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ABSTRACT

Machine Learning (ML) is increasingly applied across the sciences, accelerating
simulations, automating data preparation, and improving predictive accuracy. Yet
most efforts emphasize efficiency and performance, with limited attention to inter-
pretability, thereby leaving unexplored how ML can drive discovery—uncovering
novel patterns in data and advancing scientific theory. Moderation effects—where
the influence of one variable depends on the level of another—are central to dis-
ciplines such as social science and human behavior. However, they are typically
studied through a theory-driven process based on regression models with manually
specified interactions. While insightful, this approach is limited because it scales
poorly and may miss unexpected moderators. We introduce an automated, inter-
pretable framework for moderator discovery based on SHAP interaction values.
Our method computes global interaction contributions from a predictive model,
quantifies their dependence on constituent features, and identifies statistically sig-
nificant moderators. In experiments on real-world datasets, the framework not
only recovers known, theory-consistent moderating effects but also uncovers novel
moderator candidates. These results illustrate how explainable ML can move be-
yond prediction toward systematic discovery, offering scientists a scalable tool to
reveal conditional relationships that inform theory development.

1 INTRODUCTION

Machine learning (ML) has profoundly reshaped the practice of science in recent years. In what is
often referred to as AI for science, ML methods have supported hypothesis generation, predictive
modeling, and accelerated simulations of complex scientific phenomena, etc. Raghu & Schmidt
(2020); Suresh et al. (2024); Eger et al. (2025); Šturek & Lazarova-Molnar (2025). For instance,
ML-driven approaches have demonstrated impressive predictive power in genomics Jumper et al.
(2021), materials science Butler et al. (2018), and neuroscience Bessadok et al. (2022), revealing
structures and relationships that were previously inaccessible. Despite these advances, most exist-
ing ML-for-science efforts still emphasize predictive performance and computational gains. But
interpretable insights and theory building remain underexplored.

Although there has been growing interest in interpretable machine learning to aid discovery—for
example, enabling scientists to inspect black-box models and extract domain-meaningful patterns
Wetzel et al. (2025); Allen et al. (2023); Anastasopoulos & Whitford (2019)—such efforts remain
relatively niche and exploratory. This leaves a critical gap: how can ML help scientists not just label
or cluster data, but discover and interpret emergent, novel patterns that then inform new theories?

One promising avenue toward theory-oriented discovery is to focus on the conditional nature of
scientific relationships among variables. Across disciplines, researchers often turn to moderating
effects to capture how the association between two variables may change depending on the context
(moderator) Wu & Zumbo (2008).

Moderating Effect Consider a response variable Y , a focal predictor X , a candidate moderator Z,
and a set of control variables C. A standard regression formulation with moderation can be written
as:

Y = β0 + β1X + β2Z + β3(X × Z) + g(C) + ϵ, (1)
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(b) Marginal effect of X as a function of Z.

Figure 1: Illustration of moderating effect: (a) Outcome Y changes with X across values of moder-
ator Z, and (b) the marginal effect of X increases linearly with Z.

where ϵ denotes a noise term, and g(C) represents the contribution from control variables (which
are included to adjust for confounding but are not the focus of moderation analysis). The coefficient
β3 captures the extent to which the effect of X on Y depends on Z (Figure 1a).

The marginal effect of X on Y is therefore conditional on Z:

∂Y

∂X
= β1 + β3Z. (2)

When β3 ̸= 0, the magnitude—and potentially the direction—of the X → Y association varies
systematically with Z, indicating the presence of a moderating effect. Figure 1b illustrates a concrete
example.

Moderators play a pivotal role in theoretical development across disciplines because they delineate
the boundary conditions under which relationships between variables hold, weaken, or even reverse
Hayes (2017); Hecht et al. (2023); Karataş & Cutright (2024); Krefeld-Schwalb et al. (2024). For
example, in education research, the effect of study hours (X) on exam performance (Y ) may depend
on sleep quality (Z): students with higher sleep quality benefit more from additional study time.
In this case, sleep quality serves as a moderator, altering the strength of the relationship between
studying and performance.

Traditionally, however, the identification of moderators has been predominantly theory-driven, re-
lying on domain expertise to specify contextual contingencies or dual-role variables. Despite their
importance, explicit data-driven efforts to uncover moderators remain sparse and fragmented. Prior
attempts have largely been domain-specific: for instance, Parr et al. (2022) applied random forests
in meta-regression to screen for moderators in alcohol-use intervention studies, while Richter et al.
(2025) used ML in a meta-analysis of cognitive training studies to highlight traits linked to heteroge-
neous intervention outcomes. These approaches demonstrate that ML can surface moderation-like
patterns, but they remain ad hoc, prior-knowledge dependent, and problem-specific. What is still
missing is a general, interpretable, and systematic framework capable of discovering and quantify-
ing moderating effects across all variable pairs in high-dimensional settings.

In this work, we address this gap by proposing a comprehensive, interpretable, and scalable frame-
work for data-driven moderator discovery. Grounded in SHAP interaction values, our approach
moves beyond hypothesis-limited inquiry toward algorithmic discovery, thereby complementing
theory-driven analyses and expanding the capacity for context-aware modeling. Concretely, our
method proceeds in three steps: (1) train a high-capacity predictive model and compute SHAP in-
teraction values for all feature pairs on a set of test instances; (2) evaluate the strength of potential
moderation by quantifying how these interaction values vary with their constituent features; and
(3) identify statistically significant moderators based on both effect magnitude and formal signifi-
cance testing. This systematic, hypothesis-agnostic procedure enables researchers to uncover hidden
moderation effects directly from data while preserving interpretability—advancing the role of ex-
plainable ML from predictive accuracy toward theory-oriented scientific discovery.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In this section, we first review domain-specific studies that use ML to uncover moderators in sci-
entific contexts. We then turn to broader approaches aimed at detecting feature interactions in ML
models.

2.1 DOMAIN-SPECIFIC APPROACHES FOR MODERATOR DISCOVERY

Recent studies demonstrate the utility of ML methods tailored to domain-specific moderator detec-
tion. For instance, Parr et al. (2022) proposed a two-stage framework in a meta-analysis of brief al-
cohol interventions, utilizing random forests to screen and rank candidate moderators before testing
them in meta-regression. This approach highlighted factors such as prescriptive advice, comparison
group type, and attrition as significant moderators. Similarly, Richter et al. (2025) leveraged random
forests with SHAP analysis in an individual-level meta-analysis of cognitive training interventions
for anxiety and depression, identifying moderators such as symptom severity and training dosage
that influenced intervention efficacy. Extending beyond domain-specific applications, Feuerriegel
et al. (2024) outlined how causal machine learning methods—such as causal forests—can estimate
heterogeneous treatment effects from clinical trial and real-world data, thereby uncovering patient
subgroups that moderate treatment efficacy. Along the same line, Zilcha-Mano et al. (2018) ap-
plied recursive partitioning with random forests to late-life depression trials, showing that education
and illness duration interacted to differentially moderate the placebo versus medication response,
revealing clinically meaningful subgroups that were otherwise obscured in aggregate analyses.

While these studies demonstrate the adaptability of ML for moderator discovery in diverse scientific
contexts, they are typically highly customized, tailored to narrow application domains, and reliant on
explicitly prespecified candidate moderators. Such constraints limit their scalability and generaliz-
ability, underscoring the need for systematic and interpretable frameworks for moderator discovery
that can be applied across disciplines.

2.2 GENERAL APPROACHES FOR INTERACTION DETECTION

Beyond domain-specific applications, a growing body of research has explored feature interactions
to understand ML model behavior. Early approaches relied on classical statistical tools, such as
ANOVA or additive models with LASSO regularization, where interaction terms are explicitly con-
structed and irrelevant ones are shrunk toward zero Bien et al. (2013). While these approaches
are theoretically grounded and straightforward to implement, they offer only limited interpretability
without explaining the structured conditional relationships that characterize true moderating effects
(Eq. 7).

Tree-based methods have long been proposed to address interaction discovery. For example, ad-
ditive groves of trees detect interactions by examining variable splits across ensembles Sorokina
et al. (2008), and model-based importance measures quantify the contribution of features and their
pairwise interactions to prediction accuracy Greenwell et al. (2018). These methods exploit the hi-
erarchical structure of trees, offering computational tractability and some interpretability. Causal
tree methods extend this line of work to heterogeneous treatment effect estimation, partitioning the
covariate space into subgroups with distinct responses and thereby uncovering potential moderators
without requiring prespecified interaction terms Athey & Imbens (2016). However, even these ap-
proaches stop short of systematically characterizing the nature of moderating relationships, instead
flagging subgroups or splits as potentially important.

Attribution-based methods provide yet another perspective. Extensions of Shapley values, such as
the Shapley-Taylor interaction index Grabisch & Roubens (1999) and Integrated Hessians Janizek
et al. (2021), quantify pairwise contributions via game-theoretic or gradient-based formulations.
Similarly, Archipelago attributes interaction effects in neural networks using mixed partial deriva-
tives Tsang et al. (2020). Recent work also emphasizes robustness: Li et al. (2023) introduced
the feature interaction score cloud (FISC) to quantify variability of detected interactions across a
Rashomon set of near-optimal models. While these methods are mathematically principled and
model-agnostic, their discovery typically stops at a general interaction level, without providing a
fine-grained analysis of how one variable conditions the effect of another on the outcome.
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3 PROPOSED METHOD

We introduce a three-step framework for systematic moderator discovery from observational data.
Let Y denote the response variable and X = {X1, . . . , XM} the set of predictors. Our goal is
to identify variables that moderate the effect of one predictor on the outcome by leveraging SHAP
interaction values. The procedure consists of three main steps: 1) Model Training, 2) Interaction
Attribution, 3) Moderator Assessment.

The framework is designed to be hypothesis-agnostic. Unlike classical regression-based moderation
analysis, which requires researchers to prespecify candidate moderators, our approach leverages ma-
chine learning to screen for moderation systematically across all possible feature pairs. By building
on SHAP interaction values, we retain interpretability while handling high-dimensional data in a
principled manner.

3.1 MODEL TRAINING: GRADIENT-BOOSTED DECISION TREES

The first step is to train a high-capacity model that is capable of capturing complex relationships be-
tween predictors and response variables. Gradient-boosted decision-tree (GBDT) ensembles Fried-
man (2001) combine strong predictive accuracy with model-specific interpretability. They construct
an additive model by sequentially fitting CART-style regression trees, which capture nonlinearities
and higher-order interactions. GBDTs are particularly well-suited to scientific data, where predictors
may be heterogeneous (continuous, categorical, ordinal) and relationships are nonlinear.

Why GBDTs for moderation Several properties make GBDTs ideal for our setting. First, they
naturally partition the feature space into regions where interactions may differ, aligning well with
the concept of conditional or context-specific effects. Second, they avoid the need to explicitly enu-
merate interaction terms, which can be a bottleneck in classical regression. Third, GBDTs remain
competitive with deep learning models in structured data while being more interpretable and easier
to audit.

TreeSHAP efficiency Crucially, the TREESHAP algorithm Lundberg et al. (2020) computes exact
SHAP values (including interaction values) for tree ensembles in polynomial time with respect to
tree depth and linear time with respect to tree size. This means that even for large ensembles trained
on thousands of features, SHAP interaction values can be computed efficiently, enabling large-scale
moderator discovery.

LightGBM Backbone Let D = {(x(n), y(n))}Nn=1 denote a dataset with N instances, where each
feature vector is x(n) = (x

(n)
1 , . . . , x

(n)
M ) ∈ RM and the response variable is y(n) ∈ {0, 1}. A

gradient-boosted decision tree (GBDT) model learns an additive ensemble of T trees,

ŷ(n) = f(x(n)) =

T∑
t=1

gt(x
(n)), (3)

where each gt ∈ G is a CART-style regression tree mapping RM → R.

In principle, any GBDT implementation, such as XGBoost Chen & Guestrin (2016) or CatBoost
Prokhorenkova et al. (2018), could serve as the predictive backbone for our framework. We adopt
LIGHTGBM Ke et al. (2017) primarily for its simplicity, ease of use, and seamless compatibility
with TREESHAP. In addition, LightGBM scales efficiently to large datasets via histogram-based
feature binning and leaf-wise growth while maintaining strong predictive performance. These prop-
erties make it a practical and effective choice for our moderator discovery framework; however, the
method itself is not limited to this implementation.

3.2 INTERACTION ATTRIBUTION: SHAP INTERACTION MATRIX

Having trained a predictive model, the next step is to extract interaction information in a way that is
faithful to the fitted model and interpretable to researchers.

4
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For a given instance x(n) ∈ RM , TREESHAP returns an M ×M interaction matrix

Φ(x(n)) =
[
ϕi,j(x

(n))
]M
i,j=1

, ϕi,j(x
(n)) = ϕj,i(x

(n)). (4)

The standard (first-order) SHAP value for feature Xj is recovered as

ϕj(x
(n)) =

M∑
i=1

ϕi,j(x
(n)). (5)

To focus explicitly on interactions, we define the joint attribution of two features Xi and Xj , for
instance n as

ϕtot
i,j(x

(n)) = ϕii(x
(n)) + ϕjj(x

(n)) + 2ϕij(x
(n)). (6)

This quantity represents the total contribution of the pair {Xi, Xj} to the prediction for instance n,
combining their main effects and their interaction. By aggregating across all instances, we obtain a
sample-level view of how feature pairs behave, setting the stage for moderation analysis.

3.3 MODERATOR ASSESSMENT: MARGINAL AND MODERATING EFFECTS

The final step is to determine whether one feature serves as a moderator of another. Intuitively, we
ask: does the contribution of Xi to the prediction depend systematically on the value of Xj?

Regression-based assessment We identify moderators by linking joint attributions to feature val-
ues through a regression model:

ϕtot
i,j(x

(n)) ≈ β0 + β1x
(n)
i + β2x

(n)
j + β3 x

(n)
i x

(n)
j . (7)

Here, β3 is the moderation coefficient, quantifying whether the contribution of Xi depends systemat-
ically on the value of Xj . The regression formulation mirrors classical moderation analysis in social
science, but crucially, our dependent variable is not Y itself but the SHAP-derived contribution of the
feature pair to the model’s prediction. This design bridges the interpretability of regression with the
predictive capacity of ML models. Additionally, for fair comparison between different interactions,
we normalize all predictors before the regression.

Interpretation The coefficient β3 captures the direction of moderation. A positive value indicates
that Xj amplifies the effect of Xi, a negative value means Xj attenuates or reverses it, and a value
near zero suggests no meaningful moderation.

Statistical testing For each feature pair (i, j), we estimate β3 in Eq. equation 7 and assess its sig-
nificance using standard t-tests. This ensures that detected moderators reflect meaningful conditional
relationships rather than random variation. In practice, we also report effect sizes to distinguish sta-
tistically significant but practically negligible moderators.

3.4 SUMMARY OF THE FRAMEWORK

In summary, our framework combines three components (Algorithm 1): (1) high-capacity predic-
tive modeling via LightGBM, (2) principled interaction attribution using SHAP values, and (3)
regression-based moderation assessment with statistical testing.

This design provides a scalable and interpretable pipeline for systematic moderator discovery. By
grounding the analysis in model-derived contributions rather than raw outcomes, the approach en-
ables researchers to uncover hidden conditional relationships while preserving the rigor of statistical
inference. Ultimately, the framework extends explainable ML beyond predictive accuracy, aligning
it with the scientific goal of theory generation and boundary condition discovery.
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Algorithm 1 Automatic Moderator Discovery via SHAP Interaction Values

Require: Dataset D with N samples and M features; significance level α
Ensure: Ranked list of significant moderator pairs (i, j)

1: Model Training: Train LightGBM model f as in Eq. 3.
2: Interaction Attribution: For each instance, compute SHAP interaction matrix Eq. 4. For each

pair (i, j), compute joint attribution using Eq. 6.
3: Moderator Assessment: Fit regression Eq. 7 for each (i, j); extract β̂3 and p-value from a

t-test. Retain all (i, j) with p < α, ranked by |β̂3|.

4 EXPERIMENT

Baselines Most existing works focus on general interaction detection rather than moderating effect
discovery. Therefore, we compare our framework against the following representative baselines for
interaction detection:

• Hierarchical Lasso Bien et al. (2013): An extension of the standard lasso that imposes
convex hierarchy constraints, ensuring that an interaction term XiXj is included only if at
least one of the corresponding main effects Xi or Xj is selected. This structured sparsity
approach identifies relevant interactions by shrinking irrelevant coefficients to zero while
maintaining interpretability through hierarchical feature selection.

• Shapley Interaction Index Muschalik et al. (2024); Grabisch & Roubens (1999): A coop-
erative game–theoretic measure that quantifies the joint contribution of feature subsets by
averaging discrete derivatives across all coalitions. This provides a principled measure of
interaction strength but is agnostic to directionality or conditioning, and therefore does not
explicitly capture moderation effects. In our experiments, the Shapley Interaction Values
are obtained the same way as our approach, i.e., first train a LightGBM model then extract
interaction values via TreeSHAP.

• ANOVA Montgomery (2017): The classical two-way analysis of variance, which tests for
interaction effects by evaluating the statistical significance of product terms (e.g., Xi×Xj)
in a linear model. This provides a traditional hypothesis-testing baseline for detecting non-
additive relationships between predictors.

Variants of Our Method In addition to comparing against external baselines, we consider two
internal variants of our framework to isolate the contribution of SHAP interaction values. The
first variant, ShapMod-1st, replaces Eq. 6 with first-order SHAP values only, i.e., marginalizing
interaction terms:

ϕtot
i,j(x

(n)) = ϕi(x
(n)) + ϕj(x

(n)).

The second variant, ShapMod, is our full method, which leverages both main effects and pairwise
SHAP interaction values as defined in Eq. 6.

Datasets We include one synthetic dataset and two real-world datasets in social science to validate
our framework.

• Synthetic Data: We generate 3000 samples from a model of 40 variables with 4 interac-
tions:

y =

40∑
i=1

xi +

4∑
i=1

xixi+1.

The goal is to successfully retrieve the 4 interactions using the proposed approach.

• Recidivism Prediction (COMPAS): The COMPAS dataset Flores et al. (2016) contains
criminal history, demographics, and charge information for defendants, and is widely used
to study fairness and predictive accuracy in recidivism risk assessment. We apply our
method to examine interaction effects underlying recidivism outcomes.

6
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• Vaccination Uptake: This dataset investigates determinants of vaccination rates among
Medicare beneficiaries across racial groups. It includes contextual factors such as educa-
tion, income, social capital, and community health, allowing us to explore how structural
conditions shape vaccination disparities Peng & Yang (2025).

Evaluation Metrics We evaluate discovered moderators by testing whether the interaction coef-
ficient is statistically significant when added to a linear model. For each candidate moderator pair
(Xi, Xj), we fit the following regression:

Y = β0 +

M∑
k=1

βkXk + βij (Xi ×Xj) + ϵ,

where βij quantifies the moderating effect of Xj on Xi. The estimated coefficient β̂ij captures the
direction and magnitude of moderation, while its p-value assesses statistical significance under the
null hypothesis βij = 0. We treat an interaction as a hit if p < α (default α = 0.01).

To compare different discovery methods, we generate cumulative significance curves based on the
ranked list of candidate interactions. For the top-K pairs proposed by a method, we compute two
curves as a function of interaction rank t:

H(t) =

t∑
k=1

1{pikjk < α}, R(t) =
H(t)

t
.

Here H(t) is the cumulative hit count, showing how many significant moderators have been iden-
tified up to rank t, and R(t) is the cumulative hit ratio, showing the proportion of significant mod-
erators among the top-t candidates. Together, these curves provide a rank-sensitive view of each
method’s performance of locating moderating effects.

Figure 2: Results on synthetic data (left panel) and COMPAS data (right panel). A good moderator
detection approach should recover significant interactions as early as possible, which is reflected in
the plots as the best curve should be above other methods.

4.1 SYNTHETIC DATA

Figure 2 (left) presents results on the synthetic dataset, where only a small number of interactions
present and inducing moderating effects. A good moderator detection approach should recover
significant interactions as early as possible, which reflect in the plots as the best curve should locate
above all other methods.

In this setting, ShapMod and ShapMod-1st clearly outperform all other baselines. The cumulative
hit count/ratio curves show that these methods surface the majority of significant moderators within
the top few ranked candidates.

7
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4.2 RECIDIVISM ANALYSIS (COMPAS DATASET)

Figure 2 (right) presents results on the COMPAS dataset, it shows similar tendency to favor our
approach.

More specifically, we retrieve the top-ranked moderators of recidivism risk, including age, race,
prior criminal history, and juvenile records (Table 1). Our results align with established sociological
and criminological theories.

Table 1: Top-ranked interactions in the COMPAS dataset retrieved by our ShapMod approach. Here,
juvenile misdemeanor count, priors count, juvenile other count, and juvenile felony count denote
counts of different types of prior misbehaviors.

Feature i Feature j β3

age juvenile misdemeanor count -0.1136
age priors count -0.0871
age race -0.0731
age juvenile other count -0.0678
race priors count -0.0557
age juvenile felony count -0.0541
age charge degree -0.0470
juvenile misdemeanor count priors count -0.0406
priors count charge degree -0.0364
juvenile felony count priors count -0.0221

In particular, labeling theory helps explain why prior criminal record consistently emerges as one
of the most influential moderators. Once individuals are officially labeled as “criminals,” they face
stigmatization, diminished employment prospects, and restricted opportunities for reintegration into
society—effects that are especially severe for Black ex-offenders. This dynamic produces a “double
stigma,” where racial bias amplifies the negative consequences of criminal labeling, perpetuating
cycles of disadvantage and reoffending Bontrager et al. (2005); Chiricos et al. (2007).

In addition, the repeated presence of age in interaction terms reflects life-course theory (Woj-
ciechowski, 2025; Uggen, 2000). Younger offenders with prior juvenile misdemeanors or felonies
are often perceived as more risky and less likely to desist, consistent with criminological perspec-
tives emphasizing the elevated recidivism risk of youthful repeat offenders. Age also interacts with
criminal history: even offenders with extensive records show lower predicted risk at older ages, a
pattern consistent with desistance theory.

Thus, our method not only validates theoretical expectations but also quantifies how age moderates
the influence of prior and juvenile criminal history in shaping recidivism outcomes, bridging data-
driven discovery with theory-driven interpretation.

4.3 VACCINATION DATA ANALYSIS

Table 2: Top-ranked interactions retrieved by our ShapMod approach for vaccination rates in differ-
ent racial groups.

(a) White beneficiaries (b) Black beneficiaries
Feature i Feature j β3 Feature i Feature j β3

Population Internet -0.0125 Social Capital Poor Health 0.0070
Population Education -0.0078 Social Capital Internet -0.0060
Social Capital Internet -0.0067 Residential Segregation Poor Health 0.0058
Social Capital Political Ideology -0.0065 Community Resilience Elder Population 0.0046
Political Ideology Population -0.0064 Social Capital Residential Segregation -0.0044
Social Capital Income -0.0063 Community Resilience Poor Health 0.0044
Social Capital Education -0.0060 Social Capital Political Ideology -0.0043
Population Income -0.0058 Social Capital Education -0.0041
Political Ideology Education -0.0052 Social Capital Income -0.0041
Population Residential Segregation -0.0049 Social Capital Community Resilience -0.0038

We applied our method to Medicare vaccination data (Figure 3), which investigates the determinants
of vaccination uptake across racial groups. Specifically, we used our approach to two racial groups:

8
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White beneficiaries (Figure 3 left) and Black beneficiaries (Figure 3 right). For White beneficiaries,
the top-ranked moderators (Table 2a) include interactions between community social capital and key
contextual variables such as education, median household income, internet access, political ideology,
and population size. For Black beneficiaries (Table 2b), we observed a partially overlapping but
distinct interaction pattern, in which social capital remained central but was now combined with
community poor health, residential segregation, and the proportion of older adults. These findings
highlight social capital as a recurrent moderator across groups, though the secondary interacting
factors differ, reflecting distinct structural conditions.

From a theory-driven perspective, public health studies have discussed the contextual role of so-
cial capital in health and health equity Wilkinson (2002); Uphoff et al. (2013). Empirical studies
further demonstrate its moderating effects. For instance, Zhang et al. (2022) show that political ide-
ology moderates the effect of social capital on COVID-19 vaccination rates, while Jung et al. (2013)
demonstrate that social capital interacts with parental knowledge in shaping childhood vaccine up-
take. Our findings, which consistently show that social capital emerges as a significant moderator,
provide data-driven support for these theoretical perspectives.

Figure 3: Vaccination dataset for white population (left) and black population (right).

Beyond established moderators, our method also uncovered novel patterns, particularly for Black
beneficiaries. Residential segregation emerged as a strong interacting factor with both social capital
and community health burdens. While prior studies have primarily emphasized the direct effects of
segregation on healthcare access and resource distribution (Anderson & Ray-Warren, 2022; Strully,
2011), our findings extend this perspective by demonstrating that segregation interacts with other
contextual factors. These segregation-related interactions reveal mechanisms that go beyond tradi-
tional factors and directly implicate structural inequities in shaping vaccination disparities.

5 CONCLUSION

We presented a framework for automatic moderator discovery using SHAP interaction values, mov-
ing beyond general interaction detection toward identifying conditional relationships that inform
theory development. Across synthetic and real-world datasets, our method consistently recovered
known moderators and outperformed classical baselines in sparse and structured settings. While our
evaluation currently relies on linear regression to test significance—thus simplifying the treatment
of control variables—future work should extend this to more flexible models that capture nonlinear
or complex dependencies. Overall, our results highlight the promise of explainable ML as a scalable
and interpretable tool for systematic moderator discovery in scientific research.
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