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ABSTRACT

Information Extraction (IE) aims to extract structured information from unstruc-
tured texts. However, in practice, the long-tailed and imbalanced data may lead
to severe bias issues for deep learning models, due to very few training instances
available for the tail classes. Existing works are mainly from computer vision
society, leveraging re-balancing, decoupling, transfer learning and causal infer-
ence to address this problem on image classification and scene graph generation.
However, these approaches may not achieve good performance on textual data,
which involves complex language structures that have been proven crucial for the
IE tasks. To this end, we propose a novel framework (named CFIE) based on lan-
guage structure and causal reasoning with three key ingredients. First, by fusing
the syntax information to various structured causal models for mainstream IE tasks
including relation extraction (RE), named entity recognition (NER), and event de-
tection (ED), our approach is able to learn the direct effect for classification from
an imbalanced dataset. Second, counterfactuals are generated based on an explicit
language structure to better calculate the direct effect during the inference stage.
Third, we propose a flexible debiasing approach for more robust prediction dur-
ing the inference stage. Experimental results on three IE tasks across five public
datasets show that our model significantly outperforms the state-of-the-arts by a
large margin in terms of Mean Recall and Macro F1, achieving a relative 30%
improvement in Mean Recall for 7 tail classes on the ACE2005 dataset. We also
discuss some interesting findings based on our observations.

1 INTRODUCTION

The goal of Information Extraction (IE) (Sarawagi, 2008; Chiticariu et al., 2013) is to detect the
structured information from unstructured texts. IE tasks, such as named entity recognition (NER)
(Lample et al., 2016), relation extraction (RE) (Zeng et al., 2014; Peng et al., 2017) and event
detection (ED) (Nguyen & Grishman, 2015) have developed rapidly with the data-hungry deep
learning models trained on a large amount of data. However, in real-world settings, unstructured
texts follow a long-tailed distribution (Doddington et al., 2004), leading to a significant performance
drop on the instance-scarce (or tail) classes which have very few instances available. For example,
in the ACE2005 (Doddington et al., 2004) dataset, nearly 70% of event triggers are long-tailed while
they only take up 20% of training data. On a strong baseline (Jie & Lu, 2019), the macro F1 score
of instance-rich (or head) classes can be 71.6, while the score of tail classes sharply drops to 41.7.

The underlying causes for the above issues are the biased statistical dependencies and spurious
correlations between feature representations and classes learned from an imbalanced dataset. For
example, an entity Gardens appears 13 times in the training set of OntoNotes5.0 (Pradhan et al.,
2013), with the NER tag LOC, and only 2 times as organization ORG. A classifier trained on this
dataset will build a spurious correlations between Gardens and LOC. As a result, an organization
that contains the entity Gardens may be wrongly predicted as a location LOC.

There are only a few studies (Zhang et al., 2019; Han et al., 2018) in the Natural Language Pro-
cessing (NLP) field to address such long-tailed issues. These works mostly rely on external and
pre-constructed knowledge graphs, providing useful data-specific prior information which may not
be available for other datasets. On the other hand, there are plenty of works from the computer vision
society, where the bias is also quite straightforward. Current solutions include re-balanced training
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(Lin et al., 2017) that re-balances the contribution of each class in the training stage, transfer learning
(Liu et al., 2019b) that takes advantage of the knowledge in data-rich class to boost the performance
of instance-scarce classes, decoupling (Kang et al., 2019) strategy that learns the representations and
classifiers separately, and causal inference (Tang et al., 2020a;b; Abbasnejad et al., 2020) that relies
on structured causal models for unbiased scene graph generation, image classification and visual
question answering.

The aforementioned studies from the computer vision community may not achieve good perfor-
mance on the textual datasets in the NLP area due to a significant difference between the two fields.
For example, unlike images, texts involve complex language structures such as dependency tree and
constituent tree that describe the syntactic or semantic level relations between tokens. For the long-
tailed IE, how to explore the rich relational information as well as complex long-distance interactions
among words as conveyed by such linguistic structures remains an open challenge. Furthermore, to
capture a more informative context, the way of utilizing the syntax tree for three IE tasks varies:
the RE task relies more on the context and entity type rather than entities themselves, while classi-
fications in NER and ED tasks count more on entities than the context. Hence, it is challenging to
decide properly on how to utilize language structures for the above three different IE tasks. One may
also think that the prevalent pre-trained models such as BERT (Devlin et al., 2019) may address the
long-tailed issues. However, we empirically show that such models still suffer from bias issues.

In this paper, we propose CFIE, a novel framework that combines the language structure and coun-
terfactual analysis in causal inference (Pearl et al., 2016) to alleviate the spurious correlations of
the IE tasks including NER, RE and ED. From a causal perspective, counterfactuals (Bottou et al.,
2013; Abbasnejad et al., 2020) state the results of the outcome if certain factors had been different.
This concept entails a hypothetical scenario where the values in the causal graph can be altered to
study the effect of the factor. Intuitively, the factor that yields the most significant changes in model
predictions have the greatest impact and is therefore considered as main effect. Other factors with
minor changes are categorized as side effects. In the context of IE with complex language structures,
counterfactual analysis answers the question on “which tokens in the text would be the key clues for
RE, NER or ED that could change the prediction result?”. With that in mind, our CFIE is proposed
to explore the language structure to eliminate the bias caused by the side effect and maintain the
main effect for the classification. We evaluate our model on five public datasets across three IE
tasks, and achieve significant performance gain on instance-scarce classes. We will release our code
to contribute the community. Our major contributions are summarized as:

• To the best of our knowledge, our CFIE is the first attempt that marries the counterfactual
analysis and language structure to address the long-tailed IE issues. We build different
structured causal models (SCMs) (Pearl et al., 2016) for the IE tasks and fuse the depen-
dency structure to the models to better capture the main causality for the classification.

• We generate counterfactuals based on syntax structure, where the counterfactuals can be
used as interventions to alleviate spurious corrections on models. In doing so, the main
effect can be better estimated by the intervention methodology.

• We also propose flexible classification debiasing approaches inspired by Total Direct Effect
(TDE) in causal inference. Our proposed approach is able to make a good balance between
the direct effect and counterfactuals representation to achieve more robust predictions.

2 RELATED WORK

Long-tailed Information Extraction: Information extraction tasks, such as relation extraction
(Zeng et al., 2014; Peng et al., 2017; Quirk & Poon, 2017), named entity recognition (Lample et al.,
2016; Chiu & Nichols, 2016), and event extraction (Nguyen & Grishman, 2015; Huang et al., 2018)
are fundamental NLP tasks and have been extensively studied in recent years, For the long-tailed
IE, recent models (Lei et al., 2018; Zhang et al., 2019) leverage external rules or transfer knowledge
from data-rich classes to the tail classes. Few-shot leaning (Gao et al., 2019; Obamuyide & Vlachos,
2019) has been also applied to IE tasks, although this task focuses more on new classification tasks
with only a handful of training instances.

Re-balancing/Decoupling Models: Re-balancing approaches include re-sampling strategies (Ma-
hajan et al., 2018; Wang et al., 2020a) that aim to alleviate statistical bias from head classes, and
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re-weighting approaches (Milletari et al., 2016; Lin et al., 2017) which assign balanced weights
to the losses of training samples from each class to boost the discriminability via robust classifier
decision boundaries. These techniques may inevitably suffer the under-fitting/over-fitting issue to
head/tail classes (Tang et al., 2020a). There are also recent studies (Kang et al., 2019) that decouple
the representation learning and the classifier, which effectively mitigate the performance loss caused
by direct re-sampling.

Casual Inference: Causal inference (Pearl et al., 2016; Rubin, 2019) and counterfactuals have been
widely used in psychology, politics and epidemiology for years. There are many studies in computer
vision society (Tang et al., 2020b; Abbasnejad et al., 2020; Tang et al., 2020a; Niu et al., 2020; Yang
et al., 2020; Zhang et al., 2020; Yue et al., 2020), which use Total Direct Effect (TDE) analysis
framework and counterfactuals for Scene Graph Generation (SGG), visual question answering, and
image classifications. There is also a recent work (Zeng et al., 2020) that generates counterfactuals
for weakly-supervised NER by replacing the target entity with another entity. Our methods differ
from the previous works in three aspects: 1) We explore the syntax structures of texts for building
different causal graphs, 2) Counterfactuals are generated based on a task-specific pruned dependency
tree. 3) Our proposed inference method yields robust predictions for the NER and ED tasks.

Model Interpretation: Besides causal inference, there have been plenty of studies (Molnar, 2020)
about traditional model interpretation applied in various applications, such as text and image classi-
fication (Ribeiro et al., 2016; Ebrahimi et al., 2018), question answering (Feng et al., 2018; Ribeiro
et al., 2018), and machine translation (Doshi-Velez & Kim, 2017). LIME (Ribeiro et al., 2016) was
proposed to select a set of instances to explain the predictions. The input reduction method (Feng
et al., 2018) is able to find out the most important features and use very few words to obtain the
same prediction. Unlike the LIME and input reduction method, the word selections in our CFIE are
based on the syntax structure. SEARs (Ribeiro et al., 2018) induces adversaries by data augmenta-
tion during the training phase. Along this line, a recent study (Kaushik et al., 2019) also uses data
augmentation technqiue to provide extra training signal. Our CFIE is orthogonal to data augmena-
tion as it generates counterfactuals during the inference stage, where the counterfactuals are used to
mitigate the spurious correlations rather than training the network parameters.

3 MODEL

Figure 1 shows the work flow of our proposed CFIE. We detail these components as follows.
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Figure 1: Work flow of our CFIE in five steps.

3.1 STEP1: CAUSAL REPRESENTATION LEARNING

In this step, we train a causal graph on an imbalanced dataset. Our goal here is to teach the model to
identify the main cause (main effect) and the spurious correlations (side effect) for the classification.

Structural Causal Models (SCMs): The two well-known causal inference frameworks are SCMs
and potential outcomes (Rubin, 2019) which are complementary and theoretically connected. We
choose SCMs in our case due to their advantages in expressing and reasoning about the effects of
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causal relationships among variables. An SCM can be represented as a directed acyclic graph (DAG)
G = {V,F, U}, where we denote the set of observables (vertices) as V = {V1, ..., Vn} , the set of
functions (directed edges) as F = {f1, ..., fn}, and the set of exogenous variables (e.g. noise) as
U = {U1, ..., Un}. Note that in the deterministic case where U is given, the value of all variables in
the SCM are uniquely determined (Pearl, 2009). Each observable Vi can be derived from:

Vi := fi(PAi, Ui), (i = 1, ..., n), (1)

∀i, PAi ⊆ V\Vi is the set of parents of Vi. Directed edges, such as PAi → Vi in the graph G, i.e.,
fi, refers to the direct causation from the parental variables PAi to the child variable Vi.

Our Proposed SCMs: Figure 2(a) demonstrates our unified SCMs for IE tasks, which are
built based on our prior knowledge for the tasks. The variable S indicates the contextual-
ized representations of an unstructured input sentence, where the representations are the out-
put from a BiLSTM (Schuster & Paliwal, 1997) or pre-trained BERT encoder (Devlin et al.,
2019). Zi (i ∈ [1,m]) represents features such as the NER tags and part-of-speech (POS)
tagging. The variable X is the representation of a target relation for RE, entity representation
for NER, or trigger representation for ED, and Y indicates the output logits for classification.
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Figure 2: (a) a unified structured causal models
for IE tasks. (b) interventions on X .

Let E = {S,X,Z1, ..., Zm} denotes the par-
ents of Y . The direct causal effects towards
Y including X → Y , S → Y , Z1 → Y , ....,
Zm → Y are linear transformations. For each
edge i → Y , its transformation is denoted as
WiY ∈ Rc×d, where i ∈ E and c is the num-
ber of classes. We let Hi ∈ Rd×h denote
h1 representations with d dimensions for node
i ∈ E . Then, the prediction can be obtained
by summation Yx =

∑
i∈EWiY Hi or gated

mechanism Yx = WgHX�σ(
∑

i∈EWiY Hi),
where� refers to element-wise product, Wg ∈
Rc×d is the linear transformation, and σ(·) in-
dicates the sigmoid function. To avoid any single edge, such as S → Y , dominating the generation
of the logits Yx, we add a cross-entropy loss LiY , i ∈ E for each branch, where i indicates the parent
of the node Y . Let LY denote the loss for Yx, the total loss L can be computed by:

L = LY +
∑
i∈E
LiY (2)

Note that the proposed SCM is encoder neutral. The SCM can be equipped with various encoders,
such as BiLSTM, BERT and Roberta (Liu et al., 2019a). For simplicity, we omit exogenous variables
U from the graph as its only useful for the derivations in the following sections.

Fusing Syntax Structures Into SCMs: So far we have built basic SCMs for IE tasks. On the edge
S → X , we adopt different neural networks architectures for RE, NER and ED. For RE, we use
dependency trees to aggregate long-range relations with graph convolution networks (GCN) (Kipf
& Welling, 2017). Assume the length of the sentence is h. For the GCN, we generate a matrix
A ∈ Rh×h from a dependency tree. The convolution computation for the node i at the l-th layer
takes the representation xl−1

i from previous layer as input and outputs the updated representations
xl
i. The formulation is given as:

xl
i = σ(

l∑
j=1

AijW
lxl−1

i + bl), i ∈ [1, h] (3)

where Wl and bl are the weight matrix and bias vector of the l-th layer respectively, and σ(·) is
the sigmoid function. Here x0 takes value from HS and HX takes value from the output of the last
GCN layer xlmax . For NER and ED, we adopt the dependency-guided concatenation approach (Jie
& Lu, 2019). Given a dependency edge (th,ti,r) with th as a head (parent), ti as a dependent (child)
and r is the dependency relation between them, the representations of the dependent (assume at the

1h is the sequence length for NER and ED, and h = 1 for relation extraction.
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i-th position of a sentence) can be denoted as:

xi = [H
(i)
S ;H

(h)
S ;vr], th = parent(ti)

HX = LSTM(x)
(4)

where H
(i)
S and H

(h)
S are the word representations of the word ti and its parent th, vr denotes the

learnable embedding of dependency relation r.

3.2 STEP 2 AND 3: INFERENCE AND COUNTERFACTUAL GENERATION

We have trained our SCMs in the first step. The second step performs inference with the SCMs, and
the third step generates dependency-based counterfactuals to better measure the main effect.

Interventions: For the SCM G, an intervention indicates an operation that modifies a subset of
variables V ⊆ V to new values where each variable Vi ∈ V is generated by a new structural mech-
anism f̂i(P̂Ai, Ui) that is independent from the original fi(PAi, Ui). Thus, the causal dependency
between Vi and its parents {PAi, Ui} is cutoff. Mathematically, such intervention for one variable
X ∈ V can be expressed by do-notation do(X = x∗) and where x∗ is the given value.

Counterfactuals: Unlike interventions, the concept of counterfactual reflects an imaginary scenario
for “what would the outcome be had the variable(s) been different”. Recall from Section 3.1 the
definition of SCM and the set of environmental variables U which uniquely determines the variables
in the system (Pearl, 2009). Let Y ∈ V denote the outcome variable, and let X ∈ V\{Y } denote
the variable of study. The counterfactual for setting X = x∗ is formally estimated as:

Yx∗(u) = YGx∗ (u) (5)

where Gx∗ means assigning X = x∗ for all equations in the SCM G. In our CFIE setting, we aim to
estimate the counterfactual for the model prediction at instance level. For the proposed SCM shown
in Figure 1, the counterfactual Yx∗ for our prediction Y is practically computed as follows:

Yx∗ = YGx∗ (u) = fY (do(X = x∗), S = s, Z = z)

=
∑

i∈E\{X}

WiY Hi +WXY Hx∗ (6)

where fY is the function that computes Y and we only replace the original feature representation
HX with Hx∗ . No actual value is needed for u. See Appendix A.1.1 for derivation.

Dependency-based Counterfactuals Generation: There are many other language structures such
as constituent tree, abstract meaning representation (Flanigan et al., 2014) and semantic role labeling
(Björkelund et al., 2009). We choose the dependency structure in our case as it is able to capture rich
relational information as well as complex long-distance interactions that have been proven effective
on IE tasks. Counterfactuals lead us to think about: “what are the key clues that determine the
relations of two entities for RE, and a certain span of a sentence to be an entity or an event trigger
for NER and ED task respectively?”. To generate the counterfactual representations for the RE task,
we mask the tokens along the shortest path between the two entities of a relation in a dependency
tree to form a new sequence. Then this masked sequence is fed to a BiLSTM or BERT encoder to
output new contextualized representations S∗. For the NER and ED task, we mask entities, or the
tokens in the scope of 1 hop on the dependency tree to generate S∗. Then we feed S∗ to the function
S → X to get X∗. The operation on NER also aligns a recent finding (Zeng et al., 2020) that the
entity itself is more important than context for entity classification. By doing so, the key clues have
been wiped off in the generated counterfactuals representationsX∗, which can be used to strengthen
the main effect while reduce spurious correlations and the side effect.

3.3 STEP 4 AND 5: CAUSAL EFFECT ESTIMATION

We estimate the causal effect in the fourth step and make use of the couterfactuals representation for
a more robust prediction in the fifth step. Inspired by Total Direct Effect (TDE) used in (Tang et al.,
2020b), we can compare the original outcome Yx and its counterfactual Yx∗ to estimate the effect of
RE so that the side effect can be eliminated (see Appendix A.1.2 for derivation):

TDE = Yx − Yx∗ (7)
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As both context and entity (or trigger) play important roles for the classification in the NER and
ED tasks, we propose a novel approach to alleviate the spurious correlations caused by side effects,
while strengthening the main effect at the same time. The interventional causal effect of the i-th
entity in a sequence can be described as:

Effect = Yxi − Yx∗
i
+ αWXY x

∗
i (8)

where α is the hyperparameter that balances the importance of context and entity (or trigger) for
the NER and ED task. The first part Yxi

− Yx∗
i

indicates the main effect, which reflects more
about the debiased context, while the second part WXY x

∗
i reflects more about the entity (or trigger)

itself. Combining them yields more robust prediction by better distinguishing the main and side
effect. As shown in Figure 1, the sentence “The program was killed” produces biased high score for
event “Life:Die” in Yx and results in wrong prediction due to the word “killed”. By computing the
counterfactual Yx∗ with “program” masked, the score for “Life:Die” remains high but the score for
“SW:Quit” drops dramatically. This difference Yxi

−Yx∗
i

leads us to correct prediction and knowing
the important role of the word “program”. Such a design differs from that of the previous work
used in vision community (Tang et al., 2020a) by providing more flexible adjustment and effect
estimation. We will show that our approach is more suitable for long-tailed IE tasks.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

The five datasets used in our experiments include OntoNotes5.0 (Pradhan et al., 2013) and ATIS (Tur
et al., 2010) for the NER task, ACE2005 (Doddington et al., 2004) and MAVEN (Wang et al., 2020b)
for the ED task, and NYT24 (Gardent et al., 2017) for the RE task. For all the five datasets, we
categorize the classes into three splits based on the number of training instances per class. The
model parameters are finetuned on the development sets. For RE, we leverage Stochastic Gradient
Descent (SGD) optimizer with a 0.3 learning rate and 0.9 weight decay rate. For NER and ED,
we utilize Adam optimizer with an initial learning rate of 0.001. The hidden size of the BiLSTM
and GCNs are set as 300, and the number of layers of GCNs is configured as 3. 300-dimensional
GloVe (Pennington et al., 2014) is used to initialize the word embeddings 2. We focus more on Mean
Recall (MR) (Tang et al., 2020b) and Macro F1 (MF1), two more balanced metrics to measure the
performance of long-tailed IE tasks, as MR is able to better reflect the capability in identifying
the instance-scare class, and MF1 can better represent the model’s ability for each class, while the
conventional Micro F1 score highly depends on the data-rich classes and pays less attention to the
tail classes. We report the Micro F1 score (F1) for each dataset in the Appendix. We also follow (Liu
et al., 2019b) to report the MR and MF1 on three splits in Table 5 in the Appendix.

4.2 BASELINES

We categorized the baselines into three groups. 1) Conventional Models include BiLSTM (Chiu
& Nichols, 2016), BiLSTM+CRF (Ma & Hovy, 2016), C-GCN (Zhang et al., 2017), Dep-Guided
LSTM (Jie & Lu, 2019), AGGCN (Guo et al., 2019) and BERT (Devlin et al., 2019). They do not
explicitly take the long-tailed issues into consideration. 2) Re-weighting/Decoupling models refer
to loss re-weighting approaches including Focal Loss (Lin et al., 2017), and two-stage decoupled
learning approaches (Kang et al., 2019) that include τ -normalization, classifier retraining (cRT) and
learnable weight scaling (LWS). 3) Causal model include TDE (Tang et al., 2020b). There are also
recent studies based on the deconfounded methodology (Tang et al., 2020a; Yang et al., 2020), which
however seem not applicable to be selected as a causal baseline in our case. In our experiments, we
reproduced the results for all the baselines as most of the results have not been reported on NLP
datasets. We believe some recent strong baselines, which are not mentioned in this paper due to
space limitation, may also further benefit our model by integrating them into the edge S → X .

4.3 TASK DEFINITIONS

Named Entity Recognition: NER is a sequence labeling task that seeks to locate and classify
named entities in unstructured text into pre-defined categories such as person, location, etc. Event

2The statistics of the datasets and detailed hyperparameters are attached in the Appendix
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Table 1: Evaluation results on the OntoNotes5.0 dataset and ATIS dataset for the NER task.

Model
OntoNotes5.0 ATIS

Few Overall Few Overall
MR MF1 MR MF1 MR MF1 MR MF1

BiLSTM (Chiu & Nichols, 2016) 67.5 69.9 76.4 76.8 66.2 69.0 84.2 83.1
BiLSTM+CRF (Ma & Hovy, 2016) 60.7 63.6 71.6 73.5 58.1 60.4 81.0 80.2
C-GCN (Zhang et al., 2017) 68.3 69.8 77.3 76.8 63.2 65.3 82.0 80.1
Dep-Guided LSTM (Jie & Lu, 2019) 61.8 69.3 74.1 75.8 60.6 65.4 84.6 84.3
Focal Loss (Lin et al., 2017) 64.1 65.5 74.2 73.9 48.9 49.8 78.7 76.6
cRT (Kang et al., 2019) 64.1 68.5 75.0 76.1 68.1 71.7 85.7 84.8
τ - Normalization (Kang et al., 2019) 61.1 66.7 73.5 75.7 64.8 68.0 83.9 83.1
LWS (Kang et al., 2019) 58.7 64.9 72.1 74.7 66.2 69.1 84.3 83.2
TDE (Tang et al., 2020b) 71.9 68.8 80.4 76.7 67.5 67.1 87.1 84.5
Ours (Glove) 76.7 68.9 83.8 77.3 71.8 73.1 88.6 87.0
BERT (Devlin et al., 2019) 77.7 76.5 84.6 82.4 52.3 56.1 82.9 81.7
Roberta (Liu et al., 2019a) 78.7 79.5 86.5 85.7 60.2 61.1 84.3 82.3
BERT+GCN(Wadden et al., 2019) 80.2 77.7 85.6 82.6 53.3 56.6 83.0 81.3
Ours (BERT) 80.6 79.1 86.7 84.1 58.8 62.2 85.5 82.6

Table 2: Evaluation results on the ACE2005 dataset and MAVEN dataset for the event detection.

Model
ACE2005 MAVEN

Few Overall Few Overall
MR MF1 MR MF1 MR MF1 MR MF1

BiLSTM (Chiu & Nichols, 2016) 34.2 35.6 52.3 54.8 36.5 40.7 67.1 69.5
BiLSTM+CRF (Ma & Hovy, 2016) 41.4 45.1 51.8 54.1 43.4 46.8 69.6 71.1
C-GCN (Zhang et al., 2017) 41.4 44.1 52.0 56.1 49.7 51.7 73.1 73.0
Dep-Guided LSTM (Jie & Lu, 2019) 42.8 41.7 52.4 55.8 44.7 45.4 67.8 69.3
Focal Loss (Lin et al., 2017) 38.6 42.9 52.6 58.5 45.4 51.5 70.3 73.8
cRT (Kang et al., 2019) 44.8 47.4 57.6 58.9 49.7 55.4 71.0 74.6
τ - Normalization (Kang et al., 2019) 34.3 35.6 53.3 52.5 21.1 26.7 51.0 58.4
LWS (Kang et al., 2019) 34.3 35.6 58.2 56.9 33.3 38.7 65.9 68.7
TDE (Tang et al., 2020b) 34.3 33.9 58.5 56.5 39.8 36.2 71.9 67.4
Our (Glove) 47.1 49.7 63.5 60.2 60.4 57.4 79.8 76.0
BERT(Devlin et al., 2019) 47.6 48.9 66.5 65.1 38.1 39.3 73.5 72.3
Roberta (Liu et al., 2019a) 47.6 47.7 70.2 68.6 43.1 43.8 75.0 73.6
BERT+GCN (Wadden et al., 2019) 45.2 47.5 73.1 71.3 40.9 42.0 74.1 72.8
Ours (BERT) 61.9 63.2 74.9 74.4 43.1 45.0 71.3 71.7

Detection: ED aims to detect the occurrences of predefined events and categorize them as triggers
from unstructured text. Event trigger is defined as the words or phase that most clearly expresses an
event occurrence. Taking the sentence “a cameraman died in the Palestine Hotel” as an example, the
word “died” is considered as the trigger with a “Death” event. Relation Extraction: The goal of
RE is to identify semantic relationships from text, given two or more entities. For example, “Paris
is in France” states a “is in” relationship between two entities Paris to France. Their relation can be
denoted by the triples (Paris, is in, France).

4.4 RESULTS

Named Entity Recognition: Table 1 shows the comparison results on both OntoNotes5.0 and ATIS
datasets. Our models outperform the two classical models BiLSTM and BiLSTM+CRF under most
settings, especially on the Few setting, e.g achieving 10.2 points higher Mean Recall (MR) against
BiLSTM on OntoNotes5.0, and 12.7 points higher Mean F1 (MF1) against BiLSTM+CRF on ATIS.
The results indicate the superiority of our proposed model in handling the instance-scarce classes.
Comparing with the C-GCN model that makes use of dependency trees for information aggregation,
our model also achieves 8.4 higher MR and comparable MF1, indicating the capability of a causal
model in improving the long-tailed sequence labeling problem. Comparing with a recent causal
baseline TDE, our model consistently perform better in terms of long-tailed scores, the results con-
firm our hypothesis that making good use of language structure helps a causal model to distinguish
main effect from the side effect. Among re-balancing approaches such as Focal Loss, cRT and LWS,
τ -Normalization performs best and this aligns with the findings in the previous study (Kang et al.,
2019) for long-tailed image classification.
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Event Detection: Table 2 shows comparison results on both ACE2005 and MAVEN datasets. Over-
all, our model significantly outperforms the baselines under the Few setting by a large margin, e.g.,
12.8 and 15.8 pointers higher in terms of MR and MF1 respectively on ACE2005 dataset, 20.6
and 20.8 points higher in terms of the two metrics on MAVEN dataset. Meanwhile, our model is
able to achieve better or comparable results under other settings. The results further confirm the
robustness of our model in improving the classifications for tail classes with few training instances
available. Our model also performs better than BERT baselines under the Few setting, indicating
that the pre-trained BERT models still suffer bias issues on the long-tailed IE tasks.

Table 3: Evaluation results on the NYT24 dataset for RE.

Model
NYT24

Few Overall
MR MF1 MR MF1

C-GCN (Zhang et al., 2017) 24.0 26.7 51.2 52.6
Focal Loss (Lin et al., 2017) 52.0 48.3 62.9 61.9
cRT (Kang et al., 2019) 66.0 24.2 65.6 50.5
τ - Normalization (Kang et al., 2019) 40.0 40.0 53.5 54.6
LWS (Kang et al., 2019) 40.0 40.0 53.5 54.6
TDE (Tang et al., 2020b) 60.0 57.1 61.0 60.2
Ours (Glove) 68.0 68.6 65.3 63.6

Relation Extraction: As shown in
Table 3, we further evaluate CFIE
for the relation extraction on NYT24
dataset. Our method significantly out-
performs all other methods in MF for
both tail classes and overall F1. Al-
though cRT achieves relatively high
MR, having the lowest MF1 renders
it incompetent for this task. The re-
sults further confirm our hypothesis
that the proposed CFIE is able to alle-
viate spurious correlations caused by
imbalanced dataset by learning to distinguish the main effect from the side effect. We also observe
that CFIE outperforms the previously proposed TDE by a large margin for the both Few and Over-
all settings, i.e., 11.5 points and 3.4 points improvement in terms of MF1. This further proves our
hypothesis that properly exploring language structure on causal models will boost the performance
of IE tasks on imbalanced datasets.

4.5 DISCUSSIONS

The picture showed premier Peng Li visiting malacca 

The picture showed premier Peng Li visiting malacca 
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Figure 3: (a) prediction distributions for various factors. (b) masking
operations based on a syntax tree.

What are the most im-
portant factors for NER?
We have hypothesised that
the factors, such as 2-hop
and 1-hop context on the
dependency tree, the en-
tity itself, and POS feature,
may hold the potential to be
the key clues for the NER
predictions. To evaluate
the impact of these factors,
we first generate new se-
quences by masking or mit-
igating these factors. Then we feed the generated sequences to the proposed SCM to obtain the pre-
dictions. Figure 3 shows a qualitative example for predicting the NER tag for the entity “malacca”.
Specifically, Figure 3 (a) visualizes the variances of the predictions, where the histograms in the
left refer to prediction probabilities for the ground truth class, while the histograms in the right are
the max predictions except the results of ground truth class. Figure 3(b) illustrates how we mask
the context based on a dependency tree. It shows that masking the entity, i.e., “malacca”, will lead
to the most significant performance drop, indicating that entity itself plays a key role for the NER
classification. This also inspires us to design step 5 in our framework. More analyses about ED and
RE are given in the Appendix A.4.1 and A.4.2.

Does the syntax structure matter? To answer this question, we design three baselines including:
1) Causal Models w/o Syntax that doesn’t employ dependency trees during the training
stage, and only uses it for generating counterfactuals, 2) Counterfactuals w/o Syntax that
employs dependency structures for training but utilizes a null input as the intervention during the
inference state. We refer such a setting from the previous study (Tang et al., 2020a), and 3) No
Syntax that is the same to the previous work TDE (Tang et al., 2020b) which don’t involve depen-
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dency structures in both training and inference stages. As shown in Figure 4, our model outperforms
the first two baselines on the ACE2005 dataset under both Few and All settings, demonstrating the
effectiveness of dependency structure in improving the causal models for long-tailed IE.
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Figure 4: Syntax Contribution.
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Figure 5: Prune with DGLSTM.
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Figure 6: Prune with C-GCN.
How can we make good use of dependency structure? To answer this question, we present three
tree pruning mechanisms under two graph aggregation settings, i.e., Prune with DGLSTM and
Prune with C-GCN as described in Equation 3 and Equation 4. The three pruning strategies
include 1) CFIE Mask 1-hop which masks the tokens that directly connect to the targeting to-
ken in a dependency tree, 2) CFIE Mask token which directly masks the targeting token, 3)
CFIE Mask token&1-hop which masks both the targeting token and its 1-hop neighbours in
the dependency tree. Figure 5 and Figure 6 depict the results on OntoNotes5.0 dataset. We observe
that masking 1-hop neighbours in the dependency tree achieves the best performance among three
strategies, indicating that an entity itself is more important in NER sequence labeling. By comparing
the two graph aggregation method, we draw a conclusion that Prune with DGLSTM can make
better use of dependency structures.

How about the performance under various interventions and SCMs? We study this question on
ACE2005 dataset for ED task. We design three interventional methods including 1) Intervene
X & NER, 2) Intervene X & POS, 3) Intervene X & NER & POS . Figure 7 shows
that introducing interventions solely on X is able to achieve the best performance under both Few
and All settings. We also introduce three variants of our proposed SCMs : 1) SCM w/o NER, 2)
SCM w/o POS, 3) SCM w/o NER and POS. Figure 8 shows that mitigating the NER node will
significantly decrease the ED performance, especially over the Few setting. The results prove the
superiority of our proposed SCMs that explicitly involve linguistic features to calculate main effect.
More analyses for NER task are given in Appendix A.4.4.
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Figure 7: Various interventions.
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Figure 9: Various α.
How the hyper-parameter α impacts the performance? To evaluate the impact of α on the
performance, we tuned the parameter on four datasets including OntoNotes5.0, ATIS, ACE2005,
and MAVEN. As shown in Figure 9, when increasing α from 0 to 2.4 on ATIS dataset, the F1 scores
increase at first dramatically then decrease slowly. The F1 scores reach the peak when α is set to
1.2. As the value of α represents the importance of entity for classifications, we therefore draw a
conclusion that, for NER task , an entity plays a relatively more important role than the context. We
also demonstrate the necessity of step 5 in our framework, since the performance is poor when α is
set to 0. Experimental results on the other three datasets are given in the Appendix A.4.3.

5 CONCLUSION

In this paper, we present CFIE, a novel approach to tackling the long-tailed information extraction
issues via counterfactual analysis in causal inference. Experimental results on five datasets across
three IE tasks show the effectiveness of our approach. The future research directions include apply-
ing the proposed framework to more challenging long-tailed document-level IE tasks.
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A APPENDIX

A.1 DERIVATIONS

A.1.1 COUNTERFACTUALS

Recall that the formal computation for counterfactual is defined as:
Yx∗(u) = YMx∗ (u)

whereMx∗ means assigningX = x∗ for all equations in the SCM. The crucial step in the derivation
is to understand the goal of the exogenous variable U , by which the variables in the causal graph are
uniquely determined. To compute the counterfactual of a prediction regarding variable X , we have
to keep all other variables under the same setting as the original prediction. Consider an intuitive
example that a boy got an A for the subject because he studied hard. To estimate the counterfactual
”what score would he get if he did not study hard”, we should maintain all other factors like the
difficulty of the subject and the skills of the teacher and so on at the original level to simulate the
hypothetical scenario that the boy travelled back in time and behaved differently. Thus, setting
U = u where u is the environment (e.g. year of admission, faculty) for the original prediction is to
ensure the consistency in estimating the value of all other variables, which is mathematically:

Vi = fi(PAi, U = u),∀Vi ∈ V
except for the variable of interestX along with its descendants (e.g. commendation from the teacher)
due to the intervention do(X = x∗). Thus, for our SCM, as long as we can ensure the value of
variables (S,Z) that are not descendants of X follow the original situation, the exogenous variable
u is only for notational purpose and no longer needed in computing the counterfactuals. Besides, for
all variables, only the descendants of X should be re-calculated. We now present the mathematical
derivation for the counterfactual Yx∗ in our SCM:

Yx∗ = YMx∗ (u)

= Y (do(X = x∗), U = u)

= fY (do(X = x∗), S = s, Z = z)

= fY (x
∗, s, z)

=
∑

i∈E\{X}

WiY Hi + WXY Hx∗

In short, to compute the counterfactual Yx∗ , we simply need to
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1. Assign a new value x∗ to the variable of interest X .

2. Cut off the dependency between X and its parents in SCM.

3. Recompute all values.

A.1.2 TOTAL DIRECT EFFECT

In an SCM, let M be the mediator variables such that path X → Z → Y exists. The formal
definition of Total Direct Effect (TDE) is:

TDE = Yx(u)− Yx∗,m(u)

wherem are the original values of the mediator variables. Thus, additional intervention do(M = m)
is required to compute TDE. Fortunately, our SCM shown in Figure 1 does not have mediators for
X and the computation is reduced to:

TDE = Yx(u)− Yx∗(u)

= Yx − Yx∗

One may question that why X imposes no effect on Z including POS and NER tags for relation
extraction. This is because POS and NER tags are provided in the dataset and we are not using them
for joint training. Thus, there is no direct dependency between contextual representation and the
representation for the tags.

A.2 DATASET STATISTICS

We give the statistics of five datasets as follows in Table 4. We follow the (Liu et al., 2019b) to
split the training set as Few-shot(Few), Medium-shot(Medium) and Many-Shot(Many). We split the
dataset based on the distribution of class types and numbers. Details are given in Table 5.

Table 4: Data Statistics

Dataset Task Train Dev Test Class Types

OntoNotes5.0 Named Entity Recognition 59924 8528 8262 18
ATIS Named Entity Recognition 4479 498 893 79
ACE2005 Event Detection 19216 901 676 33
MAVEN Event Detection 32431 8042 9400 168
NYT24 Relation Extraction 50577 5619 5000 24

Table 5: Number of instances per class for dataset splitting

Dataset Task Few Medium Many

OntoNotes5.0 Named Entity Recognition ≤ 4000 4000 ∼ 10000 ≥ 10000
ATIS Named Entity Recognition ≤ 30 30 ∼ 100 ≥ 100
ACE2005 Event Detection ≤ 30 30 ∼ 150 ≥ 150
MAVEN Event Detection ≤ 100 100 ∼ 1000 ≥ 1000
NYT24 Relation Extraction ≤ 100 100 ∼ 200 ≥ 200

A.3 EXPERIMENT SETTINGS

We use spaCy3 to generate the dependency tree, NER as well as POS tagging for a input sentence.
The hyperparameters that we used on three tasks are listed as follows in Table 6, Table 7, and Table
8. We show the parameters in different tables as the setting varies for each task.

A.4 MORE DISCUSSIONS

We add more discussions here based on Section 4.5.
3https://spacy.io/
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A.4.1 WHAT ARE THE MOST IMPORTANT FACTORS FOR THE ED TASK?

To answer this question, we conduct experiments on ACE2005. We have hypothesised that the
factors, such as 2-hop and 1-hop context on the dependency tree, the entity itself, POS feature,
and NER feature may hold the potential to be the key clues for the ED predictions. The design of

Table 6: Detailed Hyper-parameters for the NER task.

Batch size 64
Learning rate 0.001
Decay rate 0.90
Gradient clipping 5
Optimizer Adam
Word embedding dimension 300
Input dropout 0.3
RNN Hidden size 200
RNN Layer size 1
RNN dropout 0.3
POS dim 30
Deprel dim 30
α(OntoNotes5.0) 0.9
α(ATIS) 1.2

Table 7: Detailed Hyper-parameters for the ED task.

Batch size 32
Learning rate 0.001
Decay rate 0.90
Gradient clipping 5
Optimizer Adam
Word embedding dimension 300
Input dropout 0.3
RNN Hidden size 200
RNN Layer size 1
RNN dropout 0.3
POS dim 30
NER dim 30
Deprel dim 30
α 1.5

Table 8: Detailed Hyper-parameters for the RE task.

Batch size 50
Learning rate 0.03
Decay rate 0.90
Gradient clipping 5
Optimizer SGD
Word embedding dimension 300
Input dropout 0.5
RNN Hidden size 300
RNN Layer size 2
RNN dropout 0.2
Block Number 2
GCN first sub-layers 2
GCN second sub-layers 4
GCN dropout 0.3
Pooling L2 0.002
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our experiments here are similar as that of NER task described in Section 4.5. Figure 10 shows
a qualitative example for predicting the event type for the word “shot”. Specifically, Figure 10
(a) visualizes the variances of the predictions, where the histograms in the left refer to prediction
probabilities for the ground truth class, while the histograms in the right are the max predictions
except the results of ground truth class. Figure 10(b) illustrates how we mask the context based on
a dependency tree. We obtain the same conclusion that masking the word itself, i.e., “shot”, will
lead to the most significant performance drop, indicating that entity itself serves as a key for the
ED classification. Also we can see that 1-hop neighbors in the dependency tree plays the second
important roles. When 1-hop neighbors are masked, the lead in the probability of the ground truth
class is reduced relative to the probability of the error class, which indicates the decline of the
model’s classification ability.

I would have shot the  insurgent too 

I would have shot the  insurgent too 

I would have shot the  insurgent too 

I would have shot the  insurgent too 

1 1
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2
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Figure 10: (a) prediction distributions for various factors. (b) masking operations based on a syntax
tree.

A.4.2 WHAT ARE THE MOST IMPORTANT FACTORS FOR THE RE TASK?

To answer this question, we conduct experiments on NYT24 dataset. We have hypothesised that
the factors, such as context on the shortest path between the targets, the contextualized word rep-
resentations, POS feature, and NER feature may hold the potential to be the key clues for the RE
predictions. The design of our experiments here are similar as that of NER task described in Sec-
tion 4.5. Figure 11 shows a qualitative example for predicting the relation type for the targets “Italy”
and “Modena”. Specifically, Figure 11 (a) visualizes the variances of the predictions, where the his-
tograms in the left refer to prediction probabilities for the ground truth class, while the histograms
in the right are the max predictions except the results of ground truth class. Figure 11(b) illustrates
how we mask the context based on a dependency tree. When we mask the context on the shortest
path, we can see that the probability on the ground truth class drops significantly and the model
makes a wrong prediction, which indicates the importance of context on the shortest path between
subject and object in RE task.

The performance was recorded live in Modena , a
1

2

1

2

(a) (b)

city Italyof

The performance was recorded live in Modena , a city ItalyofMASK MASK

Figure 11: (a) prediction distributions for various factors. (b) masking operations based on a syntax
tree.

A.4.3 HOW THE HYPER-PARAMETER α IMPACTS THE PERFORMANCE?

Here we show the performance on OntoNotes5.0, ACE2005, and MAVEN datasets regarding various
values of α. As shown in Figure 12, we observe that the trends are similar on different datasets. The
optimal values are 0.9, 1.5, 1.5 respectively on OntoNotes5.0, ACE2005, and MAVEN dataset.
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Figure 12: Performance with different values of α

A.4.4 EXPLORING DIFFERENT INTERVENTIONS AND SCMS FOR NER TASK.

We conduct experiments for NER task on OntoNotes5.0 dataset regarding different intervention
methods and SCMs. The design and conclusions are similar to those of the ED task described in
Section 4.5. The results are shown in Table 13. To be specific, only intervening X achieves the best
performance, indicating that our method is capable of capturing the most significant effect. Further-
more, our design of including POS tag in the causal graph can incorporate the useful information
while eliminating the bias in POS tags.
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Figure 13: Performance with various interventions and SCMs for NER task.

A.5 MEASURING CAUSAL EFFECTS OF VARIOUS FACTORS

We measure the causal effects of different factors for RE task. Here we define a set of factors
F = {X,S,NER,POS, TAGS,Context,DepEdges}, where S,X,NER,POS are variables
defined in our SCM, TAGS includes both NER tag and POS tag, Context denotes tokens along
the shortest path between subject and object in RE task, and DepEdges denotes the dependency
edges connected to either subject or object. We calculate the causal effect by Equation 7, where x∗
is generated by masking each factor in F. Instead of measuring the effect on a specific instance, we
calculate the average effect on the ground truth class over all samples in NYT24 dataset. A larger
value indicates a more significant causal effect from the specific factor to the ground truth label.
From Table 9 we can observe that X and Context have the largest effect to the ground truth, which
is captured in our model. Also we can conclude that masking tokens in the dependency tree is better
choice compared with masking dependency relations.

Table 9: Average causal effect from various factors to the ground truth label.
Factor X S NER POS TAGS Context DepEdges
Avg. Effect 0.656 0.502 0.108 0.027 0.074 0.633 0.061
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A.6 MORE DETAILED EXPERIMENTAL RESULTS

For the NER and ED tasks, we report more detailed comparisons on the Ontonotes5.0, ATIS,
ACE2005, and MAVEN datasets in Table 10, Table 11, Table 12, and Table 13 respectively. We
also report the detailed results for RE on the NYT24 dataset in Table 14.

Table 10: Evaluation results on the OntoNotes5.0 dataset for the named entity recognition.

Model Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 Micro F1

BiLSTM (Chiu & Nichols, 2016) 67.5 69.9 72.6 75.3 88.1 85.4 76.4 76.8 83.7
BiLSTM+CRF (Ma & Hovy, 2016) 60.7 63.6 65.3 69.1 86.9 86.9 71.6 73.5 85.5
C-GCN (Zhang et al., 2017) 68.3 69.8 69.1 72.9 90.9 86.6 77.3 76.8 85.5
Dep-Guided LSTM (Jie & Lu, 2019) 61.8 69.3 70.2 73.7 89.8 84.3 74.1 75.8 84.0
Focal Loss (Lin et al., 2017) 64.1 65.5 69.9 71.2 87.7 84.7 74.2 73.9 85.2
cRT (Kang et al., 2019) 64.1 68.5 73.9 75.3 88.0 85.2 75.0 76.1 83.6
τ - Normalization (Kang et al., 2019) 61.1 66.7 72.8 76.4 88.0 85.7 73.5 75.7 84.9
LWS (Kang et al., 2019) 58.7 64.9 71.6 76.1 87.6 85.2 72.1 74.7 84.9
TDE (Tang et al., 2020b) 71.9 68.8 77.9 74.8 91.2 86.7 80.4 76.7 83.6
Ours (Glove) 76.7 68.9 83.6 76.2 92.0 87.6 83.8 77.3 85.4
BERT (Devlin et al., 2019) 77.7 76.5 81.4 78.6 94.0 90.7 84.6 82.4 88.7
Roberta (Liu et al., 2019a) 78.7 79.5 84.8 85.1 96.3 93.1 86.5 85.7 90.7
BERT+GCN (Wadden et al., 2019) 80.2 77.7 81.1 77.3 93.9 90.4 85.6 82.6 88.6
Ours (BERT) 80.6 79.1 85.1 80.4 94.5 91.4 86.7 84.1 88.9
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Table 11: Evaluation results on the ATIS dataset for the named entity recognition.

Model Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 Micro F1

BiLSTM 66.2 69.0 89.8 85.9 93.0 92.2 84.2 83.1 92.0
BiLSTM+CRF 58.1 60.4 87.4 83.5 93.0 93.5 81.0 80.2 93.2
CGGCN (Zhang et al., 2017) 63.2 65.3 87.3 83.2 91.8 89.3 82.0 80.1 91.8
Dep-Guided LSTM (Jie & Lu, 2019) 60.6 65.4 94.1 90.4 93.2 92.9 84.6 84.3 93.8
Focal Loss 48.9 49.8 89.3 84.6 91.1 89.8 78.7 76.6 90.0
cRT 68.1 71.7 92.3 88.0 92.8 92.2 85.7 84.8 92.8
τ - Normalization 64.8 68.0 89.9 86.2 93.0 92.5 83.9 83.1 93.2
LWS 66.2 69.1 89.9 85.9 93.0 92.2 84.3 83.2 93.0
TDE (Tang et al., 2020b) 67.5 67.1 95.3 89.4 93.7 93.5 87.1 84.5 92.4
Ours (Glove) 71.8 73.1 95.6 91.4 94.3 93.5 88.6 87.0 92.8
BERT(Devlin et al., 2019) 52.3 56.1 96.0 90.6 92.9 92.7 82.9 81.7 94.5
Roberta(Liu et al., 2019a) 60.2 61.1 93.8 89.1 93.1 92.2 84.3 82.3 94.3
BERT+GCN (Wadden et al., 2019) 53.3 56.6 95.4 89.6 93.1 92.2 83.0 81.3 94.5
Ours (BERT) 58.8 62.2 97.2 89.1 93.6 92.4 85.5 82.6 94.6

Table 12: Evaluation results on the ACE2005 dataset for the event detection.

Model Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 Micro F1

BiLSTM (Chiu & Nichols, 2016) 34.2 35.6 55.1 58.2 64.9 67.0 52.3 54.8 66.7
BiLSTM+CRF (Ma & Hovy, 2016) 41.4 45.1 49.8 52.2 70.1 70.5 51.8 54.1 68.2
C-GCN (Zhang et al., 2017) 41.4 44.1 51.2 55.8 66.4 71.2 52.0 56.1 71.2
Dep-Guided LSTM (Jie & Lu, 2019) 42.8 41.7 49.8 56.0 71.1 71.6 52.4 55.8 70.7
Focal Loss (Lin et al., 2017) 38.6 42.9 50.7 58.8 74.6 76.0 52.6 58.5 72.7
cRT (Kang et al., 2019) 44.8 47.4 58.8 60.1 68.8 68.5 57.6 58.9 71.4
τ - Normalization (Kang et al., 2019) 34.3 35.6 50.9 53.8 82.7 68.3 53.3 52.5 67.6
LWS (Kang et al., 2019) 34.3 35.6 61.2 60.2 76.8 71.7 58.2 56.9 67.5
TDE (Tang et al., 2020b) 34.3 33.9 61.5 59.7 77.4 73.3 58.5 56.5 72.0
Our (Glove) 47.1 49.7 64.3 59.9 80.5 73.3 63.5 60.2 71.5
BERT (Devlin et al., 2019) 47.6 48.9 67.8 67.5 84.5 76.8 66.5 65.1 77.6
Roberta (Liu et al., 2019a) 47.6 47.7 73.7 72.6 86.0 80.9 70.2 68.6 80.4
BERT+GCN (Wadden et al., 2019) 45.2 47.5 78.9 77.5 88.2 80.3 73.1 71.3 80.3
Ours (BERT) 61.9 63.2 76.5 76.6 85.3 80.7 74.9 74.4 80.1

Table 13: Evaluation results on the MAVEN dataset for the event detection.

Model Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 Micro F1

BiLSTM 36.5 40.7 78.3 79.9 80.4 82.3 67.1 69.5 83.0
BiLSTM+CRF 43.4 46.8 79.0 79.8 82.3 83.0 69.6 71.1 83.3
CGGCN (Zhang et al., 2017) 49.7 51.7 81.8 80.8 82.6 82.1 73.1 73.0 83.6
Dep-Guided LSTM (Jie & Lu, 2019) 44.7 45.4 76.5 78.2 75.9 78.9 67.8 69.3 83.0
Focal Loss 45.4 51.5 78.6 81.3 85.4 87.2 70.3 73.8 84.9
cRT 49.7 55.4 78.4 81.3 82.1 85.0 71.0 74.6 84.9
τ - Normalization 21.1 26.7 60.0 68.5 74.4 80.0 51.0 58.4 76.0
LWS 33.3 38.7 77.6 79.7 81.6 81.7 65.9 68.7 83.0
TDE (Tang et al., 2020b) 39.8 36.2 83.3 78.0 87.8 85.2 71.9 67.4 79.1
Our (Glove) 60.4 57.4 86.8 82.2 89.1 86.6 79.8 76.0 84.6
BERT (Devlin et al., 2019) 38.1 39.3 86.3 84.0 90.6 88.3 73.5 72.3 86.2
Roberta (Liu et al., 2019a) 43.1 43.8 86.3 84.1 90.2 88.4 75.0 73.6 86.2
BERT+GCN (Wadden et al., 2019) 40.9 42.0 86.0 83.6 90.0 88.6 74.1 72.8 86.1
Ours (BERT) 43.1 45.0 80.7 80.5 88.3 87.6 71.3 71.7 85.0
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Table 14: Evaluation results on the NYT24 dataset for the relation extraction task.

Model Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 Micro F1

C-GCN (Zhang et al., 2017) 24.0 26.7 60.6 65.5 58.8 59.1 51.2 52.6 74.4
Focal Loss (Lin et al., 2017) 52.0 48.3 78.0 74.8 63.5 64.0 62.9 61.9 74.5
cRT (Kang et al., 2019) 66.0 24.2 75.2 58.5 64.6 61.9 65.6 50.5 68.0
τ - Normalization (Kang et al., 2019) 40.0 40.0 59.0 64.7 57.1 57.7 53.5 54.6 74.3
LWS (Kang et al., 2019) 40.0 40.0 59.0 64.7 57.1 57.6 53.5 54.6 74.3
TDE (Tang et al., 2020b) 60.0 57.1 66.6 65.2 60.1 60.2 61.0 60.2 70.0
Ours (Glove) 68.0 68.6 67.0 70.5 59.3 60.3 65.3 63.6 72.3
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