
LoRA Meets Dropout under a Unified Framework

Anonymous ACL submission

Abstract

With the remarkable capabilities, large lan-001
guage models (LLMs) have emerged as essen-002
tial elements in numerous NLP applications,003
while parameter-efficient finetuning, especially004
LoRA, has gained popularity as a lightweight005
approach for model customization. Meanwhile,006
various dropout methods, initially designed007
for full finetuning with all the parameters up-008
dated, alleviates overfitting associated with ex-009
cessive parameter redundancy. Hence, a possi-010
ble contradiction arises from negligible train-011
able parameters of LoRA and the effectiveness012
of previous dropout methods, which has been013
largely overlooked. To fill this gap, we first014
confirm that parameter-efficient LoRA is also015
overfitting-prone. We then revisit transformer-016
specific dropout methods, and establish their017
equivalence and distinctions mathematically018
and empirically. Building upon this compar-019
ative analysis, we introduce a unified frame-020
work for a comprehensive investigation, which021
instantiates these methods based on dropping022
position, structural pattern and compensation023
measure. Through this framework, we reveal024
the new preferences and performance compar-025
isons of them when involved with limited train-026
able parameters. This framework also allows us027
to amalgamate the most favorable aspects into028
a novel dropout method named HiddenKey. Ex-029
tensive experiments verify the remarkable su-030
periority and sufficiency of HiddenKey across031
multiple models and tasks, which highlights it032
as the preferred approach for high-performance033
and parameter-efficient finetuning of LLMs.034

1 Introduction035

Recently, transformers (Vaswani et al., 2017), such036

as GPT-4 (OpenAI, 2023), PaLM 2 (Anil et al.,037

2023) and LLaMA 2 (Touvron et al., 2023b), have038

been rapidly expanded to billions of parameters,039

leading to remarkable performance boost. When040

customizing these models for downstream tasks,041

parameter-efficient fine-tuning (PEFT) (Houlsby042

et al., 2019; Hu et al., 2021; Liu et al., 2022) 043

has been widely adopted as a lightweight method, 044

which generally freezes the majority of parameters 045

while only updating or adding negligible trainable 046

parameters. Among these methods, LoRA (Hu 047

et al., 2021) gains the most popularity due to its 048

high effectiveness, robustness and generality. 049

In parallel with this, dropout (Hinton et al., 2012) 050

has been widely adopted to mitigate overfitting, 051

which is generally caused by excessive parameter 052

redundancy. Its variants, including DropKey (Li 053

et al., 2023), DropAttention (Zehui et al., 2019) and 054

HiddenCut (Chen et al., 2021), have also demon- 055

strated superiority for transformers. With a speci- 056

fied probability, they randomly deactivate attention 057

logits, weights and hidden representations, respec- 058

tively. However, the effectiveness of these meth- 059

ods is only verified in full finetuning scenarios, 060

where all the parameters are updated and easily 061

lead to excessive redundancy. When it comes to 062

LoRA-based PEFT scenarios, a potential contra- 063

diction arises. Specifically, since overfitting pri- 064

marily stems from excessive parameter redundancy, 065

dropout may prove ineffective in LoRA-based fine- 066

tuning because of the extremely limited trainable 067

parameters. Besides, all the above methods are pro- 068

posed independently, lacking a clear guideline to 069

unify them systematically, which hinders compre- 070

hensive comparative analysis and the development 071

of more effective dropout methods. 072

In this study, we first conduct extensive exper- 073

iments and confirm that LoRA also suffers from 074

overfitting easily, which serves as a prerequisite 075

for our following analysis. As shown in Figure 5, 076

as the rank and trainable parameters increase, the 077

model’s performance initially improves but gradu- 078

ally deteriorates due to the intensifying overfitting. 079

Much more experiments in Sec. 4 provide further 080

evidence and affirm that this overfitting susceptibil- 081

ity can be improved with dropout methods. Besides, 082

we compare the above transformer-specific dropout 083

1



methods mathematically and empirically. For the084

first time, we find that DropKey and DropAtten-085

tion share the equivalent forwarding process, while086

the gradient stopping operator introduces gradient087

noise into the backpropagation of DropAttention,088

impairing the training stability and performance.089

Based on the comparative analysis, we identify090

three key dimensions for a dropout method and091

derive a unified framework along dropping posi-092

tion, structural pattern and compensation measure.093

With this framework, empirical experiments firstly094

reveal the new preferences of these methods in095

LoRA scenarios. For example, span-wise Hidden-096

Cut is no longer superior to the element-wise one097

due to the limited tunable parameters. Secondly,098

this framework enables the comprehensive com-099

parisons among different methods. Empirically,100

we find that DropKey performs the best followed101

by HiddenCut, while DropAttention exhibits the102

worst performance due to the gradient noise. As an103

alternative compensation, Bidirectional Kullback-104

Leibler (KL) divergence loss consistently achieves105

performance gains, while Jensen-Shannon (JS) con-106

sistency regularization loss becomes ineffective.107

Guided by this framework, we also derive a new108

dropout method named HiddenKey, which drops109

attention logits column-wisely and hidden represen-110

tations element-wisely, respectively, and augment111

the vanilla loss with KL loss. It consistently ex-112

hibits superiority across multiple models in both113

natural language understanding (NLU) and gen-114

eration (NLG) tasks, which also fills the largely115

overlooked gap on the effect of dropout methods116

on NLG tasks. Integrating with input and output117

dropout does not provide further complementar-118

ity, demonstrating the sufficiency of our method.119

Hence, HiddenKey excels as the better method for120

high-performance and parameter-efficient finetun-121

ing of LLMs on both NLU and NLG tasks.122

In summary, our contributions are mainly as fol-123

lows:124

• We present the first comprehensive investi-125

gation to explore the potential contradiction126

between various dropout methods and LoRA.127

• We compare three typical transformer-specific128

dropout methods theoretically and empirically,129

and derive the core dimensions for designing130

a dropout method.131

• We further introduce a unified framework to132

instantiate existing dropout methods, within133

which we discover the new preferences and 134

performance comparison of these methods. 135

• A new dropout method named HiddenKey is 136

devised within our framework, exhibiting su- 137

perior effectiveness and sufficiency in mitigat- 138

ing LoRA’s susceptibility to overfitting. 139

2 Preliminaries 140

In this section, we revisit three transformer-specific 141

dropout methods shown in Figure 1, laying the 142

foundation for the subsequent analysis. 143

DropAttention. DropAttention (Zehui et al., 144

2019) is the first dropout method specially designed 145

for self-attention mechanism. It randomly masks 146

elements or key columns of attention weights, en- 147

couraging the utilization of multiple contextualized 148

features instead of overfitting some specific pat- 149

terns. Following Eq. 1 and 2, normalized rescaling 150

replaces the traditional one to guarantee the sum 151

of attention weights to be one, and achieves better 152

performance for multiple NLP classification tasks. 153

wj = m · wj , m ∼ Bernoulli(p), (1)

w′
j =

wj

NoGrad(
∑l−1

j=0 wj)
, (2) 154

where p, l, wj , wj , and w′
j denote the dropout rate, 155

sequence length, original, masked, and rescaled 156

attention weights. NoGrad() and Bernoulli() rep- 157

resent the gradient stopping operator and sampling 158

from the Bernoulli distribution, respectively1. 159

DropKey. As a dropout-before-softmax scheme, 160

DropKey (Li et al., 2023) takes attention logits gj 161

instead of weights as the basic units, as formulated 162

in Eq. 3. Since the subsequent softmax() ensures 163

the sum of weights to be one, rescaling is no longer 164

necessary. 165

g′j = m+ gj , m =

{
0, with probability 1− p

−∞, with probability p
(3) 166

HiddenCut. In contrast, HiddenCut (Chen et al., 167

2021) focuses on preventing the co-adaptation of 168

hidden representations in the feed-forward mod- 169

ule. The core idea is to cut single contiguous span, 170

which may contain more semantic information and 171

be more difficult to be restored. Besides, JS loss is 172

applied to encourage the perturbed representations 173

to be as close to those in inference as possible. 174

1Here we omit the subscript t for clarity. Although whether
the NoGrad() operator exists or not significantly impacts the
performance of DropAttention, it is overlooked in the original
paper. We present it here and will discuss both cases in detail.

2



SoftMax

MatMul

Scale

Add & LayerNorm

FeedForward

MatMul

X

HiddenCut
Add & LayerNorm

*L DropAttention

DropKey

Figure 1: Illustration of transformer architecture and
typical transformer-specific dropout methods, namely
DropKey, DropAttention, and HiddenCut.

(a) element (b) column (c) span

Figure 2: Three structural sampling strategies, namely
element, column, and span. The grey and blue cells
represent masked and remaining entries, respectively. In
HiddenCut, rows and columns denote sequence length
(L) and hidden dimension (D), while representing keys
(K) and queries (Q) in DropKey and DropAttention.

3 Method175

Firstly, we conduct a comparative analysis of the176

above methods. Based on their similarity and differ-177

ences, we then propose a unified framework along178

dropping position, structural pattern and compen-179

sation measure. Finally, this framework guides us180

to derive a new dropout method named HiddenKey,181

which exhibits superior performance empirically.182

3.1 Mathematical and Empirical Comparison183

Equivalent Forwarding between DropKey and184

DropAttention. Despite the different details be-185

tween DropKey and DropAttention, we show their186

mathematical equivalence in forwarding. Let gu187

and gm denote the unmasked and masked attention188

logits, while wu and wm represent the correspond-189

ing attention weights2. For DropKey, we have190

g′m := −∞, g′u := gu, w′
m = 0, (4)

w′
u =

exp(g′u)∑l−1
i=0 exp(g

′
i)
, (5)

191

while for DropAttention, we have192

w′
m := 0, w′

u =
exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

. (6)193

2Only one masked element is considered here, but masking
multiple elements shares the same analysis.

Proved by Eq. 13 in Appendix C, Eq. 5 and Eq. 6 194

are strictly equal to each other. Hence, the final at- 195

tention weights (i.e., w′
u and w′

m) of DropKey are 196

the same as those of DropAttention, and so is the 197

following computation. Notably, normalized rescal- 198

ing plays an indispensable role in establishing this 199

equivalence, which diminishes the differences be- 200

tween these two methods during the forward pass. 201

Variation in Back-Propagation between Drop- 202

Key and DropAttention. Due to the equiva- 203

lent forward pass, the corresponding values of 204
∂O
∂w′

u
and ∂O

∂w′
m

remain the same for DropKey and 205

DropAttention, where O denotes the objective func- 206

tion. Meanwhile, because of the identical compu- 207

tation before attention logits, the analysis of back- 208

propagation focuses on the four partial derivatives 209

of w′
u and w′

m with respect to gu and gm, respec- 210

tively. For DropKey, we have 211

∂w′
u

∂gu
= exp(gu) ·

∑l−1
i=0,̸=m exp(gi)− exp(gu)

(
∑l−1

i=0,̸=m exp(gi))2
. (7) 212

For DropAttention with NoGrad(), we have 213

∂w′
u

∂gm
= − exp(gu) · exp(gm)∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)
, (8)

∂w′
u

∂gu
=

exp(gu) ·
∑l−1

i=0,̸=u exp(gi)∑l−1
i=0 exp(gi) ·

∑l−1
i=0,̸=m exp(gi)

. (9)

214

As for other partial derivatives, their gradient flow 215

is disrupted by dropping operations. When the cor- 216

responding elements of attention logits and weights 217

are masked in DropKey and DropAttention, the 218

derivative of w′
u with respect to gu has proportional 219

relation, as shown in Eq. 10 and proven by Eq. 14. 220

Provably, k is always less than 1 and continuously 221

decreases with the increase of gm. In other words, 222

compared to DropAttention with NoGrad(), Drop- 223

Key can adaptively lower the gradients when a 224

large attention logit gm is discarded. This can pro- 225

vide DropKey with dropping-dependent compen- 226

sation capability, thereby stabilizing the training 227

process. For DropAttention with NoGrad(), the 228

partial derivative of w′
u with respect to gm is non- 229

zero and that with respect to gu depends on the 230

value of gm, even if wm is masked and gm is not 231

used for computation. This implies that a larger 232

dropout rate can introduce more gradient noise, 233

which is further validated by the inferior perfor- 234

mance in Sec. 4. In contrast, DropAttention with- 235

out NoGrad() shares the same back-propagation 236

with DropKey, thereby exhibiting identical behav- 237

iors. Hence, unless otherwise stated, we will refer 238

3



to DropAttention with NoGrad() as DropAtten-239

tion, and include DropAttention without NoGrad()240

under DropKey for simplicity.241

(
∂w′

u

∂gu
)DropKey = k · (∂w

′
u

∂gu
)DropAttention, (10)

k =

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)

1− exp(gu)∑l−1
i=0 exp(gi)

242

Comparison with HiddenCut. The commonal-243

ity among these methods is that they all need to244

select a specific type of data, decide what patterns245

to mask, and consider how to reduce the gap be-246

tween training and inference phases. In contrast,247

their divergences are two-fold. First, their distinct248

dropping positions and patterns lead to different249

rescaling operators. Identical to the vanilla dropout,250

element-wise HiddenCut amplifies hidden repre-251

sentations by a factor of 1/(1 − p) for consistent252

scales between training and testing, while normal-253

ized rescaling is adopted by DropAttention. Due to254

the subsequent softmax(), DropKey no longer uti-255

lizes any rescaling method. The other difference is256

that DropAttention and DropKey can be regarded257

as operations on weight matrices, which are uti-258

lized for the weighted summation of value vectors.259

Instead, HiddenCut operates directly in the hidden260

representations.261

In summary, the comparative analysis of these262

methods highlights their similarities and differ-263

ences, leading to the identification of key dimen-264

sions for designing a dropout method: dropping po-265

sition, structural pattern and compensation measure.266

Subsequently, these elements are incorporated into267

our unified framework for further analysis.268

3.2 A Unified Framework269

Based on the above comparative analysis, we iden-270

tify three key dimensions for a dropout method.271

Here we elaborate them further and instantiate272

these dropout methods along them below.273

Dropping Position. For better generalization, a274

robust model needs to learn noise-resilient features.275

Hence, dropping position, determining where to276

inject noise, emerges as a primary consideration277

in designing dropout methods. For example, drop-278

ping inputs acts like data augmentation, dropping279

outputs encourages an ensemble of sub-classifiers,280

and dropping intermediate representations disrupts281

the co-adaptation of neighboring neurons. For a282

transformer layer depicted in Figure 1, DropKey,283

DropAttention and HiddenCut respectively drop at- 284

tention logits, weights and hidden representations, 285

covering the self-attention mechanism and feed- 286

forward module. Additionally, the same dropping 287

position may perform differently in full finetuning 288

and LoRA scenarios. In full finetuning, weights 289

directly associated with the dropping position are 290

continuously adjusted for better noise resilience, 291

while this adaptation is more implicit for LoRA. 292

Specifically, LoRA, typically applied to the key 293

and value projection matrices (Hu et al., 2021), 294

requires multiple intermediate calculations to in- 295

fluence attention logits and weights, while even 296

requires inter-module computation for hidden rep- 297

resentations. This disparity may potentially affect 298

the effectiveness of existing dropout methods in 299

LoRA scenarios. Notably, distinct dropping posi- 300

tions do not necessarily indicate differences. In 301

specific cases, different positions may also exhibit 302

similar features, as discussed in Sec. 3.1. 303

Structural Pattern. Structural pattern means the 304

style of units deactivated randomly, and determines 305

how the co-adaptation of neurons is disrupted, 306

thereby affecting the semantic information learned 307

by these units. For example, as shown in Fig- 308

ure 2(b), if column pattern is adopted in DropKey, 309

each value vector tend to possess as much con- 310

textual information as possible so that the output 311

vectors are minimally affected by the masked key 312

columns. Different patterns also result in varying 313

levels of difficulty in recovery (Zehui et al., 2019). 314

Generally, the span pattern is more challenging 315

than the column style, while the element one is the 316

simplest. Given the limited trainable parameters, 317

LoRA may struggle to handle the strong distur- 318

bances introduced by complex patterns. Therefore, 319

it may exhibit different preferences for structural 320

patterns from full finetuning. Besides, different 321

optimal patterns may be required for distinct posi- 322

tions, which will be thoroughly discussed in Sec. 4. 323

Compensation for Training and Inference Gap. 324

For better performance and deterministic outputs, 325

dropout is disabled in inference by default. How- 326

ever, this is not consistent with the training stage 327

and can lead to a gap between the actual and ideal 328

performance. Hence, another key consideration is 329

how to close the training and inference gap. Apart 330

from rescaling associated with each method intrin- 331

sically, R-drop (Wu et al., 2021) leverages Eq. 11, 332

bidirectional KL divergence loss, to enforce the out- 333

put distributions to be more dropout-insensitive so 334

4



Input Samples

Sentence 1:
Oil prices fall back as
Yukos oil threat lifted.
 
Sentence 2: 
Oil prices rise. 

+ Kullback–Leibler
Divergence Loss

Grad

NoGrad

ClassifierSoftMax FeedForward Add &
LayerNorm

······

······

Transformer Layer * L

ClassifierSoftMax FeedForward Add &
LayerNorm

Transformer Layer * L

······

······

Figure 3: Illustration of HiddenKey. It respectively drops columns and elements of attention logits and hidden
representations, and augments bidirectional KL loss to minimize the training and inference gap implicitly.

that the gap can be minimized implicitly. Alterna-335

tively, HiddenCut replaces it with JS loss shown in336

Eq. 12. With negligible tunable parameters, LoRA337

is more easily optimized to reach its performance338

ceiling. This compressed optimization space may339

potentially render some existing schemes ineffec-340

tive, which is also verified in the following sections.341

LKL =
1

2
(DKL(P1∥P2) +DKL(P2∥P1)), (11)

LJS = DKL(P1∥P ), (12)
342

where P1, P2, and P represent two different out-343

put distributions in the training stage and one in344

inference with the same input, respectively. For the345

sake of symmetry, KL loss calculates the bidirec-346

tional distances, while JS loss uses the inference347

distribution as reference.348

3.3 HiddenKey349

The proposed unified framework not only enables350

us to analyze the critical choices along each dimen-351

sion and their mutual influences, but also guides us352

to design new dropout methods. As shown in Fig-353

ure 3, we propose “HiddenKey”, which drops the at-354

tention logits column-wisely in the attention mech-355

anism and hidden representations element-wisely356

in the feed-forward module along the dropping po-357

sition and structural pattern dimensions. As for the358

compensation measure to minimize the training and359

inference gap, two forward passes in parallel are360

performed so that an extra KL loss is deployed to361

enhance the similarity of output distributions. For362

classification tasks, the representations produced363

by the classifier are used, while those produced364

by the last transformer layer are used for regres-365

sion tasks. Furthermore, the superiority over all366

the aforementioned methods will be extensively367

analyzed on diverse tasks and models below.368

4 Experiments 369

4.1 General Setup 370

Models and Datasets. We implement compre- 371

hensive analysis on multiple tasks and models with 372

LoRA. The models start from RoBERTa-large (Liu 373

et al., 2019) and GPT2-Medium (Li and Liang, 374

2021), and scale up to LLaMA2-7B (Touvron et al., 375

2023a). Besides, both NLU and NLG tasks are 376

covered. For NLU tasks, we utilize six datasets 377

from GLUE benchmark (Wang et al., 2018): SST- 378

2 (Socher et al., 2013), RTE (Wang et al., 2018), 379

MRPC (Dolan and Brockett, 2005), STS-B (Cer 380

et al., 2017), CoLA (Warstadt et al., 2018), and 381

QNLI (Rajpurkar et al., 2018). These datasets 382

are selected to cover diverse tasks and sizes, in- 383

cluding single sentence, similarity, paraphrase and 384

inference. For NLG tasks, we follow Hu et al. 385

(2021) and focus on E2E (Novikova et al., 2017) 386

and WebNLG (Gardent et al., 2017). More details 387

can be found in Appendix D. 388

Baseline. Due to the widespread popularity, we 389

use vanilla LoRA as the baseline, and keep most of 390

its configurations. Notably, low-rank decomposi- 391

tion with a rank of 8 and scalar of 16 is applied to 392

the key and value projection matrices. This results 393

in trainable parameters of 0.79M in the Roberta- 394

large model, accounting for 0.22% of the total pa- 395

rameters3. In comparison, these values are 0.39M 396

and 0.11% for GPT2-Medium, while 4.19M and 397

0.06% for LLaMA2-7B. More detailed configura- 398

tions are demonstrated in the Appendix E. 399

4.2 Main Results 400

We first experiment with RoBERTa-large on four 401

NLU datasets, and present the results in Table 1 402

3The classifier parameters are excluded here due to their
varying numbers for different tasks.

5



Position
Pattern /
Compen.

RTE MRPC STS-B STS2
Avg.

Acc. Acc. Pearson. Acc.
Full Finetuning∗ - 86.60 90.90 92.40 96.40 91.58

Baseline - 84.48±0.98 89.95±0.50 91.96±0.48 95.99±0.25 90.60

HiddenCut
element 87.00±1.14 90.69±0.42 91.94±0.28 96.10±0.42 91.43
column 86.64±0.80 90.20±0.80 91.96±0.11 96.22±0.19 91.26

span 86.64±1.63 90.69±0.22 92.05±0.35 96.10±0.30 91.37

DropKey
element 87.00±1.08 90.93±1.06 92.21±0.21 96.22±0.25 91.59
column 87.36±1.70 90.93±0.40 92.25±0.13 96.22±0.24 91.69

span 86.28±0.94 90.69±0.69 92.21±0.21 96.22±0.25 91.35

DropAttention
element 85.56±11.73 90.20±3.07 92.03±0.27 95.76±0.30 90.89
column 85.56±1.80 90.20±0.71 92.11±0.28 95.87±0.21 90.94

span 86.28±0.60 89.95±0.61 92.21±0.36 96.10±0.39 91.14

HiddenKey−
- 87.70±0.91 90.90±0.72 92.28±0.19 96.22±0.13 91.78

+ KL 88.10±1.60 91.20±0.90 92.30±0.11 96.44±0.20 92.01
+ JS 87.70±1.72 90.90±0.47 92.24±0.21 96.22±0.24 91.77

+ input - 88.50±2.11 90.70±1.03 92.11±0.14 96.33±0.27 91.16
+ output - 87.70±2.24 90.70±1.20 92.19±0.11 96.22±0.15 90.95

Table 1: Performance of various dropping positions, structural patterns and compensation methods for RoBERTa-
large model on RTE, MRPC, STS-B and SST-2 datasets. “input” and “output” refer to the dropout of input and
output representations, respectively. The subscripts denote the standard deviation, while bold indicates the best
performance. “Compen.” and “Avg.” are abbreviations for compensation measures and the average results across
four datasets.

and Figure 4. Generally, almost all methods can403

outperform the baseline with a large margin. This404

demonstrates that despite limited trainable parame-405

ters, LoRA still suffers from overfitting and these406

transformer-specific dropout methods can allevi-407

ate this problem. We claim that limited trainable408

parameters of LoRA still enable relatively large409

model capacity. This can stem from two aspects:410

(1) Even if the proportion is negligible, the number411

of tunable parameters remains significant due to the412

large size of foundation models. As mentioned ear-413

lier, there are still 0.79M tunable parameters, even414

if they only account for 0.22% of the whole model.415

(2) Coupled with the base models, the expressive-416

ness of these parameters is enlarged extremely, as417

evidenced by the remarkable performance in Hu418

et al. (2021). This excessive model capacity con-419

tributes to the susceptibility to overfitting, despite420

only a negligible portion of trainable parameters.421

Different dropping positions prefer distinct struc-422

tural patterns. As shown in Table 1, the optimal423

structure for DropKey is “column”, which deacti-424

vates specific keys across all queries within a head,425

thereby breaking the co-adaptation of value vectors426

and achieving better performance. Oppositely, Li427

et al. (2023) confirms the ineffectiveness of struc-428

tural patterns in multiple CV tasks. This divergence 429

may arise from that NLP tasks have a more seman- 430

tically explicit token segmentation, while this prop- 431

erty is absent for CV tasks. In comparison, Hidden- 432

Cut only has one representation sequence instead 433

of multiple ones in the multi-head self-attention 434

module. Hence, “column” and “span” modes may 435

erase too much information, especially when se- 436

mantically important representations, such as emo- 437

tional and negation ones, are masked. This could 438

introduce excessive noise and even incorrect input- 439

label pairs for more limited LoRA scenarios, and 440

explains why element-wise HiddenCut achieves 441

better performance on average, different from the 442

span style for full finetuning (Chen et al., 2021). 443

These dropout methods exhibit different charac- 444

teristics in LoRA scenarios, and combining dif- 445

ferent positions can yield further improvement. 446

Specifically, with a small dropout rate, all methods 447

perform very similarly, fluctuating around the base- 448

line. However, as the dropout rate increases, Drop- 449

Key consistently achieves the best performance on 450

four datasets, followed by HiddenCut. This might 451

be partially attributed to the closer proximity of 452

DropKey to LoRA. In contrast, despite the simi- 453

lar dropping positions and the same forward pass 454

6



0.00 0.10 0.20 0.30

RTE

80.0

82.0

84.0

86.0

88.0

A
cc

ur
ac

y

0.00 0.05 0.10 0.15 0.20

MRPC

88.0

88.8

89.6

90.4

91.2

0.00 0.05 0.10 0.15 0.20

SST2

95.4

95.6

95.8

96.0

96.2

0.00 0.05 0.10 0.15 0.20

STSB

90.9

91.2

91.5

91.8

92.1

Pe
ar

so
n 

C
or

re
la

tio
n

Dropout Rate

baseline
hiddencut_element

hiddencut_column
hiddencut_span

dropkey_element
dropkey_column

dropkey_span
dropattn_element

dropattn_column
dropattn_span

Figure 4: Performance of RoBERTa-large with different dropout methods on four NLU datasets, namely RTE,
MRPC, SST-2 and STS-B. Markers and line styles differentiate various dropping positions, while the shades of color
represent the structural patterns. Pearson correlation is reported for STS-B, while accuracy is utilized for others.

as DropKey, DropAttention produces the worst re-455

sults. This confirms our earlier analysis in Sec. 3.1456

that NoGrad() operator leads to larger gradient457

noise in back-propagation and rapid performance458

degradation as the dropout rate increases. Consid-459

ering their best performance, we further combine460

element-wise HiddenCut with column-wise Drop-461

Key, named HiddenKey−. On average, it achieves462

additional improvement over any single dropout463

mechanism. We also attempt to combine DropAt-464

tention, but it does not result in any benefits.465

As for the compensation measures to narrow the466

gap between training and inference stages, KL loss467

consistently achieves better performance than JS468

loss. Specifically, compared to HiddenKey− (i.e.469

HiddenKey without any additional loss), the intro-470

duction of KL loss always provides extra perfor-471

mance gains on all the datasets. In contrast, JS loss472

does not have an apparent impact on the results,473

even if Chen et al. (2021) claims its effectiveness474

in full finetuning settings. This difference may475

arise from the more capacity-limited LoRA sce-476

narios and superb dropout methods, which jointly477

squeeze the potential improvement space for aug-478

mented loss. Therefore, with the validated superior-479

ity, KL loss is incorporated into HiddenKey along 480

the third dimension of our proposed framework. 481

Due to the optimal practice along each dimension, 482

HiddenKey steadily achieves the best performance 483

among all the above methods and datasets. 484

4.3 Complementarity with Input and Output 485

Dropout 486

In addition to DropKey, DropAttention and Hid- 487

denCut, which cover the transformer layer, cutoff 488

is also applied to input embedding sequences for 489

data augmentation (Shen et al., 2020), and standard 490

dropout is used to the output representations for 491

a more robust classifier. To comprehensively ex- 492

plore the impact of dropout on the entire model, 493

we further investigate whether these methods could 494

further enhance the transformer-specific dropout. 495

The results at the end of Table 1 suggest that neither 496

of these methods achieve consistent improvement 497

over HiddenKey− across all the datasets, and both 498

of their average performance suffers a slight de- 499

crease. This indicates that HiddenKey has predom- 500

inantly captured the performance gains achieved 501

through dropout methods, while dropping input 502

or output does not contribute steady complemen- 503

tarity. This sufficiency hints that finetuning with 504

Model Method BLEU ↑ NIST ↑ METEOR ↑ ROUGE_L ↑ CIDEr ↑

GPT2-Medium

Full Finetuning∗ 68.20 8.620 46.20 71.00 2.470
Baseline 68.50±0.90 8.615±0.09 46.43±0.26 71.08±0.25 2.490±0.02

HiddenCut 69.22±0.44 8.700±0.05 46.66±0.11 71.39±0.07 2.491±0.01

DropKey 68.78±0.75 8.651±0.08 46.53±0.24 71.40±0.33 2.486±0.01

HiddenKey− 69.35±0.48 8.726±0.04 46.60±0.29 71.61±0.26 2.510±0.00

HiddenKey 69.76±0.51 8.765±0.08 46.80±0.11 71.78±0.06 2.511±0.03

LLaMA2-7B
Baseline 66.71±0.65 8.463±0.09 44.82±0.26 70.10±0.46 2.371±0.01

HiddenKey 69.02±0.64 8.725±0.08 45.84±0.13 71.17±0.13 2.456±0.00

Table 2: Results of GPT2-Medium and LLaMA2-7B with various dropout methods on E2E NLG Challenge dataset.

7



Method
A S U

BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓

Full Finetuning∗ 46.50 0.380 0.530 64.20 0.450 0.330 27.70 0.300 0.760

Baseline 54.78±0.16 0.411±0.00 0.395±0.00 62.30±0.47 0.420±0.04 0.331±0.00 45.53±0.21 0.376±0.00 0.464±0.00

HiddenCut 55.06±0.18 0.411±0.00 0.391±0.00 62.43±0.21 0.442±0.00 0.329±0.00 46.11±0.20 0.377±0.00 0.458±0.00

DropKey 55.22±0.34 0.411±0.00 0.389±0.00 62.47±0.17 0.441±0.00 0.328±0.00 46.39±0.75 0.378±0.00 0.455±0.01

HiddenKey− 55.26±0.20 0.411±0.00 0.388±0.00 62.57±0.24 0.441±0.00 0.328±0.00 46.36±0.34 0.378±0.00 0.454±0.00

HiddenKey 55.27±0.21 0.413±0.00 0.386±0.00 62.49±0.18 0.441±0.00 0.326±0.00 46.48±0.46 0.381±0.00 0.452±0.00

Table 3: Results of GPT2-Medium finetuned with different dropout methods on WebNLG dataset. “A”, “S” and “U”
correspond to the “All”, “Seen” and “Unseen” categories in the test set, respectively.

HiddenKey only is enough in LoRA scenarios.505

4.4 Superiority on More NLU and NLG Tasks506

Method
CoLA QNLI

Matthew. Acc.

baseline 67.96±0.25 94.23±0.17

HiddenKey 69.91±0.52 95.04±0.11

Table 4: Results of RoBERTa-large finetuned with Hid-
denKey on CoLA and QNLI datasets.

More NLU Datasets. We further generalize Hid-507

denKey to two extra NLU datasets, namely CoLA508

and QNLI. As shown in Table 4, HiddenKey509

steadily achieves 1.95 and 0.81 performance im-510

provement over baselines on both of the datasets.511

These reconfirm the superior performance of Hid-512

denKey in NLU tasks.513

NLG datasets. Following Hu et al. (2021), we514

also experiment with GPT2-Medium on NLG tasks.515

As shown in Table 2, HiddenKey consistently out-516

performs full finetuning, LoRA baseline and other517

dropout methods over all the five metrics on E2E518

NLG Challenge dataset. Similarly in Table 3, on519

the “All”, “Seen” and “Unseen” subsets of the520

WebNLG dataset, HiddenKey gains 7/9 wins over521

all other methods on BLEU, METEOR and TER522

metrics. Hence, HiddenKey exhibits a performance523

surge across diverse metrics, datasets and their sub-524

sets for NLG tasks, as it has shown for NLU tasks.525

4.5 Performance Boost on LLMs526

With the dominance of LLMs, we also extend the527

application of HiddenKey to LLaMA2-7B, one of528

the most popular and open-sourced LLMs, on both529

NLU and NLG tasks. As shown in Table 5, mod-530

els finetuned with HiddenKey outperform those531

without HiddenKey by a large margin on RTE and532

MRPC datasets. Similarly, HiddenKey consistently533

Method
RTE MRPC
Acc. Acc.

baseline 88.45±0.79 88.73±0.56

HiddenKey 90.25±1.05 89.46±0.60

Table 5: Results of LLaMA2-7B finetuned with Hid-
denKey on RTE and MRPC datasets.

exhibits significant superiority on E2E NLG dataset 534

across all metrics over baseline, shown at the end 535

of Table 2. This indicates that HiddenKey can also 536

function well with LLMs on diverse tasks. 537

4.6 Ablation Study 538

Based on our framework, we eliminate the compo- 539

nents of HiddenKey to demonstrate the necessity of 540

each dimension. As illustrated in Table 1, 2 and 3, 541

the substantial boost of HiddenKey− over previous 542

methods and baselines on both NLU and NLG tasks 543

indicates the significance of dropping positions and 544

patterns in mitigating the susceptibility to overfit- 545

ting in LoRA scenarios. Moreover, HiddenKey also 546

consistently outperforms HiddenKey−, emphasiz- 547

ing the importance of appropriate compensation 548

measures. These results provide strong evidence 549

for the effectiveness of our framework. 550

5 Conclusion 551

We investigate the possible contradiction between 552

the limited trainable parameters of LoRA and over- 553

fitting associated excessive parameter redundancy. 554

After confirming the overfitting-prone property of 555

LoRA, we analyze existing dropout methods the- 556

oretically and empirically, and further introduce a 557

unified framework for thorough comparison. This 558

also guides us to derive a new dropout method, Hid- 559

denKey. With its superiority and sufficiency across 560

multiple models and datasets, HiddenKey deserves 561

to be the recommended dropout method to alleviate 562

overfitting in LoRA-based scenarios. 563

8



6 Limitation564

The main limitation of this work is the poten-565

tially longer training duration incurred by the Bidi-566

rectional Kullback-Leibler (KL) divergence loss.567

Specifically, the calculation of the KL loss requires568

the output distributions of two forward passes. In569

our implementation, as shown in Figure 3, we only570

perform back-propagation on one of the branches,571

resulting in approximately 50% longer training572

time compared to the original training process.573

However, we argue that this can be greatly re-574

duced by parallelizing the two forward passes with575

multiple processes. Alternatively, both branches576

can be back-propagated simultaneously or sequen-577

tially, before merging their gradient updates. This578

pipeline can be regarded as utilizing the same batch579

of samples twice, thereby roughly halving the num-580

ber of iterations and resulting in similar total train-581

ing time, which is left for future work. Furthermore,582

it is worth noting that the training cost is one-time,583

and the introduction of KL loss can significantly584

improve models’ performance, which is highly ben-585

eficial for performance-critical scenarios. On the586

other hand, for training cost-sensitive scenarios, us-587

ing only HiddenKey− (i.e. HiddenKey without KL588

loss) can still outperform the baselines. Hence, we589

claim that despite the potential increase in training590

duration, HiddenKey and HiddenKey− do provide591

available options for different scenarios.592

7 Ethics Statement593

We strictly follow the ACL Code of Ethics during594

the research. To the best of our knowledge, there595

are no foreseeable potential risks in the methods we596

introduced. We report the computing infrastructure597

for all computational experiments presented in the598

paper. The transparent statistics on our results and599

detailed configuration of our experimental setup, in-600

cluding best-found hyperparameter values, are well601

stated. Besides, we will also release the code upon602

publication for publicly available reproducibility603

with minimal effort.604

References605

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-606
son, Dmitry Lepikhin, Alexandre Passos, Siamak607
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng608
Chen, et al. 2023. Palm 2 technical report. arXiv609
preprint arXiv:2305.10403.610

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-611
Gazpio, and Lucia Specia. 2017. Semeval-2017612

task 1: Semantic textual similarity - multilingual 613
and cross-lingual focused evaluation. In Proceed- 614
ings of the 11th International Workshop on Semantic 615
Evaluation (SemEval-2017). 616

Jiaao Chen, Dinghan Shen, Weizhu Chen, and Diyi 617
Yang. 2021. Hiddencut: Simple data augmentation 618
for natural language understanding with better gener- 619
alizability. In Proceedings of the 59th Annual Meet- 620
ing of the Association for Computational Linguistics 621
and the 11th International Joint Conference on Natu- 622
ral Language Processing (Volume 1: Long Papers), 623
pages 4380–4390. 624

Yuxuan Chen, Rongpeng Li, Zhifeng Zhao, Chenghui 625
Peng, Jianjun Wu, Ekram Hossain, and Honggang 626
Zhang. 2023. Netgpt: A native-ai network archi- 627
tecture beyond provisioning personalized generative 628
services. arXiv preprint arXiv:2307.06148. 629

WilliamB. Dolan and Chris Brockett. 2005. Automati- 630
cally constructing a corpus of sentential paraphrases. 631

Claire Gardent, Anastasia Shimorina, Shashi Narayan, 632
and Laura Perez-Beltrachini. 2017. The webnlg chal- 633
lenge: Generating text from rdf data. In Proceedings 634
of the 10th International Conference on Natural Lan- 635
guage Generation. 636

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, 637
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. 638
Improving neural networks by preventing co- 639
adaptation of feature detectors. arXiv preprint 640
arXiv:1207.0580. 641

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 642
Bruna Morrone, Quentin De Laroussilhe, Andrea 643
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 644
Parameter-efficient transfer learning for nlp. In In- 645
ternational Conference on Machine Learning, pages 646
2790–2799. PMLR. 647

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 648
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 649
and Weizhu Chen. 2021. Lora: Low-rank adap- 650
tation of large language models. arXiv preprint 651
arXiv:2106.09685. 652

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 653
The power of scale for parameter-efficient prompt 654
tuning. arXiv preprint arXiv:2104.08691. 655

Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, 656
Xiangjian Jiang, Tiande Guo, and Luoqi Liu. 2023. 657
Dropkey for vision transformer. In Proceedings of 658
the IEEE/CVF Conference on Computer Vision and 659
Pattern Recognition, pages 22700–22709. 660

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 661
Optimizing continuous prompts for generation. arXiv 662
preprint arXiv:2101.00190. 663

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx- 664
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning: 665
Prompt tuning can be comparable to fine-tuning 666
across scales and tasks. In Proceedings of the 60th 667

9

https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/w17-3518
https://doi.org/10.18653/v1/w17-3518
https://doi.org/10.18653/v1/w17-3518


Annual Meeting of the Association for Computational668
Linguistics (Volume 2: Short Papers), pages 61–68.669

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,670
Mandar Joshi, Danqi Chen, Omer Levy, Michael671
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.672
2019. Roberta: A robustly optimized bert pretrain-673
ing approach. Cornell University - arXiv,Cornell674
University - arXiv.675

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.676
2017. The e2e dataset: New challenges for end-to-677
end generation. Proceedings of the SIGDIAL 2017678
Conference, pages 201-206, Saarbrücken, Germany,679
15-17 August 2017.680

OpenAI. 2023. Gpt-4 technical report.681

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.682
Know what you don’t know: Unanswerable questions683
for squad. arXiv preprint arXiv:1806.03822.684

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru685
Qu, and Weizhu Chen. 2020. A simple but tough-686
to-beat data augmentation approach for natural lan-687
guage understanding and generation. arXiv preprint688
arXiv:2009.13818.689

Richard Socher, Alex Perelygin, JeanY. Wu, Jason690
Chuang, ChristopherD. Manning, AndrewY. Ng, and691
Christopher Potts. 2013. Recursive deep models for692
semantic compositionality over a sentiment treebank.693
Empirical Methods in Natural Language Process-694
ing,Empirical Methods in Natural Language Process-695
ing.696

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier697
Martinet, Marie-Anne Lachaux, Timothée Lacroix,698
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal699
Azhar, et al. 2023a. Llama: Open and effi-700
cient foundation language models. arXiv preprint701
arXiv:2302.13971.702

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-703
bert, Amjad Almahairi, Yasmine Babaei, Nikolay704
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti705
Bhosale, et al. 2023b. Llama 2: Open founda-706
tion and fine-tuned chat models. arXiv preprint707
arXiv:2307.09288.708

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob709
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz710
Kaiser, and Illia Polosukhin. 2017. Attention is all711
you need. Advances in neural information processing712
systems, 30.713

Alex Wang, Amanpreet Singh, Julian Michael, Felix714
Hill, Omer Levy, and Samuel R Bowman. 2018.715
Glue: A multi-task benchmark and analysis platform716
for natural language understanding. arXiv preprint717
arXiv:1804.07461.718

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guan-719
nan Zhang. 2023. Multilora: Democratizing lora720
for better multi-task learning. arXiv preprint721
arXiv:2311.11501.722

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 723
man. 2018. Neural network acceptability judgments. 724

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei 725
Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop: 726
Regularized dropout for neural networks. Advances 727
in Neural Information Processing Systems, 34:10890– 728
10905. 729

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 730
berg. 2021. Bitfit: Simple parameter-efficient 731
fine-tuning for transformer-based masked language- 732
models. arXiv preprint arXiv:2106.10199. 733

Lin Zehui, Pengfei Liu, Luyao Huang, Junkun 734
Chen, Xipeng Qiu, and Xuanjing Huang. 2019. 735
Dropattention: A regularization method for fully- 736
connected self-attention networks. arXiv preprint 737
arXiv:1907.11065. 738

10

http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1805.12471


A Related work739

During the finetuning phase, full-finetuning in-740

volves updating all model parameters, resulting in a741

slightly modified version. However, with the rapid742

development of large language models (LLMs),743

this approach becomes increasingly impractical due744

to the high storage and inference expenses, particu-745

larly in multitask and personalized settings (Wang746

et al., 2023; Chen et al., 2023). As lightweight747

alternatives, parameter-efficient finetuning (PEFT)748

methods only introduce or retrain a negligible por-749

tion of parameters, sharing most of the parameters750

while preserving competitive performance as full-751

finetuning (Houlsby et al., 2019; Lester et al., 2021;752

Hu et al., 2021). For instance, Houlsby et al. (2019)753

inserts and exclusively updates new adapters be-754

tween pretrained layers, achieving remarkable per-755

formance with limited trainable parameters. How-756

ever, this method increases the model’s depth and757

incurs higher time latency. Lester et al. (2021) pre-758

fixes a learnable prompt to the input and feeds this759

longer sequence into the frozen model. Neverthe-760

less, this approach reduces the available sequence761

length and is empirically shown to be sensitive762

to initialization. Similarly, Li and Liang (2021)763

attaches prefixed tokens to the key and value se-764

quences, addressing the first drawback but still suf-765

fering from the latter one. In contrast, BitFit (Za-766

ken et al., 2021) only adjusts the biases, effectively767

avoiding the aforementioned problems. However,768

its limited capacity leads to inferior performance.769

More recently, LoRA (Hu et al., 2021) imposes a770

low-rank decomposition on weight updates, which771

can be optionally merged into the original weights772

during inference, and avoids all the aforementioned773

issues.774

Dropout (Hinton et al., 2012) randomly deacti-775

vates each neuron with a specific probability dur-776

ing training, which can prevent the co-adaptation777

of neurons and has been extended to improve the778

performance of transformer models (Zehui et al.,779

2019; Chen et al., 2021; Li et al., 2023). Specifi-780

cally, Zehui et al. (2019) proposes the first variant781

specially designed for self-attention mechanism,782

DropAttention, which drops the attention weights783

randomly and applies normalized rescaling to en-784

sure their sum to be one. Instead, HiddenCut (Chen785

et al., 2021) applies contiguous span-style masks786

to hidden representations in the feed-forward mod-787

ule. Recently, Li et al. (2023) introduces a drop-788

before-softmax scheme, HiddenKey, which drops789

key units before the softmax layer so that the sum of 790

attention weights can be kept as one automatically. 791

However, it only focuses on computer vision tasks, 792

while totally neglecting NLP tasks that emphasizes 793

semantics and linguistic information. During in- 794

ference, dropout is usually disabled by default for 795

better performance and deterministic outputs. How- 796

ever, this is not consistent with the training stage 797

and can lead to a gap between the actual and ideal 798

performance. In order to address this divergence, R- 799

Drop (Wu et al., 2021) minimizes the bidirectional 800

Kullback-Leibler divergence between the output 801

distributions of two forward passes with dropout 802

for more noise-resilient outputs. In comparison, 803

Shen et al. (2020) narrows this gap by applying 804

Jensen-Shannon Divergence loss to enforce con- 805

sistent representations between outputs with and 806

without dropout. 807

B Overfitting-Prone Property of LoRA 808

As an illustrative example, Figure 5 shows the eval- 809

uation accuracy of LoRA with different ranks on 810

the RTE dataset. This clearly indicates that with the 811

increase of the rank and trainable parameters, the 812

performance of LoRA initially improves and then 813

deteriorates due to progressively excessive parame- 814

ter redundancy, demonstrating the susceptibility to 815

overfitting in LoRA scenarios. 816

1 64 256 1024
Rank

0.835

0.840

0.845

0.850

0.855

A
cc

ur
ac

y

817

Figure 5: Evaluation accuracy of LoRA with respect to
the rank on RTE dataset.

C Mathematical Proofs 818

We prove the mathematical equivalence of w′
u for 819

DropKey and DropAttention as follows: 820

exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− wm

=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− exp(gm)∑l−1
i=0 exp(gi)

(13)

11



=
exp(gu)∑l−1

i=0 exp(gi)− exp(gm)

=
exp(gu)∑l−1

i=0,̸=m exp(gi)

=
exp(g′u)∑l−1
i=0 exp(g

′
i)

821

The proportional relationship of ∂w′
u

∂gu
between822

DropKey and DropAttention can be derived with823

the following equation:824

(
∂w′

u
∂gu

)DropKey

(
∂w′

u
∂gu

)DropAttention

=
exp(gu) · (

∑l−1
i=0,̸=m exp(gi)− exp(gu))

(
∑l−1

i=0,̸=m exp(gi))2
(14)

·
∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)

exp(gu) ·
∑l−1

i=0,̸=u exp(gi)

=

∑l−1
i=0,̸=m exp(gi)− exp(gu)∑l−1

i=0,̸=m exp(gi)

·
∑l−1

i=0 exp(gi)∑l−1
i=0, ̸=u exp(gi)

=

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)

1− exp(gu)∑l−1
i=0 exp(gi)

825

Denoting k as the result of Eq. 14, we have826

k <

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)+exp(gm)

1− exp(gu)∑l−1
i=0 exp(gi)

(15)

= 1

827

D Dataset Details828

For NLU tasks, (i) Stanford Sentiment Treebank829

(SST-2) (Socher et al., 2013) is an English senti-830

ment classification benchmark for a single sentence831

task, predicting whether the sentiment of movie re-832

views is positive or not. (ii) Recognizing Textual833

Entailment (RTE) (Wang et al., 2018) presents an834

inference task that predicts the entailment relation835

between two sentences. (iii) Microsoft Research836

Paraphrase Corpus (MRPC) (Dolan and Brockett,837

2005) predicts the semantic equivalence between838

two sentences, while (iv) Semantic Textual Similar-839

ity Benchmark (STS-B) (Cer et al., 2017) predicts840

the similarity between two sentences. The later two841

tasks are involved with comparing and assessing842

the similarity and paraphrasing of two sentences.843

Notably, compared to the other classification tasks,844

STS-B performs a regression task and thus encom-845

passes a broad range of tasks, enhancing the gener-846

alizability of our conclusions. Besides, additional847

experiments are further conducted on (v) Corpus of 848

Linguistic Acceptability (CoLA) (Warstadt et al., 849

2018), which aims to predict whether a sentence is 850

linguistically acceptable or not, and (vi) Question 851

Natural Language Inference (QNLI) (Rajpurkar 852

et al., 2018), which predicts whether a sentence 853

is the answer to a given question. For NLG tasks, 854

we focus on (vii) E2E NLG Challenge (Novikova 855

et al., 2017) and (viii) WebNLG (Gardent et al., 856

2017). The former consists of sets of slot-value 857

pairs along with multiple corresponding natural lan- 858

guage references in the restaurant domain, while 859

the later is a dataset where models generate the cor- 860

responding description in form of natural language 861

text given a sequence of SUBJECT-PROPERTY- 862

OBJECT triples. 863

As for the evaluation metrics, we report the Pear- 864

son correlation for STS-B, Matthew’s correlation 865

for CoLA, and accuracy for other NLU datasets. 866

For NLG tasks, BLEU, NIST, METEOR, ROUGE- 867

L and CIDEr are used on the E2E NLG Challenge 868

dataset, while BLEU, METEOR and TER are eval- 869

uated separately for “Unseen”, “Seen” and “All” 870

categories in the test set of the WebNLG dataset. 871

E Hyperparameter Configuration 872

As shown in Table 6 and 7, we mainly follow the 873

setup of LoRA (Hu et al., 2021) with as mini- 874

mal changes as possible. However, based on our 875

pre-experiments, significant fluctuations of the re- 876

sults are observed when models are trained with 877

the original epochs, even if only random seeds 878

change. Therefore, we increase the number of train- 879

ing epochs for more steady results. We also use the 880

regular initialization instead of the MNLI check- 881

point for LoRA modules. Different from RoBERTa- 882

large and GPT2-Medium models, we employ FP16 883

mixed precision training for LLaMA2-7B to re- 884

duce the memory consumption, and set the epoch 885

to one. Besides, we utilize greedy search with 886

length penalty of 1.0 and “no repeat n-gram size” 887

of 0 for inference, which empirically outperforms 888

the settings of GPT2-Medium. 889

For the specific parameters in our experiments, 890

we disable dropout in baselines and iterate all 891

available dropout rate from {0.01, 0.02, 0.05, 0.1, 892

0.15, 0.2} for various dropout methods, which is 893

expanded with {0.25, 0.3} for clearer trend of 894

performance in RTE dataset. To the best of our 895

knowledge, neither of HiddenCut, DropKey and 896

DropAttention implements experiments with a ca- 897

12



Model RoBERTa-large LLaMA2-7B

Dataset RTE MRPC STS-B SST-2 CoLA QNLI RTE MRPC

Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Warmup Ratio 0.06 0.06
LR Schedule Linear Linear
Learning Rate 4E-4 3E-4 3E-4 4E-4 2E-4 2E-4 5E-4

Epoch 30 30 10 10 40 10 10 8
Batch Size 64 32 32 64 32 32 64 32

Mac Seq. Len. 512 512 128 512 128 512 512
LoRA Rank rq = rv = 8 rq = rv = 8
LoRA Scalar 16 16

Table 6: Hyperparameters for RoBERTa-large and LLaMA2-7B models with LoRA on NLU datasets.

Dataset E2E NLG Challenge WebNLG

Training

Optimizer AdamW
Weight Decay 0.01
Warmup Step 500
LR Schedule Linear
Learning Rate 2E-4

Epoch 5
Batch Size 8

Label Smooth 0.1
LoRA Rank rq = rv = 4
LoRA Scalar 32

Inference

Beam Size 10
Length Penalty 0.9 0.8

No Repeat N-Gram Size 4
Repetition Penalty 1.0

Table 7: Hyperparameters for GPT2-Medium with
LoRA on NLG datasets.

sual decoder-only transformer model before. Based898

on our empirical observation, applying any of these899

methods can only produce limited improvement or900

even degradation on both NLU and NLG tasks, and901

the results are extremely sensitive to the dropout902

rate. This phenomenon might be caused by fragile903

shallow forwarding pass. In other words, noise in-904

troduced by dropout methods can be amplified with905

the propagation and diminish the benefits brought906

by dropout. Hence, we only introduce the drop-907

ping in the latter half of layers in decoder-only908

models and the apparent performance improve-909

ment emerges again. Besides, our pre-experiments910

demonstrate that a weight between 0.01 and 10 for911

KL and JS loss generally yields the best results.912

Therefore, we iterate the weight within {0.01, 0.02,913

0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. All experiments are 914

repeated 5 times on a NVIDIA V100 GPU to cal- 915

culate the median values for NLU tasks, while the 916

average values of three runs on a NVIDIA A100 917

GPU is reported for NLG tasks. 918

F Finetuning dynamics 919

0.0 0.2 0.4 0.6 0.8 1.0
Step

0.0

0.2

0.4

0.6

0.8

Lo
ss

Loss - Baseline
Loss - HiddenKey
Loss - HiddenKey
Acc. - Baseline
Acc. - HiddenKey
Acc. - HiddenKey

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Figure 6: Finetuning loss and evaluation accuracy for
baseline, HiddenKey− and HiddenKey.

Beyond the superior performance of HiddenKey, 920

we also visualize the finetuning dynamics for a 921

deeper understanding. Figure 6 presents the av- 922

erage dynamic curves of training loss and evalua- 923

tion accuracy across five random seeds for multiple 924

methods on the RTE dataset. Compared to the base- 925

line whose training loss rapidly converges to near 926

zero, the introduction of HiddenKey− (i.e. column- 927

wise DropKey and element-wise HiddenCut) slows 928

down this process and leads to larger final loss. 929

However, large final loss does not mean inferior per- 930

formance. Specifically, after reaching a fair peak 931

13



value, accuracy of the baseline deteriorates with the932

continuous loss decline. This hints that the models933

suffer from overfitting, which further supports our934

earlier analysis. In contrast, HiddenKey− reaches935

the peak accuracy slightly slowly but remains supe-936

rior to the baseline. With the additional KL loss, the937

accuracy keeps fluctuating upwards and achieves938

the best performance. It can be anticipated that a939

longer finetuning process would result in higher ac-940

curacy for HiddenKey. In summary, LoRA-based941

PEFT scenarios are still overfitting-prone, while942

HiddenKey can provide excellent model regulariza-943

tion in such settings, and continues improving the944

performance when further finetuning is allowed.945

14


	Introduction
	Preliminaries
	Method
	Mathematical and Empirical Comparison
	A Unified Framework
	HiddenKey

	Experiments
	General Setup
	Main Results
	Complementarity with Input and Output Dropout
	Superiority on More NLU and NLG Tasks
	Performance Boost on LLMs
	Ablation Study

	Conclusion
	Limitation
	Ethics Statement
	Related work
	Overfitting-Prone Property of LoRA
	Mathematical Proofs
	Dataset Details
	Hyperparameter Configuration
	Finetuning dynamics

