest is given by
P pRAF,MEK,ERK | dopPKCqq. In line 2 of Alg. 1, we
may rewrite this quantity as

ř

PKAQrRAF,MEK,ERK,PKAs

where we have used the ancestral set of the outcome vari-
ables. A call to PID then triggers the if condition in line
9 in which the bucket B “ tMEKu for which the region

5We use a discretized version of the data following (Hartemink
et al., 2000) with levels: high (2), average (1), low (0) activation,
downloaded from the bnlearn data repository (Scutari, 2009).

6



PKA

RAF

PKC

MEK ERK

AKT

(a)

PKA

RAF

PKC

MEK ERK

AKT

v v

(b)

Figure 3: (a) Protein signalling network (Sachs et al., 2005, Fig.
2), (b) corresponding PAG for Example 3.

RB “ tMEKu ‰ tRAF,MEK,ERK,PKAu. We may there-
fore decompose QrRAF,MEK,ERK,PKAs into two terms
QrRAF,ERK,PKAs and QrMEKs that may be considered
separately. Among these expressions: QrMEKs “ P pMEK |

RAFq is identifiable but QrRAF,ERK,PKAs isn’t. Calling
IPD on the second term we find, however, that the first
if condition in line 6 is triggered: T “ V reduces to
T “ tRAF,ERK,PKA,PKCu and

QrRAF,ERK,PKA,PKCs “ (14)
P pRAF,ERK,PKA,PKC,MEKq{P pMEK | RAFq

Finally, we now proceed to bound QrRAF,ERK,PKAs

from QrRAF,ERK,PKA,PKCs with Props. 3 and 4. Follow-
ing the notation of Props. 3 and 4, in PtRAF,ERK,PKA,PKCu,
W “ PossAnpSq “ tRAF,ERK,PKA,PKCu,R “ B “

tPKCu, and Z “ H. It then follows that,

QrRAF,ERK,PKAs ě QrRAF,ERK,PKA,PKCs, (15)

and that,

QrRAF,ERK,PKAs ď QrRAF,ERK,PKA,PKCs (16)

´
ÿ

ERK

QrRAF,ERK,PKA,PKCs ` QrRAF,PKAs.

QrRAF,PKAs on the r.h.s. could be further upper-bounded
from QrRAF,PKA,PKCs with a similar strategy; in par-
ticular giving QrRAF,PKAs ď QrRAF,PKA,PKCs ` 1 ´

QrPKCs “ P pRAF,PKA,PKCq ` 1 ´ P pPKCq.

Combining these expressions, we could use the observed
data to estimate the conditionals and infer the probabili-
ties of high and low pathway activation after knocking out
(intervening on) PKC:

P pRAF “ 0,MEK “ 0,ERK “ 0 | dopPKC “ 0qq (17)
P r0.0214, 0.0864s,

P pRAF “ 2,MEK “ 2,ERK “ 2 | dopPKC “ 0qq (18)
P r0.1120, 0.3115s,

respectively. In turn, by relying on the current consensus
biological network (Sachs et al., 2005, Fig. 2), given in
Fig. 3a, the causal effects would be point estimated to be
0.0441 and 0.1861 respectively. Without committing to a
particular causal diagram, the inferred bounds would be the
more cautious approximation of causal effects. ■

We provide additional worked examples to illustrate the
proposed bounding technique in Appendix C.

Remark (Statistical uncertainty). The bounds computed in
Example 3 do not account for statistical uncertainty (both
in the discovery of the PAG and in the approximation of
bounds). In practice, an assumption of strong faithfulness is
typically required for consistently recovering the True PAG
from finite samples (Robins et al., 2003; Zhang and Spirtes,
2012a). A more careful analysis would be required to make
actionable causal claims.

For some queries, we could show that the bounds returned
by Partial IDP in Alg. 1 are tight: one example is the first
query in Example 1 (Eq. (6)). In general, however, analyt-
ical bounds returned for arbitrary queries and equivalence
classes are not known to be tight. Determining whether this
is the case is an important research direction.

In the next section, to investigate the derivation of tighter
bounds for arbitrary queries, we switch gears and consider a
different approach to bounding causal effects in equivalence
classes, namely enumeration strategies.

5 THE DIFFICULTY OF ENUMERATING
CAUSAL DIAGRAMS FROM A PAG

The techniques explored so far overlook the potential for
enumerating (relevant) ME causal diagrams and subse-
quently applying existing (partial) identification techniques
given each diagram separately (that we refer to as “enumer-
ation strategies”). Enumerating all ME causal diagrams is
exponentially costly, and intractable in general even with
an assumption of no unobserved confounding, i.e. in the
space of directed acyclic graphs as shown by Wienöbst et al.
(2023). However, a number of observations can be made to
avoid enumerating all ME causal diagrams which reduces
the search space to a (potentially tractable) subset of “rele-
vant” ME causal diagrams without loss of generality.

This section explores the definition of sets of ME causal
diagrams K Ă P with the distinctiveness of being equally
expressive in the sense that,

!

Pxpy;Mq : M P MpPq

)

“

!

Pxpy;Mq : M P MpKq

)

. (19)

Let MpPq denote the set of SCMs compatible with P , that
is the set of SCMs that induce causal diagrams contained
in the PAG abstraction P . Under Eq. (19), minimum and
maximum values of causal effects remain unchanged, and
one may exploit K instead of P for inference in practice. The
hope is that if the set of causal diagrams K is small enough
then we might be able to apply existing partial identification
algorithms on every causal diagram G P K efficiently.

We start by introducing the notion of a Loyal Equivalent
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Figure 4: Diagrams used in Sec. 5.

Graph (LEG) (Def. 7), from (Zhang and Spirtes, 2012b,
Prop. 2), that are sets of ME MAGs that retain “expres-
siveness” in the sense of Eq. (19). This result is given in
Prop. 7.

Definition 7. Given a MAG G, there exists a ME MAG H,
called a Loyal Equivalent Graph, such that all bi-directed
edges in H are invariant, and every directed edge in G is
also in H.

Proposition 7 (Expressiveness of LEGs). Given a PAG P ,
let L be the set of ME LEGs. Then, MpPq “ MpLq.

For example, the LEG in Fig. 4c is derived from the MAG in
Fig. 4b by replacing the bi-directed edge with a directed one.
Prop. 7 shows that the set of ME LEGs is as expressive as the
set of ME MAGs that are encoded by P6. The significance of
this proposition lies in the fact that ME LEGs are a subset of
ME MAGs and that, contrary to ME MAGs, ME LEGs are in
principle listable by exhaustively applying a simple criterion
for the reversal of directed edges while remaining Markov
equivalent, i.e. (Zhang and Spirtes, 2012b, Lemma 2). We
review this criterion in more detail in Appendix A and give
an algorithm for enumerating ME LEGs that exploits it in
Appendix D.

A second redundancy result is given in Prop. 8 by introduc-
ing so called maximally bi-directed (MBD) diagrams.

Definition 8. A causal diagram G is said to be maximally
bi-directed if no further bi-directed edges can be added
without breaking a d-separation.

Proposition 8 (Expressiveness of MBD diagrams). Given
a PAG P , let D be the set of ME MBD diagrams. Then,
MpPq “ MpDq.

MDB causal diagrams can be constructed from an LEG by
adding bi-directed edges on top of invisible directed edges
wherever possible. For example, the causal diagram G in
Fig. 4d, compatible with the LEG L in Fig. 4c, is said to
be maximally bi-directed as no further bi-directed edges
can be added while remaining Markov equivalent. G has
the distinctiveness of inducing a family of SCMs which
includes all SCMs that are compatible with any causal dia-
gram compatible with the corresponding LEG L in Fig. 4c,
i.e. MpGq “ MpLq. More specifically, in this example, G
induces a class of SCMs given by: x :“ fXpuX,Y q, z :“

6Recall, as noted in Sec. 3, that MAGs (and LEGs) encode
the sets of causal diagrams that would be represented by the same
MAG (or LEG).

X
W

V
Y X

W

V
Y

Figure 5: Diagrams used in Prop. 9.

fZpuX,Zq, y :“ fY px, z,uX,Z ,uX,Y q, with deterministic
functions and exogeneous distributions arbitrarily defined.
We can see that this parameterization is flexible enough to
represent any SCM induced by causal diagrams compatible
with L. As a consequence, in general, Prop. 8 implies that
the set of ME MBD causal diagrams is as expressive as
the set of all ME causal diagrams. Appendix D gives an
algorithm for generating all ME MBD diagrams D from the
set of all ME LEGs L.

Additionally, note that in general multiple MBD causal di-
agrams can be derived from with a single LEG. For ex-
ample, Fig. 5 gives two MBD causal diagrams induced
by the same LEG (both bi-directed edges could not ap-
pear simultaneously as that would violate the independence
pV |ù W | XqP ). Therefore, unfortunately, a reduction of
the set of ME MBD diagrams D while preserving the space
of SCMs MpDq is, in general, not possible. Multiple MBD
diagrams for each LEG may have to be considered to prop-
erly characterize causal effects given a PAG P .

Proposition 9 (Non-redundancy). Given a PAG P , let G
and H be two MBD diagrams constructed from a ME LEG.
In general, MpGq Ę MpHq and MpHq Ę MpGq.

In other words, bounds for a given causal effect computed
given two MBD diagrams will in general be different and
one has to consider both diagrams to correctly characterize
bounds on causal effects given an equivalence class. The
proof proceeds by exploiting the MBD causal diagrams in
Fig. 5 as a counter-example. As a consequence of this result,
we conjecture that enumeration techniques, in the worst-
case, would have to consider all MBD diagrams separately.

To better understand the computation cost of enumerating
LEGs and MBD causal diagrams, we propose the first enu-
meration algorithms for this purpose in Alg. 3 and Alg. 4
in Appendix D (proceeding similarly to how one might enu-
merate Markov equivalent DAGs as done by Wienöbst et al.
(2023)). These (potentially sub-optimal) procedures suggest
that doing enumerating “relevant” causal diagrams requires
a polynomial cost in the number of edges of LEGs, in addi-
tion to the computational cost of the bounding algorithms
themselves7. Overall, this analysis suggests that existing

7For example, in Zhang et al. (2021), inference of bounds re-
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bounding techniques, even with the consideration of redun-
dancies presented in this section, are not practical beyond a
handful of variables (Zeitler and Silva, 2022). Still, given
that the proposed bounds (Sec. 4) have not been shown to be
tight in general, one might still be interested in enumerating
the MBD causal diagrams to get more informative bounds,
despite computational costs.

6 CONCLUSIONS

Causal effect estimation is a common inference problem
across different applications, many of which do not have a
known causal diagram describing the system of variables.
In this paper, we study the problem of partial identification
with knowledge of a Markov equivalence class, represented
by a Partial Ancestral Graph (PAG), that can be inferred
from data. We demonstrate that analytical bounds can be
derived by exploiting the invariances present in the PAG and
the corresponding decomposition of causal effects. These
are the first bounds on causal effects in the literature that ex-
ploit the knowledge encoded in a PAG. We further consider
enumeration techniques, that list relevant causal diagrams
and apply partial identification techniques on each one sepa-
rately. We show that despite several redundancies within the
space of ME causal diagrams, the computational cost likely
remains large in practice.
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Appendix

This Appendix includes

• Additional background, related work, and a discussion on the limitations of the proposed approach in Appendix A.

• Proofs in Appendix B.

• Additional examples in Appendix C.

• Further discussion on enumeration strategies, including algorithms for enumerating LEGs and MDB causal diagrams,
in Appendix D.

A BACKGROUND, RELATED WORK, AND LIMITATIONS

A.1 BACKGROUND

In this section, we review several graphical notions that are used in the main body of this document or will be used for the
derivation of proofs.

Firstly, we review manipulations in causal diagrams G. Let G denote a causal diagram over V and X Ď V . GX denotes
the induced subgraph of G over X . The X-lower-manipulation of G deletes all those edges that are out of variables in X
and otherwise keeps G as it is. The resulting graph is denoted as GX . The X-upper-manipulation of G deletes all those
edges in G that are into variables in X , and otherwise keeps G as it is. The resulting graph is denoted as GX . Further, we
will use standard graph-theoretic family abbreviations to represent graphical relationships in graphs G, such as parents pa,
descendants de, ancestors an , and spouses sp. For example, let X P sppY qG if X L9999K Y is present in G. Capitalized
versions Pa,De,An,Sp include the argument as well, e.g. PapXqG “ papXqG

Ť

X . If X P anpY qG
Ş

sppY qG , we say
that there is an almost directed cycle between X and Y .

The following rules to manipulate experimental distributions produced by an intervention are known as the do-calculus and
will be used for the proof of several theoretical statements (Pearl, 2009).

Theorem 1 (Inference Rules do-calculus). Let G be a causal diagram compatible with an SCM M, with endogenous
variables V . For any disjoint subsets X,Y ,Z Ď V , two disjoint subsets Z,W Ď V zpY

Ť

Xq, the following rules are
valid for any intervention strategies dopX “ xq, dopZ “ zq:

• Rule 1 (Insertion/Deletion of observations):

Pxpy | w, zq “ Pxpy | wq if pZ |ù Y | W ,XqGX
.

• Rule 2 (Change of regimes):

Px,zpy | wq “ Pxpy | z,wq if pY |ù Z | W ,XqGX,Z
.

• Rule 3 (Insertion/Deletion of interventions):

Px,zpy | wq “ Pxpy | wq if pY |ù Z | W ,XqG
X,ZpW q

.

where ZpW q is the set of elements in Z that are not ancestors of W in GX .

Next, we consider operations on equivalence classes starting with a more complete definition of a Maximal Ancestral Graph.

Definition 9 (Maximal Ancestral Graph). A mixed graph is ancestral if it does not contain directed or almost directed
cycles. It is maximal if, for every pair of nonadjacent vertices pX,Y q, there exists a set Z Ă V that d-separates them. A
Maximal Ancestral Graph (MAG) is a graph that is both ancestral and maximal.
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Algorithm 2 IDP

Input: A PAG P and disjoint sets X,Y Ă V
Output: Expression for Pxpyq or FAIL

1: Let D :“ PossAnpY qPV zX

2: return
ř

dzy IDpD,V , P q

3: function IDpC,T , Q “ QrT sq

4: if C “ H then return 1.
5: if C “ T then return Q.

/* In PT , let B denote a bucket, and let CB denote the pc-component of B */
6: if DB Ă T zC such that CB

Ş

PossChpBqPT
Ď B then

7: Compute QrT zBs from QrT s via (Jaber et al., 2018a, Prop. 2).
8: return IDpC,T zB, QrT zBsq

9: else if DB Ă C such that RB ‰ C then
10: return IDpRB,T , Qq ˆ IDpRCzRB

,T , Qq { IDpRB

Ş

RCzRB
,T , Qq

11: else
12: return FAIL
13: end if

Given a causal graph over V , a unique MAG over V can be constructed such that both independence and non-ancestral
relations among V are retained; see e.g. (Zhang, 2008a, Sec. 3). Two MAGs are said to be Markov equivalent if they entail
the same set of d-separations. Among Markov equivalent MAGs, a particular subset, called Loyal Equivalent Graphs (LEG),
can be constructed with the fewest bi-directed edges, all of which are invariant, i.e. bi-directed edges in LEGs appear in
all MAGs with the same d-separations an non-ancestral relations (Zhang and Spirtes, 2005, Corollary 18), and is given in
Def. 7. Thus, between a MAG and its LEG, only one kind of difference is possible, namely, some bi-directed edges in the
MAG are oriented as directed edges in its LEG, as illustrated in Fig. 6.

An important consequence of the definition of LEGs is that one can traverse the space of Markov equivalent LEGs by
checking whether directed edges can be reversed with a simple criterion, restated below from (Zhang and Spirtes, 2012b,
Lemma 2).

Proposition 10 (Transformational characterization of LEGs). Let G be a arbitrary LEG, and X Ñ Y an arbitrary
directed edge in G. The reversal of X Ñ Y produces a Markov equivalent LEG if and only if PapXqG “ papY qG and
SppXqG “ SppY qG .

Proof. The proof can be found in (Zhang and Spirtes, 2012b).

Two Markov equivalent LEGs can always be transformed to each other via a sequence of reversals according to Prop. 10.
Similarly to the definition for PAGs, directed edges X Ñ Y in a MAG are said to be visible if there exists no causal graph
compatible with this MAG with an edge X L9999K Y , that is unobserved confounding between X and Y can be ruled out.
Visibility of an edge can be easily determined by a graphical condition (Zhang, 2008a, Lemma 9). Directed edges that are
not visible are called invisible. Prop. 10 is important because, although listing all Markov equivalent MAGs is in general
infeasible, one could in principle list all Markov equivalent LEGs by checking reversal of invisible directed edges with
this graphical criterion. An explicit algorithm for generating Markov equivalent LEGs is given in Appendix D. Finally, for
completeness we reproduce the IDP algorithm (Jaber et al., 2019a) for identifying causal effects from a PAG in Alg. 2.

A.2 RELATED WORK

We review in this section related work concerned with bounding causal effects with knowledge of fully-specified graph, as
no treatment of equivalence classes has been proposed yet.
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The natural bounds over the causal effects due to Robins (1989); Manski (1990) were developed with a specific focus on
pairs of variables or in studies with imperfect compliance and instrumental variable assumptions. Recently their proof
technique have motivated several general works extending these bounds to arbitrary causal diagrams. This was demonstrated
recently by (Zhang, 2020; Zhang and Bareinboim, 2019) in which the authors extended earlier bounding strategies to
estimate system dynamics in sequential decision-making settings and causal effects in more general graphs. Our work could
be interpreted to lie in this line of research, namely extending the natural bounding technique to systems characterized by
Partial Ancestral Graphs.

In the partial identification literature, another line of research was pioneered by the seminal work of (Balke and Pearl, 1997)
that employs a polynomial optimization program to compute causal bounds and are provably optimal. They proposed a
family of canonical models with finite unobserved states, which sufficiently represent all observations and consequences of
interventions in instrumental variable models. Based on this canonical characterization, (Balke and Pearl, 1997) reduced the
bounding problem to a series of equivalent linear programs. (Chickering and Pearl, 1996) further used Bayesian techniques
to investigate the sharpness of these bounds with regard to the observational sample size. Recently, (Zhang et al., 2021;
Finkelstein and Shpitser, 2020) describe a polynomial programming approach to solve the partial identification for general
causal graphs. They generalize the canonical characterization of SCMs to arbitrary graphs, although require discrete
endogenous variables with small support as the time complexity of their algorithm grows exponentially with the size of
the support set of variables. In continuous settings, (Gunsilius, 2019) extends the linear programming approach to partial
identification of instrumental variable graphs with continuous treatments. Several recent works follow a similar approach:
parameterizing causal effects as a linear combinations of a set of fixed basis functions (Padh et al., 2022) or neural networks
(Balazadeh Meresht et al., 2022; Hu et al., 2021) and subsequently match the (moments of the) observed distribution while
minimizing and maximizing causal effects.

In applications, partial identification has been used in reinforcement learning for the estimation of dynamic treatment
regimes (Zhang, 2020; Zhang and Bareinboim, 2019), for estimating policies under safety constraints (Joshi et al., 2024),
and within bandit algorithms (Zhang and Bareinboim, 2021; Bellot et al., 2024). And similarly in problems of fairness, for
example by Wu et al. (2019).

A.3 LIMITATIONS

In this work, we start from the assumption that the true PAG that underlies a system of interest can be inferred from data. In
general, this requires an assumption of faithfulness, i.e. that the independencies in data imply a corresponding separation in
the underlying causal diagram, and an oracle for testing for conditional independencies. Learning the true PAG from finite
data can be a significant challenge in practice (Spirtes et al., 2000; Robins et al., 2003; Zhang and Spirtes, 2012a; Bellot
et al., 2022; Bellot and van der Schaar, 2021). In higher-dimensional systems, the computational complexity of estimating
the conditional distributions that define lower and upper bounds on causal effects is another substantial challenge. In light of
this, it is important to make the distinction between the task of partial identification, that is inferring an expression to bound
causal effects, and that of causal effect estimation, that is providing efficient estimators from finite samples to compute
bounds in practice. This set of results is concerned with the first task (partial identification). The objective of our procedure
is to decide whether the effect can be bounded and provide an expression for lower and upper bounds, while being agnostic
as to whether P pV q can be accurately estimated from the available samples. Several works consider the efficient estimation
of identifiable causal effects (Jung et al., 2021). Extending these techniques to the problem of bounding non-identifiable
causal effects is an important direction for future work. Finally, we emphasize that simulations on real and synthetic data are
provided for illustration purposes only. These results do not recommend or advocate for the implementation of a particular
intervention, and should be considered in practice in combination with other aspects of the decision-making process.
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B PROOFS

Prop. 1 restated. Given a PAG P over V and A Ă C Ď V , let the region of A with respect to C be denoted RA. QrCs

can be decomposed as,

QrCs “ QrRAs ¨ QrRCzAs { QrRA
Ş

RCzAs. (20)

Proof. The proof can be found in (Jaber et al., 2019a, Thm.1).

Prop. 2 restated. Let P be the PAG underlying P pV q. Under faithfulness, a causal effect is partially identifiable from
P pV q with bound ra, bs if and only if it is partially identifiable from P and P pV q with bound ra, bs.

Proof. Let P be the PAG underlying a given distribution P pV q. Let M be the set of all SCMs over a set of endogenous
variables V , and let MpPq be the subset of SCMs over a set of endogenous variables V whose induced causal diagrams are
consistent with the PAG P . The partial identification problem from P pV q (Def. 2) may be stated as follows,

min / max
MPM

PMpyxq, such that PMpvq “ P pvq. (21)

Similarly, the partial identification problem from the PAG P and P pV q (Def. 6) may be stated as follows,

min / max
MPMpPq

PMpyxq, such that PMpvq “ P pvq. (22)

These definitions highlight that the bounding problem involves a search over structural models consistent with the observa-
tional distribution P pV q, and optionally P . We will show that under faithfulness, tM P M : PMpvq “ P pvqu “ tM P

MpPq : PMpvq “ P pvqu. In that case, the optimization problems coincide and therefore their solutions coincide.

To see this note that tM P MpPq : PMpvq “ P pvqu Ď tM P M : PMpvq “ P pvqu by definition since MpPq introduces
a restriction on the space M. Under faithfulness, consider any SCM M P M such that PMpvq “ P pvq. It follows then that,

pX |ù Y | ZqPM ô pX |ù Y | ZqGM .

In other words, under faithfulness, the graph GM entails a d-separation for every conditional independence in the data, and
vice versa. GM must then be included in the set of diagrams represented by the PAG P as the PAG is defined as the set of
diagrams with d-separation statements match the conditional independencies in data, that is M P MpPq. As M was arbitrary
(up to agreement with the observational distribution), we have that, under faithfulness, tM P M : PMpvq “ P pvqu Ď

tM P MpPq : PMpvq “ P pvqu. This implies then that tM P M : PMpvq “ P pvqu “ tM P MpPq : PMpvq “ P pvqu

showing the claim.

Next we introduce two utility lemmas that will be useful in the derivation of the following proofs.

Lemma 1. Given a PAG P over V , let C Ă V . Then,
!

QrC;Ms : M P MpPq

)

“

!

QrC;Ms : M P MpP
ČV zC

q

)

. (23)

Proof. For a given causal diagram G, a causal effect of interest Pxpyq can be written,

Pxpyq “
ÿ

vztxYyu

ż

ΩU

ź

V PV zX

P pv | paV ,uV qdP puq “
ÿ

sztyu

ż

ΩU

ź

V PS

P pv | paV ,uV qdP puq,

where S “ AnpY qGX
zX and s is some value in the domain of S. This expression depends only on probabilities associated

with variables S, US , S P S and their functional dependencies through terms P pv | paV ,uV q that in turn are determined
by the underlying SCMs compatible with the graph and data, which in this case are parameterized by tfV : V P Su and
tP puV q : V P AnpSqGrCsu where C is the c-component in G that contains S. The distribution and values of any other
variable is of no consequence to the desired causal effect. In particular, any descendants of Y in G can be marginalized out
without loss of generality.
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The same reasoning applies to QrCs :“ Pvzcpcq which depends only on AnpCqG
V zC

zpV zCq and the functional depen-
dencies of associated variables. Recall that P

ČV zC
denotes the graph in which all edges that are visible in P and are into

variables in V zC are deleted, and in which all invisible edges that are into variables in V zC are replaced with bi-directed
edges. Since P

ČV zC
only modifies the functional assignment of descendants of C and these do not influence the causal effect

of interest we have that,
!

QrC;Ms : M P MpPq

)

“

!

QrC;Ms : M P MpP
ČV zC

q

)

. (24)

This proposition implies that it is sufficient to consider the set of causal diagrams compatible with P
ČV zC

, i.e. the set of
ME causal diagrams G in which edges X Ñ Y,X P papCqG , Y P C have been removed, to characterize lower and upper
bounds over queries of the form QrCs from P . The next lemma shows how to compute quantities Qr¨s from larger ones and
is an extension of an analogous results defined for causal diagrams Tian and Pearl (2002).

Lemma 2. Let W Ď C Ă V such that W “ PossAnpW qPC
. Then, QrW s “

ř

czw QrCs.

Proof. By (Jaber et al., 2018a, Prop. 1), if X is an ancestor of Y in a causal diagram GC , then X is a possible ancestor of Y
in the PAG PC . By the converse of this implication, if X is not a possible ancestor of Y PC , then X is not an ancestor of
Y in GC . Let W Ď C Ă V such that W “ PossAnpW qPC

. By (Jaber et al., 2018a, Prop. 1) therefore, no variable in
R “ CzW being a possible ancestor of W in PC implies that no variable in R “ CzW is an ancestor of W in any ME
causal diagram GC . For any causal diagram GC , by (Tian and Pearl, 2003, Lemma 3) QrW s “

ř

r QrCs. Moreover, if
QrCs could be uniquely computed from P pV q and P , the QrW s could be uniquely computed from P pV q and P .

We are now ready to prove the validity of lower and upper bounds.

Prop. 3 restated. Given a PAG P , consider sets S Ă C Ď V and define W “ PossAnpSqPC
, R “ W zS, and

T “ PossSppSqPC
zS. Let A,B partition R such that B “ PossDepT qPC

Ş

R,A “ RzB. QrSs is lower bounded
as follows:

QrSs ě max
z

QrW s
ř

s,b QrW s
, (25)

where Z “ PossPapW qPzPossPapSqP .

Proof. If QrSs is not identifiable given P , then QrSs is not identifiable in one or more ME causal diagrams G by (Jaber et al.,
2019a, Thm. 4). In each of those diagrams G, then there must exist an open backdoor path from a node in V zS to a node in
S that could be blocked with access to a set of unobserved confounders U . Let U be the union of exogenous variables that
block such open backdoor paths. In turn, let S Ă C, where C is a pc-component in a sub-graph of P with QrCs identifiable.
Following the statement of the proposition, let W “ PossAnpSqPC

, R “ W zS, and T “ PossSppSqPC
zS. Further,

let A,B partition R such that B “ PossDepT qPC
,A “ RzB. Without loss of generality, by Lem. 1 inference on QrSs

given P is equivalent to inference on QrSs given P
ĆV zS

.

To show the claim, we show that QrSs is lower bounded in every causal diagram compatible with P
ĆV zS

. Let G be any such
causal diagram. In light of the definitions above, it holds that,

1. R is d-separated from S conditioned on U in G
V zW ,R

,

2. U is exogenous and thus d-separated from R conditioned on V zW in G
V zW ,R

,

3. A is d-separated from U conditioned on V zW in G
V zW

.

Condition (1) states that all backdoor paths from R to S, i.e. those starting with an edge R Ð ¨ ¨ ¨ or R L9999K ¨ ¨ ¨ , R P R,
are blocked conditioned on U . To see this, note that U is chosen to block all backdoor paths through an unobserved
confounder and that any other backdoor paths are assumed away in P

ĆV zS
, i.e. there is no edge of the form X Ñ Y,X P

S, Y P V zS in any causal diagram compatible with P
ĆV zS

. Condition (2) holds because U is exogenous; in G
V zW ,R

no
open path between R and U conditioned on V zW could exist. Condition (3) holds because A is defined precisely as the

16



set of variables in R that are not descendants of T and thus that are not descendants of U ; any path between A and U is
therefore blocked by a child or descendant of U that acts as a collider on the path.

The following derivation applies to QrSs in G.

QrSs :“ P ps | dopvzsqq

“ P ps | dopr,vzwqq

p1q
“

ÿ

u

P ps | u, r, dopvzwqqP pu | dopr,vzwqq

p2q
“

ÿ

u

P ps | u, r, dopvzwqqP pu | dopvzwqq

p3q
“

ÿ

u

P ps | u,a, b, dopvzwqqP pu | a, dopvzwqq

ě
ÿ

u

P ps | u,a, b, dopvzwqqP pu, b | a, dopvzwqq

“ P ps, b | a, dopvzwqq

“
P pw | dopvzwqq

ř

s,b P pw | dopvzwqq

“
QrW s

ř

s,b QrW s
.

(1) follows from condition 1; (2) follows from condition 2; (3) follows from condition 3. The inequality follows from
the fact that the event tu, bu is less likely than event tuu under any probability mass function. Finally, QrSs is a
function of PapSqG only and thus this bound holds for any value of Z :“ PapW qGzPapSqG and therefore any
Z “ PossPapW qPzPossPapSqP . In particular,

QrSs ě max
z

QrW s
ř

s,b QrW s
.

Prop. 4 restated. Given a PAG P , consider sets S Ă C Ď V and let a partial topological ordering S be S1 ă ¨ ¨ ¨ ă Sk.
Define W “ PossAnpSqPC

, R “ W zS, T “ PossSppSqPC
zS, and T “ PossSppSqPC

zS. Let A,B partition R
such that B “ PossDepT qPC

Ş

R,A “ RzB. QrSs is upper bounded as follows:

QrSs ď min
z

#

QrW s
ř

s,b QrW s
´
ÿ

sk

QrW s
ř

s,b QrW s

+

` QrSzSks, (26)

where Z “ PossPapW qPzPossPapSqP .

Proof. Similarly to the proof of Prop. 3, to show the claim we show that QrSs is upper bounded in every causal diagram
compatible with P̃ and rely on facts (1,2,3) above. Let G be any such causal diagram. Let a partial topological ordering of S
be S1 ă ¨ ¨ ¨ ă Sk.
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It then holds that,

QrSs :“ P ps | dopvzsqq

“ P ps | dopr,vzwqq

“
ÿ

u

P ps | u, r, dopvzwqqP pu | dopr,vzwqq

“
ÿ

u

P ps | u, r, dopvzwqqP pu | dopvzwqq

“
ÿ

u

P ps | u,a, b, dopvzwqqP pu | a, dopvzwqq

“
ÿ

u

P ps | u,a, b, dopvzwqq

´

P pu, b | a, dopvzwqq ` P pu | a, dopvzwqq ´ P pu, b | a, dopvzwq

¯

p1q
“

QrW s
ř

s,b QrW s
`
ÿ

u

P ps | u,a, b, dopvzwqq

´

P pu | a, dopvzwqq ´ P pu, b | a, dopvzwq

¯

p2q

ď
QrW s

ř

s,b QrW s
`
ÿ

u

P pszsk | u,a, b, dopvzwqq

´

P pu | a, dopvzwqq ´ P pu, b | a, dopvzwq

¯

p3q
“

QrW s
ř

s,b QrW s
`
ÿ

u

P pszsk | u,a, b, dopvzw, skqqP pu | a, dopvzw, skqq

´
ÿ

u,sk

P ps | u,a, b, dopvzwqqP pu, b | a, dopvzwqq

p4q
“

QrW s
ř

s,b QrW s
` P pszsk | a, dopvzw, b, skqq ´

ÿ

sk

QrW s
ř

s,b QrW s

p5q
“

QrW s
ř

s,b QrW s
` P pszsk | dopvzw,a, b, skqq ´

ÿ

sk

QrW s
ř

s,b QrW s

p6q
“

QrW s
ř

s,b QrW s
` QrSzSks ´

ÿ

sk

QrW s
ř

s,b QrW s
.

The first four equalities follows from the observations (1,2,3) as in the derivation of the lower bound (Prop. 3); (1) follows
from the derivation in the lower bound; (2) follows from the fact that the event tsu is less likely than event tszsku under any
probability mass function and that the difference in brackets is greater or equal to zero; (3) follows by rule 3 of the do-calculus
(Thm. 1) since Sk is d-separated from SzSk given U ,A,B,V zW in G

Sk,V zW
and since Sk is d-separated from U given

A in G
Sk,V zW

; (4) follows by marginalizing out U and similarly to (1); (5) follows by the rule 2 of do-calculus (Thm. 1)
since SzSk is d-separated from A in G

V zW,B,SkA
; (6) follows by the definition of Qr¨s.

Similarly P ps | dopvzsqq is a function of PapSqG only and thus this bound holds for any value of Z :“ PapW qGzPapSqG .
In particular,

QrSs ď min
z

#

QrW s
ř

s,b QrW s
´
ÿ

sk

QrW s
ř

s,b QrW s

+

` QrSzSks.

Prop. 5 restated. Consider a query Pxpyq and let P be the PAG over tX,Y u compatible with P . Then, under an assumption
of faithfulness, the bounds given in Props. 3 and 4 are at least as tight as the natural bounds.

Proof. Following the premise of the proposition, consider a query Pxpyq and let P be the PAG over V “ tX,Y u

compatible with P . Pxpyq “ QrY s and therefore we will compare bounds on QrY s with the natural bounds.

By Lem. 2, for any W “ PossAnpSqP it holds that QrW s “
ř

vzw QrV s “
ř

vzw P pvq “ P pwq. Further, since
W Ď tX,Y u it holds that P pwq ě P px,yq. The proposed lower bound can then be shown to be larger or equal to the
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natural lower bound as

max
z

QrW s
ř

s,b QrW s
ě

QrW s
ř

s,b QrW s
ě QrW s ě P px,yq.

The last term being the expression of the natural lower bound.

Let S “ Y ,R “ W zS, and let Sk Ď S be any subset of S. Note that R
Ť

pV zW q “ X in this example. From the
definition of W as the set of possible ancestors of Y in P , it holds that pR |ù V zW qG

V zW
for any causal diagram G

compatible with an arbitrary P as there cannot be any directed paths from V zW to R (otherwise at least some element in
V zW would be defined as a possible ancestor of S which we ruled out by the definition of W ).

Denote U the set of unobserved confounders. It holds then that conditioning on U blocks all backdoor paths from R to S in
graphs GV zS in which directed edges into S are removed, that is pS |ù R | UqGV zS

. This holds for any causal diagram G
compatible with an arbitrary P . With these facts, we consider the following derivation to show that the proposed upperbound
in smaller or equal to the natural upper bound,

min
z

#

QrW s
ř

s,b QrW s
´
ÿ

sk

QrW s
ř

s,b QrW s

+

` QrSzSks

ď
QrW s

ř

s,b QrW s
´
ÿ

sk

QrW s
ř

s,b QrW s
` QrSzSks

p1q

ď QrW s ´
ÿ

sk

QrW s ` QrSzSks

“ P pwq ´ P pszsk, r | dopvzwqq ` P pszsk | dopvzs, skqq

“ P pwq `
ÿ

u

P pszsk | u, r, dopvzwqqtP puq ´ P pu, rqu

p2q

ď P pwq `
ÿ

u

tP puq ´ P pu, rqu

“
ÿ

vzw

tP pw,vzwq ´ P pr,vzwqu ` 1

p3q

ď P pw,vzwq ´ P pr,vzwq ` 1

p4q
“ P px,yq ´ P pxq ` 1.

The last term being the expression of the natural lower bound. In the above, (1) holds since QrW s ´
ř

sk
QrW s ă 0 and

therefore multiplying by a number less than 1, namely
ř

s,b QrW s, results in a larger expression; (2) holds by a similar
observation since P puq ´ P pu, rq ą 0 and P pszsk | u, r, dopvzwqq ă 1; (3) holds since P pw,vzwq ´ P pr,vzwq ă 0;
(4) holds by definition since W

Ť

V zV “ X
Ť

Y and R
Ť

V zW “ X .

Prop. 6 restated. Partial IDP (Alg. 1) terminates and is sound.

Proof. The proof follows from the termination guarantee of IDP, and the soundness of IDP (Jaber et al., 2019a) and Props. 3
and 4.

For the run time, let n be the number of variables. Operations in the PID function of Alg. 1, such as computing pc-
components or finding the set of possible ancestors or descendants (as done in Props. 3 and 4), could be done in Opn2q

time, e.g. with a Breadth-First Search algorithm. Line 10 in PID decomposes the input set D into at most n subsets, each
requiring a new call to PID. In turn, line 7 in PID, if triggered, will reduce the set V of size n by at least one variable at the
time resulting in at most n additional separate calls to PID. Since line 7 might be triggered repeatedly for each decomposed
C-factor in line 10, overall, Alg. 1 requires Opn2q calls to PID and consequently Opn4q time to return the bounds.

Prop. 7 restated. Given a PAG P , let L be the set of ME LEGs. Then, MpPq “ MpLq.
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Figure 7: First example of MBD causal diagrams used in the proof of Prop. 9.

Proof. Each causal graph is a coarse representation of an underlying SCM, in which the presence of an edge X Ñ Y
implies the potential presence of X as an argument in the function fY . In turn the absence of an edge implies a constraint
in the system, e.g. no edge X Ñ Y implies that X is not an argument of fY . In general therefore the addition of an edge
results in a family of SCMs that is strictly more general.

Each MAG can be converted to an LEG by replacing some of the bi-directed arrows by directed arrow. Bi-directed arrows
exclude an ancestral relationship whereas directed arrows do not exclude unobserved confounding, a directed edge X Ñ Y
thus defines a strictly more general fY in contrast with X L9999K Y . Since this is the only difference between a MAG and
its LEG, it follows that the set of SCMs compatible with a given MAG is strictly contained in the set of SCMs contained
with its LEG. This reasoning applied to every MAG in the equivalence class implies that MpPq “ MpLq.

Prop. 8 restated. Given a PAG P , let D be the set of ME MBD diagrams. Then, MpPq “ MpDq.

Proof. For a given LEG L P L, let GL be a set of maximally bi-directed causal graphs compatible with L. Then, We proceed
by showing that MpGLq “ MpLq.

Let L be a given LEG, and write GL for the causal graph with the same structure as L. Adding bi-directed edges, without
breaking conditional independencies, leads to a graph G1

L with the same ancestral and conditional independencies as L. The
difference between the constructed causal graph G1

L and GL is that for at least one variable X P V , fX,GL
ppaX ,uXq while

fX,G1
L

ppaX ,uX , uX,Zq, where Z P PaX . The class of functions fX defined by GL is included in that defined by G1
L, and

therefore MpGLq Ă MpG1
Lq.

In general, multiple graphs G1
L in which we repeatedly add bi-directed edges until no invisible edges exist can be constructed

from a single LEG L. For example, the LEG L :“ tY1 Ð X Ñ Y2u has two graphs can be constructed by adding
bi-directed edges without removing statistical independencies: G1 :“ tY1 Ð X Ñ Y2, Y1 L9999K Xu and G2 :“ tY1 Ð

X Ñ Y2, X L9999K Y2u. These graphs can be recovered exactly by Alg. 4. Let GL be the set of all maximally bi-directed
graphs compatible with L. Then, since any other causal graph compatible with L defines a family of SCMs which is
subsumed in that of a maximally directed causal graph, MpGLq “ MpLq.

Prop. 9 restated. Given a PAG P , let G and H be two MBD diagrams constructed from a ME LEG. In general, MpGq Ę

MpHq and MpHq Ę MpGq.

Proof. We give explicit counterexamples to demonstrate this fact.

In general, the set of maximally bi-directed causal diagrams (MBD) compatible with a given LEG to consider for causal
effect computation cannot be reduced without loss of generality. For instance, this could be shown for the computation
of P py1, y2 | dopxqq given the LEG L in Fig. 7a. Here two MBD causal diagrams could be constructed: G1 and G2 in
Fig. 7b and Fig. 7c respectively. Given that P py1, y2 | dopxqq “ P py1 | dopxqqP py2 | dopxqq and that in G1: P py1 |

dopxqq P rP py1, xq, P py1, xq ` 1 ´ P pxqs, P py2 | dopxq “ P py2 | xq. (In this particular diagram, bounds could be
derived analytically and are known to be provably tight (Pearl, 2009, Section 8.2). To further demonstrate this we provide
below two SCMs compatible with G1 that evaluate to the upper and lower bounds respectively.). In contrast, in G2:
P py1 | dopxq “ P py1 | xq, P py2 | dopxqq P rP py2, xq, P py2, xq ` 1 ´ P pxqs. The causal effect differs across G1 and G2.
Neither of the bounds computed from G1 or G2 include the other and therefore both have to be considered for correctly
bounding causal effects from L.

Below we give two SCMs compatible with G1 whose causal effect P py1 | dopxqq evaluate to the lower and upper bounds
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Figure 8: Second example of MBD causal diagrams used in the proof of Prop. 9.

obtained through posterior sampling illustrating the tightness of the returned bounds. Let M1,M2 P MpG1q be defined by,

M1 :“

$

’

&

’

%

x :“ fXpuq

y1 :“

#

fY1px, uq if x “ fXpuq,

0 otherwise.

and,

M2 :“

$

’

&

’

%

x :“ fXpuq

y1 :“

#

fY1px, uq if x “ fXpuq,

1 otherwise.

Assume further that PM1
puq “ PM2

puq. Then, both SCMs agree on observational distributions PM1
px, y1q “

PM2
px, y1q “ P px, y1q. However the following derivations show that the interventional distribution P py1 “ 1 | dopx “ 1qq

differs across models: for M1 equal to the analytical lower bound, and for M2 equal to the analytical upper bound demon-
strating that (in this case) the bound is tight. In particular,

PM1
py1 “ 1 | dopx “ 1qq

“ PM1
py1 “ 1 | x “ 1, u : x “ fXpuqqP pu : x “ fXpuqq ` PM1

py1 “ 1 | x “ 1, u : x ‰ fXpuqqP pu : x ‰ fXpuqq

“ P py1 “ 1 | x “ 1qP px “ 1q

“ P py1 “ 1, x “ 1q,

PM2
py1 “ 1 | dopx “ 1qq

“ PM2
py1 “ 1 | x “ 1, u : x “ fXpuqqP pu : x “ fXpuqq ` PM2

py1 “ 1 | x “ 1, u : x ‰ fXpuqqP pu : x ‰ fXpuqq

“ P py1 “ 1 | x “ 1qP px “ 1q ` PM2
py1 “ 1 | x “ 1, u : x ‰ fXpuqqP pu : x ‰ fXpuqq

“ P py1 “ 1, x “ 1q ` 1 ´ P px “ 1q.

This holds also more generally for single output causal effect of the form P py | dopxqq. For instance, bounding P py | dopxqq

given the LEG L in Fig. 8a requires two MBD causal diagrams without loss of generality, given in Fig. 8b and Fig. 8c
respectively. It could be shown by writing P py | dopxqq “

ř

v1,v2
P py | x, v1, v2qP pv1, v2 | dopxqq that the upper bounds

computed from G1 and G2 will disagree as upper bounds for P pv1, v2 | dopxqq will differ (as shown in the example
above).
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C ADDITIONAL EXAMPLES

We provide in this section additional examples to illustrate the proposed bounding procedure.

Example 4. In this example we illustrate the quantities mentioned in Props. 3 and 4 by applying these propositions
to bound QrY s from QrW,X,Z, Y s “ P pw, x, z, yq given the PAG P in Fig. 2. Using the notation in Props. 3 and 4,
we can write W “ PossAnpY qPW,X,Z,Y

“ tW,X,Z, Y u and R “ tW,X,Z, Y uztY u “ tW,X,Zu which can be
partitioned into A “ tW u,B “ tX,Zu since tW u is not a possible descendant of any possible spouse of Y in P .
PossPapW qzPossPapY q “ tW u. The lower bound then follows by replacing these variables in the statement of the
lower bound to get,

QrY s ě max
w

QrW,X,Z, Y s
ř

z,x,y QrW,X,Z, Y s
. (27)

Equivalently Px,w,zpyq ě maxw P pz, y, x | wq. Moreover,

QrY s ď 1 ` min
w

#

QrW,X,Z, Y s
ř

z,y,x QrW,X,Z, Y s
´
ÿ

y

QrW,X,Z, Y s
ř

z,y,x QrW,X,Z, Y s

+

,

or equivalently,

Px,w,zpyq ď min
w

tP pz, y, x | wq ´ P pz, x | wqu ` 1. (28)

We could show, moreover, that these bounds are tighter than the natural bounds as P py, z, x, wq “ P py, z, x | wqP pwq ď

P py, z, x | wq ď maxw P py, z, x | wq ď Pz,x,wpyq and as,

P py, z, x, wq ´ P pz, x, wq ` 1 ě 1 `
ÿ

w

P py, z, x, wq ´ P pz, x, wq

“
ÿ

w

P pwq

!

P py, z, x | wq ´ P pz, x | wq ` 1
)

ě
ÿ

w

P pwqmin
w

!

P py, z, x | wq ´ P pz, x | wq ` 1
)

“ min
w

!

P py, z, x | wq ´ P pz, x | wq

)

` 1. (29)

■

Example 5. Consider the query Px1,x2pyq given the PAG P in Fig. 9a. We will proceed by decomposing the query into
smaller components and either uniquely identify or bound each term as appropriate with Alg. 1. Using the c-factor notion
Qr¨s, we have that Px1,x2

pyq “
ř

a,b,c QrY,A,B,Cs by line 1 since the set tY,A,B,Cu is ancestral in the sub-graph
PtY,A,B,C,W u (see also Lem. 2 in Appendix B for further justification). Calling IDP on this component with T “ V
and C “ tY,A,B,Cu, a first simplification can be done in line 6 as the if condition is triggered for B “ tX1u which
updates T to T “ tY,A,B,C,W,X2u. Successive calls to IPD trigger line 9, where we find in a first instance that
QrY,A,B,Cs “ QrAsQrY,B,Cs as the region of A in PtA,Y,B,Cu is RtA,Y,B,Cu

A “ tAu, the region of tY,B,Cu in

the same sub-graph is RtA,Y,B,Cu

tY,B,Cu
“ tY,B,Cu, and have an empty intersection. In a second instance, we find that

QrY,B,Cs “ QrY sQrB,Cs where QrB,Cs “
ř

x1,w
QrW,X1, B,Cs. QrW,X1, B,Cs is identifiable from P in line 7

of Alg. 1 which returns P pc | a, x1, b, wqP px1, b, wq.

Finally, C reduces to C “ tY u after these simplifications. With an additional call to IDP we find that T could be reduced
to T “ tX2, Y u in line 6, and further that QrX2, Y s “ P py | x2, b, cqP px2q. Now, no more simplifications could be done
as calls to lines 6 and 9 in Alg. 1 fail, due to the potential presence of an unobserved confounder between X2 and Y . In line
16, we therefore proceed to bound QrY s from QrX2, Y s using Props. 3 and 4. We find that,

QrY,X2s ď QrY s ď QrY,X2s ´
ÿ

y

QrY,X2s ` 1 (30)

Finally, putting each term in the expression Px1,x2
pyq “

ř

a,b,c QrAsQrY sQrB,Cs together we have the lower bound is:

Px1,x2
pyq ě

ÿ

a,b,c

P py | x2, b, cqP px2qP pa | x1q
ÿ

w,x1

P pw, b, x1qP pc | a,w, b, x1q, (31)
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Figure 9: (a) PAG for Example 5, (b) causal diagram and (c) PAG for Example 6.

and the upper bound is:

Px1,x2
pyq ď

ÿ

a,b,c

pP py | x2, b, cqP px2q ` 1 ´ P px2qqP pa | x1q
ÿ

w,x1

P pw, b, x1qP pc | a,w, b, x1q. (32)

■

Example 6 (Applications in public health). As an additional example, we consider an adaptation of the Lung Cancer
diagram from (Lauritzen and Spiegelhalter, 1988), shown in Fig. 9b. We are interested in determining the effect of a
chemotherapy treatment (C) for lung cancer (L) on dyspnoea (D), i.e. breathing difficulty, in the context of other factors
such as smoking (unobserved and represented with a bi-directed edge), pollution (P ), age (A), and Tuberculosis (T ). For
this experiment, we generate 1, 000 samples from a compatible SCM.

The PAG inferred from data is given in Fig. 9c. Given the uncertainty in the underlying causal relations between variables,
we could only partially identify the causal effect of interest in this example with Alg. 1. The first step is to leverage the
possible ancestors of D to write: P pd | dopcqq “

ř

l,a,p,t QrD,L,A, P, T s. A call to PID with this term reveals that no
further simplification can be made, and a as a consequence we proceed to bound QrD,L,A, P, T s from QrV with Props. 3
and 4. We obtain that,

P pd | dopcq ě
ÿ

l,a,p,t

QrD,L,A, P, T, Cs “ P pd, cq (33)

and that,

P pd | dopcq ď
ÿ

l,a,p,t

QrD,L,A, P, T, Cs ` 1 ´
ÿ

l,a,p,t

QrC,L,A, P, T s “ P pd, cq ` 1 ´ P pcq (34)

These expressions imply that knowledge of the PAG and observational data license the following approximate bounds,

P pd “ 1 | dopc “ 1qq P r0.5087, 0.9353s. (35)

As a contrast, if we were to evaluate the causal effect assuming the causal diagram in Fig. 9b, the causal effect can be
approximated to be P pd “ 1 | dopc “ 1qq “ P pd “ 1 | c “ 1q “ 0.7775. ■

The Lung Cancer data is generated from the following SCM compatible with the consensus causal diagram given in
Fig. 9b. In the following, 1t¨u is the indicator function that equals 1 if the statement in t¨u is true, and equal to 0 otherwise.
P puCq, P puLq, P puAq, P puDq, P puP q, P puT q are given by independent Gaussian distributions with mean 0 and variance
1, and each observation pc, l, a, d, p, tq generated from exogenous variables using the structural assignments: c Ð 1tuC ă

0u, l Ð 1tc ´ uL ą 0u, a Ð 1tuA ą 0u, d Ð 1tl ` a ´ 2ud ` 0.2p ´ 0.3T ą ´0.5u, p Ð 1tuP ą 0u, t Ð 1tuT ą 0u.
The ground truth value of the causal effect is given by setting c Ð 1 and evaluating P pd “ 1q under this updated model.
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Algorithm 3 Depth-first search

1: Input: LEG L
2: Output: Set of Markov equivalent LEGs

3: Initialize S as an empty list and append L
4: return Search(L, S)

5: function Search(L, S)
6: for each L1 obtained by performing a legitimate edge reversal do
7: If L1 R S, append L1 to S

8: Run Search(L1, S)
9: end for

10: return S

D FURTHER DISCUSSION ON ENUMERATION STRATEGIES

One approach for enumerating Markov equivalent LEGs can be derived from the transformational characterization in
Prop. 10 by reversal of directed edges. Similarly to how one could enumerate all Markov equivalent DAGs with covered
edge reversals as done by Wienöbst et al. (2023), the following depth-first-search program could be used for LEGs.

1. Let S be an empty list

2. Append L to S

3. Run search(L, S)

Starting from an LEG L, all neighbors of L (graphs with a single reversed edge) are explored and this is continued recursively.
Eventually all ME LEGs are reached by Prop. 10 above and the algorithm terminates. In order to not visit any LEG twice, it
is necessary to store a set of all visited LEGs. An algorithm implementing this procedure is given in Alg. 3.

Proposition 11. Alg. 3 enumerates a Markov equivalence class of LEGs and can be implemented with worst-case delay
Opm3q, where m is the number of edges in any LEG of the equivalence class.

Proof. The proof of (Wienöbst et al., 2023, Theorem 9) applies to the case of LEGs as the space of ME LEGs can be
traversed by a sequence of edge traversals (starting from any LEG) as shown by Zhang and Spirtes (2012b).

Alg. 4 retrieves the set of MBD causal diagrams compatible with a given LEG. It proceeds by adding dashed bi-directed
edges X L9999K Y for every invisible edge between X and Y . When bi-directed edges for two adjacent invisible edges
cannot be added without violating a conditional independence, two diagrams are constructed and the process continues
along two separate branches of the tree. For example, tX Ñ Z Ñ Y u creates tX Ñ Z Ñ Y,X L9999K Zu and
tX Ñ Z Ñ Y,Z L9999K Y u separately as tX Ñ Z Ñ Y,X L9999K Z,Z L9999K Y u violates the conditional
independence between X and Y .

Proposition 12. Alg. 4 enumerates all MBD causal diagrams compatible with a given LEG.

Proof. In line (11), Alg. 4 appends and returns causal diagrams that can be constructed from a given LEG by adding
the maximum number of bi-directed edges, i.e. diagrams without invisible edges and that therefore exclude any further
unobserved confounding. Lines (9) and (12) ensure that all possible diagrams to which a bi-directed edge could be added
are considered and ensures that all intermediate diagrams with invisible edges are maintained for analysis. At termination
therefore Alg. 4 will have enumerated all MBD causal diagrams compatible with a given LEG.
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Algorithm 4 Derivation of maximally bi-directed causal graphs

1: Input: LEG L
2: Output: The set of maximally bi-directed graphs.
3: For all invisible edges of the form X Ñ Y such that X does not have any parents or spouses not adjacent to Y , add a

bi-directed edge X L9999K Y to L, creating a causal diagram G

4: Initialize an empty list S and append G to it
5: Initialize an empty list S1

6: while S is not empty do
7: for each G in S do
8: Let k be the number of invisible edges in G
9: Create graphs G1, . . . ,Gk by adding a bi-directed edge for each invisible edge in L

10: Mark visible edges in G1, . . . ,Gk

11: Append S1 with the subset of tG1, . . . ,Gku in which invisible edges do not exist

12: Append S with the subset of tG1, . . . ,Gku in which invisible edges do exist and remove G
13: end for
14: end while
15: return S1

25


	Introduction
	Preliminaries

	Problem formulation
	Equivalence Classes and Their Implications
	Bounding Causal Effects
	The difficulty of enumerating causal diagrams from a PAG
	Conclusions
	Background, related work, and limitations
	Background
	Related Work
	Limitations

	Proofs
	Additional Examples
	Further discussion on enumeration strategies

