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Abstract

The Electronic Health Record (EHR) is an es-001
sential part of the modern medical system and002
impacts healthcare delivery, operations, and re-003
search. Unstructured text is attracting much004
attention despite structured information in the005
EHRs and has become an exciting research006
field. The success of the recent neural Natu-007
ral Language Processing (NLP) method has led008
to a new direction for processing unstructured009
clinical notes. In this work, we create a python010
library for clinical texts, EHRKit. This library011
contains two main parts: MIMIC-III-specific012
functions and task-specific functions. The first013
part introduces a list of interfaces for access-014
ing MIMIC-III NOTEEVENTS data, including015
basic search, information retrieval, and infor-016
mation extraction. The second part integrates017
many third-party libraries for up to 12 off-shelf018
NLP tasks such as named entity recognition,019
summarization, machine translation, etc.020

1 Introduction021

With the rising trend of Electronic Health Records022

(EHRs), massive unstructured texts (i.e., clinical023

and admission notes) are being created in the024

healthcare system. It is very important to pro-025

cess such data for secondary usage (Xiao et al.,026

2018). The main obstacle is the processing and027

understanding of the unstructured text. Natural028

Language Processing (NLP) techniques have been029

applied to deal with such texts (Li et al., 2021a;030

Shickel et al., 2018; Al-Aiad et al., 2018). Es-031

pecially, deep learning-based methods achieved032

great success in some existing NLP tasks in the033

biomedical and clinical literature, such as text clas-034

sification (Zhou et al., 2021; Li and Yu, 2020; Li035

et al., 2019; Hughes et al., 2017), named entity036

recognition (Song et al., 2021), text segmentation037

(Badjatiya et al., 2018), medical language transla-038

tion and generation (Weng et al., 2019; Abacha and039

Demner-Fushman, 2019) and many others.040

Following the success of BERT (Devlin et al., 041

2019), researchers developed BERT-based models 042

trained on the clinical literature, such as BioBERT 043

(Lee et al., 2020) and ClinicalBERT(Huang et al., 044

2019). With such advanced neural models, there 045

is a need for a user-friendly programming inter- 046

face that can support a variety of downstream tasks. 047

Some existing libraries and toolkits are designed 048

for bioinformatical and clinical needs, including 049

the biomedical and clinical model packages of 050

Stanza (Zhang et al., 2021), SciFive (Phan et al., 051

2021), UmlsBERT (Michalopoulos et al., 2021), 052

MIMIC-Extract (Wang et al., 2020) and so on. 053

However, we noticed a need to integrate more exist- 054

ing libraries with much broader coverage of clinical 055

and biomedical NLP tasks in our toolkit. Besides, 056

based on the analysis from Li et al. (2021a), there 057

is limited research on generation tasks for EHR un- 058

structured text, i.e., machine translation. Thus, we 059

provide a pretrained model for clinical text machine 060

translation in our toolkit, which supports three lan- 061

guages. 062

Our contributions are: 1) First, we propose 063

EHRKit, a Python NLP toolkit for EHR unstruc- 064

tured texts. This toolkit contains two main compo- 065

nents: general API functions and MIMIC-specific 066

functions. It is user-friendly, with easy instal- 067

lation and quick start tutorials. 2) Second, to 068

fill the gap in text generation for clinical texts, 069

we release pretrained machine translation mod- 070

els in three languages. Besides, we evaluate ex- 071

isting pretrained models for summarization in a 072

biomedical and clinical scenario. We release this 073

toolkit and pretrained models publicly available at 074

placeholder.link. 075

2 System Design and Architecture 076

We show our EHRKit architecture in Fig. 1. It 077

consists of two modules, namely MIMIC-III Tasks 078

and Wrapper Functions. 079
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Figure 1: EHRKit Architecture.

2.1 MIMIC-III Tasks080

We include some basic NLP functions for MIMIC-081

III NOTEEVENTS text data (Johnson et al., 2016).082

• Basic statistical functions support counting for083

number of patients and number of documents,084

number of sentences and so on.085

• Information Extraction provides helpful inter-086

faces for investigating the data, i.e., phrases087

extraction, and abbreviation term extraction088

from a given record ID. We applied Phrase-089

At-Scale1 for this function.090

• Keyword Search allows users to search a091

record by a keyword.092

• Document Retrieval allows users to search a093

record by ID.094

• Extractive and Abstractive Summarization:095

Naïve Bayes (Ramanujam and Kaliappan,096

2016) and DistilBART (Shleifer and Rush,097

2020) for text summarization.098

2.2 Wrapper Functions099

This module integrates many third-party libraries100

and supports up to 12 functionalities for any free-101

text inputs.102

• Abbreviation Detection and Expansion: finds103

abbreviation and its expansions. Function im-104

ported from ScispaCy2.105

• Sentencizer: detects sentence boundaries. We106

support four approaches: PyRuSH3, Stanza,107

ScispaCy and Stanza Biomed.108

• Hyponym Detection: finds the hyponyms of109

the recognized entities in the input text. Func-110

tion imported from scispaCy.111

1https://github.com/kavgan/phrase-at-
scale

2https://allenai.github.io/scispacy/
3https://github.com/jianlins/PyRuSH.

• Negation Detection: detects negation in a sen- 112

tence, imported from medspaCy (Eyre et al., 113

2021a) 114

• Word Tokenization: tokenizes a sentence into 115

a list of words. Function imported from 116

medspaCy. 117

• Named Entity Recognition: finds named en- 118

tities, part-of-speech and universal morpho- 119

logical features, and dependencies of an in- 120

put record. Function imported from Stanza 121

(Zhang et al., 2021). 122

• Document Clustering: given the query record, 123

selects k documents from supporting records 124

that are most similar to the main record (K- 125

Means clustering), measured by embedded 126

document using pretrained BERT model (De- 127

vlin et al., 2019). 128

• UMLS Concept Extraction: matches the 129

UMLS concept for the input text. Function 130

imported from medspaCy (Eyre et al., 2021a). 131

• Entity Linking: finds named entities, negation 132

entities, and linked entities in the input text. 133

Function imported from scispaCy. 134

• Section Detection: rule-based method for de- 135

tecting section (i.e., allergies, history). Func- 136

tion imported from medspaCy (Eyre et al., 137

2021a). 138

• Machine Translation: translates English texts 139

into 17 target languages. We applied the ex- 140

isting MarianMT model4, as well as our own 141

fine-tuned models. 142

• Summarization: we support both extractive 143

and abstractive summarization methods. We 144

integrated TextRank (Mihalcea and Tarau, 145

2004), pretrained BART (Lewis et al., 2019), 146

4https://huggingface.co/docs/transfor
mers/model_doc/marian
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MIMIC Neu MT Summ

MIMIC-Extract ✓

ScispaCy ✓

medspaCy ✓

Stanza Biomed ✓

SciFive ✓ ✓

EHRKit (ours) ✓ ✓ ✓ ✓

Table 1: A comparison with other similar python toolk-
its. MIMIC: MIMIC Related. Neu: Neural Methods.
MT: Machine Translation. Summ: Summarization.

T5 (Raffel et al., 2020) and SciFive summa-147

rization libraries. We also allow single and148

multiple documents as the input.149

2.3 Other similar libraries150

MIMIC-Extract5A pipeline for preprocessing and151

presenting data from MIMIC-III dataset. It pro-152

vides features for data analysis, including extrac-153

tion of clinical events like mortality from free text.154

ScispaCy (Neumann et al., 2019) A tool155

that adapts SpaCy’s models to process scientific,156

biomedical, and clinical text. It supports multiple157

methods for tokenization, part of speech tagging,158

dependency parsing, and named entity recognition.159

medspaCy Based on the spaCy framework,160

medspaCy (Eyre et al., 2021b) is a clinical NLP161

python library that provides both rule-based and162

machine learning-based methods for processing163

clinical text. It supports methods for various clin-164

ical applications such as UMLS Mapping (rule-165

based), Section Detection, Sentence Detection,166

Contextual Analysis and Visualization on entities.167

Stanza Biomed (Zhang et al., 2021) A set of168

tools for statistical, neural, and rule-based problems169

in computational linguistics. Its software provides170

a simple interface for NLP tasks. It is a widely171

used Python library for processing clinical texts. It172

provides nearly state-of-the-art performance using173

neural networks on tasks including tokenization,174

sentence segmentation, part of speech (POS) tag-175

ging, lemmatization, and dependency parsing.176

SciFive (Phan et al., 2021) A pretrained neu-177

ral language model for biomedical domain. Fine-178

tuned on PubMed Abstract 6 and PubMed Central179

(PMC) 7, it outperformed similar models including180

5https://github.com/MLforHealth/MIMIC
_Extract

6https://pubmed.ncbi.nlm.nih.gov/
7https://www.ncbi.nlm.nih.gov/pmc

Lang. Pair Total Train Test

en → es 790,915 672,276 111,779
en→fr 2,812,305 2,390,458 407,388
en→ ro 1,165,092 990,327 161,936

Table 2: Data statistics for machine translation: we
apply UFAL and select the overlapped target language
pairs for our experiments.
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Figure 2: BLEU score: before and after pretraining.

BioBERT and T5 on multiple NLP tasks: named 181

entity relation, relation extraction, natural language 182

inference, and question answering. 183

Tab. 1 lists our EHRKit and other similar toolk- 184

its. We compare from different perspectives by 185

focusing on the functionalities. MIMIC Related: 186

if supports MIMIC-related functions. We consider 187

MIMIC an essential data source that plays an im- 188

portant role in research. We can find that only 189

MIMIC-Extract and EHRKit support these related 190

functions, and users can apply them directly to 191

the MIMIC data. Neural Methods: if this toolkit 192

supports neural methods and embedding methods. 193

As we can see, the majority contain such features. 194

Machine Translation and Summarization: if this 195

toolkit supports (neural) generation tasks like ma- 196

chine translation and summarization. In this case, 197

only SciFive and EHRKit support such features. 198

Our toolkit provides diverse functionalities and is 199

easy to use based on these perspectives. 200

3 Performance Evaluation 201

3.1 Machine Translation 202

We report the performance of the Machine Transla- 203

tion function from our EHRKit and compare it with 204

the baseline model, MarianMT. Our training sets 205

and test sets are obtained from the UFAL Medical 206

Corpus8. These data are from various medical text 207

sources, such as titles of medical Wikipedia articles, 208

medical term-pairs, patents, and documents from 209

the European Medicines Agency (Braune et al., 210

8https://ufal.mff.cuni.cz/ufal_medical
_corpus

3

https://github.com/MLforHealth/MIMIC_Extract
https://github.com/MLforHealth/MIMIC_Extract
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus


PubMed MIMIC-CXR
R-1 R-2 R-L R-1 R-2 R-L

Pegasus (Zhang et al., 2020) 45.97 20.15 28.25 65.11 52.90 61.88
BigBird (Zaheer et al., 2020) 46.32 20.65 42.33 63.85 51.09 60.55
BART (Lewis et al., 2019) 44.16 20.28 36.80 62.09 49.02 58.65
SciFive (Phan et al., 2021) 48.83 15.81 37.06 65.17 52.45 61.80

Table 3: Summarization evaluation: we evaluate selected models and report ROUGE-1, ROUGE-2 and ROUGE-L.

Dataset Train Valid Test

PubMed 112K 6.6K 6.7K
MIMIC-CXR 91,544 2000 600

Table 4: Data statistics for PubMed and MIMIC-CXR
summarization datasets. Words are counted before tok-
enization.

2018). We evaluate language pairs, including En-211

glish (en) to Spanish (es), English to French (fr),212

and English to Romanian (ro), as those are the three213

language pairs that EHRKit and UFAL mutually214

support.215

For data pre-processing, we first exclude general216

domain data from UFAL, such as parliament pro-217

ceedings. Next, we randomly shuffle the medical-218

domain corpora and split it into two parts by 85%219

and 15%, as our training set and test set, respec-220

tively. For each language pair, we use all of the221

available parallel data. Tab. 2 summarizes the num-222

ber of sentences that we extract from UFAL.223

Subsequently, we evaluate model performance224

using the BLEU score (Papineni et al., 2002). We225

finetune our model with the training sets (After)226

and compare it with the baseline model, Mari-227

anMT (Before). As shown in Fig. 2, our model228

improves significantly after finetuning, with an av-229

erage 16.80% increase in BLEU score. Among the230

three selected language pairs, we can observe that231

English to French has the best improvement - it232

achieves 32.40% performance gain. We conjecture233

that this occurs because we have significantly more234

training data in English to French.235

3.2 Summarization236

Since there are many existing pretrained models237

for summarization in the general NLP field, we238

investigate how they perform in the biomedical lit-239

erature and clinical data. Summarization corpora240

from the clinical scenario are very challenging to241

be obtained, so we chose the existing PubMed (Co-242

han et al., 2018) and MIMIC-CXR (Johnson et al.,243

2019) as our principal datasets. 244

PubMed dataset consists of 133k biomedical 245

scientific publications from the PubMed database. 246

Each input document is a scientific article, and 247

the reference summary is the associated abstract. 248

MIMIC-CXR is a de-identified, Protected Health 249

Information removed dataset of chest radiographs, 250

with a DICOM format and free-text radiology re- 251

ports. We use a subset from the MIMIC-CXR for 252

the MEDIQA 2021 Radiology report summariza- 253

tion shared task (Delbrouck et al., 2021). Each 254

example contains three fields: (a) findings field is 255

the original human-written radiology findings text, 256

(b) impression field is the human-written radiology 257

impression text, and (c) background field is the 258

background information of the study in text format. 259

We show the statistics in Tab. 4. 260

We evaluate selected pretrained abstractive meth- 261

ods using ROUGE (Lin, 2004) in Tab. 3. Among 262

the four models, we can observe that SciFive has 263

a high R-1 score, but BigBird (Zaheer et al., 2020) 264

and Pegasus (Zhang et al., 2020) achieve a better 265

score on R-2 and R-L, respectively, on the two 266

datasets. This evaluation shows that it is challeng- 267

ing to determine which model is the best in our 268

specific scenario, though SciFive was pretrained 269

for this purpose. In the future, more work can 270

be done to improve automatic summarization for 271

biomedical and clinical texts. 272

4 Conclusion 273

In this work, we propose a python library for clini- 274

cal texts, EHRKit. This toolkit contains two main 275

components: general API functions and MIMIC- 276

specific functions. In the future, we will investigate 277

more EHR-NLP tasks including machine transla- 278

tion for more languages, multi-document summa- 279

rization and question answering (Li et al., 2021a). 280

Besides, we plan to investigate better-performed 281

NLP models for these tasks, for example, BERT- 282

based models (Lee et al., 2020; Li et al., 2021b). 283
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A Limitations500

As our work is a tool for processing clinical texts,501

we do not propose model-based novelty as one502

of our main contributions. Users may find that503

we conducted evaluations and built high-level user504

interfaces instead of proposing new models.505

As EHRKit relies on many other existing li-506

braries, we suggest that users install compatible507

and correct versions for robust usage.508

B Potential Risk509

This work is an open-source tool for clinical text510

processing. We did not use any user-sensitive data511

for training or testing, and this tool does not con-512

tain any related functionalities. Users should avoid513

using such data as inputs.514

C Experiments515

Our models were trained on a 4 Nvidia 3090 GPUs516

with a batch size of 8. We train all of our models517

using Adagrad with 0.15 learning rate and have an518

accumulator of 0.1.519

C.1 Machine Translation520

The training time varies on language pairs. The521

total trial, training and evaluation time is about 60522

ours.523

C.2 Summarization524

During training we are regularly measuring the loss525

and the ROUGE-1 F-score on the validation set of526

the dataset in order to monitor the learning of our527

model. We end the training when the validation528

loss stops improving. The overall trial, training and529

evaluation time is about 20 hours.530
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