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ABSTRACT

A big challenge in dealing with real-world problems is scalability. In fact, this
is partially the reason behind the success of deep learning over other learning
paradigms. Here, we tackle the scalability of a novel learning paradigm proposed
in 2021 based solely on self-organizing principles. This paradigm consists of
only dynamical equations which self-organize with the input to create attractor-
repeller points that are related to the patterns found in data. To achieve scalability
for such a system, we propose the Magnum algorithm, which utilizes many self-
organizing subsystems (SubSigma) each with subsets of the problem’s variables.
The main idea is that by merging SubSigmas, Magnum builds over time a variable
correlation by consensus, capable of accurately predicting the structure of large
groups of variables. Experiments show that Magnum surpasses or ties with other
unsupervised algorithms in all of the high-dimensional chunking problems, each
with distinct types of shapes and structural features. Moreover, SubSigma alone
outperforms or ties with other unsupervised algorithms in six out of seven basic
chunking problems. Thus, this work sheds light on how self-organization learning
paradigms can be scaled up to deal with high-dimensional structures and compete
with current learning paradigms.

1 INTRODUCTION

One of the biggest reasons behind the success of deep learning lies in its ability to tackle high-
dimensional problems Mayer & Jacobsen (2020). Tasks that were very challenging in the past such
as speech recognition Amodei et al. (2016), image classification Huang et al. (2017), and natural
language processing Devlin et al. (2018); Peters et al. (2018) are now easily solved by algorithms
based on the deep learning paradigm. However, deep neural networks themselves once were only
a perceptron invented to mimic neurons and solve simple logic problems. An abundance of time
and effort made them into the quality and accuracy we see today. However, they are not without
the absence of problems such as adversarial samples Papernot et al. (2016); Xiao et al. (2018);
Goodfellow et al. (2014); Su et al. (2019) which raise questions if other paradigms are not the only
solution. To answer this question we must first further develop such paradigms to the point we can
compare and this is one of the greatest motivations of this paper.

Researchers from neuroscience have long demonstrated humans’ ability to detect patterns from their
surrounding environment in the form of time-series data without the need of supervision. This is
partly achieved by utilizing chunking as a learning strategy and is proven to carry an important role
in a diverse range of cognitive functions Ramkumar et al. (2016). That being mentioned, the first
self-organizing algorithm that could learn structures of time-series data in an unsupervised way and
without any optimization function was recently proposed in 2021, which is named SyncMap Vargas
& Asabuki (2021). It utilizes self-organizing principles to map temporal correlations into spatial
correlations. In fact, the spatial correlations learned are so accurate that it was shown to surpass
most deep learning algorithms in their first development. Interestingly, the system of dynamical
equations that are at the heart of SyncMap is dynamical and continual in nature, such that changes
in the problem can be easily captured and learned by the algorithm. In other words, adaptation
becomes an inherent property emergent from the algorithm. Mathematically speaking, SyncMap
is based on the principle of positive and negative feedback loops that can allow for the emergence
of attractor-repeller pairs for each of the patterns present in the input. Having said that, we show
here that SyncMap is incapable of dealing with high-dimensional problems. To achieve scalabil-
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ity, we propose both a modified learning algorithm and a consensus-building framework for self-
organizing systems called Magnum. Essentially, Magnum works by creating and merging multiple
self-organizing subsystems. It creates low-dimension partitions of the problem and assigns them to
these subsystems which process and give a response back. These subsystems are called SubSigma,
which overcome the limitation of SyncMap by introducing a better dynamical equation and intrinsic
clustering method.

To summarize, this paper makes the following contributions, (i) State-of-the-art result: The pro-
posed algorithm, Magnum, outperforms other unsupervised methods in 7 out of 8 tests. More-
over, its subsystem, SubSigma, surpasses others in 6 of 7 basic chunking tests; (ii) Learning based
on Dynamical Equations: This paper investigates a novel self-organizing approach to learning
without loss functions that is surprisingly precise; (iii) High-dimensional Chunking with Self-
Organization Alone: To achieve state-of-the-art results with self-organization alone, Magnum em-
ploys a variable correlation by consensus approach that significantly increase its performance in
various types of high-dimensional problems.

2 RELATED WORK

Chunking. In neuroscience, chunking is a mechanism present in the brain which was shown impor-
tant as a cost-effective learning strategy that attains compact representation of sequences Ramkumar
et al. (2016). Chunking seems to be a crucial stepping stone in which other high-order functions
can be attained, such as motor-skill learning Yokoi & Diedrichsen (2019) and language acquisition
Buiatti et al. (2009), Saffran & Wilson (2003). Schapiro et al. Schapiro et al. (2013) show instead
of repetitive patterns, sequences of co-occurring structures are more likely to be chunked. In 2020,
a biology-inspired sequence learning model Minimization of Regularised Information Loss (MRIL)
Asabuki & Fukai (2020) was proposed. It is capable of solving various chunking tasks including
chunking with probabilistic transitions. Recently, in 2021, the first bio-inspired algorithm based on
self-organizing alone was proposed (called SyncMap Vargas & Asabuki (2021)). SyncMap only
uses dynamical equations without any type of optimization. Albeit the novel learning paradigm, it
outperformed MRIL and all other algorithms in most of the tasks. In fact, it was shown to be able to
adapt to changes in the environment without problems.

Word Embedding. Word embedding algorithms transform paragraphs and words into vectors,
which are commonly used in natural language processing (NLP) Khattak et al. (2019); Mikolov
et al. (2013). Some of them are contextualized word embeddings Peters et al. (2018); Devlin et al.
(2018) or are enriched with information specific to NLP Bojanowski et al. (2017). Therefore, co-
occurrence matrix-based GloVe Pennington et al. (2014) and prediction-based word2vec Mikolov
et al. (2013) can be used for general problems and therefore applied to uncover chunks as well. In
this paper, we consider a variation of word2vec as one of the baselines.

Complex Network and Community. Community detection is often used to understand the structure
of large and complex networks. It is used in different application from social networks Tang et al.
(2015) to biochemical networks Ito et al. (2001). Based on its importance, Clauset et al. Clauset
et al. (2004) attempted to find communities in a large complex networks by maximizing modularity,
a metric that measures the quality of the structure Newman (2006). Although this paper focuses on
sequence chunking, we cannot ignore their capability in community chunks detection. Hence, we
transform the input sequence into a complex network. Doing so allows us to experiment community
detection algorithm with sequential data. Here, Clauset-Newman-Moore Modularity Maximization
algorithm is chosen as a baseline Clauset et al. (2004); Newman & Girvan (2004).

Unsupervised Learning for Sequences. Unsupervised learning for sequences is able to predict fu-
ture input using extracted features Wu et al. (2018); Lei et al. (2019); Hyvarinen & Morioka (2016);
Mikolov et al. (2013); Clark et al. (2019). Although these features are useful for the classification
of sequences, they do not uncover the chunks present. Therefore, these methods are complementary
rather than competing with methods that tackle the chunking problem.

3 BACKGROUND

To lay the groundwork for the proposed method, we introduce the continual general chunking prob-
lem (CGCP) and the self-organizing system with the best results in CGCP (SyncMap Vasconcel-
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los Vargas & Asabuki (2021)). Subsequently, the limitation of SyncMap is discussed, especially in
relation to high-dimensional CGCP problems.

3.1 CONTINUAL GENERAL CHUNKING PROBLEMS

First defined by Vargas and Asabuki Vargas & Asabuki (2021), the Continual General Chunking
Problem (CGCP) describes the problem of extracting co-occurring states from a time series of which
the underlying generation process changes depending on the task as well as throughout the task. Its
input sequence contains the state of variables (a variable that can be considered as an object or
event occurring), transitioning by a first-order Markov chain. The transition matrix T is defined as:
T ∈ (0, 1)|state|×|state|, where state is the set of all possible state variables occur in the sequence.
Tstatei,statej = Pr[st+1 = statej |st = statei] is the transition probability from statei to statej .
All the tasks in CGCP comprise only probabilistic chunks and fixed chunks. Fig. 1 shows the detail
of these two chunks.

Figure 1: Illustration of fixed and probabilistic chunks. Big circles are considered chunks. Small
circles in a chunk indicate state variables. Dashed arrows represent the transition from a chunk or the
other way around, depending on the arrow’s direction. Solid arrows are the transitioning direction
within a chunk. (Left) Fixed chunks only have one-way transitions. (Right) Probabilistic chunks
contain more than one possible transition and for each a given transition probability.

States in fixed chunk contain a static transition, which satisfies: Tstatei,statej = 1, where state
denoted as statei always transits to another predetermined state statej . Oppositely, all states in
probabilistic chunk transit to each other with the same probability. The transition matrix is defined
as:

Tstatei,statej =

{
1

(|V (statei)|−1) statej ∈ V (statei)

0, else
(1)

where V (statei) represents the states in the same probabilistic chunk with statei, |V (statei)| be the
cardinality of V (statei). In the original work where the CGCP was originally defined, experiments
only consider problems that are of a small number of variables and chunks. This leads to the question
of how large number of variables and chunks will affect SyncMap’s performance. Hence, we expand
the complexity of the original problem and take into account the high-dimensional versions of the
CGCP.

3.2 SYNCMAP

In 2021, Vargas and Asabuki Vargas & Asabuki (2021) proposed a self-organizing chunking algo-
rithm called SyncMap, which identifies chunks from sequence data by creating a dynamic map that
preserves the temporal correlation between variables. The workflow of SyncMap can be divided
into three parts: (i) input encoding, (ii) dynamics, and (iii) clustering phase.

Input encoding. Input encoding is a data pre-processing method that encodes a sequence of states
into a series of decaying signals. Consider the input sequence S = (s0, s1, s2, · · · , st, · · · , sτ ),
where t is the time step, τ is the total time step and st ∈ state. With that, input encoding is modelled
as an exponentially decaying vector X , where X ∈ R|state|×τdecay and τdecay = decay × τ :

Xst,t =

{
e−0.1∗(t−ta), ta < mc ∗ decay

0, otherwise
(2)

where ta is the most recent state transition to state to st, mc is the state memory constant which
equals to two, mc/decay is the most recent state transition to state st+1. In other words, since
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each state transition happens every decay steps, variables with a time of activation greater than
mc × decay steps are set to 0.

Dynamics. With the encoded input, multiple weights wi,t are randomly initialized wi,t ∈ Rd in a
dynamic map with d dimension. They are also linked to an input xi,t, creating a tuple (xi,t, wi,t).
Every time a new input xt is presented, each of its constituents xi,t are divided into two sets: (i)
Positive set PSt and (ii) Negative set NSt. Inputs with value greater than 0.1 are assigned to PSt,
where PSt = {i|xi,t > 0.1}. Otherwise, inputs are assigned to NSt, where NSt = {i|xi,t ≤ 0.1}.
If the cardinality of both sets |PSt| > 1 and |NSt| > 1, we compute the centroids for both PSt and

NSt, respectively cpt =
∑

i∈PSt
wi,t

|PS| and cnt =
∑

i∈NSt
wi,t

|NS| . Otherwise, if the cardinality of both
positive and negative sets is not greater than one, PSt ≤ 1 and NSt ≤ 1 , weight update is skipped
in that particular time step. Followed by the computation of cpt and cnt, the position of weight wi,t

of its corresponding input is updated with:

ϕ(i, t) =

{
1, i ∈ PSt

0, i ∈ NSt
(3)

wi,t+1 = wi,t + α[ϕ(i, t)∆wp + (1− ϕ(i, t))∆wn] (4)

where α is the learning rate, ∆wp =
(cpt−wi,t)
||wi,t−cpt|| and ∆wn =

(cnt−wi,t)
||wi,t−cnt|| . At the end of each time

step, all values of updated weights are normalized to a bounded space.

Clustering Phase. Once the dynamics are repeated for all inputs, clustering is applied over the
dynamic map to identify the chunks. DBSCAN Schubert et al. (2017) is used here. The authors
justified the use of DBSCAN based on its automatic discovery of the number of chunks.

3.3 LIMITATIONS OF SYNCMAP

Deadlock. We observed that in certain situations, the current equations of SyncMap can enter in a
type of deadlock (Fig. 4). For instance, correlated variables that belong to the same chunk cannot
attract toward each other because other variables of a different chunk are blocking their path. Vice
versa, the latter variables are also difficult to move when variables that belong to a different chunk
are around them. We discuss the solution to this problem using SubSigma’s dynamic in the later
section.

Incorrect Clustering. Moreover, the clustering algorithm, DBSCAN, used in SyncMap can induce
errors in clustering when dealing with varying densities or high-dimensional data. This issue can
not be prevented during the dynamic step, as chunking is performed separately on top of the learned
map (Fig. 4). Therefore, we seek a method that can perform chunking intrinsically without relying
on a separate clustering algorithm, which is later shown in section 4.2.

4 SUBSIGMA

To address the limitations of SycnMap, we proposed SubSigma, which introduces a novel dynamical
equations (SubSigma dynamics) and chunking methods (meta-variables).

4.1 SUBSIGMA DYNAMICS

Inspired by SyncMap, SubSigma follows the general workflow of SyncMap specified in section
3.2, unless detailed in this section. SubSigma introduces the concept analogous to physical bod-
ies. It considers inertia Ii,t+1 as the potential moving trend which contain the current acceleration
(∆ap,∆an) and previous inertia Ii,t (i.e., memory of the previous acceleration in weight space).
Specifically, the update of inertia is as follows:

Ii,t+1 = θIi,t + [ϕ(i, t)∆ap + (1− ϕ(i, t))∆an] (5)

where accelerations, the change in weight over one step, are denoted as ∆ap =
[
3
(

cpt−wi

||wi,t−cpt||

)
−(

wi−cnt

||wi,t−cnt||

)]
and ∆an =

[
3
(

cnt−wi

||wi,t−cnt||

)
−

(
wi−cpt

||wi,t−cpt||

)]
, θ is the inertia decaying coefficient
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and ϕ(i, t) is the switch function (Eq. 3). Each time step, weight is updated as follows, with α be
the learning rate:

wi,t+1 = wi,t + αIi,t+1 (6)
Fig. 2 shows the comparison between the dynamic of SyncMap and SubSigma, which explain why
SubSigma does not suffer from the deadlock issue.

Figure 2: Comparison of the dynamic between SubSigma and SyncMap. t0 shows the initial-
ization of four weights within a weight space, separated into two chunks, i.e., ’yellow’ and ’green’
color chunks. In SyncMap dynamic, the correlated weights move directly toward a common cen-
ter point cp but are repelled by the other chunks. This cause correlated weights to fail in forming
chunk as the system get caught in an equilibrium. Hence, the issue of deadlock. To address such
an issue, inertia is added into the system to create a strong-enough acceleration in any direction that
makes the deadlock unlikely to occur. The presence of additional forces in ∆ap and ∆an also added
extra degrees of freedom to cancel out the equilibrium. Consequently, at the end of the time step,
SyncMap accuracy is affected by the issue of deadlock; While SubSigma does not suffer from the
same issue.

4.2 META-VARIABLES

Without relying on the clustering method, SubSigma can create meta-variables recursively to iden-
tify chunks. At the end of each sequence of inputs, SubSigma joins the two closest weights (wi and
wj) into a newer weight wij =

wi+wj

2 , composing a meta-variable. The generated meta-variable
behaves as a single variable and can join with other variables/meta-variables in the next iterations of
the algorithm. This simple procedure in a subset of variables is equivalent to clustering in the long
run when combined with other subsets.

Stopping Criteria. Because meta-variable will be produced recursively, we need to set stopping
criteria to terminate further formation of meta-variables and eventually produces chunks as an out-
put. Based on stopping criteria, the model decides whether to (i) feed the processed weights back
to the dynamic step again or (ii) terminate its procedure, outputting the set of combined weights to
Magnum. Such stopping criteria are defined as:{

terminate minD(WS)
meanD(WS) > 0.3 or |WS| < 4

continue otherwise
(7)

where WS is the set of weights in the SubSigma, minD(WS) and meanD(WS) are the minimum
distance and mean distance of weights respectively, and |WS| refers to the number of variables
inside SubSigma. Essentially, stopping criteria stops the algorithm when either (i) all meta-variables
are more or less equally spaced in the dynamic map ( minD(WS)

meanD(WS) > 0.3) or (ii) the number of
meta-variables has decreased to only three (|WS| < 4).

5 MAGNUM

Imprecision is another issue especially when tackling high-dimensional problems, in addition to the
issues of the DBSCAN and the equation dynamics mentioned in the end section about SyncMap. In
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Figure 3: General workflow of Magnum. Magnum begins by sampling state variables from the
input sequence and dividing them into k numbers of subsets WS. These subsets are assigned the
same number of SubSigmas to yield multiple sets of local chunks, allowing high-dimensional state
variables to be analyzed in multiple low-dimensional problems. After each SubSigma learns the
local chunks, Magnum finds the consensus of SubSigmas’ variable correlation to determine the
prediction of global chunks.

high-dimensional problems, any imprecision on the lower level can cascade into inaccurate results.
On that account, we propose Magnum, a framework that solves most of the above using a population
of self-organizing subsystems (SubSigma). Specifically, Magnum creates several SubSigmas built
from a subset of the entire number of variables. To join the local variable correlation found by Sub-
Sigmas, Magnum creates a variable correlation consensus. Note that SyncMap could be employed
in place of SubSigma, however for the reasons mentioned before and evidenced by experiments, it
would not confer an accurate system.

5.1 SUBSIGMAS’ GENERATOR

Multiple subsequences of state variables are sampled from the input sequence and then the process
is repeated multiple times, creating many SubSigmas with a different set of variables. This essen-
tially helps to split high-dimensional state variables into a lower-dimensional one, which becomes
easier to solve by SubSigma and reduce the variance of the final outcome. In detail, consider a raw
input sequence S. We first randomly extract k subsequences from S, where the first state of the
subsequence is defined as GSi, i = 1...k. Starting from GSi, a searching process is applied, so that
each subsequence is set to contain l different state variables. We call these k subsequences the work
sets WSi, i = 1,...,k; note that WSi can have arbitrary length. Some state variables, however, may
not be taken into account any of WSi. To handle these missing states, Magnum searches the first
occurrence of that missing state from the raw sequence S, starting from MSi, i = k+1,...,n (sim-
ilarly to GSi above), and then generates additional work sets WSk+1 to WSn, by using the same
generation process as to create the first k of WSi. To this end, a total of n work sets are generated,
which will be assigned to n SubSigmas. Each assigned SubSigmas initialize weights and variable
correlation only to the state variables from the corresponding WSi.

5.2 VARIABLE CORRELATION BY CONSENSUS

By taking consensus between multiple SubSigmas, the final variable correlation is found. In essence,
it works by creating a matrix of C ∈ R|state|×|state| based on SubSigmas’ responses. Specifically,
for every pair of variables (i, j) within the same meta-variable, Ci,j is incremented, otherwise, Ci,j

is decremented. Once matrix C has aggregated all the response from SubSigmas, Magnum chunks
the variables in where Ci,j > 0.

6 EXPERIMENTS

The experiments are categorized into two major categories: (i) we evaluate the capabilities of Sub-
Sigma in CGCPs [problems originates from Vargas & Asabuki (2021)] to understand the improve-
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ment of dynamics compared to SyncMap and its performance compared to other baselines; (ii) We
evaluate the performance of Magnum integrates with SubSigma in high-dimensional CGCPs. We
discuss the setup and empirical results (Detail of statistical t-test are presented in the Appendix. D)
of both categories in the following subsection.

6.1 BASELINES

We compared the proposed method with four baselines: (i) Skip-gram Word2vec Mikolov et al.
(2013), a deep learning-based model that learns the associations of symbols and words embed-
ded in a latent space; (ii) MRIL Asabuki & Fukai (2020), a self-supervised cognitive model that
detects spatio-temporal correlation and repetitive patterns (chunks) solitary; and (iii) Modularity
Maximization Clauset et al. (2004); Newman & Girvan (2004), a community detection algorithm
that find communities in a large complex networks by maximizing the modularity. (iv) SyncMap
Vargas & Asabuki (2021), a self-organizing system that learns to identify chunks from sequential
data. The results are evaluated using the Normalized Mutual Information (NMI) score as a metric.
Data preprocessing was applied to render inputs fair and suitable for the above baselines (see section
6.2)

6.2 CGCPS

Here, we test the capabilities of the proposed SubSigma with the experiments originating from the
work that defined CGCPs and SyncMap. the CGCPs experiments utilize four types of problems to
measure chunking quality: (i) Two pure chunking problems, fixed chunk, and long chunk problems,
which contain only fixed and probabilistic chunks respectively. (ii) A mixed problem is composed
of the cross arrangement of fixed chunks and probabilistic chunks. (iii) Two overlapped problems, in
which there exist chunks that share some variables. (iv) Two real-world scenarios are two variations
of the first-order Markov model of theme transitions for humpback whales’ song types (Fig. 5).
All the problems here contain less than 30 state variables, therefore can not be considered as high-
dimensional CGCPs.

Experimental setup. All problems generate a sequence with 100,000 samples of state variables
each trial. To ensure a fair comparison when analyzing the effectiveness of dynamical equations,
both SyncMap and SubSigma used DBSCAN during the clustering phase. We compare SubSigma
with the four baselines mentioned above. The detail of the hyperparameters setting is given below.
Regarding SubSigma, we set the map dimension d to 3, the inertia decay rate θ to 0.999, and the
learning rate α to 0.001∗|state|, with |state| being the number of states. SyncMap has the same map
dimension and learning rate as SubSigma. Further, we considered an MRIL model with five output
neurons, training under a learning rate of 1e − 3. To evaluate a word embedding algorithm in the
context of CGCP, we set up a skip-gram Word2vec model as one of the baselines. The Word2vec
model takes the shape of a Variational Autoencoder, with a latent dimension of 3 and a Softmax
output layer. The model is trained for 10 epochs with a batch size of 64, using a learning rate of 1e−3
and a mean squared error as loss. A window of 100 steps is used to calculate the output probability of
skip-gram, equivalent to 10 state variable transitions. Modularity maximization algorithm can only
operate under the premise of a network, hence, we transform the input sequence into a weighted
directed graph via an adjacency matrix, which can be constructed simply by recording the state-to-
state transition of the input.

Results. CGCP results in Table 1 shows that SubSigma obtains overall optimal scores in four prob-
lems. It outperforms other baselines in 5 out of 7 problems. Moreover, SubSigma is the only
algorithm that maintains overall high NMI scores as the complexity of the problems increases. It
should be noted that SubSigma performs significantly better in Overlap1 and Overlap2 problems
relative to other baselines, showing the generalization ability and the effectiveness when dealing
with different settings of CGCP and real-world scenarios.

6.3 HIGH-DIMENSIONAL CGCPS

In high-dimensional CGCP, the number of state variables and chunks is directly proportional to
CGCP, with 10 times the amount used in the previous CGCP experiment. To evaluate and compare
algorithms regarding their ability to tackle high-dimensional CGCPs, some synthetic problems are
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Table 1: Result on CGCP. This table shows the NMI comparison over SubSigma, SyncMap, Modu-
larity Maximization (MMAX), Word2vec, and MRIL in basic CGCP. The best mean and statistically
similar results are in bold. (Data are mean±s.t.d.)

Baselines Fixed chunks Long chunks Mixed chunks Overlap1 Overlap2 Real world1 Real world2
MMax 1.00±0.00 0.63±0.00 0.77±0.00 0.68±0.00 0.46±0.00 0.40±0.02 0.48±0.00

Word2vec 1.00±0.00 0.63±0.20 0.80±0.09 0.27±0.33 0.11±0.11 0.28±0.06 0.79±0.06
MRIL 0.93±0.12 0.83±0.17 0.86±0.11 0.00±0.00 0.00±0.00 0.39±0.07 0.52±0.06

SyncMap 0.96±0.8 0.82±0.13 0.96±0.07 0.56±0.25 0.65±0.09 0.35±0.14 0.58±0.08
SubSigma 1.00±0.00 0.98±0.06 0.98±0.04 0.98±0.07 0.78±0.04 0.42±0.04 0.39±0.07

created to have a diverse set of features. Experiments are categorized into four categories: multiple
chunks, big chunks, balanced chunks and imbalanced chunks; each of which contains two types of
problems (mixed and fixed problems), resulting in a total of eight problems. Note that the chunk
size, chunks composition, and the number of chunks are task-specific, refers to Fig. 6 for a detailed
illustration of the environment’s setting. The idea behind the designed problem categories is to
encompass diverse features in the experiments. For instance, the multiple chunks category’s goal
is to evaluate how algorithms will respond to a situation with a large number of chunks, yet only
contains a small number of state variables. Contrarily, the big chunks category considers a case of
a small number of chunks with a larger chunk size. Besides, the balanced chunks category accounts
for equal numbers of chunks and chunk sizes. Oppositely, imbalance chunks category considers an
environment condition that closely resembles the real world, where the frequency of input events
vary drastically.

Table 2: Results on high-dimensional CGCP. This table shows the NMI comparison over Sub-
Sigma, SyncMap, Modularity Maximization (MMAX), Word2vec, MRIL, Magnum with SyncMap
and DBSCAN (Mag w/SM/D), Magnum with SubSigma and DBSCAN (Mag w/SS/D), and Mag-
num with SubSigma and Meta-variables (Mag w/SS/M) in high-dimensional CGCP. The best mean
and statistically similar results are in bold. (Data are mean±s.t.d.)

Multiple Chunks Big Chunks Balanced Chunks Imbalanced Chunks
Baselines Mixed Fixed Mixed Fixed Mixed Fixed Mixed Fixed

MMax 0.79±0.00 0.87±0.00 0.40±0.02 0.67±0.00 0.70±0.02 0.81±0.00 0.66±0.00 0.79±0.00
Word2vec 0.76±0.03 0.65±0.03 0.78±0.15 0.63±0.05 0.69±0.02 0.78±0.08 0.69±0.08 0.70±0.13

MRIL 0.56±0.01 0.45±0.01 0.01±0.00 0.16±0.05 0.24±0.06 0.28±0.04 0.11±0.12 0.26±0.03
SyncMap 0.39±0.05 0.59±0.02 0.85±0.03 0.22±0.04 0.70±0.02 0.38±0.12 0.59±0.02 0.37±0.02
SubSigma 0.83±0.02 0.57±0.04 0.27±0.06 0.20±0.02 0.35±0.04 0.47±0.03 0.31±0.05 0.36±0.02

Mag w/SM/D 0.93±0.02 0.72±0.08 0.15±0.29 0.53±0.02 0.66±0.09 0.70±0.04 0.20±0.21 0.62±0.01
Mag w/SS/D 0.96±0.01 0.92±0.02 0.58±0.20 0.60±0.02 0.69±0.03 0.80±0.03 0.69±0.13 0.73±0.04
Mag w/SS/M 0.93±0.01 0.94±0.02 0.79±0.21 0.67±0.02 0.94±0.02 0.85±0.02 0.87±0.04 0.78±0.04

Experimental setup. In all experiments, models are presented with 500, 000 samples generated
from the problem. Note that the chunk size, chunk composition, and the number of chunks are task-
specific, details and illustrations of the problem’s setting are in the Appendix. Other than the four
baselines mentioned previously, we also experiment with SubSigma and three different versions of
Magnum. Regarding Magnum’s parameter, we choose the length of the work set to be l = 10 and
the initial number of the work sets to be k = 100. All the parameters of SubSigma, SyncMap,
MRIL, Word2vec, and Modularity Maximization are identical to the previous experimental setup.

Results. The empirical results of high-dimensional CGCP are shown in Table 2. Despite ex-
celling in CGCPs, SubSigma alone is insufficient to tackle high-dimensional CGCPs. By integrat-
ing SubSigmas/meta-variables, Magnum outperforms or performs equally to the best algorithm in
all tests. it achieved the sole best performance in 5 out of 8 tasks. Other than that, Magnum with
SubSigma/DBSCAN appears to perform better than Magnum with SyncMap/DBSCAN. The abla-
tion study on different versions of Magnum suggests that Magnum with SubSigma as self-organizing
subsystems performs better than that with SyncMap. In terms of the clustering phase, meta-variables
are a better chunking approach compared to DBSCAN by solving the issue of incorrect clustering.

8
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7 DISCUSSION

Regarding the performance of Magnum, high-dimensional problems are less of an issue for Magnum
because of the use of multiple SubSigmas, each one working on an easier low-dimensional problem.
A caveat of SubSigma in comparison to SyncMap is that although it is more reliable in relation to its
dynamics, the stopping criteria used inside it might be deleterious. In other words, SubSigma might
have responses that are too early (|WS| < 4) conferring a less precise response when compared with
SyncMap. This, however, is remediated by how Magnum works, i.e., aggregating partial results with
inconsistencies that are averaged out into a consistent final one. The above is true if there are enough
correct results to average out incorrect ones. However, if the sampling of some regions is less than
sufficient, it is possible that the final result will not be averaged out but contain the inconsistencies
of the partial responses from SubSigmas.

Modularity Maximization is a deterministic algorithm where the standard deviation should be zero
if the transition matrix is precisely estimated. However, as shown in the results, this is the only time
when the result has a non-zero standard deviation. Therefore, a possible reason for the worse results
might be that the transition matrix did not have time to be precisely approximated from the random
walk. It can be observed that the NMI score decreases when the size of chunks increases, showing
that modularity maximization is good at detecting multiple small-size chunks.

Regarding SyncMap’s performance, it performs poorly mostly on fixed problems. Fixed problems
have variables that either can get stuck on deadlocks easily (given the relatively high repetition of
patterns), have variables/chunks which are rarely visited, or both. However, it performs the best in
mixed structure big chunks and second the best in balanced chunks mixed structure. This reveals
that it is capable of identifying probabilistic chunks with high accuracy.

Regarding Word2vec, careful examination of the map learned by Word2vec reveals it is good at
transferring the correlation from variables into a dispersed map. NMI scores are around 0.7 in most
of the tests because it is hard to cluster chunks in such a dispersed map. Its consistency throughout
reveals that although not accurate, it is one of the most reliable algorithms for high dimensions. Such
a consistency might drop once accuracy is improved by any improvement in the method.

Regarding MRIL, a high variation of results was found in the experiment over time, suggesting that
the algorithm suffers from instability. Increasing the number of outputs might further improve the
results, but it is still not enough to find parameters. Moreover, the high-dimensional nature of the
problems analyzed here makes little fluctuations or imprecision in the method even worse. One of
the reasons lies in the fact that lateral inhibition can not be trained efficiently. Thus, for a large
number of output neurons, it becomes impracticable.

8 CONCLUSION

In this paper, we proposed a framework that identifies chunks from high-dimensional sequences
data. Magnum assigns subsets of large groups of the variable to numerous self-organizing sub-
systems (SubSigma) to create consensus upon aggregation. Such consensus allows for partial in-
accurate responses to be merged into a consistent and accurate one. Specifically, SubSigma can
be viewed as an enhancement of SyncMap by solving both the deadlock as well as removing the
clustering algorithm. Overall, the empirical results showed that Magnum outperforms or ties with
all other unsupervised algorithms in high-dimensional tasks. By solving complex high-dimensional
problems, Magnum acts as a stepping-stone for self-organizing systems to further its application.
However, our model required further validation based on real-world application. Currently, we are
constrained by the limited amount of suitable datasets that satisfied our niche input requirement.
Looking forward, we expect variations of Magnum should further increase the gap to other algo-
rithms in high-dimensional continual general chunking problems. More experiments are required
to validate real-world scenarios. We set our future directions to investigate more complex problems
with dynamic, hierarchical, and causal relations. We also seek broader implications in the area of
language processing to image/action recognition, as these areas involve input that can be serialized
as high-dimensional sequence data and thus tackled with variations of the algorithm proposed here.
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A LIMITATION OF SYNCMAP

Figure 4: SyncMap’s Limitations. (A) Deadlock: Purple points at the center will tend to stay to-
gether. However, this would block the two orange points that will be attracted towards the center
(∆wpt) while being repelled by the purple points (∆wnt). (B) Clustering Miss: Beyond the dy-
namic, three different chunks tend to stay in each corner. However, DBSCAN chunks the points into
different groups, which are in yellow and green.

12



Under review as a conference paper at ICLR 2023

B REAL WORLD SCENARIO IN CGCPS

Figure 5: Real World Scenario. First-order Markov Chain of humpback whales’ song types (Gar-
land et al., 2017). A and B are real-world 1 and 2 respectively.
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C HIGH DIMENSIONAL CGCPS

Figure 6: Illustration of problem categories and settings in high-dimensional CGCP. For better
visualization, we symbolized probabilistic and fixed chunks according to the legend (Top right),
along with its chunk size and its index (also indicate the total number of chunks). We categorize
our experiments into four major categories (multiple chunks, big chunks, balanced chunks, and
imbalanced chunks); each of which contains two types of problems (mixed and fixed problem),
resulting in a total of eight environments. Chunk size, chunks composition, number of chunks, and
transition of state variables for each environment are illustrated in detail.
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D STATISTICAL TESTS

We used a two-sample t-test with a p-value larger than 0.05 to verify if the best result is statistically
significantly different from other results. We calculate the two-tailed p value. All the tests are using
30 samples for each model.

Table 3: Statistical Results of CGCPs.

Problems Description p value Problems Description p value

Fixed chunks SubSigma vs mmax NaN Fixed chunks SubSigma vs MRIL 2.6e-03
SubSigma vs word2vec NaN SubSigma vs SyncMap 8.0e-03

Long chunks SubSigma vs mmax 1.6e-38 Long chunks SubSigma vs MRIL 2.7e-05
SubSigma vs word2vec 6.6e-13 SubSigma vs SyncMap 8.6e-08

Mixed chunks SubSigma vs mmax 5.1e-36 Mixed chunks SubSigma vs MRIL 5.8e-07
SubSigma vs word2vec 2.9e-14 SubSigma vs SyncMap 1.7e-1

Overlap1 SubSigma vs mmax 2.6e-31 Overlap1 SubSigma vs MRIL 5.2e-60
SubSigma vs word2vec 1.2e-16 SubSigma vs SyncMap 2.2e-12

Overlap2 SubSigma vs mmax 3.7e-46 Overlap2 SubSigma vs MRIL 2.7e-68
SubSigma vs word2vec 4.6e-38 SubSigma vs SyncMap 1.2e-09

Real world1 SubSigma vs mmax 1.7e-02 Real world1 SubSigma vs MRIL 4.6e-2
SubSigma vs word2vec 3.0e-15 SubSigma vs SyncMap 1.0e-2

Real world2 word2vec vs mmax 1.2e-35 Real world2 word2vec vs SyncMap 1.3e-16
word2vec vs MRIL 1.0e-24 word2vec vs SubSigma 1.3e-31

Table 4: Statistical Results of High-dimensional CGCPs

Problems Description P value Problems Description P value

Multiple Chunks
(Mixed)

Mag w/SS/D vs mmax 7.4e-65
Multiple Chunks

(Mixed)

Mag w/SS/D vs SubSigma 1.9e-38
Mag w/SS/D vs word2vec 1.8e-40 Mag w/SS/D vs Mag w/SM/D 7.6e-10

Mag w/SS/D vs MRIL 1.2e-77 Mag w/SS/D vs Mag w/SS/M 8.9e-17
Mag w/SS/D vs SyncMap 2.1e-54

Multiple Chunks
(Fixed)

Mag w/SS/M vs mmax 8.9e-27
Multiple Chunks

(Fixed)

Mag w/SS/M vs SubSigma 5.6e-47
Mag w/SS/M vs word2vec 2.7e-46 Mag w/SS/M vs Mag w/SM/D 4.2e-21

Mag w/SS/M vs MRIL 3.2e-71 Mag w/SS/M vs Mag w/SS/D 2.7e-04
Mag w/SS/M vs SyncMap 6.3e-57

Big Chunks
(Mixed)

SyncMap vs mmax 3.8e-57
Big Chunks

(Mixed)

SyncMap vs Mag w/SM/D 4.7e-19
SyncMap vs word2vec 1.5e-02 SyncMap vs Mag w/SS/D 8.7e-10

SyncMap vs MRIL 2.2e-77 SyncMap vs Mag w/SM/M 1.2e-1
SyncMap vs SubSigma 4.6e-48

Big Chunks
(fixed)

mmax vs word2vec 5.0e-0.5
Big Chunks

(fixed)

mmax vs Mag w/SM/D 6.7e-43
mmax vs MRIL 3.9e-52 mmax vs Mag w/SS/D 8.9e-27

mmax vs SyncMap 1.4e-54 mmax vs Mag w/SS/M 1.0e-00
mmax vs SubSigma 5.7e-73

Balanced Chunks
(Mixed)

Mag w/SS/M vs mmax 1.3e-47
Balanced Chunks

(Mixed)

Mag w/SS/M vs SubSigma 1.6e-58
Mag w/SS/M vs word2vec 1.3e-48 Mag w/SS/M vs Mag w/SM/D 9.6e-24

Mag w/SS/M vs MRIL 3.7e-54 Mag w/SS/M vs Mag w/SS/D 1.1e-42
Mag w/SS/M vs SyncMap 1.3e-47

Balanced Chunks
(Fixed)

Mag w/SS/M vs mmax 9.5e-16
Balanced Chunks

(Fixed)

Mag w/SS/M vs SubSigma 6.0e-53
Mag w/SS/M vs word2vec 1.9e-05 Mag w/SS/M vs Mag w/SM/D 7.4e-26

Mag w/SS/M vs MRIL 5.8e-29 Mag w/SS/M vs Mag w/SS/D 2.9e-10
Mag w/SS/M vs SyncMap 6.9e-29

Imbalanced Chunks
(Mixed)

Mag w/SS/M vs mmax 5.1e-36
Imbalanced Chunks

(Mixed)

Mag w/SS/M vs SubSigma 2.4e-48
Mag w/SS/M vs word2vec 7.4e-16 Mag w/SS/M vs Mag w/SM/D 2.0e-24

Mag w/SS/M vs MRIL 3.2e-39 Mag w/SS/M vs Mag w/SS/D 1.1e-09
Mag w/SS/M vs SyncMap 3.3e-40

Imbalanced Chunks
(Fixed)

Mag w/SS/M vs mmax 3.5e-04
Imbalanced Chunks

(Fixed)

Mag w/SS/M vs SubSigma 7.4e-65
Mag w/SS/M vs word2vec 8.1e-66 Mag w/SS/M vs Mag w/SM/D 2.6e-11

Mag w/SS/M vs MRIL 3.7e-70 Mag w/SS/M vs Mag w/SS/D 1.7e-01
Mag w/SS/M vs SyncMap 9.7e-71
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