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Abstract

Quantum computers are actively competing to surpass classical supercomputers, but quantum1

errors remain their chief obstacle. The key to overcoming these on near-term devices has emerged2

through the field of quantum error mitigation, enabling improved accuracy at the cost of additional3

runtime. In practice, however, the success of mitigation is limited by a generally exponential4

overhead. Can classical machine learning address this challenge on today’s quantum computers?5

Here, through both simulations and experiments on state-of-the-art quantum computers using6

up to 100 qubits, we demonstrate that machine learning for quantum error mitigation (ML-7

QEM) can drastically reduce overheads, maintain or even surpass the accuracy of conventional8

methods, and yield near noise-free results for quantum algorithms. We benchmark a variety of9

machine learning models—linear regression, random forests, multi-layer perceptrons, and graph10

neural networks—on diverse classes of quantum circuits, over increasingly complex device-noise11

profiles, under interpolation and extrapolation, and for small and large quantum circuits. These12

tests employ the popular digital zero-noise extrapolation method as an added reference. We13

further show how to scale ML-QEM to classically intractable quantum circuits by mimicking14

the results of traditional mitigation results, while significantly reducing overhead. Our results15

highlight the potential of classical machine learning for practical quantum computation.16

1 Introduction17

Quantum computers promise remarkable advantages over their classical counterparts, offering solutions to certain18

key problems with speedups ranging from polynomial to exponential Biamonte et al. [2017], Daley et al. [2022].19

Despite significant progress in the field, the practical realization of this advantage is hindered by inevitable errors20

in the physical quantum devices. Quantum error mitigation (QEM) strategies have been developed to harness21

imperfect quantum computers to nonetheless yield near noise-free and meaningful results despite the presence of22

unmonitored errors Bravyi et al. [2022], Cai et al. [2022]. Crucially, QEM is paving the way to near-term quantum23

utility and a path to outperform classical supercomputers Daley et al. [2022], Kim et al. [2023a]24

Quantum error mitigation as such aims to enhance the accuracy of a noisy quantum computation but at the cost of25

extended execution times. It has played a pivotal role in expanding the computational horizons of extant noisy26

quantum devices Kandala et al. [2019], Kim et al. [2023b,a] and has been instrumental in realizing preliminary27

manifestations of quantum advantage Daley et al. [2022], Bravyi et al. [2022], Pokharel and Lidar [2022]. Quantum28

error mitigation is typically achieved by implementing a class of mitigation circuits either in tandem with or as a29

replacement for a target quantum circuit, representing a computation. A cornerstone approach in this domain is30

zero-noise extrapolation (ZNE) Temme et al. [2017], Li and Benjamin [2017]. In ZNE, the ‘zero-noise’ (ideal)31

expectation value of the target circuit is discerned by extrapolating from expectation values across a spectrum of32

increased noise intensities. Strictly speaking the ZNE method does not guarantee unbiased data estimators, as33

certain other key QEM methods do, such as probabilistic error cancellation (PEC) Temme et al. [2017], Li and34

Benjamin [2017], van den Berg et al. [2023]. While these latter methods are fortified with rigorous theoretical35

guarantees and promise enhanced accuracy, they also demand exponential sampling overheads Quek et al. [2022],36

Takagi et al. [2022]—making them challenging to implement at scales of interest.37
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Emerging at the crossroads of quantum mechanics and statistical learning, machine learning for quantum error38

mitigation (ML-QEM) presents a promising avenue where statistical models are trained to derive mitigated39

expectation values from noisy counterparts executed on quantum computers. Could such ML-QEM methods offer40

valuable improvement in accuracy or runtime efficiency in practice?41

In principle, a successful ML-QEM strategy would learn the effect of noise in training, thus obviating the need42

for additional mitigation circuits during the execution of an algorithm. Compared to conventional QEM, the43

algorithmic runtime would then see a potential reduction in overhead. However, quantum noise can be complex44

and can drift over time, and so it would have to be learned accurately and quickly. First explorations of ML-QEM45

ideas have shown signs of promise, even for complex noise profiles Kim et al. [2020], Czarnik et al. [2021, 2022],46

Bennewitz et al. [2022], Patel and Tiwari [2021], Strikis et al. [2021], but it remains unclear if ML-QEM can47

perform in practice in quantum computations on hardware or at scale. For instance, it is unclear whether a given48

ML-QEM method can be used across different device noise profiles, diverse circuit classes, and large quantum49

circuit volumes beyond the limits of classical simulation. To date, there has not been a systematic study comparing50

different traditional methods and statistical models for QEM on equal footing under practical scenarios across a51

variety of relevant quantum computational tasks.52

In this article, we present a general framework to perform ML-QEM for higher runtime efficiency compared to53

other mitigation methods. Our study encompasses a broad spectrum of simple to complex machine learning models,54

including the previously proposed linear regression and multi-layer perceptron model. We further propose two new55

models, random forests and graph neural networks. We find that random forests seem to consistently perform the56

best. We evaluate the performance of all four models in diverse realistic scenarios. We consider a range of circuit57

classes (random circuits and Trotterized Ising dynamics) and increasingly complex noise models in simulations58

(including incoherent and coherent gate errors, readout errors, and qubit errors). Additionally, we explore the59

advantages of ML-QEM methods over traditional approaches in common use cases, such as generalization to60

unseen Pauli observables, and enhancement of variational quantum-classical tasks. Our analysis reveals that61

ML-QEM methods, particularly random forest, exhibit competitive performance compared to a state-of-the-art62

method—digital zero-noise extrapolation (ZNE)—while requiring lower overhead by a factor of at least 2 in63

runtime. Finally, with experiments on IBM quantum computers for quantum circuits with up to 100 qubits and64

two-qubit gate depth of 40 (with up to 1,980 CNOT gates), we propose a path toward scalable mitigation by65

mimicking traditional mitigation methods with superior runtime efficiency, which also serves as a further example66

of using classical machine learning on quantum data Huang et al. [2022].67

Before proceeding to results, let us summarize the general workflow of ML-QEM; see Fig. 1. In an initial training68

step, the model training data is generated containing, at a minimum, the noisy and target expectation values of69

quantum circuits that should be similar to those used in testing; the training set can also be augmented to include, for70

instance, encoded features of the quantum circuits and quantum backend. Then, the model is trained by minimizing71

a loss function over the mitigated and target expectation values. A key feature of the ML-QEM model is that at72

runtime, the model produces mitigated expectation values from the noisy ones without the need for additional73

mitigation circuits, thus dramatically reducing overheads.74

2 Results75

2.1 Performance Comparison at Tractable Scale76

First, we present a comparative analysis of several representative ML-QEM methods. As portrayed in Fig. 777

in the Methods section in App. A.1, we explore several statistical models in our study with varying complexity78

and methods of encoding data, namely linear regression with ordinary least squares (OLS), random forests (RF),79

multi-layer perceptrons (MLP), and graph neural networks (GNN). Since the relationship between the noisy80

expectation values and the ideal ones is non-linear in general (see App. B for more details), we emphasize the role81

of non-linear machine learning models, and study three non-linear models, i.e., RF, MLP, and GNN, in addition to82

the linear model OLS. Each of these models is described in further detail in the Methods in App. A.1. We compare83

these models against each other and digital gate-folding ZNE. Future studies comparing ML-QEM against methods84

with more rigorous theoretical guarantees, such as probabilistic error cancellation or amplification, are warranted.85

We evaluate the performance of these methods for two classes of circuits: random circuits and Trotterized dynamics86

of the 1D Ising spin chain on small-scale simulations. These two classes of circuits bear distinct two-qubit gate87

arrangements, allowing us to gain knowledge about the performance of the ML-QEM on the two extremes of the88

spectrum in terms of circuit structures. This evaluation is done by simulations on small-scaled circuits, conveniently89
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Figure 1: Machine-learning quantum error mitigation (ML-QEM): execution and training for tractable and
intractable circuits. A quantum circuit (left) is passed to an encoder (top) that creates a feature set for the ML
model (right) based on the circuit and the quantum processor unit (QPU) targeted for execution. The model and
features are readily replaceable. The executed noisy expectation values ⟨Ô⟩noisy (middle) serve as the input to
the model whose aim is to predict their noise-free value ⟨Ô⟩mit. To achieve this, the model is trained beforehand
(bottom, blue highlighted path) against target values ⟨Ô⟩target of example circuits. These are obtained either using
noiseless simulations in the case of small-scale, tractable circuits or using the noisy QPU in conjunction with a
conventional error mitigation strategy in the case of large-scale, intractable circuits. The training minimizes the loss
function, typically the mean square error. The trained model operates without the need for additional mitigation
circuits, thus reducing runtime overheads.

allowing us to vary the type of noises affecting the circuits and to identify situations under which the ML-QEM90

outperforms digital ZNE in terms of mitigation accuracy.91

2.1.1 Random Circuits92

Learning-based models
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Figure 2: Quantum error mitigation
(QEM) and ML-QEM accuracy on ran-
dom circuits. Top: Error distribution for
unmitigated and mitigated Pauli-Z expec-
tation values. Mitigation is performed us-
ing either a reference QEM method, digital
zero-noise extrapolation (ZNE), or one of
four ML-QEM models (explained in text).
Inset: Example random circuits. Noisy
execution is numerically simulated using
a noise model derived from IBM QPU
Lima. The error is defined as the L2 dis-
tance between the vector of all ideal and
noisy single-qubit expectations ⟨Ẑi⟩; i.e.,
∥⟨Ẑ⟩ − ⟨Ẑ⟩ideal∥2. Black dots are outliers.
Average is over 2,000 four-qubit random
circuits, with two-qubit-gate depths sam-
pled up to 18. Bottom: Average error for
each method (using data from the top) is
presented with 95% confidence intervals,
derived from bootstrap re-sampling. The
mean L2 error is provided above each col-
umn.

In the first experiment, we benchmark the performance of the protocol on small-scale unstructured circuits. To93

ensure that the circuits encompass a broad spectrum of complexities, we generate a diverse set of four-qubit94
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Figure 3: Mitigation accuracy under i) complexity of quantum noise and ii) ML-QEM interpolation and
extrapolation for Trotter circuits. Top row: Average error performance on Trotter circuits (top-left inset)
representing the quantum time dynamics of a four-site, 1D, transverse-field Ising model in numerical simulations.
A Trotter step comprises four layers of CNOT gates (inset). Vertical dashed line separates experiments in the
ML-QEM interpolation regime (left) from the extrapolation regime (right). The 3 curves represent the performance
of the highest-performing ML-QEM method, the QEM ZNE method, and the unmitigated simulations. They
are averaged over 300 circuits, each with a randomly chosen Pauli measurement bases. The data is for all four
weight-one expectations ⟨P̂i⟩. The error is defined as L2 distance from the ideal expectations, ∥⟨P̂ ⟩ − ⟨P̂ ⟩ideal∥2,
as also defined for the remainder of figures. From the left to right, the complexity of the device noise model
increases to include additional realistic noise types. Coherent errors are introduced on CNOT gates. Bottom row:
Corresponding typical data of the error-mitigated expectation values of the ⟨Z0⟩ Trotter evolution; here, for Ising
parameter ratio J/h = 0.15.

random circuits with varying two-qubit gate depths, up to a maximum of 18, as shown in the inset of Fig. 2. Per95

two-qubit gate depth, there are 500 random training circuits and 200 random test circuits that are generated by96

the same sampling procedure. For each circuit, we carry out simulations on IBM’s FakeLima backend, which97

emulates the incoherent noise present in the real quantum computer, the ibmq_lima device. While these quantum98

devices generally have coherent errors as well, they can be suppressed through a combination of e.g., dynamical99

decoupling Ezzell et al. [2022] and randomized compiling van den Berg et al. [2023], Wallman and Emerson100

[2016]. Specific types of noise include incoherent gate errors, qubit decoherence, and readout errors. We train the101

ML-QEM models to mitigate the noisy expectation values of the four single-qubit Ẑi observables. As a benchmark,102

we also compare mitigated expectation values from digital ZNE. In Fig. 2, we show the error (between the mitigated103

expectation values and the ideal ones) distribution of digital ZNE and ML-QEM with each of the four machine104

learning models on the top plot and the bootstrap mean errors in the bottom plot. We observe that the random105

forest consistently outperforms the other ML-QEM models, with the MLP model closely following. Notably, all106

ML-QEM models, including OLS and GNN, exhibit competitive performance in comparison to the ZNE method,107

despite that the runtime overhead for ZNE is twice as much. Finally, we emphasize that rigor hyperparameter108

optimization may impact the relative performance of these methods, and we leave this analysis to future work.109

2.1.2 Trotterized 1D Transverse-field Ising Model110

To benchmark the performance of the protocol on structured circuits, we consider Trotterized brickwork circuits.111

Here, we consider first-order Trotterized dynamics of the 1D transverse-field Ising model (TFIM) subject to112

different noise models based on the incoherent noise on the FakeLima simulator in Fig. 3, before moving to113

experiments on IBM hardware with actual device noise in Fig. 4. The dynamics of the spin chain is described by114
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Figure 4: On QPU hardware: accu-
racy and overhead for ML-QEM and
QEM. Average execution error of Trotter
circuits for experiments on QPU device
ibm_algiers without mitigation and with
ZNE or ML-QEM RF mitigation. Error per-
formance is averaged over 250 Ising circuits
per Trotter step, each with sampled Ising
parameters J < h and each measured for
all weight-one observables in a randomly
chosen Pauli basis. Training is performed
over 50 circuits per Trotter step, which re-
sults in both a 40% lower overall and 50%
lower runtime quantum resource overhead
of RF compared to the overhead of the digi-
tal ZNE implementation (see inset).

the Hamiltonian115

Ĥ = −J
∑
j

ẐjẐj+1 + h
∑
j

X̂j = −JĤZZ + hĤX ,

where J denotes the exchange coupling between neighboring spins and h represents the transverse magnetic field,116

whose first-order Trotterized circuit is shown in the inset of Fig. 3. We generate multiple instances of the problem117

with varying numbers of Trotter steps and coupling strengths, such that the coupling strengths of each circuit118

are uniformly sampled from the paramagnetic phase (J < h) by choice. There are 300 training circuits and 300119

testing circuits per Trotter step, and the training circuits cover Trotter steps up to 14. Each circuit is measured120

in a randomly chosen Pauli basis for all the weight-one observables. We then train the ML-QEM models on the121

ideal and noisy expectation values obtained from these circuits and compare their performance with digital ZNE.122

During the testing phase, we consider both interpolation and extrapolation. In interpolation, we test on circuits with123

sampled coupling strength J not included in training but with Trotter steps included in the training. In extrapolation,124

we test on circuits with sampled coupling strength J not included in the training as well as with Trotter steps125

exceeding the maximal steps present in the training circuits.126

On the noisy simulator in Fig. 3, for this problem with incoherent gate noise in the absence (left) or presence (right)127

of readout error, the ML-QEM model (using the random forest) performs better than the ZNE method. We present128

a comparison across all ML-QEM models in App. D, such that the RF model demonstrates the best performance129

among the ML-QEM models both in interpolation and extrapolation, closely followed by the MLP, OLS, and GNN.130

We envision that ML-QEM can be used to improve the accuracy of noisy quantum computations for circuits with131

gate depths exceeding those included in the training set.132

On the right of Fig. 3, we consider the same problem in the second study but simulate the sampled circuits on133

FakeLima backend with additional coherent errors. The added coherent errors are CNOT gate over-rotations with134

an average over-rotational angle of 0.02π. We again generate multiple instances of the problem with varying135

numbers of Trotter steps and coupling strengths uniformly sampled from the paramagnetic phase.136

During the testing phase, the testing circuits cover 14 more steps up to Trotter step 29. Under the influence of137

added coherent noise, the performance of the ML-QEM model and digital ZNE deteriorated compared to the138

previous study. However, in the extrapolation scenario, none of the models demonstrated effective mitigation of the139

noisy expectation values. In practical applications, a combination of, e.g., dynamical decoupling and randomized140

compiling, which can suppress all coherent errors, could be applied to the test circuits prior to utilizing ML-QEM141

models. This approach effectively converts the noise into incoherent noise, enabling the ML-QEM methods to142

perform optimally in extrapolation. We remark that coherent gate errors induce quadratic changes in the expectation143

values, which are stronger than incoherent errors inducing only linear changes—it is plausible that the machine144

learning approach performs better with weak noises.145

We benchmark the performance of the ML-QEM model against digital ZNE on real quantum hardware, IBM’s146

ibm_algiers. In this experiment, we do not apply any additional error suppression or error mitigation such147

as dynamical decoupling, randomized compiling, or readout error mitigation; thus, the experiment involves148

incoherence noise, coherent noise, and readout error, with the results shown in Fig. 4. We train the ML-QEM149

with random forest on 50 circuits and test it on 250 circuits at each Trotter step. We observe that 50 training150
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Figure 5: Application of ML-QEM to a) unseen expectation values and b) the variational quantum
eigensolver (VQE). a) Top: Schematic of a Trotter circuit, which prepares a many-body quantum state on n = 6
qubits (in 5 Trotter steps). Top right: Circle depicts the pool of all possible 4n Pauli observables. Shaded region
depicts the fraction of observables used in training the ML model; the remaining observables are unseen prior to
deployment in mitigation. Bottom: Average error of mitigated unseen Pauli observables versus the total number of
distinct observables seen in training. b) Top: Schematic of the VQE ansatz circuit for 2 qubits parametrized by 8
angles θ⃗. Below, a depiction of the VQE optimization workflow optimizing the set of angles θ⃗ on a simulated QPU,
yielding the noisy chemical energy ⟨Ĥ⟩noisy

θ⃗
, which is first mitigated by the ML-QEM or QEM before being used

in the optimizer as ⟨Ĥ⟩mit
θ⃗

. Compared to the ZNE method, the ML-QEM with RF method obviates the need for
additional mitigation circuits at every optimization iteration at runtime.

circuits per step, totaling 500 training circuits, suffices to have the model trained well. With this low train-test151

split ratio, the ML-QEM requires 500 + 2,500 = 3,000 total circuits, while running ZNE with 2 noise factors152

on the testing circuits requires 2 × 2,500 = 5,000 total circuits. The ML-QEM claims a reduction of quantum153

resource overhead compared to ZNE both overall and at runtime—the reduction is as large as 30% overall and154

50% at runtime. Additionally, we observe that the ML-QEM method RF significantly outperforms ZNE for all155

Trotter steps, demonstrating the efficacy of this approach under a realistic scenario. We report approximately 0.7156

QPU hours (based on a conservative sampling rate of 2 kHz Kim et al. [2023a]) to generate all the training data157

and seconds to train the model with a single-core laptop for this experiment.158

2.2 Mitigating Unseen Pauli Observables159

There are algorithms in which we care about the expectation values of multiple non-commuting Pauli observables160

on the same circuit, effectively creating multiple target circuits with the same gate sequences but with different161

measuring basis, such as in quantum state tomography and in variational quantum eigensolver. Additional error162

mitigation methods incur a large overhead on top of these target circuits by requiring additional mitigation circuits163

for each target circuit. Here, we show that it is possible to achieve better mitigation performance with lower164

overhead using an ML-QEM method.165

In particular, we evaluate the performance of the ML-QEM to mitigate unseen Pauli observables on a state |ψ⟩166

produced by the Trotterized Ising circuit depicted on the top of Fig. 5(a), which contains 6 qubits and 5 Trotter steps.167

We train the random forest model on increasing fractions of the 46 − 1 = 4,095 Pauli observables of a Trotterized168

Ising circuit with J/h = 0.15, and then we apply the model to mitigate noisy expectation values sampled from the169
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Figure 6: ML-QEM mimicking QEM on
large, 100-qubit circuits with lower overheads,
in hardware. Top three panels: Average ex-
pectation values from 100-qubit Trotterized 1D
TFIM circuits executed in hardware on QPU
ibm_brisbane. Each panel corresponds to a dif-
ferent Ising parameter set (top right corners). Top
panel corresponds to a Clifford circuit, whose
ideal, noise-free expectation values are shown
as the green dots. The RF-mimicking-ZNE (RF-
ZNE) curve corresponds to training the RF model
against ZNE-mitigated data on the hardware
rather than in numerical simulators, for which
these large non-Clifford circuits are more diffi-
cult. This approach enables low-overhead error
mitigation when ideal results are not available
from classical simulation. Bottom panel: The
error, measured again in the L2 norm, between
the ZNE-mitigated expectation values and the RF-
mimicking-ZNE (RF-ZNE) mitigated expectation
values over non-Clifford testing circuits with ran-
domly sampled coupling strengths J < h. aver-
aged over 40 testing circuits per Trotter step and
the observables. The training is over 10 circuits
per Trotter step, which results in a 25% lower
overall and 50% lower runtime quantum resource
overhead compared to the ZNE applied in this
experiment, as shown in the inset.

rest of all possible Pauli observables. The results of this study are plotted at the bottom of Fig. 5(a). We observe that170

training the random forest on just a small fraction (≲ 2%) of the Pauli observables results in mitigated expectation171

values with errors lower than when using ZNE. The ML-QEM method additionally has lower runtime overhead.172

2.3 Training on a Variational Ansatz173

In the conventional formulation of the variational quantum eigensolver (VQE) algorithm, the goal is to estimate174

the ground-state energy by measuring the energy ⟨Ĥ⟩θ⃗ of the state prepared by a circuit ansatz Û(θ⃗) with a fixed175

structure and parameters θ⃗. Then, a classical optimizer is used to propose a new θ⃗, and this procedure is executed176

repeatedly until ⟨Ĥ⟩θ⃗ converges to its minimum. When executing this algorithm on a noisy quantum computer,177

error mitigation can be used to improve the noisy energy ⟨Ĥ⟩noisy
θ⃗

to the mitigated energy ⟨Ĥ⟩mit
θ⃗

and better178

estimate the ground-state energy. This workflow is shown at the top of Fig. 5(b). Error-mitigated VQE with179

traditional methods can be costly, however, as additional mitigation circuits must be executed during each iteration.180

We use ML-QEM error mitigation instead, where a model is trained beforehand to mitigate the ground-state energy181

of an ansatz Û(θ⃗) so that at each iteration, no additional mitigation circuits need to be executed. A trained model182

could also then be used for error-mitigated VQE for different Hamiltonians.183

To demonstrate this concept, we train the ML-QEM model with RF on 2,000 circuits with each parameter randomly184

sampled from [−5, 5], and compute the dissociation curve of the H2 molecule on the bottom of Fig. 5(b). The185

ML-QEM random forest model is trained on a two-local variational ansatz (depicted on the top of Fig. 5(b)) across186

many randomly sampled {θ⃗}. This method results in energies that are close to chemical accuracy. Notably, the187

absolute errors are an order of magnitude smaller than those of the ZNE-mitigated energies.188

2.4 Scalability through Mimicry189

For large-scale circuits whose ideal expectation values of certain observables are inefficient or impossible to obtain190

by classical simulations, we cannot train the model to mitigate expectation values towards the ideal ones. Rather,191

we could train the model to mitigate expectation values towards values mitigated by other scalable QEM methods,192

enabling scalability of ML-QEM through mimicry. Mimicry can be concretely visualized using the workflow for193

ML-QEM depicted in Fig. 1 with an error-mitigated QPU selected instead of a noiseless simulator, as we show in194
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the inset of Fig. 6. Performing mimicry does not allow the ML-QEM model to outperform the mimicked QEM195

method by its nature, but allows the ML-QEM model to reduce the overhead compared to the traditional ML-QEM.196

We demonstrate this capability by training an ML-QEM model to mimic digital ZNE in a 100-qubit Trotterized 1D197

TFIM experiment on ibm_brisbane. In particular, we use ZNE to mitigate five single-qubit Ẑi observables on five198

qubits on the Ising chain with varying numbers of Trotter steps and J/h values. Each Trotter step contains 4 layers199

of parallel CNOT gates, and the circuits at Trotter step 10 has 1,500 CNOT gates in total. As shown in the top of200

Fig. 6, we first confirm that the ZNE-mitigated expectation values are more accurate than the unmitigated ones by201

benchmarking ZNE on a 100-qubit Trotterized Ising circuit with h = 0.5π and J = 0 such that it is Clifford and202

classically simulable. We then train a random forest model to mitigate noisy expectation values the same way that203

ZNE does. In this experiment, we apply Pauli twirling to all the circuits, each with 5 twirls, before applying either204

extrapolation in digital ZNE or the ML-QEM to mitigate the expectation values.205

We then find that the ML-QEM models are able to accurately mimic the traditional method’s mitigated expectation206

values. The average distance from the unmitigated result (after twirling average) for the mitigated expectation207

values produced by ZNE and the random forest model mimicking ZNE are very close for all Trotter steps, as shown208

for specific J and h corresponding to non-Clifford circuits in the second and third plot of Fig. 6. In the fourth and209

bottom plot showing the residuals between the ZNE-mitigated and RF-mimicking-ZNE-mitigated values averaged210

over the training set comprising non-Clifford circuits, we see that RF mimicks ZNE well. This result demonstrates211

that ML-QEM methods can scalably accelerate traditional quantum error mitigation methods by mimicking their212

behavior when exact expectation values cannot be computed classically. In this experiment, although 1D TFIM is213

analytically solvable, the Trotter errors should be taken into consideration, and thus the exact expectation values of214

the circuits are not easily accessible, and thus not shown.215

Importantly, this mimicry approach requires less quantum computational overhead both overall and at runtime. For216

this experiment, we test on 40 different coupling strengths J for h = 0.66π, each of which is used to generate 10217

circuits with up to 10 Trotter steps, or 400 test circuits in total. The ZNE approach with 2 noise factors requires218

2× 400 = 800 circuits. In contrast, the RF-mimicking-ZNE approach here is trained with 10 different coupling219

strengths J for h = 0.66π, each of which generates 10 circuits with up to 10 Trotter steps, or 100 total training220

circuits. Therefore, the RF-mimicking-ZNE approach requires only 2× 100 + 400 = 600 total circuits, resulting221

in 25% overall lower quantum computational resources. The savings are even more drastic at runtime—again, the222

ZNE approach with 2 noise factors requires 2 circuits to be executed per test circuit, whereas each test circuit only223

has to be executed once for RF-mimicking-ZNE-based mitigation, resulting in 50% savings. We expect the error of224

the mimicry to shrink should more training data be provided. We report approximately 0.14 QPU hours (based on225

a conservative sampling rate of 2 kHz Kim et al. [2023a]) to generate all the training data and seconds to train the226

model with a single-core laptop for this experiment.227

3 Discussion228

In this paper, we have presented a comprehensive study of machine learnin for quantum error mitigation (ML-229

QEM) methods, including linear regression, random forest, multi-layer perceptrons, and graph neural networks,230

for improving the accuracy of quantum computations. First, we conducted performance comparisons over many231

practically relevant contexts; they span circuits (random circuits and Trotterized 1D transverse-field Ising circuits),232

noise models (qubit decoherence, readout, depolarizing gate, and/or coherent gate errors), and applications233

(mitigating unseen Pauli observables and enhancing variational quantum eigensolvers) studied here, we find that the234

best-performing model is the random forest (RF). Second, we demonstrated that ML-QEM methods can perform235

better than a traditional method, zero-noise extrapolation (ZNE). Paired with the ability to mitigate at runtime236

by running no additional mitigation circuits, ML-QEM reduces the runtime overhead of traditional methods; for237

instance, it reduces the runtime overhead by a factor of at least 2 compared to digital ZNE. Therefore, ML-QEM238

can be especially useful for algorithms where many circuits that are similar to each other are executed repeatedly,239

such as quantum state tomography-like experiments and variational algorithms. Finally, we find that ML-QEM can240

even effectively mimic other mitigation methods, providing very similar performance but with a lower overhead at241

runtime. This allows the ML-QEM to scale up to classically intractable circuits.242
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Appendices243

A Methods244

A.1 Statistical Learning Models245

Here, we discuss each of the statistical model (schematics shown in Fig. 7), data encoding strategies, and246

hyperparameters used in this study. We emphasize that the performance of a model depends on factors such as the247

size of the training dataset, encoding scheme, model architecture, hyper-parameters, and particular tasks. Therefore,248

from a broader perspective, we hope that the models in this work provide a sufficient starting point for practitioners249

of quantum computation with noisy devices to make informed decisions about the most suitable approach for their250

application.251
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Figure 7: Overview of the four ML-QEM models and their encoded features. (a) Linear regression (specifically
ordinary least-square (OLS)): input features are vectors including circuit features (such as the number of two-qubit
gates n2Q and SX gates nSX), noisy expectation values ⟨Ô⟩noisy, and observables Ô. The model consists of a
linear function that maps input features to mitigated values ⟨Ô⟩mit. (b) Random forest (RF): the model consists
of an ensemble of decision trees and produces a prediction by averaging the predictions from each tree. (c)
Multi-layer perception (MLP): the same encoding as that for linear regression is used, and the model consists of
one or more fully connected layers of neurons. The non-linear activation functions enable the approximation of
non-linear relationships. (d) Graph neural network (GNN): graph-structured input data is used, with node and edge
features encoding quantum circuit and noise information. The model consists of multiple layers of message-passing
operations, capturing both local and global information within the graph and enabling intricate relationships to be
modeled.

A.1.1 Linear Regression252

Linear regression is a simple and interpretable method for ML-QEM, where the relationship between dependent253

variables (the ideal expectation values) and independent variables (the features extracted from quantum circuits and254

the noisy expectation values) is modeled using a linear function.255

One relevant work in this area is Clifford data regression, proposed by Czarnik et al. Czarnik et al. [2021]. In their256

approach, the authors first replace most of the non-Clifford gates with nearby Clifford gates in the target circuit of257

interest, then use a linear regression model to regress the noisy expectation values of those circuits onto the ideal258

ones. Our linear regression model differs in two main aspects. Firstly, we extend the feature set to include counts of259

each native gate where native parameterized gates are counted in binned angles, the Pauli observable in sparse Pauli260

operator representation, and optional device-specific noise parameters. Secondly, our model does not necessarily261

require training on Clifford versions of the target circuits, although this option remains available if desired.262

We train a linear regression model that takes these features as input and predicts the ideal expectation values. The263

model minimizes the sum squared error between the mitigated and the ideal expectation values using a closed-form264
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solution, which is named ordinary least squares (OLS). The linear regression model can also be trained using other265

methods, such as ridge regression, LASSO, or elastic net. These methods differ in their regularization techniques,266

which can help prevent overfitting and improve model generalization. In our experiments, we use OLS for its267

simplicity and ease of interpretation. We note that standard feature selection procedures also help to prevent268

overfitting and collinearity in practice.269

A.1.2 Random Forest270

Random forest (RF) is a robust, interpretable, non-linear decision tree-based model to perform quantum error271

mitigation. As an ensemble learning method, it employs bootstrap aggregating to combine the results produced272

from many decision trees, which enhances prediction accuracy and mitigates overfitting. Moreover, each decision273

tree within the random forest utilizes a random subset of features to minimize correlation between trees, further274

improving prediction accuracy.275

The input features to the random forest model are extracted from the quantum circuits, specifically counts of each276

native gate on the backend (native parameterized gates are counted in binned angles), the Pauli observable in sparse277

Pauli operator representation, and optional device-specific noise parameters. We train a random forest regressor278

with a specified large number of decision trees on the training data. Given all the features, the random forest model279

averages the predictions from all its decision trees to produce an estimate of the ideal expectation value.280

For RF, we used 100 tree estimators for each observable. The tree construction process follows a top-down,281

recursive, and greedy approach, using the Classification and Regression Trees (CART) algorithm. For the splitting282

criterion, we employ the mean squared error reduction for regressions. For each tree, at least 2 samples are required283

to split an internal node, and 1 feature is considered when looking for the best split.284

A.1.3 Multi-Layer Perceptron285

Multi-layer perceptrons (MLPs), first explored in the context of QEM in Ref. Kim et al. [2020], are feedforward286

artificial neural networks composed of layers of nodes, with each layer fully connected to the subsequent one.287

Nodes within the hidden layers utilize non-linear activation functions, such as the rectified linear unit (ReLU),288

enabling the MLP to model non-linear relationships.289

We construct MLPs with 2 dense layers with a hidden size of 64 and the ReLU activation function. The input290

features are identical to those employed in the random forest model. To train the MLP, we minimize the mean291

squared error between the predicted and true ideal expectation values, employing backpropagation to update the292

neurons. The batch size is 32, and the optimizer used is Adam Kingma and Ba [2015] with an initial learning rate293

of 0.001. In practice, regularization techniques like dropout or weight decay can be used to prevent overfitting if294

necessary. The MLP method demonstrates competitive performance in mitigating noisy expectation values, as295

evidenced by our experiments. However, it should be noted that MLPs are also susceptible to overfitting in this296

context.297

A.1.4 Graph Neural Network298

As the most complex model among the four, graph neural networks (GNNs) are designed to work with graph-299

structured data, such as social networks Ying et al. [2018] and chemistry Reiser et al. [2022]. They can capture300

both local and global information within a graph, making them highly expressive and capable of modeling intricate301

relationships. However, their increased complexity results in higher computational costs, and they may be more302

challenging to implement and interpret.303

A core aspect of our ML-QEM with GNN lies in data encoding, which consists of encoding quantum circuits, and304

device noise parameters into graph structures suitable for GNNs. Before data encoding, each quantum circuit is305

first transpiled into hardware-native gates that adhere to the quantum device’s connectivity. To encode them for306

GNN, the transpiled circuit is converted into an acyclic graph. In the graph, each edge signifies a qubit that receives307

instructions when directed towards a node, while each node corresponds to a gate. These nodes are assigned vectors308

containing information about the gate type, gate errors, as well as the coherence times and readout errors of the309

qubits on which the gate operates. Additional device and qubit characterizations, such as qubit crosstalk and idling310

period duration, can be encoded on the edge or node, although they are not considered in the current study.311

The acyclic graph of a quantum circuit, serves as input to the transformer convolution layers of the GNN. These312

message-passing layers iteratively process and aggregate encoded vectors on neighboring nodes and connected313
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edges to update the assigned vector on each node. This enables the exchange of information based on graph314

connectivity, facilitating the extraction of useful information from the nodes which are the gate sequence in315

our context. The output, along with the noisy expectation values, is passed through dense layers to generate a316

graph-level prediction, specifically the mitigated expectation values. As a result, after training the layers using317

backpropagation to minimize the mean squared error between the noisy and ideal expectation values, the GNN318

model learns to perform quantum error mitigation.319

For the GNN, we use 2 multi-head Transformer convolution layers Shi et al. [2021] and ASAPooling layers Ranjan320

et al. [2019] followed by 2 dense layers with a hidden size of 128. Dropouts are added to various layers. As with321

the MLP, the batch size is 32, and the optimizer used is Adam Kingma and Ba [2015] with an initial learning rate322

of 0.001.323

A.2 Zero-Noise Extrapolation324

We use zero-noise extrapolation with digital gate folding on 2-qubit gates, noise factors of {1, 3}, and linear325

extrapolation implemented via Ref. Rivero et al. [2022].326
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Figure 8: ML-QEM and QEM performance for Trotter circuits. Expanded data corresponding to Fig. 3 of the
main text that includes the three ML-QEM methods not shown earlier: GNN, OLS, MLP. We study three noise
models: Left: incoherent noise resembling ibmq_lima without readout error, Middle: with the additional readout
error, and Right: with the addition of coherent errors on the two-qubit CNOT gates. We show the depth-dependent
performance of error mitigation averaged over 9,000 Ising circuits, each with different coupling strengths J . For
the incoherent noise model, all ML-QEM methods demonstrate improved performance even when mitigating
circuits with depths larger than those included in the training set. However, all perform as poorly as the unmitigated
case in extrapolation with additional coherent noise.

B Depolarizing Noise327

We show here that the ideal expectation values of an observable Ô linearly depend on its noisy expectation values328

when the noisy channel of the circuit consists of successive layers of depolarizing channels. This is more general329

than the result shown in Czarnik et al. [2021].330

Consider l successive layers of unitaries each associated with a depolarizing channel with some rate pl, the noisy331

circuit acting on the input ρ, C̃(ρ), is written as C̃(ρ) = El(UlEl−1(Ul−1 . . . E1(U1ρU
†
1 ) . . . U

†
l−1)U

†
l ), where332

El(ρ) = (pl/D)I + (1− pl)ρ.333

It can be shown by induction that C̃(ρ) = (p(l)/D)I+(1−p(l))Ul . . . U1ρU
†
1 . . . U

†
l , where p(l) = 1−Πl

i=1(1−pi)334

as follows. Assuming for l = k, C̃(ρ) = (p(k)/D)I + (1 − p(k))Uk . . . U1ρU
†
1 . . . U

†
k , then for l = k + 1, we335

have C̃(ρ) = (p(k)/D)I + (1 − p(k))[pk+1I/D + (1 − pk+1)Uk . . . U1ρU
†
1 . . . U

†
k ] = (p(k + 1)/D)I + (1 −336

p(k + 1))Uk . . . U1ρU
†
1 . . . U

†
k . The induction completes with a trivial base case.337
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Therefore, the noisy expectation value of Ô becomes338

Tr(C̃(ρ)Ô)

=
p(l)

D
Tr(Ô) + (1− p(l))Tr(Ul . . . U1ρU

†
1 . . . U

†
l Ô)

=
p(l)

D
Tr(Ô) + (1− p(l))Tr(C(ρ)Ô) ,

where Tr(C(ρ)Ô) is the ideal expectation value of Ô.339

For Trotterized circuits with a fixed Trotter step and a fixed brickwork structure, the number of layers l of unitaries340

in the circuit is also fixed. Assuming some fixed-rate depolarizing channels associated with the l layers of unitaries,341

the noisy and ideal expectation values of some Ô on these Trotterized circuits with different parameters then lie on342

a line. Therefore, the ML-QEM method can mitigate the expectation values by linear regression from the noisy343

expectation values to the ideal ones, and the linear regression parameters can be learned to vary according to the344

number of layers l. The ML-QEM is thus unbiased in this case. We note that ZNE with linear extrapolation is345

still biased in this case, since the noise amplification effectively results in a different combined depolarizing rate346

p′(l) = 1 − Πl
i=1(1 − p′i), which leads to expectation values with differently amplified noises each lying on a347

different line towards the ideal expectation value, and thus the linear extrapolation cannot yield unbiased estimates.348

C Break-even in the total cost of the ML-QEM349

Assuming the mimicked QEM requires m total executions of either the mitigation circuits or the circuit of interest350

(e.g., digital/analog ZNE usually has m = 2 or 3 noise factors), the total cost of the mimicked QEM, namely351

its runtime cost, is mntest. The total cost, including training, for the RF is mntrain + ntest. Equating these two352

yields the break-even train-test split ratio in the total cost of our mimicry compared to the traditional QEM:353

ntrain/ntest = (m− 1)/m. Our mimicry shows a higher overall efficiency when the train-test split ratio is smaller354

than (m− 1)/m.355

D Additional Experimental Details356

All non-ideal expectation values in simulations and experiments presented in this paper are obtained from the357

measurement statistics from 10,000 shots.358

In the study of 4-qubit random circuits presented in Sec. 2.1.1, to generate the random circuits, we use the Qiskit359

function qiskit.circuit.random.random_circuit(), which implements random sampling and placement of360

1-qubit and 2-qubit gates, with randomly sampled parameters for any selected parametrized gates. The 2-qubit gate361

depth is measured after transpilation. We remark that the random circuits sampled at large depths may approximate362

the Haar distribution and have expectation values concentrated around 0 to some extent Harrow and Low [2009],363

Liao et al. [2021].364

In the study of the Trotterized 1D TFIM in Sec. 2.1.2, we initialize the state devoid of spatial symmetries. This is365

done to intentionally introduce asymmetry in the single-qubit Ẑi expectation value trajectories across Trotter steps,366

thereby increasing the difficulty of the regression task. Conversely, when the initial state possesses a certain degree367

of symmetry, the regression analysis, which incorporates noisy expectation values as features, becomes highly368

linear, resulting in a strong performance by the OLS method.369

We present a comparison across all ML-QEM models in the study of mitigating expectation values of Trotterized370

1D TFIM in Fig. 8. With incoherent noise only, the random forest model demonstrates the best performance among371

the ML-QEM models both in interpolation and extrapolation, closely followed by the MLP, OLS, and GNN. With372

additional coherent noise, in the interpolation scenario, the performance ranking of the other models remained373

largely consistent with that observed in the previous study. Notably, the random forest model exhibited the best374

performance among the ML-QEM models, closely followed by the MLP model.375

We observe that both in the simulation and in the experiment of the small-scale Trotterized 1D TFIM, there376

are significant correlations between the noisy expectation values and the ideal ones. There are also significant377

correlations but to a lesser degree between the gate counts and the ideal expectation values, suggesting the models378

are using certain depth information deduced from the gate counts to correct the noisy expectation values towards379

the ideal ones.380
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Figure 9: Updating the ML-QEM models on the fly. Comparing the efficiency and performance of ML models,
fine-tuned or trained from scratch, on a different noise model. Noise model A represents FakeLima and noise
model B represents FakeBelem. All training, fine-tuning, and testing circuits are 4-qubit 1D TFIM measured in a
random Pauli basis for four weight-one observables. The solid purple curve shows the testing error on noise model
B of an MLP model originally trained on 2,200 circuits run on noise model A and fine-tuned incrementally with
circuits run on noise model B. The dashed purple curve shows the testing error on noise model B of another MLP
model trained only on circuits from noise model B. The red curve shows the testing error on noise model B of
an RF model trained only on circuits from noise model B. All three methods converge with a small number of
training/fine-tuning samples from noise model B. While the testing error of the fine-tuned and trained-from-scratch
MLP models converged, both were outperformed by a trained-from-scratch RF model. This provides evidence that
ML-QEM can be efficient in training.

Because the noise in quantum hardware can drift over time, an ML-QEM model trained on circuits run on a device382

at one point in time may not perform well at another point in time and may require adaption to the drifted noise383

model on the device. Therefore, we explore whether an ML-QEM model can be fine-tuned for a different noise384

model and show that similar performance can be achieved with substantially less training data.385

In particular, we fine-tune an MLP and compare its learning rate against RF. The MLP can be fine-tuned on a386

different noise model after they have been originally trained on a noise model. The fine-tuning is expected to require387

only a small number of additional samples—this is demonstrated in Fig. 9 with the MLP trained on noise model388

A (FakeLima) and fine-tuned on noise model B (FakeBelem) which converges after ∼ 300 fine-tuning circuits.389

On the other hand, an MLP trained from scratch and tested on a noise model B shows a slower convergence after390

∼ 500 training circuits, though both fine-tuning and training from scratch produce the same testing performance.391

We also compare them with an RF trained from scratch, which converges after fewer than ∼ 300 training circuits,392

demonstrating the excellent efficiency in training an RF model. While future research can investigate in more detail393

the drift in noise affecting the ML model performance, we show evidence that MLP can be efficiently adapted to394

new device noise and that RF can be trained as efficiently from scratch to new device noise.395
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