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ABSTRACT

Current graph representation learning techniques use Graph Neural Networks
(GNNs) to extract features from dataset embeddings. In this work, we examine
the quality of these embeddings and assess how changing them can affect the ac-
curacy of GNNs. We explore different embedding extraction techniques for both
images and texts; and find that the choice of embedding biases the performance
of different GNN architectures and thus the choice of embedding influences the
selection of GNNs regardless of the underlying dataset. In addition, we only see
an improvement in accuracy from some GNN models compared to the accuracy of
models trained from scratch or fine-tuned on the underlying data without utilising
the graph connections. As an alternative, we propose Graph-connected Network
(GraNet) layers to better leverage existing unconnected models within a GNN.
Existing language and vision models are thus improved by allowing neighbour-
hood aggregation. This gives a chance for the model to use pre-trained weights, if
possible, and we demonstrate that this approach improves the accuracy compared
to traditional GNNs: on Flickr v2, GraNet beats GAT2 and GraphSAGE by 7.7%
and 1.7% respectively.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been successful on a wide array of applications ranging from
computational biology (Zitnik & Leskovec, 2017) to social networks (Hamilton et al., 2017). The
input for GNNs, although sourced from many different domains, is often data that has been prepro-
cessed to a computationally digestible format. These digestible formats are commonly known as
embeddings.

Currently, improvements made to GNN architecture are tested against these embeddings and the
state of the art is determined based on those results. However, this does not necessarily correlate
with the GNNs accuracy on the underlying dataset and ignores the influence that the source and
style of these embeddings have on the performance of particular GNN architectures. To test existing
GNN architectures, and demonstrate the importance of the embeddings used in training them, we
provide three new datasets each with a set of embeddings generated using different methods.

We further analyse the benefit of using GNNs on fixed embeddings. We compare GNNs to stan-
dard models that have been trained or fine-tuned on the target raw data; these models treat each
data point as unconnected, ignoring the underlying graph information in data. This simple uncon-
nected baseline surprisingly outperforms some strong GNN models. This then prompts the question:
Will mixing the two approaches unlock the classification power of existing unconnected models by
allowing them to utilize the graph structure in our data?

Based on the question above, we propose a new method of mixing GNNs with unconnected models,
allowing them to train simultaneously. To achieve this we introduce a variation of the standard
message passing framework. With this new framework a subset of the unconnected model’s layers
can each be graph-connected – exploiting useful graph structure information during the forward
pass. We demonstrate that this new approach improves the accuracy of using only a pre-trained or
fine-tuned model and outperforms a stand-alone GNN on a fixed embedding.

We call this new approach GraNet (Graph-connected Network), and in summary, this paper has the
following contributions:
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• We provide new datasets and a rich set of accompanying embeddings to better test the
performance of GNNs.

• We empirically demonstrate that only some existing GNNs improve on unconnected model
accuracy and those that do vary depending on the embeddings used. We urge that uncon-
nected models be used as a baseline for assessing GNN performance.

• We provide a new method, named GraNet, that combines GNNs and models (fine-tuned or
trained from scratch) to efficiently exploit the graph structure in raw data.

• We empirically show that GraNet outperforms both unconnected models (the strong base-
line) and GNNs on a range of datasets and accompanying embeddings.

2 RELATED WORK

Graph Augmented Networks Chen et al. (2021) introduce Graph-augmented MultiLayer Percep-
trons (GA-MLPs) as a simplified alternative to Graph Neural Netwroks (GNNs). These models
involve a two step process - augmenting the node features of the graph based on the topology and
then using these node features applying a learnable function at the node level. This allows a fixed
graph operator and two sets of MultiLayer Perceptrons (MLPs) be used to extract features from
the graph. This approach is related to similar simplified GNN techniques (Wu et al., 2019; Nt &
Maehara, 2019). The paper proves that this simplified approach is not as expressive as standard
GNNs when looking at the Weisfeiler-Lehman test for distinguishing non-isomorphic graphs. This
suggests that GNNs are well suited for inferring information based on graph structure but the paper
does not comment on which approach is best in practice. We differ in our approach to augmenting
networks with graph structure by using existing GNNs and do not attempt to simplify the network.
We do provide a graph-connected MLP but this looks at adding message passing to MLPs rather
than separte funcitons on the graph data.

Effect of training on GNN performance Shchur et al. (2018) look at the effect of hyperparameters
and training in GNNs to show that these have dramatic effect on model ordering. Simply chang-
ing the split on a dataset caused large changes in accuracy and which GNN performed best, even
though the hyperparameters of the GNNs remained constant. We show similar large difference when
considering different embeddings with the same splits across embeddings.

Ablation studies on GNNs Further to these discoveries Nt & Maehara (2019) demonstrate that
GNNs only utilise the graph structure to de-noise already highly informative features. They go as
far as to demonstrate in certain conditions GNNs and MLPs perform the same. Chen et al. (2019)
demonstrate that linearising the graph filter stage of GNNs does not hinder but actually increases
the performance. Similarly Wu et al. (2019) simplify GNNs by removing non-linearity between
layers allow for pre-computing the k message passes. This reduces graph representation learning
to a simple linear regression. In all of these cases they demonstrate that the major contribution of
GNNs is in their graph structure capabilites. We do not analyse these aspects but look at how this
capability can be used in existing unconnected networks.

3 BACKGROUND

Table 1: An overview of popular datasets
Name Info Source Classes Feature Length Embedding

Amazon (Shchur et al., 2018) Text 10, 8 767, 745 Bag of Words
AmazonProducts (Zeng et al., 2019) Text 107 200 4-gram with SVD

Flickr (Zeng et al., 2019) Image 7 500 Bag of Words
Reddit (Zeng et al., 2019; Hamilton et al., 2017) Text 41 602 Avg. GloVe vectors

Cora (Kipf & Welling, 2017) Text 7 1,433 Bag of Words
CiteSeer (Kipf & Welling, 2017) Text 6 3,703 Bag of Words
PubMed (Kipf & Welling, 2017) Text 3 500 Bag of Words

We compare our new method (GraNet) against some standard Graph Neural Networks to demon-
strate the improvements that GraNet makes in classifying datasets.

2



Under review as a conference paper at ICLR 2023

Kipf & Welling (2017) introduce GCN (Graph Convolutional Networks) – a method of applying
convolutional layers from CNNs to graph neural networks. It focuses on spectral filters applied to
the whole graph structure rather than at the node level.

Hamilton et al. (2017) introduce the GraphSAGE model which builds on prior work from GCN
focusing on individual node representations. This gives rise to the iterative message passing process
on the node level. Though simpler than newer models we find that this approach, when given the
right embedding style, can outperform some recently published GNNs.

Veličković et al. (2018) introduce the idea of graph attention which alters how a node aggregates its
neighbours representation. This adds an additional attention mechanism to discern which aspects of
the node representations in a nodes neighbourhood are important at a given layer.

Brody et al. (2021) provide a more attentive version based on the graph attention system introduced
in Veličković et al. (2018). We base the graph attention mechanism used in our GraNet models on
this improved version of graph attention. We provide both versions of graph attention in our results
to compare to our new approach.

3.1 NOTATIONS

Graph Data Let G(V, E ,X) denote a graph where V = {v1,v2, ...,vn} is the set of nodes and
N = |V| is the number of nodes in the graph, E is the set of edges between nodes in V such that
ei,j ∈ E denotes a directed connection from node vi to node vj , ei,j may itself be a feature vector.
We say each node vi has a neighbourhood Ni such that vj ∈ Ni ⇐⇒ ej,i ∈ E and we say that vj

is a neighbour node to vi. Where X is the raw data matrix where X:,i = xi where xi is the feature
vector for node vi.

Embeddings There normally exists a transformation function, fe, to project the raw data to a more
compact feature Xe space such that Xe = fe(X)

For instance, we can transform a set of images (X ∈ RN×C×H×W , where C, H and W are the
number of channels, width and height of an image) to 1D features (Xe ∈ RN×F , where F denotes
the feature dimension). In this case, we have an embedding function fe : RN×C×H×W → RN×F

for the dimensional reduction.

This paper puts a special focus on the design of fe, and reveals later how the design choice of fe
can influence the performance of GNN models without making any changes to the underlying data
G(V, E ,X). An overview of popular datasets, and the embeddings that they use, is presented in
Table 1. We see that the popular graph datasets (Zeng et al., 2019; Kipf & Welling, 2017; Shchur
et al., 2018; Hamilton et al., 2017) focus heavily on Bag of Words (BoW) and word vectors. This
implies that current GNNs are being tested on and designed for a very narrow class of embedding
styles. A more detailed discussion is available in Appendix A.

Graph Neural Networks Current GNNs can be thought of as message passing layers, the l-th layer
can be represented as

hl
i = γθγ

(
hl−1
i , ψj∈N(i)

(
ϕθϕ

(
hl−1
i ,hl−1

j , ej,i
)))

(1)

where ψ is a differentiable aggregation function and γθγ
and ϕθϕ

represent differentiable functions
with trainable parameters θγ and θϕ respectively. hl

i is the node representation of vi at layer l, with
h0
i = fe(xi).

We focus on the improved graph attention mechanism (Brody et al., 2021) when looking at potential
GNNs for GraNet. Using this new notation we can formulate it as such

αij =
exp(aT LeakyReLU(θ[hi||hj ]))∑

k∈Ni
exp(aT LeakyReLU(θ[hi||hj ]))

(2)

where a is a learnable parameter representing the attention of the network. Further discussion of
graph attention and why this is useful in GraNet is available in Appendix C.
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Pre-trained models are specific neural network architecturwa that have been trained on a dataset
D for a specific task, this could be ImageNet classification (Deng et al., 2009) for vision networks
(He et al., 2016) or the entire English Wikipedia for language models (Liu et al., 2019). These
networks therefore have pre-trained weights θ that can be loaded into the model for further training
or evaluation.

We denote these pre-trained models as fθ that is parameterised by weights θ. We say that a pre-
trained model has a set of functions {f1θ1

, f2θ2
, ..., fMθM

} for an M -layer model, where f iθi
: RF →

RF ′
and f i+1

θi+1
: RF ′ → RF ′′

and F is the feature dimension. A pass through a single layer, l, of a
network would be f lθl

(x), shorthand for f l(x;θl). If we concatenate these layers to form a full pass
through the network, we obviously have fθ(x) = fMθM

(...f2θ2
(f1θ1

(x)))

Fine-tuning is therefore adapting θ to a new dataset D′ which is related to G(V, E ,X) as illustrated
in Section 3.1. In a more standard setup, the target dataset we fine-tune to has the same underlying
data-structure as the pre-training dataset, for instance, they might both be images, but the target
dataset is a different type of classification. This may involve adding, removing or altering specific
layers within the model or simply retraining the model with different labels on D.

If the architecture of a pre-trained model is altered then a new weight matrix θ′ must be created from
θ by adding, removing or reshaping weights.

Freezing layers is the process whereby a selection of weights θf ⊂ θ do not have gradients and
thus do not change during back-propagation.

These ideas allow us to alter these pre-trained models to use information about the graph connections
whilst utilising their pre-trained weight θ.

Blending and Fine-tuning models is therefore the process of using existing models, fθf
and gθg ,

with defined set of layers, {f1θf1
, f2θf2

, ..., fNθfN
} and {g1θg1

, g2θg2
, ..., gMθgM

}, and creating a new

model, hθf,g
, such that hiθf,g

= f jθf
◦ gkθg

. We can use pre-trained weights θf or θg and/or freeze
either model, and where one of these models is a GNN we say this is fine-tuning on a graph dataset.

Unconnected models are models that, unlike GNNs, do not use any information about graph con-
nections within a dataset. These are trained on datasets that are not graph-connected where each
datapoint is consider isolated. We focus on complex unconnected models with multiple layers, such
as vision networks, which we call large models. Due to training cost we use pre-trained large
models.

4 METHOD

Our proposed method of converting standard neural network models into graph-connected models
blends the two networks. This approach can easily be broken down into individual layers. Taking
f lθl

as the l-th layer in a standard model, fθ, where we may be given pre-trained weights θ we can
describe this new layer by reformulating Equation (1) as such

hl
i = γθγ

(
hl−1
i , ψj∈N(i)

(
ϕθϕ

(
f l−1
θl−1

(
hl−1
i

)
, f l−1

θl−1

(
hl−1
j

)
, ej,i

)))
(3)

where h0
i = xi rather than applying an embedding function.

Figure 1 is a representation of Equation (3) specifically in the case where the pre-trained model is a
CNN and (f l−1

θl−1
) is a convolutional layer. The light blue regions perform the standard convolution

feature extraction, these extracted feature maps are then adjusted, in the light orange region, by a
Message Passing layer with graph attentions. These two representations are then combined.

The light blue regions and resulting channel stacks, Ai ∈ R1×Cl×Hl×Wl through An ∈
R1×Cl×Hl×Wl , represent the forward pass through a single CNN layer f l−1

θl−1
. Ai represents the

forward pass of the current node hi and A{j,...,n} represent the forward pass of the neighbours of
hi. The light orange region and resulting channel stacks, B, represent the graph-based Message
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Figure 1: Graphical representation of how our proposed GraNet layer operates for image networks

{ }, ... ,

Passing stage where the new representations are altered (ϕθϕ
), aggregated (ψ) and finally combined

with the current node representation (γθγ ), following the description in Equation (3).

4.1 GRANET FOR FLICKR V2

Interconnecting every layer in a large pre-trained model is computationally intensive. Therefore,
rather than interconnect every single layer in a pre-trained network fθ we can graph-connect only
the final layer. We thus split the model into two portions: the first set of unconnected layers and the
final GraNet layer.

We can therefore look at equation Equation (3) and see in this case that we partially carry out the
forward pass of fθ which we will denote as fe and then carry out a forward pass through a GraNet
layer. This allows us to ignore all the steps involved in applying fe and focus on the final GraNet
layer. Denoting this final GraNet as g, and output classification y, we achieve the following equation

y = g(fe(X)) (4)

fe(X) is the same as described in Section 2 and indeed if we were to freeze fθ this would be
equivalent to training GraNet with a single layer on the embeddings created by embedding function
fe. So instead we also allow fe to train thus fine-tuning the weights θ of fθ. This indirectly allows
fθ to learn the graph structure by providing g with better embeddings.

As GraphSAGE performed the best on ResNet embeddings we use this as our GNN, g. As fθf
is

already pre-trained but gθg is not fine-tuning the model produces poor results. We therefore initially
train gθg on a frozen feθf

, after this short training period we unfreeze feθf
allowing both to train

fine-tuning the weights θg and θf .

4.2 GRANET FOR AMAZON

In the case of the Amazon dataset we found that Bag of Words embedding performed the best. As
this does not have an associated pre-trained model we design a multi-layer perceptron (MLP) to
compare against. We then convert all the layers within the MLP to GraNet layers. This method is
therefore not fine-tuned but trained from initialised weights.

We also find that GAT (Brody et al., 2021; Veličković et al., 2018) models perform the best on this
task. We therefore use graph attention message passing as shown in Equation (2) for our GraNet
model. Keeping in line with Equation (3) the new graph attention mechanism becomes

αij =
exp(aT LeakyReLU([f lθl

(hi)||f lθl
(hj)]))∑

k∈Ni
exp(aT LeakyReLU([f lθl

(hi)||f lθl
(hj)]))

(5)

However, a single layer of an MLP is f lθl
(x) = θlx. This would therefore mean that Equation (6)

becomes
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αij =
exp(aT LeakyReLU([θlhi||θlhj ]))∑

k∈Ni
exp(aT LeakyReLU([θlhi||θlhj ]))

(6)

This is very similar to Equation (2) with the only difference being when we apply the weight ma-
trix, concatenation and attention mechanism. We find this model behaves the same as GAT2 and
therefore, given the small size tried a different approach as a comparison.

Rather than use the vector parameter a we introduce a linear function aθa
: R2F → RF ′

that takes
the LeakyReLU of the concatenation of a node, fθl

(hi), and its neighbour, fθl
(hi), as input. The

result is a feature vector in a new feature space, though in our case we have F ′ = F . This allows
more complex interactions between the node representations to be exploited by our attention. This
approach is too costly to apply to a pre-trained CNN as the size of θa is far too large.

5 EXPERIMENTAL SETUP

For all test results we run 3 train-test runs each with a different random seed and take the arithmetic
mean and include the standard deviation. The three random seeds are the same for every entry in
the table for fair comparison. The architecture used for each benchmark GNN is identical across all
datasets and embeddings. Training takes 300 epochs of training unless otherwise stated.

Where a Graph Neural Network (GNN) is used as part of a GraNet model (as described in Section 4)
the same sampler is used for consistency. The specific architectures used are designed using the
hyperparameters in Zeng et al. (2019). In the case of GraphSAGE the learning rate was decreased
to improve convergence. For specific details of each architecture and learning rate see Appendix E.

5.1 DATASETS

An overview of the datasets is provided below with the specific metrics for each dataset shown in
Table 6. A more detailed discussion is available in Appendix B. It is important to note that though
these datasets mirror prior datasets due to the need for raw data we diverge from these datasets.
Therefore we do not make any direct comparisons to previous datasets though the results we achieve
on our new datasets are on par with results seen in prior papers.

5.1.1 FLICKR V2

The underlying data X is raw images and so Convolutional Neural Networks (CNNs) are used as
embedding functions. As a sample of existing pre-trained CNNs we use ResNet18, ResNet50 (He
et al., 2016) and VGG16 (Simonyan & Zisserman, 2015). In all three cases we use the pre-trained
models provided by TorchVision, using the feature vectors after the final pooling stage before the
classification stage.

It is important to note that there is no Bag of Words (BoW) embedding for Flickr v2 because there
is no sensible object that can be considered a “word” for raw image data. The available Flickr
(Zeng et al., 2019) uses BoW because the underlying data is image text descriptions not raw images.
This limits how a GNN, or general neural network, can classify images as the images must first be
processed to provide text descriptions.

5.1.2 AMAZONELECTRONICS AND AMAZONINSTRUMENTS

The underlying data X is text so text classification transformers such as RoBERTa (Liu et al., 2019)
are ideal, specifically we use pre-trained RoBERTa. We extract three different embeddings from
RoBERTa using the pre-trained model provided by fairseq toolkit (Ott et al., 2019). The first is the
byte pair tokenisation used by RoBERTa, the second is the feature extraction provided by fairseq
which occurs after RoBERTa’s transformer heads and before classification, and the final is the fea-
ture vector present before the last fully connected layer. Due to restrictions in the token size for
RoBERTa we remove all nodes that have reviews with greater than 512 tokens.
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We also provide the standard Bag of Words embedding as in the case of text classification this is a
common embedding practice, keeping in line with prior datasets (Kipf & Welling, 2017; Zeng et al.,
2019) we use the top 500 words to create our Bag of Word embeddings.

6 EVALUATION

6.1 RE-EVALUATING EMBEDDINGS

Language Tasks Table 2 demonstrates that the particular embedding function used determines
which GNN model performs best on the dataset. For instance, GAT2 has the best performance if
the data is embedded as BoW (Bag of Words), but performs poorly on other embeddings generated
from RoBERTa. GraphSAGE, in contrast, performs poorly on BoW but shows a good performance
otherwise. Thus which embeddings are used when comparing models has a large effect on which
model appears to be the better model. We see the same effect in Table 3. Comparing the two tables
we see that in the case of the RoBERTa Encoded and RoBERTa embeddings the order of the models
changes, this likely comes from the training effects described in Shchur et al. (2018).

Table 2 also signifies the importance of good embeddings as in this case BoW is better than
RoBERTa. The complexity of the embeddings does not necessarily improve the efficiency of the
classification. This ties into the results of Nt & Maehara (2019) as the BoW is more informative
of the classification containing the label words in the BoW vector. What is also important to note
is that when looking at the performance of the GNN against the unconnected model (∆ ↑) we see
consistency in the difference across the RoBERTa encodings. This suggests that the “quality”, de-
noted by how well the simple MLP performs, is a strong indicator of how well a model will perform,
rather than the model architecture itself.

We see an overall decrease in accuracy in Table 3 across the models but this attributed to the fact
that there are more classes for the dataset. We also see that for RoBERTa embeddings the MLP
performs poorly though it does occasionally improve on the simpler models, primarily GCN. With
more resources it would be better suited to fine-tune RoBERTa (or some other language transformer)
to our dataset and use this model as our unconnected model.

Table 2: Test accuracy on AmazonElectronics with different embeddings compared against a stan-
dard unconnected MLP model. The embedding styles are explained in Appendix B, Table 6.

Model
Embedding styles

Bag of Words Byte Pair RoBERTa Encoded RoBERTa

Unconnected MLP 71.6% (+0.0) 21.6% (+0.0) 55.8% (+0.0) 51.9% (+0.0)

GCN 69.1% (-2.5) 21.7% (+0.1) 22.7% (-33.1) 22.3% (-29.6)
GAT 81.1% (+10.5) 22.2% (+0.6) 46.1% (-9.7) 40.3% (-11.6)

GAT2 81.8% (+10.2) 22.2% (+0.6) 41.8% (-14.0) 35.7% (-16.2)
GraphSAGE (Random) 71.3% (-0.3) 26.8% (+5.2) 57.0% (+1.2) 53.7% (+1.8)

GraphSAGE (Neighbour) 76.4% (+4.8) 40.4% (+20.8) 67.8% (+12.0) 66.4% (+12.5)

Table 3: Test accuracy on AmazonInstruments with different embeddings compared against a stan-
dard unconnected MLP model. Included is the difference ∆ of each model to the unconnected MLP
and the standard deviation of each result. The embedding styles are explained in Appendix B.

Model
Embedding Styles

Bag of Words Byte Pair RoBERTa Encoded RoBERTa

Unconnected MLP 66.1% (+0.0) 21.0% (+0.0) 43.9% (+0.0) 39.8% (+0.0)

GCN 64.0% (-2.1) 20.8% (-0.2) 20.4% (-23.5) 20.4% (-19.4)
GAT 79.3% (+13.2) 21.6% (+0.6) 47.5% (+3.6) 46.1% (+6.3)

GAT2 79.4% (+13.3) 21.2% (+0.2) 49.8% (+5.9) 47.8% (+8.0)
GraphSAGE (Random) 67.5 (+1.4)% 23.9% (+2.9) 45.1% (+1.2) 41.9% (+2.1)

GraphSAGE (Neighbour) 72.6% (+6.5) 43.4% (+22.8) 62.4% (+18.5) 59.9% (+20.1)
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Vision Tasks Table 4 demonstrates the same pattern, that the embedding function (in this case a
pre-trained vision model) influences which GNN performs the best. It is interesting to note that we
see that none of the GAT models achieve the highest accuracy on any of the Flickr v2 embeddings.
Instead, similar to the RoBERTa embeddings, we see that GraphSAGE performs the best.

It is important to note for VGG16 that the surprisingly poor performance of GNNs is more likely
due to the large vector size of more than 25K. With a smaller embedding space better results on par
with ResNet may be achieved. Of course, there is also the possibility that the embeddings provided
by VGG16 are inferior to ResNet.

Table 4: Test accuracy on Flickr v2 with different embeddings, compared against the corresponding
unconnected vision model. Included is the difference ∆ of each model to the unconnected model
and the standard deviation of each result. The details of the embedding styles are available in
Appendix B.

Model
Embedding Styles

ResNet18 ResNet50 VGG16

Unconnected Model 45.2% (+0.0) 46.9% (+0.0) 47.0 (+0.0)
GCN 41.8% (-3.4) 38.3% (-8.6) 35.5% (-11.5)
GAT 38.1% (-7.1) 37.1% (-9.8) 27.3% (-19.7)

GAT2 42.1% (-3.1) 41.0% (-5.9) 34.2% (-12.8)
GraphSAGE (Random) 45.4% (+0.2) 47.0% (+0.1) 35.2% (-11.8)

GraphSAGE (Neighbour) 45.8% (0.6) 44.5% (-2.4) 34.5% (-12.5)

Tables 2 and 3, compared to Table 4, have far larger increases in accuracy from the best performing
GNN compared to the unconnected models. This is mainly due to the fact that we were unable to
fully fine-tune RoBERTa to our datasets given limited hardware and time. We hypothesise that the
improvements seen in Table 2 would be smaller when compared to a fine-tuned RoBERTa. Similarly,
we did not attempt to create a GraNet model using VGG16 as the results on Flickr v2 are worse than
the ResNet models and therefore for Flickr v2 a GraNet ResNet is ideal.

Tables 2 and 3, specifically with BoW, are the only instances where GAT and GAT2 are the best
models. Furthermore, the entries for BoW follow results from past papers, in contrast to the results
shown on all other embeddings. With the prevalence of BoW as shown in Table 1 it begs the question
as to whether we are optimising for BoW extraction rather than graph information extraction.

From these results in both language and vision tasks, we make the following key observations:

• The function fe used to extract embeddings influences the performance of different GNNs,
so the embeddings should influence the choice of GNNs regardless of the underlying data.

• GNN models do not always outperform simple unconnected models, graph structure is not
enough to compete against good classifiers.

• The choice of an embedding function contributes more to the final performance compared
to the choice of a GNN model.

6.2 GRANET

Table 5 demonstrates that extending our standard models with graph connections provides a sig-
nificant improvement. We see that these GraNet models beat the best performing GNN. The table
includes two forms of GraNet models, the fine-tuned models and the trained models.

Fine-tuned In Flickr v2, both GraNet and Unconnected Model use either ResNet18 or ResNet50
weights pre-trained on ImageNet (Deng et al., 2009) and then fine-tuned on the target dataset. We
observe a significant increase (+1.5%,+1.8%) from the GraNet style of training compared to both
unconnected models, and improvement (1.1%, 1.7%) on the best performing GNN model.

Intuitively, GraNet layers reframe graph representation learning from training a GNN on a fixed
pre-extracted embedding to training both the GNN and the embedding function (fe) together on
the underlying data. There are obviously trade-offs between time and versatility as rather than just
training a GNN the embedding function must be trained as well. But the current approach of GNN

8



Under review as a conference paper at ICLR 2023

training on images requires human, or other annotators, which is a hidden time cost. By combining
the embedding function and GNN we provide a more general model that does not need external
annotators and thus can work on any raw images.

Trained from Scratch In the Amazon datasets we do not have any pre-trained and train the GraNet
model from initialised weights rather than fine-tuning. However, we still observe an improvement
on both the unconnected model and best performing GNN. The improvement is smaller than in
Flickr v2 (+0.1%,+0.3% compared to 1.1%, 1.7%). But the training time is quicker (∼ 1hr com-
pared to ∼ 10hrs for 300 epochs).

In this case we do not have a general model as we rely on BoW embeddings for the GraNet model as
well. But we can see that improvements are possible on existing GNN techniques on the embeddings
themselves, without having to use large pre-trained models.

Table 5: Comparison of GraNet models against the best performing GNNs for a specific embedding.
Unconnected Model refers to ResNet18 or ResNet50, in the case of Flickr v2, and an MLP other-
wise. The setup of each GraNet model is detailed in Sections 4.1 and 4.2 and the specifics of the 3
datasets can be found in Appendix B.

Model
Flickr v2 Electronics Instruments

ResNet18 ResNet50 Bag of Words Bag of Words

Unconnected Model 45.2% (+0.0) 46.9% (+0.0) 71.6% (+0.0) 66.4% (+0.0)

GAT2 42.1% (-3.1) 41.0% (-5.9) 81.8% (+10.2) 79.4% (+13.0)
GraphSAGE (Random) 45.4% (+0.2) 47.0% (+0.1) 71.3% (-0.3) 67.5% (+1.1)

GraphSAGE (Neighbour) 45.8% (+0.4) 44.5% (-2.4) 76.4% (+4.8) 72.6% (+6.2)

GraNet 46.7% (+1.5) 48.7% (+1.8) 81.9% (+10.3) 79.7% (+13.3)

We also make the following key observations:

• Graph-connecting a pre-trained network improves performance by fine-tuning feature ex-
traction based on the graph structure.

• GraNet models outperform their counterparts by facilitating fine-tuning on the graph
dataset.

The architecture for each GraNet is a mixture of the best performing GNN for that embedding and
the embedding extraction model (fe) (a Multi-Layer Perceptron in the case of Bag of Words).

7 CONCLUSION

In this paper, we reveal that GNN model designs are overfitting to certain embeddings styles (e.g.
BoW and word vectors). To demonstrate this we introduced three new datasets each with a range of
embedding styles to be used as a more comprehensive benchmark of GNN performance.

We demonstrated that embedding style influences the performance of GNNs regardless of the un-
derlying dataset. Equally, the quality of the embedding, measured by how well an unconnected
baseline model performs, is a greater indicator of GNN accuracy than the GNN architecture chosen.
We therefore stress the importance of creating high quality embeddings and choosing the best GNN
architecture based on the style of embedding created rather than using (or trying to improve) the
same GNN model for every task.

We then introduced a new approach named GraNet. This approach allows for any large pre-trained
model to be fine-tuned to a graph-connected dataset by altering the standard message passing func-
tion. In this way we exploit graph structure information to enhance the pre-trained model perfor-
mance on graph-connected datasets. We have demonstrated that GraNet outperforms both uncon-
nected pre-trained models and GNNs on a range of datasets.

There is an increasing trend towards large pre-trained models and graph-connected datasets. Our
work demonstrates potential pitfalls in the way GNN architectures are currently evaluated and pro-
poses a new technique to fully exploit the benefits of pre-trained models within a GNN.
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8 ETHICS STATEMENT

With all computer based research there is the issue of carbon footprint. Each train, validation and
test run of a model requires electricity which is currently largely sourced from fossil fuels. This
training cost carbon footprint is present in this picture, and attempts to keep this low by running
short test on new iterations rather than long runs which could waste GPU time and energy.

9 REPRODUCIBILITY

We discuss how we setup all of our experiments in Section 5 including how many runs we completed
for each data-point. the specific random seeds that we used for the three runs were 42, 9001 and
27032002. The number of runs for each run is also listed here and for the models that have a different
number of epochs the specifics are mentioned in Appendix E.

All test runs were carried out on a single Nvidia A100 80GB GPU, we used pytorch 1.12 with cuda
11.3. All other packages where installed based on these requirements.

Appendix E also contains the specific architectures, samplers, learning rates and learning rate sched-
ulers used in each of the model test runs. These are also linked back to Zeng et al. (2019) to provide
comparable results to the ones achieved in that paper for similar datasets Flickr and Amazon.

Appendix B details the specifics of how we formed our datasets including how we downloaded the
raw data, steps we took to wash the data, how we formed the graph and how we created our embed-
dings. The specifics of how we labelled the data and the labels that we chose are also available.

We have anonymised the dataset including the specific code used to create GraNet models, the config
files used and the code to download, wash and build the datasets available here.
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