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Abstract—This paper investigates the design problem of event-
triggered (ET) fuzzy controller for networked control system-
s subject to denial-of-service (DoS) attacks via compensation
scheme. Firstly, for constrained communication bandwidth, an
ET scheme is introduced to save network resources. Secondly,
based on the DoS attacks compensation scheme, the unfavorable
impact of DoS attacks on system is alleviated. Compared with
most of the existing methods, the attack compensation mechanism
introduced in this paper can maintain data transmission during
DoS attacks. Combining the above content, the Lyapunov stability
theory is utilized to identify the sufficient conditions for the
closed-loop system to be asymptotically stable. Finally, simulation
verification is presented to demonstrate the effectiveness of the
proposed control strategy.

Index Terms—Event-triggered fuzzy controller, DoS attacks,
compensation mechanism, networked control systems.

I. INTRODUCTION

Nonlinear networked control systems (NCSs) have received
extensive attention from the researchers with the development
of control techniques [1, 2]. The Takagi-Sugeno (T-S) fuzzy
model, as a model that rely on fuzzy rules to approximate
nonlinear terms, has gradually entered scholars field of vision
with the research on nonlinear NCSs [3–5]. For instance,
the authors in [5] resolved the guaranteed cost static output
feedback control problem for T-S fuzzy system by using
guaranteed cost performance function. It should be pointed out
that the above literature did not take into account the challenge
of constrained communication bandwidth in NCSs.

In the NCSs, due to the limited communication bandwidth,
the reduction of the occupation on network resources for NCSs
has become a concern for many researchers. To save limited
communication resources, event-triggered (ET) mechanisms
have been proposed and widely applied [6, 7]. To name a few,
in [7], the authors investigated the dynamic output feedback
model predictive control problem for NCSs with packet loss
and bounded disturbance under the fixed threshold ET scheme.
In contrast to time-triggered mechanisms, the ET scheme miti-
gates redundant packet transmissions and selectively forwards
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packets that meet ET criteria to the network. It should be
noted that the above results only considered the issue of saving
communication resources and did not take into account the
possibility of malicious attacks on communication networks.

A typical form of network attacks is denial-of service (DoS)
attacks. When DoS attacks are conducted on the communica-
tion network by attackers, the transmission of data will be
blocked, which severely impacts the system performance. To
reduce the unfavorable impact of DoS attacks on the system,
many remarkable works have been published [8, 9]. The au-
thors in [8] proposed a security-based ET fuzzy control method
for NCSs to reduce the unfavorable impact of DoS attacks.
Fan et.al [9] designed the resilient sampled-data controller for
DoS attacks, reduced the effect from DoS attacks by adjusting
the sampling instant. Recently, researchers mainly deal with
DoS attacks in a resilient mechanism by increasing data
transmission instead of considering the transmission issues
when DoS attacks happen. Therefore, investigating a DoS
attacks compensation mechanism to maintain the transmission
when DoS attacks happen is a significant and challenging
issue.

Taking inspiration from the above, this paper investigated
the problem of designing an attack compensation controller
based on ET mechanism which mitigates the unfavorable
impact of DoS attacks while saving communication resources.
In this paper, an ET scheme is introduced to save network
resources and then a DoS attack compensation mechanism
is applied in the ET to controller channel to maintain the
transmission of the data when DoS attacks happen, thereby
achieving the purpose of weakening unfavorable effects of
DoS attacks. Considering ET mechanism and DoS attacks, a
controller design method is proposed for T-S fuzzy NCSs to
ensure asymptotic stability and security of the system.

II. PROBLEM FORMULATION

A. T-S Fuzzy Model

Consider the T-S fuzzy model with n̂ rules, giving the
description as follows:



Plant Rule l: IF η1(x(k)) is V l1, and η2(x(k)) is V l2 and
,..., and ηp(x(k)) is V lp, THEN

x(k + 1) = Alx(k) + Blu(k) + B1lw(k),

z(k) = Clx(k) + Dlu(k), (1)

where V lα is the fuzzy set (l = 1, . . . , n̂ and α = 1, . . . ,p).
Define ηα(x(k)) = ηα(x) to be premise variable. p denotes
the number of the premise variables. x(k) ∈ Rx is the state
vector. u(k) ∈ Ru is the input vector. ω(k) ∈ Rω is the
external disturbance that belongs to ` [0,∞) . z(k) ∈ Rz is the
controlled output. Al, Bl, B1l, Cl and Dl are known constant
matrices with appropriate dimensions. Reformulate the model
(1) as

x(k + 1) =

n̂∑
l=1

ml(η(x)) [Alx(k) + Blu(k) + B1lω(k)] ,

z(k) =

n̂∑
l=1

ml(η(x)) [Clx(k) + Dlu(k)] , (2)

where

vl(η(x)) =

p∏
α=1

V lα(ηα(x)) ≥ 0,

ml(η(x)) =
vl(η(x))∑n̂
l=1 vl(η(x))

,

n̂∑
l=1

ml(η(x)) = 1.

B. ET Scheme

In the NCSs, due to the limitation of communication
bandwidth, an ET scheme is employed for the reduction of
occupation on network resources, which can be described as
follows:

tk+1 = tk + min
j>0
{j| [x (tk + j)− x(tk)]

T
Ω[x (tk + j)

− x(tk)] > ρxT (tk) Ωx (tk)} (j ∈ N), (3)

where Ω > 0 is a weighting matrix. x(tk) is the previously
transmitted data. x(tk+j) denotes the current sampled data. ρ
is an appropriate constant that denotes the ET threshold. The
data will be transmitted if x(tk+j) satisfies the ET condition.

Given ϑk ∈
[
0, ϑ̄
]

to be the network-induced delay. Define
s̀ = k−ϑ(k). Let dm = minj≥1 {j | Tk + j ≥ Tk+1} (Tk =
tk +ϑk) to decompose [Tk,Tk+1) into [Tk,Tk+1) = ∪dmj=1θj
, where θj =

[
Tk+(j−1),Tk+j

)
. ϑ(k) and e(k) are described

as follows:

ϑ(k) =



k − tk, k ∈ θ1,
...

k − tk − j, k ∈ θj+1,
...

k − tk − (dm − 1), k ∈ θdm ,

(4)

e(k) =



0, k ∈ θ1,
...

x(tk)− x(tk + j), k ∈ θj+1,
...

x(tk)− x(tk + (dm − 1)), k ∈ θdm .

(5)

Form the equations above, it is clear that ϑ(k) satisfies

0 ≤ ϑ1 ≤ ϑ(k) ≤ ϑ̄+ 1 = ϑm,

where ϑ̄ = max {ϑk}, and x(tk) = x(s̀) + e(k).

C. DoS Attacks Compensation Mechanism

Next, introducing the compensation mechanism [10] to
alleviate the unfavorable effect from DoS attacks. The data
transmitted to the controller is

_
x(k) = $(k)x(tk) + (1−$(k))

_
x(k − 1), (6)

where $(k) is a Bernoulli variable, which shows the random-
ness of DoS attacks. When $(k) = 0, it means that DoS
attacks are happening, otherwise $(k) = 1.

The mathematical expectation of $(k) is

E{$(k) = 1} = $̂, E{$(k) = 0} = 1− $̂,

where $̂ ∈ [0, 1) is a given constant, and the mathematical
variance of Bernoulli variable is E{($(k) − $̂)2} = $̂(1 −
$̂) = κ2.

Remark 1: In this paper, a buffer is used to store the
sampling signal that meets the ET condition. When there is
no DoS attack occurs, the input signal of the controller is
x(tk). When there is a DoS attack, the input signal of the
controller is the previous transmitted signal _

x(k − 1). This
avoids the situation where there is no input signal transmitted
to controller when the network is suffering DoS attacks.

D. Controller Design

Taking the mismatched membership functions into account,
the T-S fuzzy controller with n̂ rules is designed as follows:

Controller Rule i : IF δ1(
_
x(k)) is Li

1, and δ2(
_
x(k)) is Li

2,
and ,..., and δg(

_
x(k)) is Li

g , THEN

u(k) = Ki
_
x(k), (7)

where Li
β is the fuzzy set (i = 1, . . . , n̂ and β = 1, . . . , g).

Define δβ(
_
x(k)) = δβ(

_
x) to be premise variable. g denotes

the number of the premise variables. _
x(k) ∈ Rx is the input

vector of the controller. u(k) ∈ Ru is the output vector of
the controller. Ki (i = 1, . . . , n̂) are the controller gains.
Reformulate the T-S fuzzy controller as

u(k) =

n̂∑
i=1

wi (δ(
_
x))Ki

_
x(k), (8)



where

σi (δ(
_
x)) =

g∏
β=1

Li
β(δβ(

_
x)) ≥ 0,

wi (δ(
_
x)) =

σi (δ(
_
x))∑n̂

i=1 σi (δ(
_
x))

,

n̂∑
i=1

wi (δ(
_
x)) = 1.

E. Closed-Loop System (CLS)

Simplify ml
∆
= ml(η(x)), wi

∆
= wi (δ(

_
x)). Combining (2),

(3), (6), (8) and x(tk) = x(s̀) + e(k), the CLS is acquired as

χ(k + 1) =

n̂∑
l=1

n̂∑
i=1

mlwi [Ali1χ(k) + ($(k)− $̂)

×Ali2χ(k) +Ali3Lχ(s̀) + ($(k)

− $̂)Ali4Lχ(s̀) +Ali3e(k)

+ ($(k)− $̂)Ali4e(k) + Bliω(k)],

z(k) =

n̂∑
l=1

n̂∑
i=1

mlwi [Cli1χ(k) + ($(k)− $̂)

× Cli2χ(k) + Cli3Lχ(s̀)

+ ($(k)− $̂)Cli4Lχ(s̀)

+ $̂Cli3e(k) + ($(k)− $̂)Cli4e(k)], (9)

where

χ(k) = [ xT (k),
_
x
T

(k − 1) ]T , L =
[
I 0

]
,

Ali1 =

[
Al (1− $̂)BlKi
0 I(1− $̂)

]
,Ali2 =

[
0 −BlKi
0 −I

]
,

Ali3 =

[
$̂BlKi
I$̂

]
,Ali4 =

[
BlKi
I

]
,Bli =

[
B1l

0

]
,

Cli1 =
[
Cl (1− $̂)DlKi

]
, Cli2 =

[
0 −DlKi

]
,

Cli3 = $̂DlKi , Cli4 = DlKi .

III. MAIN RESULTS

A. Performance Analysis

In order to assure system (9) under H∞ performance is
asymptotically stable, sufficient conditions are attained from
the following theorem.

Theorem 1: Given constants ρ > 0, ϑm > 0, $̂ > 0 and
γ > 0, if the MFs satisfy wi − εimi ≥ 0 (0 < εi ≤ 1), and
there exist matrices P > 0, Q1 > 0, Q2 > 0,Ω > 0,∆l = ∆T

l

and R satisfying (l, i = 1, 2, ..., n̂): [
Q2 R
∗ Q2

]
≥ 0, (10)

Ψli −∆l < 0, (11)
εlΨll − εl∆l + ∆l < 0, (12)

εi Ψli − εi ∆l + ∆l + εlΨil − εl∆i + ∆i < 0, l < i , (13)

where

Ψli =



Θ1 Θ1li Θ2li Θ3li Θ4li Θ5li Θ6li
? −P 0 0 0 0 0
? ? −P 0 0 0 0
? ? ? −Q2 0 0 0
? ? ? ? −Q2 0 0
? ? ? ? ? −I 0
? ? ? ? ? ? −I


,

Θ1 =


Ξ1 Ξ2 −LTR 0 0
? Ξ3 Q2 +R ρΩ 0
? ? −Q1 −Q2 0 0
? ? ? (ρ− 1)Ω 0
? ? ? ? −γ2I

 ,
Ξ1 =− P − LTQ2L+ LTQ1L,

Ξ2 =LTQ2 + LTR,

Ξ3 =− 2Q2 −R+ ρΩ,

Θ1li =
[
PAli1 PAli3 0 PAli3 PBli

]T
,

Θ2li =κ
[
PAli2 PAli4 0 PAli4 0

]T
,

Θ3li =ϑm
[
Ali1 − I Ali3 0 Ali3 Bli

]T
,

Θ4li =κ
[
Ali2 Ali4 0 Ali4 0

]T
,

Θ5li =
[
Cli1 Cli3 0 Cli3 0

]T
,

Θ6li =
[
Cli2 Cli3 0 Cli4 0

]T
,

then, the asymptotic stability of system (9) under H∞ perfor-
mance is obtained.

Proof 1: Firstly, select the following Lyapunov-Krasovskii
functional

V (k) = V1(k) + V2(k) + V3(k), (14)

where

V1(k) =χT (k)Pχ(k),

V2(k) =

k−1∑
ὰ=k−ϑm

χT (ὰ)LTQ1Lχ(ὰ),

V3(k) =

−1∑
ὰ=−ϑm

k−1∑
β̀=k+ὰ

[χ(β̀ + 1)− χ(β̀)]TLTQ2

× L[χ(β̀ + 1)− χ(β̀)].

Simplify s̀m = k−ϑm. The difference of V (k) is calculated
as

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k),

where

E{∆V1(k)} =χT (k + 1)Pχ(k + 1)− χT (k)Pχ(k),



E{∆V2(k)} =χT (k)LTQ1Lχ(k)

− χT (s̀m)LTQ1Lχ(s̀m),

E{∆V3(k)} =ϑm
2[χ(k + 1)− χ(k)]TLTQ2L[χ(k + 1)

− χ(k)]− ϑm
k−1∑
ὰ=s̀m

[χ(ὰ+ 1)− χ(ὰ)]TLT

×Q2L[χ(ὰ+ 1)− χ(ὰ)].

Since
[
Q2 R
∗ Q2

]
≥ 0, based on Jensen inequality,

E{∆V3(k)} can be obtained

E{∆V3(k)} =ϑm
2[χ(k + 1)− χ(k)]TLTQ2L[χ(k + 1)

− χ(k)]− ϑm
k−1∑
ὰ=s̀m

[χ(ὰ+ 1)− χ(ὰ)]TLT

×Q2L[χ(ὰ+ 1)− χ(ὰ)]

≤ ϑ2
m[χ(k + 1)− χ(k)]TLTQ2L[χ(k + 1)

− χ(k)]− [χ(k)− χ(s̀)]TLTQ2L[χ(k)

− χ(s̀)]− [χ(s̀)− χ(s̀m)]TLTQ2L[χ(s̀)

− χ(s̀m)] + [χ(k)− χ(s̀)]TLTRL[χ(s̀)

− χ(s̀m)] + [χ(s̀)− χ(s̀m)]TLTRL

× [χ(k)− χ(s̀)]. (15)

Defining %(k) =
[
χT (k), χT (k − ϑ(k))LT , χT (s̀m)LT ,

eT (k), ωT (k)
]T

, and taking ET condition into consideration,
we have

E{∆V (k) + zT (k)z(k)− γ2ωT (k)ω(k)}

≤
n̂∑
l=1

n̂∑
i=1

mlwi%
T (k)Ψli%(k). (16)

Applying Schur complement for (16), the following inequality
can be attained

∆V (k)− γ2ωT (k)ω(k) + zT (k)z(k) < 0. (17)

It is clear that
∞∑
k=1

∆V (k) <

∞∑
k=1

γ2ωT (k)ω(k)−
∞∑
k=1

zT (k)z(k),

then we have

V (k) <

∞∑
k=1

γ2ωT (k)ω(k)−
∞∑
k=1

zT (k)z(k). (18)

Since V (k) > 0, we can acquire
∑∞
k=1 γ

2ωT (k)ω(k) >∑∞
k=1 z

T (k)z(k), the condition of H∞ performance for CLS
(9) is proofed. As can be seen in (18), when ω(k) = 0,
it can be obtained that ∆V (k) < 0, and the CLS (9) is
asymptotically stable.

Next, introducing a slack matrix ∆l to reduce
the conservativeness of the obtained results. Taking

n̂∑
l=1

n̂∑
i=1
ml (mi − wi ) ∆l = 0 into consideration, it is easy to

acquire

n̂∑
l=1

n̂∑
i=1

mlwi Ψli

=

n̂∑
l=1

n̂∑
i=1

ml (mi − wi + εimi − εimi ) ∆l +

n̂∑
l=1

n̂∑
i=1

mlwi Ψli

=

n̂∑
l=1

n̂∑
i=1

mlmi (εi Ψli − εi ∆l + ∆l)

+

n̂∑
l=1

n̂∑
i=1

ml (wi − εimi ) (Ψli −∆l)

=

n̂∑
l=1

m2
l (εlΨll − εl∆l + ∆l)

+

n̂−1∑
l=1

n̂∑
i=1

mlmi (εi Ψli − εi ∆l + ∆l + εlΨil − εl∆i + ∆i )

+

n̂∑
l=1

n̂∑
i=1

ml (wl − εimi ) (Ψli −∆l) .

Based on wi − εimi ≥ 0 (0 < εi ≤ 1) and (11)-(13),
E{∆V (k)+zT (k)z(k)−γ2ωT (k)ω(k)} ≤ 0 is attained. The
proof is completed.

B. Controller Design

Based on Theorem 1, this subsection focuses on determining
the appropriate gains of the controller.

Theorem 2: Given constants ρ > 0, ϑm > 0, $̂ > 0 and
γ > 0, if the MFs satisfy wi − εimi ≥ 0 (0 < εi ≤ 1), and
there exist matrices X > 0, Q̃1 > 0, Q̃2 > 0, Ω̃ > 0,∆l = ∆T

l

and R̃ satisfying (l, i = 1, 2, ..., n̂): [
Q̃2 R̃

∗ Q̃2

]
≥ 0, (19)

Ψ̃li − ∆̃l < 0, (20)

εlΨ̃ll − εl∆̃l + ∆̃l < 0, (21)

εi Ψ̃li − εi ∆̃l + ∆̃l + εlΨ̃il − εl∆̃i + ∆̃i < 0, l < i , (22)

where

Ψli =



_

Θ1

_

Θ1li
_

Θ2li Θ̃3li
_

Θ4li
_

Θ5li
_

Θ6li

?
_

ΘPli 0 0 0 0 0

? ?
_

ΘPli 0 0 0 0

? ? ?
_

ΘQli 0 0 0

? ? ? ?
_

ΘQli 0 0
? ? ? ? ? −I 0
? ? ? ? ? ? −I


,



_

Θ1 =


_

Ξ11

_

Ξ12

_

Ξ13 0

?
_

Ξ22

_

Ξ23

_

Ξ24

? ?
_

Ξ33 0

? ? ?
_

Ξ44

 ,
_

Ξ11 =

[
−X − Q̃2 + Q̃1 0

0 −XT

]
,

_

Ξ12 =

[
Q̃2 + R̃

0

]
,
_

Ξ22 =
[
−2Q̃2 − R̃+ ρΩ̃

]
,

_

Ξ13 =

[
−R̃
0

]
,
_

Ξ23 =
[
Q̃2 + R̃

]
,
_

Ξ33 =
[
Q̃1 − Q̃2

]
,

_

Ξ24 =
[
ρΩ̃ 0

]
,
_

Ξ44 =

[
(ρ− 1)Ω̃ 0

0 −γ2I

]
,

_

ΘPli =

[
−XT 0
∗ −XT

]
,
_

ΘQli =
[
2XT − Q̃T2

]
,

_

Θ1li =
[

_

Θ11li
_

Θ12li

]T
,

_

Θ11li =

[
AlX (1− $̂)BlK̃i $̂BlK̃i

0 (1− $̂)X $̂X

]
,

_

Θ12li =

[
0 $̂BlK̃i B1l

0 $̂X 0

]
,
_

Θ2li =
[

_

Θ21li
_

Θ22li

]T
,

_

Θ21li =

[
0 −κBlK̃i κBlK̃i
0 −κX κX

]
,

_

Θ22li =

[
0 κBlK̃i 0
0 κX 0

]
,
_

Θ3li =
[

_

Θ31li
_

Θ32li

]T
,

_

Θ31li =
[
ϑm(Al − I)X ϑm(1− $̂)BlK̃i

]
,

_

Θ32li =
[
ϑmκBlK̃i 0 ϑm$̂BlK̃i 0

]
,

_

Θ4li =
[

_

Θ41li
_

Θ42li

]T
,

_

Θ41li =
[

0 −ϑmκBlK̃i ϑmκBlK̃i
]
,

_

Θ42li =
[

0 ϑmκBlK̃i 0
]
,
_

Θ5li =
[

_

Θ51li
_

Θ52li

]T
,

_

Θ51li =
[
ClX $̂(1− $̂)DlK̃i $̂DlK̃i

]
_

Θ52li =
[

0 $̂DlK̃i 0
]
,
_

Θ6li =
[

_

Θ61li
_

Θ62li

]T
,

_

Θ61li =
[

0 −κDlK̃i κDlK̃i
]
,

_

Θ62li =
[

0 κDlK̃i 0
]
,

then, system (9) under H∞ performance to be asymptotically
stable is obtained. The controller gains are acquired as

Ki = K̃i X−1.

Proof 2: Define:

P = diag {P1, P1} ,X = P−1
1 .

Pre and post multiplying (11)-(13) by P2 = diag{X ,X ,X ,
X ,X , I,X ,X ,X ,X , Q−1

2 , Q−1
2 , I, I } and PT2 , respectively.

Define:

Q̃1 =XTQ1X , Q̃2 = XTQ2X ,

R̃ =XTRX , Ω̃ = XTΩX , K̃i = Ki X .

Then, (20)-(22) can be acquired. The proof is completed.

IV. SIMULATION VERIFICATION

In this section, we provide a numerical simulation example
to validate the effectiveness of the proposed control mechanis-
m, the concrete content is illustrated by the following example.

Considering the following T-S fuzzy model

A1 =

[
−0.0486 0.4262
−1.6264 −0.2168

]
,B1 =

[
0.3616
0.5608

]
,

A2 =

[
−0.0486 0.4262
−1.6264 −0.2168

]
,B2 =

[
0.3616
0.5608

]
,

B11 =

[
0.1
0.5

]
,C1 =

[
0.35 −0.6

]
,D1 = 0.05,

B12 =

[
0

−1.15

]
,C2 =

[
0.35 −0.6

]
,D2 = −0.02.

Assuming x1(k) ∈ [−2, 2] and the membership functions
are defined as

m1(x1(k)) =
4− x1

2(k)

4
, m2(x1(k)) = 1−m1(x1(k)).

Next, define the membership functions of the controller as
w1(

_
x1(k)) = (1 − sin2(

_
x1(k)))/2 and w2(

_
x1(k)) = 1 −

w1(
_
x1(k)). Select ε1 = 0.5, ε2 = 0.7, ρ = 0.31, $̂ = 0.5 and

ϑm = 0.1, and the controller gains are acquired as

K1 =
[

0.2166 −0.0026
]
,

K2 =
[

0.2525 0.0579
]
.

Suppose the initial state is x(0) =
[

0.5,−0.2
]T

, and the
sampling period h = 0.2s. The disturbance is assumed as

w(k) =

{
−1.5 cos(1.2k)e−0.1k, 0 ≤ k ≤ 14.4
0, else .
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Fig. 1. State responses.
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Fig. 3. Release instants and intervals of ET scheme.
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Fig. 4. Comparision of attack compensation.

To ensure the successful transmission of the initial state,
assuming that no DoS attack happens when k ∈ [0, 2). Fig. 1
illustrates the responses of x1(k) and x2(k). The occurrence

interval of DoS attacks is illustrated in Fig. 2. The triggering
instants and intervals of the ET scheme is shown in Fig. 3. In
addition, to demonstrate effectiveness of attack compensation
mechanism, a comparative simulation result is illustrated in
Fig. 4. From Fig. 4, it is proved that the application of attack
compensation mechanism can effectively reduce the unfavor-
able impact of DoS attacks, making the system stabilize faster.

V. CONCLUSION

In this paper, we have examined the design problem of ET-
based T-S fuzzy controller subject to malicious attacks for
networked control systems. An ET scheme has been utilized
to save network resources. By taking the DoS attacks com-
pensation mechanism, the unfavorable effects of DoS attacks
have been effectively reduced. Then, the Lyapunov stability
theory has been utilized to identify the sufficient condition
for asymptotic stability of the CLS. Eventually, simulation
verification have been provided to testify the effectiveness of
the proposed control strategy.
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