
Under review as a conference paper at ICLR 2024

TOWARDS THE VULNERABILITY OF WATERMARKING
ARTIFICIAL INTELLIGENCE GENERATED CONTENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Artificial Intelligence Generated Content (AIGC) is gaining great popularity in
social media, with many commercial services available. These services leverage
advanced generative models, such as latent diffusion models and large language
models, to generate creative content (e.g., realistic images, fluent sentences) for
users. The usage of such generated content needs to be highly regulated, as
the service providers need to ensure the users do not violate the usage policies
(e.g., abuse for commercialization, generating and distributing unsafe content). A
promising solution to achieve this goal is watermarking, which adds unique and
imperceptible watermarks on the content for service verification and attribution.
Numerous watermarking approaches have been proposed recently. However, in
this paper, we show that an adversary can easily break these watermarking mecha-
nisms. Specifically, we consider two possible attacks. (1) Watermark removal: the
adversary can easily erase the embedded watermark from the generated content
and then use it freely without the regulation of the service provider. (2) Watermark
forge: the adversary can create illegal content with forged watermarks from another
user, causing the service provider to make wrong attributions. We propose WMaGi,
a unified framework to achieve both attacks in a holistic way. The key idea is to
leverage a pre-trained diffusion model for content processing, and a generative
adversarial network for watermark removing or forging. We evaluate WMaGi on
different datasets and embedding setups. The results prove that it can achieve high
success rates while maintaining the quality of the generated content. Compared
with existing diffusion model-based attacks, WMaGi is 5,050∼11,000× faster.

1 INTRODUCTION

Benefiting from the advance of generative deep learning models (Rombach et al., 2022; Touvron
et al., 2023), Artificial Intelligence Generated Content (AIGC) has become increasingly famous.
Many commercial services have been released, which leverage large models (e.g., ChatGPT (cha),
Midjourney (Mid)) to generate creative content based on users’ demands. The rise of AIGC also leads
to some legal considerations, and the service provider needs to set up some policies to regulate the
usage of generated content. First, the generated content is one important intellectual property of the
service provider, many services do not allow users to make the AIGC into commercial use (Touvron
et al., 2023; Mid). Selling the generated content for financial profit 1 will violate this policy and
cause legal issues. Second, generative models have the potential of outputting unsafe content (Wei
et al., 2023; Qi et al., 2023; Liu et al., 2023a; Le et al., 2023), such as fake news (Guo et al., 2021),
malicious AI-powered images (Salman et al., 2023; Le et al., 2023), phishing campaigns (Hazell,
2023), and cyberattack payloads (Charan et al., 2023). New laws are established to regulate the
generation and distribution of content from deep learning models on the Internet234.

As protecting and regulating AIGC become urgent, Google hosted a workshop in June 2023 to
discuss the possible solutions against malicious usage of generative models (Barrett et al., 2023).
Not surprisingly, the watermarking technology as mentioned as a promising defense. By adding

1https://okuha.com/best-sites-to-sell-ai-art/
2https://www.reuters.com/technology/governments-efforts-regulate-ai-tools-2023-04-12/
3https://www.pdpc.gov.sg/help-and-resources/2020/01/model-ai-governance-framework
4https://www.lexology.com/library/detail.aspx?g=42ad7be8-76bd-40c8-ae5d-271aaf3710eb
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Figure 1: Overview of WMaGi. (1) The adversary collects data from the target AIGC service. (2) The
adversary uses an open-source denoising model to purify the collected data. (3) The adversary adopts
the original and purified data to train a GAN, which can be used to remove or forge the watermark.
Black and white images stand for images with and without watermarks, respectively.

invisible specific watermarks to the generated content (Fernandez et al., 2023; Kirchenbauer et al.,
2023; Liu et al., 2023b), we are able to identify the misuse of AIGC and track to the corresponding
users. A variety of robust watermarking methodologies have been designed, which can be classified
into two categories. (1) A general method is to make the generative model learn a specific data
distribution, which can be decoded by another deep learning model to obtain a secret message as the
watermark (Fernandez et al., 2023; Liu et al., 2023b; Zhao et al., 2023b). (2) The model owner can
concatenate a watermark embedding model (Zhu et al., 2018; Tancik et al., 2020) after the generative
model to make the final output contain watermarks. A very recent work from DeepMind, SynthID
Beta (Syn), detects AI-generated images by adding watermarks to generated images5. According to
its description, this service possibly follows a similar strategy as StegaStamp (Tancik et al., 2020),
which adopts an encoder to embed watermarks into images and a decoder to identify the embedded
watermarks in the given images.

The Google workshop (Barrett et al., 2023) reached the consensus that “existing watermarking
algorithms only withstand attacks when the adversary has no access to the detection algorithm”,
and embedding a watermark to a clean image or text “seems harder for the attacker, especially if
the watermarking process involves a secret key”. However, in this paper, we argue that it is not the
case. We find that it is easy for an adversary without any prior knowledge to remove or forge the
embedded secret watermark in AIGC, which will break the IP protection and content regulation.
Specifically, (1) a watermark removal attack makes the service providers fail to detect the watermarks
it embeds into the AIGC previously, so the malicious user can circumvent the policy regulation and
abuse the content for any purpose. (2) A successful watermark forge attack can intentionally embed
a watermark of another user into the unsafe content without the knowledge of the secret key. This
could lead to wrong attributions and frame up that benign user.

We introduce WMaGi, a novel framework to achieve both watermark removal and forge attacks
against AIGC in a unified manner. The key idea is to leverage a pre-trained diffusion model and train
a generative adversarial network (GAN) for erasing or embedding watermarks to AIGC. Figure 1
shows the overview of WMaGi, which consists of three steps: data collection, data pre-processing, and
model training. In the first step, the adversary collects AIGC from the target service or a specific user.
We assume that the adversary can only collect the watermarked AIGC, without any clean content.
Furthermore, we assume that the same secret watermark message is applied to all the collected data.
More details of our threat model can be found in Section 3.2. In the second step, we introduce
an adversarial pipeline to weaken the embedded watermark messages in the data. Specifically, the
adversary adopts a public diffusion model, such as DDPM (Ho et al., 2020), to denoise the collected
data. The diffusion model can be either non-watermarked, or watermark-protected with a different
secret. Its preprocessing operation can make the embedded message unrecoverable from the denoised
data. In the third step, the adversary trains a GAN model to map the data distribution from collected
data to denoised data (for watermark removal) or from denoised data to collected data (for watermark

5Up to the date of writing, SynthID Beta is still a beta product only provided to a small group of users.
Unfortunately, we do not have access to it. Therefore, we cannot provide evaluation results with respect to it in
our experiments.
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forging). After the model is trained, the adversary can adopt the generator to remove or forge the
specific watermark for AIGC, depending on the target in the third step.

We evaluate our proposed WMaGi on various datasets (e.g., CIFAR-10, CelebA), and settings (e.g.,
different watermark lengths, few-shot learning), to show its generalizability. Our results prove that the
adversary can successfully remove or forge a specific watermark in the AIGC and keep the content
indistinguishable from the original one. This provides concrete evidence that existing watermarking
schemes are not reliable, and the community needs to explore more robust watermarking methods.
Overall, our contribution can be summarized as follows:

• To the best of our knowledge, it is the first work focusing on removing and forging watermarks in
AIGC under a black-box threat model. Furthermore, WMaGi is a unified framework, which can
achieve both attack goals in a holistic way. Our study discloses the unreliability and fragility of
existing watermarking schemes.

• Different from prior attacks, WMaGi does not require the adversary to have clean data or any
information about the watermarking schemes, which is more practical in real-world applications.

• Comprehensive evaluation proves that WMaGi can remove or forge the watermarking information
without harming the data quality. WMaGi is time-efficient, which is 5,050∼11,000× faster than
existing attacks with diffusion models.

• We prove that WMaGi is effective in the few-shot setting, i.e., it can be freely adapted to unseen
watermarks. Furthermore, WMaGi remains highly effective for different watermark lengths.

2 RELATED WORKS

2.1 CONTENT WATERMARK

Driven by the rapid development of large and multi-modal models, there is a renewed interest in
generative models, such as ChatGPT (cha) and Stable Diffusion (Rombach et al., 2022), due to
their capability of creating high-quality images (Ho et al., 2020; Rombach et al., 2022), texts (cha;
Touvron et al., 2023), audios (Kong et al., 2021), and videos (Ho et al., 2022). The generated content
is referred to Artificial Intelligence Generated Content (AIGC). Such AIGC can have high IP values
and sensitive content. Therefore, it is important to protect and regulate it during its distribution on
public platforms, e.g., Twitter (Twi) and Instagram (Ins).

A typical strategy to achieve the above goal is watermarking: the service provider adds a secret
and unique message to the content, which can be subsequently extracted for ownership verification
and attribution. Existing watermarking schemes can be divided into post hoc methods and prior
methods. Post hoc methods convert the clean content into watermarked content following one of
the following two strategies. (i) Visible watermark strategy: the service provider adds characters or
paintings into the clean content (Liu et al., 2021; Cheng et al., 2018), which can be recognized by
humans. (ii) Invisible watermark strategy: the service provider embeds a specific bit string into the
clean content by a pre-trained steganography model (Zhu et al., 2018; Tancik et al., 2020) or signal
transformation (Nam et al., 2021), which will be decoded by a verification algorithm later.

For prior methods, the generative model directly learns a distribution of watermarked content, which
can be decoded by a verification algorithm (Fei et al., 2022; Fernandez et al., 2023; Cui et al., 2023;
Zhao et al., 2023b). Specifically, Fei et al. (2022) designed a watermarking scheme for generative
adversarial networks (GANs), by learning the distribution of watermarked images supervised by the
watermark decoder. Fernandez et al. (2023); Zhao et al. (2023b) designed a watermarking scheme for
diffusion models (Rombach et al., 2022), which embeds a predefined bit string into the generated
images. The bit string can be restored with a secret decoder. Therefore, the service provider can
recognize the AIGC from his generative model or determine the specific user account.

In this paper, we target both post hoc methods and prior methods. For post hoc methods, we
do not consider visible watermarks as they can significantly decrease the visual quality of AIGC,
making them less popular for practical adoption. For invisible watermarks, we only consider the
steganography approach, as it is much more robust and harder to attack than the signal transformation
approach (Nam et al., 2021; Wang et al., 2022; Zhao et al., 2023a).

3



Under review as a conference paper at ICLR 2024

2.2 ATTACKS AGAINST WATERMARKS

To the best of our knowledge, there is no work considering the watermark forge attack. Prior efforts
mainly focus on the watermark removal attack. These attack solutions can be summarized into three
main categories, i.e., image inpainting methods (Ulyanov et al., 2018; Liang et al., 2021) for visible
watermarks, denoising methods (Li, 2023; Zhao et al., 2023a), and disrupting methods (Nam et al.,
2021; Wang et al., 2022) for invisible watermarks. However, they have several critical drawbacks in
practice. Specifically, the image inpainting methods (Ulyanov et al., 2018; Liang et al., 2021) require
clean images and watermarked images to train the inpainting model, which is not feasible in the
real world, because the user can only obtain watermarked images from the service providers (Mid).
Disrupting methods (Nam et al., 2021; Wang et al., 2022) require the user to know the details of the
watermarking schemes, which is also difficult to achieve. The most promising method is based on
denoising models. For instance, Li (2023) adopted guided diffusion models to purify the watermarked
images and minimize the differences between the watermarked images and diffusion model’s outputs.
However, using diffusion models to remove the watermark will cost a lot of time.

In sum, compared to prior works, (1) we are the first to consider the watermark forge attack; (2)
we build a unified framework WMaGi to realize these two types of attacks in a holistic way; (3)
our watermark removal attack from WMaGi is more practical as it does not require the clean
content or watermarking schemes. It is also more efficient as it brings 5,050∼11,000× speedup
compared to diffusion model-based attacks.

3 WMAGI : A UNIFIED ATTACK FRAMEWORK

In this section, we first give a formal definition of the watermark verification process. Then, we
introduce our threat model in the context of adversary’s power and knowledge. Finally, we introduce
details of our proposed WMaGi. To the best of our knowledge, it is the first black-box watermark
removal and forging method in practice. We mainly consider watermarks embedded in the generated
images. Watermarks in other other domains, such as language and audio, will be our future work.

3.1 PRELIMINARY

We consider a general watermarking scheme, which is widely studied in previous works (Fernandez
et al., 2023; Liu et al., 2023b) and can be used to protect and regulate the AIGC. In this scheme,
the service provider adopts a decoder MD to recover the embedded secret message m, i.e., the
watermark, from the image x generated by its modelMG. For a successful watermark verification,
we give the following definition:

Definition 1 Given a threshold τ , a message decoderMD, and a secret message m, if an image xs
fulfills Dis(MD(x

s),m) ≤ f(τ,m), where Dis(·, ·) is a distance metric and f(·, ·) is a function of
τ and m, we say that xs passes the verification with respect to the secret message m. Otherwise,
verification fails.

Definition 1 is general for all types of secret message m. Specifically, the most popular type used in
many watermarking implementations is a bit string (Fei et al., 2022; Fernandez et al., 2023; Cui et al.,
2023; Zhao et al., 2023b). When m is a bit string, the distance Dis(·, ·) is the Hamming Distance,
and f(τ,m) = τ × |m|, where |m| represents the length of the message m. In this paper, we mainly
consider this type of watermark message, which is the most reliable and mature method.

3.2 THREAT MODEL

Attack Goals. We consider a practical scenario where a service provider employs a large generative
modelMG to generate creative images for public users. The service provider embeds a secret user-
specific watermark m to each generated image. By extracting the watermark m from any misused
image on the Internet, the service provider is able to detect the policy violation events and attribute to
the corresponding users.

A malicious user can break this watermarking scheme with two distinct goals. (1) Watermark
removal attack: the adversary receives a generated image from the service provider, which contains
the secret watermark associated with him. He aims to erase the watermark from the generated image,
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and then use it freely without the consideration of following the service policy, as the provider is
not able to identify the watermarks and track to him any more. (2) Watermark forge attack. The
adversary tries to frame up a victim user by forging the victim’s watermark on a malicious image
(from another model or created by humans). Then the adversary can distribute the image on the
Internet. The service provider will attribute to the wrong user.

Adversary’s capability. We consider the black-box scenario, where the adversary can only obtain
the generated image x and has no knowledge of the employed generated model or watermark scheme.
This is practical, as many service providers only release APIs for users to use their models without
leaking any information about the details of the backend modelsMG andMD. We further assume
that all the generated images from the target service are watermark-protected, so the adversary cannot
collect any clean images. These assumptions increase the attack difficulty compared to prior works.

3.3 METHODOLOGY DETAIL

We introduce WMaGi to manipulate watermarks with the above goals. To overcome the black-box
challenges, the adversary can adopt a pre-trained denoise model, which accepts noisy images as its
inputs and returns new images containing less noise. Then he can train a GAN model to remove or
forge watermarks. The details of our WMaGi, comprised of three steps, are described as follows.

Step 1: Data Collection. The adversary collects the images xi generated by the target service
provider for the target user from the Internet. Such data collection is feasible, as people who share
their created content on social media are normally using a specific account and adding tags to indicate
the used service. Alternatively, the adversary can also query the service to collect the watermarked
images with his account. All the collected data contain one specific watermark m. This establishes a
dataset X = {xi|xi ∼ (MG,m)}, whereMG is the service provider’s generative model.

Step 2: Data Pre-processing. Then, the adversary needs to modify the collected data to weaken
the embedded watermarks. He can adopt a pre-trained denoise modelH, which can be downloaded
from a public source, like Hugging Face. The adversary creates a new dataset X̂ = {x̂i|H(xi) =
x̂i, xi ∈ X}, and uses x̂i to approximate the clean image x̃i. Note that it is possible thatH(x) will
be visually different from x. Our method does not implicitly constrain the similarity betweenH(x)
and x, making it more general.

Step 3: Model Training. The adversary needs to build a connection between clean images and
watermarked images, so that he can remove or forge a specific watermark. To find such a map, he
can adopt a generative adversarial network (GAN) with X and X̂ . There are two components in
training the GAN model, i.e., generator G and discriminator D. Specifically, for watermark removal,
G is to modify xi, and D is to judge the distribution similarity between G(xi) and x̂i. To better
study the distribution of the watermarked and clean data distributions, we adopt the Wasserstein
distance (Arjovsky et al., 2017) to optimize both G and D. The loss functions can be written as:

LD = −Ex̂∈X̂D(x̂) + Ex∈XD(G(x)) + wDEx̂∈X̂ ,x∈X∇αx+(1−α)x̂D(αx+ (1− α)x̂),
LGD = −wGEx∈XD(G(x)).

where wD and wG are weights for losses and α is a random variable between 0 and 16. On the other
hand, to guarantee the quality of generated images, we adopt several loss functions to restrict the
image quality, which can be written as:

Lx = Ex∈X [L1(G(x), x) +MSE(G(x), x) + LPIPS(G(x), x)].
where L1 is the L1-norm, MSE is the mean squared error loss, and LPIPS is the perceptual
loss (Zhang et al., 2018).

For watermark forge, G is to modify x̂i, and D is to judge the distribution similarity between G(x̂i)
and xi. Therefore, the loss function can be written as:

LD = −Ex∈XD(x) + Ex̂∈X̂D(G(x̂)) + wDEx̂∈X̂ ,x∈X∇αx+(1−α)x̂D(αx+ (1− α)x̂),
LGD = −wGEx̂∈X̂D(G(x̂)),

Lx = Ex̂∈X̂ [L1(G(x̂), x̂) +MSE(G(x̂), x̂) + LPIPS(G(x̂), x̂)].
6We slightly modify the discriminator loss for large-resolution images to stabilize the training process. The

details can be found in Appendix A.
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Bit Length Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

4 bit 100.00% 4.22 27.81 0.89 0.99 52.53% 16.36 24.51 0.86 0.92 95.76% 17.59 26.70 0.88 0.94
8 bit 100.00% 6.19 25.23 0.83 0.99 47.80% 18.42 23.59 0.83 0.91 97.84% 21.09 24.94 0.82 0.93

16 bit 100.00% 11.34 22.71 0.73 0.98 50.10% 24.63 23.44 0.77 0.91 92.23% 18.34 25.84 0.83 0.94
32 bit 99.99% 28.76 19.99 0.53 0.96 53.64% 25.33 21.17 0.64 0.91 90.14% 31.13 23.41 0.71 0.93

Table 1: Performance of WMaGi under different bit lengths. The number of images for the adversary
is 25,000.

# of Samples
(bit length = 8bit)

Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

5000

100.00% 6.19 25.23 0.83 0.99

49.42% 20.75 24.64 0.83 0.92 96.11% 18.86 24.36 0.83 0.93
10000 50.68% 23.76 24.31 0.82 0.90 98.63% 15.68 24.70 0.81 0.94
15000 59.88% 20.32 22.87 0.80 0.92 97.80% 25.34 24.55 0.80 0.92
20000 54.59% 22.90 24.93 0.84 0.90 95.99% 23.56 23.74 0.80 0.92
25000 47.80% 18.42 23.59 0.83 0.91 97.84% 21.09 24.94 0.82 0.93

Table 2: Performance of WMaGi under the different number of collected images. The length of
embedded bits is 8.

The overall training loss for G can be written as

LG = LGD + wxLx,

where wx is a weight for the loss function.

4 EVALUATIONS

4.1 EXPERIMENT SETUP

Datasets. We mainly consider two datasets: CIFAR-10 and CelebA (Liu et al., 2015). CIFAR-10
contains 50,000 training images and 10,000 test images with a resolution of 32*32. CelebA is a
celebrity faces dataset, which contains 162,770 images for training and 19,867 for testing, resized
at a resolution of 64*64 in our experiments. We randomly split the CIFAR-10 training set into
two disjoint parts, one of which is to train the service provider’s model and another is used by the
adversary. Similarly, we randomly pick 100,000 images for the service provider and 10,000 images
for the adversary from the training set of CelebA.

Watermarking Schemes. Considering the watermark’s expandability to multiple users, we mainly
adopt the post hoc manner, i.e., adding user-specific watermarks to the generated images. We adopt
StegaStamp (Tancik et al., 2020), a state-of-the-art and robust method for embedding bit strings into
given images, which is proved to be the most effective watermarking embedding method against
various removal attacks (Zhao et al., 2023a). We also provide two case studies to explore the prior
manner, which directly generates images with watermarks For our case studies. We follow previous
works (Fei et al., 2022; Zhao et al., 2023b) to embed a secret watermark to WGAN-div (Wu et al.,
2018) and EDM (Karras et al., 2022), respectively.

Baselines. To the best of our knowledge, WMaGi is the first work to remove or forge a watermark in
images under a pure black-box threat model. Therefore, we consider some potential baseline attack
methods under the same assumptions and attacker’s capability, i.e., having only watermarked images.
These baseline methods can be classified into two groups. (1) Image transformation methods: we
consider modifying the properties of the given image, such as resolution, brightness, and contrast.
We also consider image compression (e.g., JPEG) and image disruptions (e.g., Gaussian blurring,
adding Gaussian noise). (2) Diffusion model methods (Li, 2023): we directly adopt a pre-trained
unconditional diffusion model (DiffPure (Nie et al., 2022)) to modify the given image, which does
not require to train a diffusion model from scratch and does not need clean images. As the diffusion
model is not trained or fine-tuned for watermark removal or forge, for consistency, we do not adopt
guided diffusion models or conditional diffusion models as Li (2023) did. The results from pre-
trained diffusion models are various on different datasets, which will be discussed in Appendix C.
Specifically, for watermark removal, the watermarked images are inputs for the attacks; for watermark
forge, the clean images are inputs for the attacks.

Implementation. We adopt DiffPure (Nie et al., 2022) as the diffusion model used in the second
step of WMaGi without any fine-tuning. As the adversary does not have any knowledge of the
watermarking scheme, it is important to decide which checkpoint should be used in the attack.
We provide a simple way to help the adversary select a checkpoint during the training process in
Appendix B. More details about our implementations can be found in Appendix A, including all
hyperparameters and used bit strings.
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Methods Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

CenterCrop

100.00% 4.25 30.7 0.94 0.96

59.89% - - - 0.90 48.33% - - - 0.93
GaussianNoise 99.92% 53.80 24.97 0.71 0.86 52.28% 47.07 28.64 0.75 0.89
GaussianBlur 100.00% 25.09 26.26 0.84 0.86 52.10% 21.18 28.17 0.88 0.89

JPEG 99.27% 17.42 28.40 0.89 0.89 52.19% 9.96 33.36 0.94 0.90
Brightness 100.00% 4.26 19.70 0.87 0.95 52.28% 0.39 21.16 0.91 0.98

Gamma 100.00% 4.43 22.93 0.88 0.96 52.32% 0.26 25.71 0.93 0.99
Hue 99.99% 5.93 26.84 0.93 0.94 52.21% 1.60 32.06 0.98 0.97

Contrast 100.00% 4.26 24.28 0.85 0.95 52.33% 0.25 27.62 0.90 0.98
DMs 67.82% 73.30 20.61 0.62 0.69 48.78% 68.91 20.89 0.64 0.70
DMl 47.20% 82.38 15.76 0.34 0.67 45.96% 79.06 15.81 0.34 0.68
WMaGi 51.98% 9.93 26.61 0.91 0.90 99.11% 8.75 24.92 0.90 0.92

Table 3: Results of different attacks. The bit string length is 32 bits.

Methods Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

CenterCrop

100.00% 13.59 27.13 0.90 0.93

60.53% - - - 0.87 50.12% - - - 0.93
GaussianNoise 99.72% 62.36 23.39 0.68 0.83 51.71% 47.18 28.64 0.75 0.89
GaussianBlur 100.00% 33.23 24.84 0.81 0.85 52.06% 21.18 28.17 0.88 0.89

JPEG 99.30% 28.94 25.87 0.85 0.85 51.74% 9.96 33.36 0.94 0.90
Brightness 100.00% 13.37 18.96 0.83 0.91 51.83% 0.39 21.16 0.91 0.98

Gamma 100.00% 13.68 21.72 0.84 0.92 51.92% 0.26 25.71 0.93 0.99
Hue 99.87% 15.82 24.79 0.88 0.90 51.86% 1.60 32.06 0.98 0.97

Contrast 100.00% 13.66 22.84 0.82 0.91 51.85% 0.25 27.62 0.90 0.98
DMs 71.54% 78.67 20.21 0.60 0.69 49.35% 69.09 20.92 0.64 0.71
DMl 53.75% 82.94 15.67 0.33 0.67 50.99% 81.66 15.82 0.34 0.68
WMaGi 54.36% 19.98 25.29 0.88 0.88 94.61% 12.14 23.04 0.87 0.90

Table 4: Results of different attacks. The bit string length is 48 bits.

Metrics. To fairly evaluate our proposed WMaGi, we consider five metrics to measure its performance
from different perspectives. To determine the quality of the watermark removal (forge) task, we
adopt Bit Acc, which can be calculated as Bit Acc(m,m′) = |m|−H(m,m′)

|m| × 100%, where H(·, ·)
is the Hamming Distance. If Bit Acc(m,m′) ≥ τ , which is defined in Definition 1, verification
will pass. Otherwise, it will fail. To evaluate the quality of the images generated by WMaGi and the
baselines, we adopt the Fréchet Inception Distance (FID) (Heusel et al., 2017), the peak signal-to-
noise ratio (PSNR) (Horé & Ziou, 2010), and the structural similarity index (SSIM) (Horé & Ziou,
2010). Furthermore, we consider the semantic information inside the images, which is evaluated by
CLIP (Radford et al., 2021). For the FID, PSNR, SSIM, and CLIP scores, we compute the results
between clean images and watermarked images for the watermarking scheme, and between clean
images and images after removal or forge attacks.

4.2 ABLATION STUDY

In this section, we explore the generalizability of our proposed WMaGi under the views of the length
of the embedding bits and the number of collected images. In Table 1, we show the results of WMaGi
at different lengths of embedded bits. The results indicate that WMaGi is robust for different secret
message lengths. Specifically, when the length of the embedded bits increases, WMaGi can still
achieve good performance on watermark removing or forging and make the transferred images keep
high quality and maintain semantic information. In Table 2, we present the results when the adversary
uses the different numbers of collected images as his training data. The results indicate that even
with limited data, the adversary can remove or forge a specific watermark without harming the image
quality, which proves that our method can be a real-world threat. Therefore, our proposed WMaGi
has outstanding flexibility and generalizability under a practical threat model. We further prove its
extraordinary few-shot generalizability for unseen watermarks in Section 4.3.

4.3 MAIN RESULTS ON POST HOC MANNERS

In this section, we focus on post hoc manners, i.e., adding watermarks to AIGC with an embedding
model. Because the post hoc watermarking scheme can freely change the embedding watermarks, we
evaluate WMaGi under few-shot learning to show the capability of adapting to unseen watermarks.

Results on CelebA. We consider two different lengths of the embedding bits, i.e., 32-bit and 48-bit.
Furthermore, we do not consider the specific coding scheme, including the source coding and the
channel coding. In Tables 3 and 4, we compare the results of WMaGi and the baseline methods on the
watermark removal task and the watermark forging task, respectively. We notice that the watermark
embedding method is robust against various image transformations. Using image transformations
cannot simply remove or forge a specific watermark in the given images. For methods using diffusion
models, we consider two settings, i.e., adding large noise to the input (DMl) and adding small noise
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# of Samples
(bit length = 32bit)

Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

10
100.00% 4.14 30.69 0.94 0.96

49.98% 46.90 23.19 0.81 0.83 72.64% 12.27 22.43 0.89 0.91
50 53.31% 19.74 24.47 0.87 0.86 83.18% 11.89 28.37 0.94 0.93

100 53.27% 14.30 25.51 0.89 0.87 93.47% 12.43 26.57 0.92 0.91

Table 5: Few-shot generalization ability of WMaGi on unseen watermarks.

(a) Watermark Removal (b) Watermark Forging

Figure 2: The first column is clean images. The second is watermarked images. The third is the
output of DMl. The fourth is the output of DMs. The fifth is the output of WMaGi. The sixth is the
difference between the first and second columns. The seventh is the difference between the first and
third columns. The eighth is the difference between the first and fourth columns. The ninth is the
difference between the first and fifth columns. The tenth is the difference between the second and
fifth columns.

to the input (DMs). Especially, we use the same setting as DMl in the second step of WMaGi to
generate images. Although diffusion models can easily remove the watermark from the given images
under both settings, the generated images are visually different from the input images, causing a low
PSNR, SSIM, and CLIP score. Furthermore, the FID indicates that the diffusion model will cause
a distribution shift compared to the clean dataset. Nevertheless, we find that DMl and DMs can
maintain high image quality while successfully removing watermarks on other datasets, which we
discuss in Appendix C. The results make us reflect on the generalizability of diffusion models on
different datasets and watermarking schemes. However, evaluating all accessible diffusion models on
various datasets and watermarking schemes will take months. Therefore, we leave it as future work
to deeply study the diffusion models in the watermarking removal task. On the other hand, forging a
specific unknown watermark is non-trivial and impossible for both image transformation methods
and diffusion models.

Our WMaGi gives an outstanding performance in both tasks and maintains good image quality as
well. However, we notice that as the length of the embedded bit string increases, it becomes more
challenging to forge or remove the watermark. That is the reason that under 48-bit length, our WMaGi
has a little performance drop on both tasks with respect to bit accuracy and image quality. We
provide visualization results in the following content to prove images generated by WMaGi are still
visually close to the given image under a longer embedding length. More importantly, WMaGi is very
time-efficient compared to diffusion model methods. We present the results in Appendix D.

Few-Shot Generalization. In real-world applications, large companies can assign a unique water-
mark for every account or change watermarks periodically. Therefore, it is important to study the
few-shot power of WMaGi, i.e., fine-tuning WMaGi with several new data with an unseen watermark
to achieve outstanding watermark removal or forging abilities for the unseen watermark. In our
experiments, we mainly consider embedding a 32-bit string into clean images. Then, we fine-tune the
model in Table 3 to fit new unseen watermarks. In Table 5, we present the results under 10, 50, and
100 training data for watermark removal and forging. The results indicate that the watermark removal
task is much easier than the watermark forging task. Furthermore, with more accessible data, both bit
accuracy and image quality can be improved. It is worth noticing that, even with limited data, WMaGi
can successfully remove or forge an unseen watermark and maintain high image quality. The results
prove that our proposed method has strong few-shot generalization power to meet practical usage.

Visualization. To better compare the image quality of WMaGi with other baselines, we show
the visualization results in Figure 2. Specifically, both DMs and DMl will change the semantic
information in inputs. WMaGi can keep the image details in the watermark removal and forging
tasks. Furthermore, when comparing the differences between clean and watermarked images, we find
that WMaGi can produce a similar residual as the watermark embedding model, which means that
WMaGi can learn the embedding information during the training process. More results can be found
in Appendix E.
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Methods
WGAN-div EDM

Original Watermark Remove Watermark Forge Original Watermark Remove Watermark Forge
Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID

CenterCrop

99.66% 60.20

58.05% - 48.25% -

99.99% 8.68

61.31% - 50.23% -
GaussianNoise 99.09% 100.65 52.24% 41.58 82.20% 56.43 50.50% 50.98
GaussianBlur 99.59% 56.83 52.04% 22.85 64.10% 40.04 51.42% 36.49

JPEG 98.43% 64.09 52.30% 15.12 52.90% 26.81 49.89% 21.21
Brightness 99.65% 56.99 52.14% 0.63 99.43% 8.30 51.15% 0.65

Gamma 99.66% 60.59 52.25% 0.47 99.93% 9.12 51.16% 0.37
Hue 99.55% 63.70 52.17% 1.83 99.86% 8.96 50.92% 2.16

Contrast 99.66% 57.47 52.27% 0.32 99.79% 50.98 51.11% 0.39
DMs 67.12% 100.93 49.17% 68.79 51.03% 78.08 51.14% 79.75
DMl 47.16% 117.80 46.20% 83.36 51.69% 58.39 51.31% 60.00
WMaGi 52.12% 69.88 95.72% 5.84 64.56% 19.58 90.75% 5.98

Table 6: Results of removing and forging content watermarks from the WGAN-div and EDM.

4.4 MAIN RESULTS ON PRIOR MANNERS

In this section, we focus on prior methods, i.e., directly embedding watermarks into the generative
models. We follow the previous methods (Fei et al., 2022) and (Zhao et al., 2023b) to embed a secret
bit string into a WGAN-div and an EDM as a watermark, respectively. Therefore, all generated
images contain a pre-defined watermark, but we cannot have the corresponding clean images. That
is to say, we cannot obtain the PSNR, SSIM, and CLIP scores as previously. So, we only evaluate
the FID and the bit accuracy in our experiments. Specifically, we train the WGAN-div with 100,000
watermarked images randomly selected from the training set of CelebA. We directly use the models
provided by Zhao et al. (2023b), which are trained on FFHQ embedded with a 64-bit string. For
WMaGi, we use the WGAN-div and EDM to generate 10,000 samples as the accessible data.

In Table 6, we show the results of different attacks to remove or forge the watermark. First, we find
that embedding a watermark into the generative model will cause the generated images to have a
different distribution from the clean images, making the FID extremely high. Second, the EDM can
generate high-quality images even under watermarking, causing a lower FID. However, we find that
the embedded watermark by Zhao et al. (2023b) is less robust, which can be removed by blurring
and JPEG compression. It could be because they made some trade-off between the image quality
and robustness. For both, WMaGi can successfully remove and forge the specific watermark in the
generated images and keep the same image quality as the generative model. The visualization results
can be found in Appendix E.

4.5 POTENTIAL DEFENSES FOR SERVICE PROVIDERS

Although WMaGi is an effective method for removing or forging a specific watermark in images,
there are some possible defense methods against our attack. First, large companies can assign a group
of watermarks to an account to identify the identity. When adding watermarks to the images, the
watermark can be randomly selected from the group of watermarks, which can hinder the adversary
from obtaining images containing the same watermark. However, such a method requires a longer
length of embedded watermarks to meet the population of users, which will decrease the image
quality because embedding a longer watermark will damage the image. Another defense is to design
a more robust watermarking scheme, which can defend against removal attacks from diffusion
models. Because WMaGi requires diffusion models to remove the watermarks. The aforementioned
two methods have the potential to defend against WMaGi but have different shortcomings, such as
decreasing the image quality, requiring a newly designed coding scheme, and requiring a newly
designed robust watermarking scheme. Therefore, WMaGi will be a threat for future years.

5 LIMITATIONS AND CONCLUSIONS

In this paper, we consider a practical threat to AIGC protection and regulation schemes, which
are based on the state-of-the-art watermarking technology. We introduce WMaGi, a unified attack
framework to effectively remove or forge watermarks over AIGC while maintaining good image
quality. With WMaGi, the adversary only requires watermarked images without their corresponding
clean ones, making it a real-world threat. Through comprehensive experiments, we prove that WMaGi
has strong few-shot generalization abilities to fit unseen watermarks, which makes it more powerful.

In Appendix F, we discuss the limitations of WMaGi for larger-resolution and more complex images.
Although WMaGi can still successfully forge the watermark to some degree, the performance is not
good enough for a real-world scenario. However, we believe that further improvement over WMaGi
is probable with more advanced GAN structures and training strategies. In Appendix G, we discuss
the social impact of our work. WMaGi brings both positive and negative impacts on the society.
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A EXPERIMENT SETTINGS

Model Structures. For CIFAR-10 and CelebA, we choose different architectures for generators and
discriminators to stabilize the training process. Specifically, when training models on CIFAR-10,
we use the ResNet-based generator architecture (Zhu et al., 2017) with 6 blocks. As the CelebA
images have higher resolution, we use the ResNet-based generator architecture (Zhu et al., 2017)
with 9 blocks. For the discriminators, we use a simple model containing 4 convolutional layers
for CIFAR-10. And for CelebA, a simple discriminator cannot promise a stable training process.
Therefore, we use a ResNet-18 (He et al., 2016). To improve the quality of generated images, we
follow the residual training manner, that is, the output from the generators will be added to the
original input.

Hyperparameters. We use different hyperparameters for CIFAR-10 and CelebA, respectively. When
training models on CIFAR-10, we use RMSprop as the optimizer for both the generator and the
discriminator. The learning rate is 0.0001, and the batch size is 32. We set wD = 10, and the
total number of training epochs is 1,000. We update the generator’s parameters after 5 times of
updating of the discriminator’s parameters. For CelebA, we adopt Adam as our model optimizer. The
learning rate is 0.003, and the batch size is 16. We replace the discriminator loss with the one from
StyleGAN (Karras et al., 2019) with wD = 5, and the total number of training epochs is 1,000. We
update the generator’s parameters after updating the discriminator’s parameters. We present wG and
wx in Table 7 used in our experiments. We choose the best model based on the image quality.

Baseline Settings. For image transformation methods, we mainly adopt torchvision to implement
attacks. To adjust brightness, contrast, and gamma, the changing range is randomly selected from 0.5
to 1.5. To adjust the hue, the range is randomly selected from -0.1 to 0.1. For center-cropping, we
randomly select the resolution from 32 to 64. For the Gaussian blurring, we randomly choose the
Gaussian kernel size from 3, 5, and 7. For adding Gaussian noise, we randomly choose σ from 0.0
to 0.1. For JPEG compression, we randomly selected the compression ratio from 50 to 100. When
evaluating the results of image transformation methods, we run multiple times and use the average
results. For diffusion methods DMl, we set the sample step as 30 and the noise scale as 150. For
diffusion methods DMs, we set the sample step as 200 and the noise scale as 10. Specifically, we use
DMl in the second step of WMaGi. Considering using diffusion models to generate images is very
time-consuming, we randomly select 1,000 images from the test set to obtain the results for diffusion
models.

Embedded Bits. In Table 8, we list the bit strings embedded in the images in our experiments.

Experiment Watermark Remove Watermark Forge
wG wx wG wx

CIFAR-10 4bit 500 10 500 5
CIFAR-10 8bit 800 15 500 10

CIFAR-10 16bit 500 40 150 40
CIFAR-10 32bit 100 40 100 40

CIFAR-10 5000 data 800 15 500 10
CIFAR-10 10000 data 800 15 600 20
CIFAR-10 15000 data 500 15 500 10
CIFAR-10 20000 data 800 15 500 15
CIFAR-10 25000 data 800 15 500 10

CelebA 32bit 10 120 1 10
CelebA 48bit 10 200 1 10

Few-Shot 10 Images 10 200 1 10
Few-Shot 50 Images 10 200 1 10

Few-Shot 100 Images 10 200 1 10
WGAN-div 10 120 1 10

EDM 1 10 100 1

Table 7: Hyperparameter settings in our experiments for watermark removal and watermark forging.
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Experiment Bit String
CIFAR-10 4bit 1000
CIFAR-10 8bit 10001000
CIFAR-10 16bit 1000100010001000
CIFAR-10 32bit 10001000100010001000100010001000

CelebA 32bit 10001000100010001000100010001000
CelebA 48bit 100010001000100010001000100010001000100010001000

Few-Shot 11100011101010101000010000001011
WGAN-div 10001000100010001000100010001000

EDM 0100010001000010111010111111110011101000001111101101010110000000

Table 8: Selected bit strings in our experiments.

B SELECT A CORRECT CHECKPOINT

It is important to choose the correct checkpoint because it is closely associated with the attack
performance. However, when the adversary does not have any information about the watermarking
scheme, it is unavailable to determine the best checkpoint with Bit Acc as metrics. However, after
plotting the bit accuracy in Figure 3, we find that the performances of different checkpoints in the
later period are close and acceptable for a successful attack under the Bit ACC metrics. Therefore,
we choose the best checkpoint from the later training period based on the image quality metrics,
including the FID, SSIM, and PSNR, in our experiments. It is to say, our selection strategy does not
violate the threat model, where the adversary can only obtain watermarked images.

(a) Watermark Removal (b) Watermark Forging

Figure 3: Bit Acc for different tasks during the training stage on CelebA.

C DIFFUSION MODELS FOR WATERMARK REMOVAL

In our experiments, we find that the pre-trained diffusion models will not promise a similar output as
the input image without the guidance on CelebA. However, when we evaluate the diffusion models
on another dataset, LSUN-bedroom (Yu et al., 2015), we find that even under a very large noise
scale, the output of the diffusion model is very close to the input image, and the watermark has been
successfully removed. The visualization results can be found in Figure 4, where we use 30 sample
steps and 150 noise scales for DMl and use 200 sample steps and 10 noise scales for DMs, which are
the same as the settings on CelebA. The numerical results in Table 9 prove that the diffusion model
can maintain high image quality under large inserted noise.

Diffusion Model Setting
(bit length = 32bit) Original Watermark Remove

Sample Step Noise Scale Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP
30 150

100.00% 10.67 39.49 0.98 0.99

51.81% 75.52 20.15 0.58 0.88
50 150 51.50% 84.14 18.92 0.55 0.86

100 150 50.47% 95.27 16.69 0.49 0.83
200 10 56.16% 73.01 22.11 0.72 0.84
200 30 53.03% 98.00 19.37 0.59 0.80
200 50 53.81% 108.71 17.63 0.52 0.78

Table 9: Numerical results of watermark removal with diffusion models under different noise scales
and sample steps.
We think the performance differences on CelebA and LSUN are related to the resolution and image
distribution. Specifically, images in CelebA are 64 * 64 and only contain human faces. The diversity
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Figure 4: The first column is clean images. The second is watermarked images. The third is the
output of DMl. The fourth is the output of DMs.

of faces is not too high. However, images in LSUN are 256 * 256 and have different decoration
styles, illumination, and perspective, which means the diversity of bedrooms is very high. Therefore,
transforming an image into another image in LSUN is more challenging than doing that in CelebA.
This could be the reason that diffusion models cannot produce an output similar to that of CelebA. This
limitation is critical for an attack based on diffusion models. Therefore, we appeal to comprehensively
evaluate the performance of the watermark removal task for various datasets.

D TIME COST VS DIFFUSION MODELS

To compare the time cost for generating one image with a given one, we record the total time cost for
1,000 images on one A100. The batch size is fixed to 128. For DMl, the total time cost is 5,231.72
seconds. For DMs, the total time cost is 2325.01 seconds. For WMaGi, the total time cost is 0.46
seconds. Therefore, our method is very fast and efficient.

E OTHER VISUALIZATION RESULTS

In this section, we show the other visualization results in our experiments. In Figure 5, we present
the visualization results for the few-shot experiments. The results indicate that with more training
samples, image quality can be improved. And, even with a few samples, WMaGi can learn the
embedding pattern.

In Figures 6 and 7, we show the visualization results of WGAN-div and EDM, respectively. As
the generated images from WGAN-div are affected by the watermarking, the images after removal
contain some noise. However, the watermark forging can keep high image quality on the clean
images. Furthermore, EDM can generate higher-quality images. Therefore, the watermarked images
after removal will obtain less noise.
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(a) Watermark Removal (b) Watermark Forging

Figure 5: The first column is clean images. The second is watermarked images. The third is the
output of WMaGi under the 50-sample setting in the few-shot experiment. The fourth is the output of
WMaGi under the 100-sample setting in the few-shot experiment. The fifth is the difference between
the first and second columns. The sixth is the difference between the first and third columns. The
seventh is the difference between the first and fourth columns.

(a) Watermark Removal (b) Watermark Forging

Figure 6: The first column is WGAN-div generated watermarked images for Figure 6a and clean
images for Figure 6b. The second is the output of DMl. The third is the output of DMs. The fourth
is the output of WMaGi.

F LIMITATIONS ON LARGE-RESOLUTION AND COMPLEX IMAGES

We focus on CelebA in our main paper, which contains human faces in a resolution of 64 * 64. In
this part, we discuss the limitation of our method on larger resolution and more complex images. To
evaluate our method on such images, LSUN-bedroom (Yu et al., 2015) is a good choice, in which
the image resolution is 256 * 256. Similarly to the CelebA experiment settings, we randomly select
10,000 images for WMaGi, and the bit length is 32. As watermark removal is easy to do with only
diffusion models, forging is more challenging and critical.

In Figure 8, we illustrate the bit accuracy during the training stage of WMaGi. Although accuracy
increases with increasing training steps, we find that it is difficult to achieve accuracy over 80%.
If we increase the number of training steps, the accuracy will be stable around 75%. In Figure 9,
we compare the images before and after WMaGi. It is impossible for human eyes to figure out
what are clean images, which shows that WMaGi can maintain impressive image quality even for
large-resolution and complex images. While WMaGi is still effective for large-resolution and complex
images, we think its ability is constrained. Our future work will be to improve its effectiveness for
more complex data.

G SOCIAL IMPACT

We think that the proposed WMaGi will cause some malicious users to freely make the AIGC for
commercial use. Furthermore, malicious users could frame their users by spreading illegal AIGC
with forged watermarks. We think they are some negative impacts from our research. But, on the
other hand, our work will encourage others to explore a more robust and reliable watermark for
AIGC, which is a positive impact on society.
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(a) Watermark Removal (b) Watermark Forging

Figure 7: The first column is EDM generated watermarked images for Figure 6a and clean images for
Figure 6b. The second is the output of DMl. The third is the output of DMs. The fourth is the output
of WMaGi.

Figure 8: Bit Acc with training epoch increasing.

Figure 9: Clean images and corresponding outputs from WMaGi. The top two rows are clean images.
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