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ABSTRACT

Large language models show improved downstream task performance when prompted to
generate step-by-step reasoning to justify their final answers (Nye et al., 2021; Wei et al.,
2022). These reasoning steps greatly improve model interpretability and verification, but
objectively studying their correctness (independent of the final answer) is difficult without
reliable methods for automatic evaluation. We simply do not know how often the stated
reasoning steps actually support the final end task predictions. In this work, we present
ROSCOE, a suite of interpretable, unsupervised automatic scores that improve and extend
previous text generation evaluation metrics. To evaluate ROSCOE against baseline metrics,
we design a typology of reasoning errors and collect synthetic and human evaluation scores
on commonly used reasoning datasets. In contrast with existing metrics, ROSCOE can
measure semantic consistency, logicality, informativeness, fluency, and factuality — among
other traits — by leveraging properties of step-by-step rationales. We empirically verify
the strength of our metrics on five human annotated and six programmatically perturbed
diagnostics datasets - covering a diverse set of tasks that require reasoning skills and show
that ROSCOE can consistently outperform baseline metrics.1

1 INTRODUCTION

Scaling language models has improved state-of-the-art performance on nearly every NLP benchmark (Brown
et al., 2020), with large language models (LLMs) performing impressively as few-shot learners (Brown
et al., 2020). Despite these achievements, even the largest of these models still struggle with tasks including
math word problems (Hendrycks et al., 2021), symbolic manipulation (Rytting & Wingate, 2021), and
commonsense reasoning (West et al., 2022). Recent work has shown that prompting (Wei et al., 2022;
Wang et al., 2022) or fine-tuning (Lampinen et al., 2022) LLMs to generate step-by-step rationales can
lead to improvements on reasoning tasks. Some of these include small-scale analysis of specific error
types within step-by-step rationales (Lewkowycz et al., 2022; Chowdhery et al., 2022), as shown in Table
1. However, existing works primarily focus on end-task performance. Although text generation evaluation
metrics sometimes offer fine-grained quality evaluations (e.g., adequacy, fluency) against human scores (Opitz
& Frank, 2021; Leiter et al., 2022), these metrics generally treat the output as a whole, and many of these
generative metrics operate on tasks such as summarization or machine-translation rather than reasoning.

1Code can be found at https://github.com/facebookresearch/ParlAI/tree/main/projects/
roscoe. Annotated datasets can be downloaded from https://dl.fbaipublicfiles.com/parlai/
projects/roscoe/annotations.zip.
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Table 1: Step-by-step reasoning for logical inference
task generated from 2-shot GPT-3 (text-davinci-002)
(Brown et al., 2020). Error types are highlighted: logical
or factual issues, partially correct, somewhat-relevant.
Full 2-shot exemplars are in Appendix B.

Context: Shelley is from Virginia, but is visiting that
city with that famous market where they throw the fish.
Going home next Tuesday!
Question: Is it likely that Shelly will be near the Pacific
Ocean this weekend?
GPT-3 Step-by-step reasoning:
• No, it is not likely that Shelley will be near the Pacific

Ocean this weekend.
• Shelley is from Virginia, which is on the East Coast

of the United States.
• The Pacific Ocean is on the West Coast.
• Shelley is visiting a city with a famous market, which

could be anywhere in the world.
• Tuesday is her travel day, so she will likely not be

traveling this weekend.

In this paper, we present ROSCOE, a suite of inter-
pretable and fine-grained step-by-step generation eval-
uation metrics to address the above gaps. Rather than
providing one score that only evaluates the generated
text on the overall, ROSCOE encapsulates fine-grained
metrics under four perspectives: (1) semantic alignment
defines to what extend the generated reasoning is coher-
ent, and grounded with the source context; (2) logical
inference evaluates if the generated reasoning steps are
consistent within itself and checks for logical fallacies;
(3) semantic similarity quantifies the degree of similar-
ity between the generated reasoning and the context or
between intermediate steps to capture hallucinations or
repetitions; and (4) language coherence evaluates if the
whole chain flows naturally.

To evaluate ROSCOE against existing metrics, we devise
a taxonomy of reasoning errors for multi-step genera-
tions and use it to create synthetic data and collect human
evaluations on commonly used reasoning datasets. Our taxonomy and annotated datasets help us gain deeper
insights into the causes of reasoning inconsistencies and weaknesses of LLMs. We evaluate ROSCOE with 18
fine-grained metrics under the above four perspectives. ROSCOE demonstrates performance gains against
baseline evaluation metrics on all tasks that require reasoning over context. Additional sensitivity analysis
shows that ROSCOE is more robust when dealing with tasks that require logical and arithmetic reasoning.

Contributions. (1) We propose a new taxonomy for reasoning errors, and use it for collecting human
annotations and creating synthetic datasets. (2) Using our taxonomy, we propose a new suite of metrics that
focus on sequence and step level analysis of step-by-step reasoning. (3) We present extensive comparative
analysis on 11 datasets of varied complex reasoning problems demonstrating the strengths of each metric,
especially in terms of interpretability relative to baselines, and considerations for use.

2 RELATED WORK

Evaluating Explanations. Free-form natural Language (NL) explanations of model decisions should enable
accurate representation of the reasoning process and degree of plausibility (Danilevsky et al., 2020; Jacovi &
Goldberg, 2021; Jacovi et al., 2021). A qualitative assessment of NL explanations with correctness labels
collected from human judges was presented in (Camburu et al., 2018). Recent work has also investigated
automatic metrics for natural language generation (NLG) evaluation including word overlap or embedding
based similarly with human written explanations (Clinciu et al., 2021). Though fast and cost-effective,
automatic metrics for NLG are not equipped to measure the logical inconsistencies or information gain
with thinking steps (Reiter, 2019; Celikyilmaz et al., 2020). Explanations have also been evaluated by
collecting datasets, and running correlation analysis to investigate the degree to which an automatic metric
correlates with human judgements of clarity, relevance and informativeness (Leiter et al., 2022; Welleck et al.,
2022).Although reliable, human evaluation is an expensive, domain specific, and time-consuming process. In
comparison, ROSCOE provides generic automatic evaluation procedures that are domain and task specific.

Automatic Metrics. Many NLG evaluation metrics exist in the literature including ones based on: n-gram
match (Lin, 2004), regression (Sellam et al., 2020), embedding proximity (Zhang et al., 2020), paraphrasing
(Thompson & Post, 2020), generation as an evaluator (Yuan et al., 2021); information alignment (Deng et al.,
2021); among others. Although these metrics are easy to use, they evaluate the alignment of two texts as a
whole and are not designed to assess individual reasoning steps. The closest metrics to ours are CTC (Deng
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Table 2: Taxonomy of Step-by-Step Reasoning Errors. Full list of the error types with examples is illustrated in Table 10.

Error Type Definition
Grammar Faulty, unconventional, or controversial grammar usage
Factuality Information about an object (i.e. quantity, characteristics) or a named entity doesn’t match with the input context.
Hallucination Information is not provided in the problem statement and is irrelevant or wrong
Redundancy Explanation contains redundant information, which even though might be factual, is not required to answer the question
Repetition Step paraphrases information already mentioned in previous reasoning steps
Missing step The content of the generated reasoning is incomplete and lacks required information to produce the correct answer.
Coherency Steps contradict each other or do not follow a cohesive story
Commonsense Model lacks relations that should be known from general world (e.g., "all ducks are birds")
Arithmetic Error in math calculations

et al., 2021) and BARTScore (Yuan et al., 2021), as both introduce a set of interpretable metrics to evaluate
the similarity between two texts. However, ROSCOE is unique in providing fine-grained interpretations of
reasoning steps, determining contradictions, and identifying ordering issues in the reasoning narrative.

Self-Consistency with LLMs. Recent work on improving LLMs performance on complex reasoning tasks
uses an ensemble strategy called self-consistency (Wang et al., 2022). This method samples a diverse set of
reasoning paths from a language model via reasoning traces prompting and returns the most consistent final
answer in the set. Other work evaluates the diversity of a reasoning path (Li et al., 2022), or the consistency
of an inference step (Creswell et al., 2022) or finetune LLMs (Zelikman et al., 2022) to improve on difficult
NLP tasks. In contrast to these works, we present a suit of metrics that focus on determining the type of the
error (e.g., commonsense or logical inconsistency) in a reasoning path, if one exists.

3 REASONING ERROR TAXONOMY AND DATASETS CONSTRUCTION

Problem Formulation. Our goal is to score step-by-step rationales generated by a language model. We
assume that the model is given a source context s = {s1, · · · , sT } of T-sentences indicating a problem
statement followed by a question and is prompted to generate step-by-step reasoning (Nye et al., 2021). We
refer to this as a hypothesis h = {h1, · · · , hN} of N-steps, including a final answer as the last step. We do
not assume availability of gold step-by-step reasoning references r = {r1, · · · , rK} of K-steps.

Taxonomy. We propose a new taxonomy of generic reasoning errors for language problem solving. We
first conduct manual preliminary analysis on different types of LLMs reasoning errors using five Human
judged datasets described below. Based on our analysis, we identified nine error types centered on the
overall reasoning chain (i.e., the quality of the step-by-step thinking, including consistency with the context
and commonsense reasoning). Our taxonomy also includes fine-grained errors marking inconsistency of a
reasoning step with the previous steps, whether each step contributes to the final decision, and overall logical
inference or fluency issues. The definition of error types is in Table 2, and Table 10 provides examples.

Datasets and Annotations. To evaluate ROSCOE, we select datasets covering diverse set of tasks that require
reasoning skills (e.g., logical, arithmetic, and commonsense reasoning tasks). We separate these datasets into
two: (1) Diagnostics datasets that contain gold standard step-wise reasoning chains, where we synthetically
perturb some of the reasoning steps to introduce different generation errors (e.g., missing step, mathematical
error, etc.); (2) Human judged datasets with model generated step-by-step reasoning outputs where the
reasoning error evaluations are solicited from expert judges. We investigate these in §5.

4 REASONING SCORER: ROSCOE

We present our fine-grained metrics under four perspectives: semantic alignment, semantic similarity, logical
inference and language coherence. Each metric is bounded within [0, 1], where 1 indicates the perfect score
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and 0 corresponds to failure. A metric is reference-free or unsupervised when it uses the source and hypothesis
(h → s), while reference-based or supervised when evaluated between hypothesis and reference (h → r).

4.1 SEMANTIC ALIGNMENT METRICS (ROSCOE-SA)

At the core of the ROSCOE semantic alignment2 metrics is the reasoning alignment vector from the N -step
hypothesis h to the source s of length T : r-align(h → s) = {α1, α2, · · · , αN}, where each alignment value
αi = r-align(hi → s) = [1 + maxTj=1(cos(hi, sj)]/2 ∈ [0, 1] is the normalized cosine similarity between
hypothesis step and most similar sentence in a context, and explicitly measures the grounding of the step-wise
reasoning with respect to the source text (illustrated in App. D, Fig. 3). We estimate the alignment vector
r-align(h → s) by matching source text and the reasoning chains on the embeddings of tokens and individual
reasoning steps. A similar information alignment score is introduced in CTC (Deng et al., 2021) to measure
the confidence that the information of the i-th source document token sj is grounded by a hypothesis token
hi. Our reasoning alignment is different in that we measure if a hypothesized reasoning step hi supports the
source context s. Our proposed metrics are summarized in Table 3.

Table 3: Semantic alignment metrics (ROSCOE-SA).
Score Description
Faithfulness-Step
(h → s)

This step-level score is based on the alignment from the hypothesis steps to the source sentences, and is calcu-
lated as the mean reasoning alignment score over the steps of reasoning (see illustration in Appendix D, Figure 3):
(1/N)

∑N
i=1 r-align(hi → s). Faithfulness measures if the model misinterpreted the problem statement, or the reasoning

chain is too vague, irrelevant, or misuses information.

Faithfulness-Token
(h → s)

We extend step-level embeddings of the Faithfulness-Step by measuring similarities between the token embeddings:
(1/(N +M))

∑N
i=1[r-align(hi → s) +

∑Mi

j=1 r-aligntoken(hi,j → s)], as shown in App. D, Fig. 3. Mi is the number of

tokens in step hi, M =
∑N

i=1 Mi is the total number of tokens in the reasoning chain, hi,j is the jth token in ith step, and
r-aligntoken is the alignment vector from tokens in step hi to all tokens in s.

Informativeness-Step
(Info-Step) (h ↔ s)

Measures how well information present in the source is used in the reasoning steps: [(1/T )
∑T

t=1 r-align(st → h) +

(1/N)
∑N

i=1 r-align(hi → s)]/2. Info-step gives a higher score to reasoning steps that are well-grounded with respect
to the source, and identifies the degree of information from source that is covered by the generated hypothesis. A lower
Info-Step score corresponds to the reasoning steps that are not related to the source sentences or have missed information
provided in the context.

Repetition-Token
(hi → hj)

To identify repeated, or paraphrased steps, we look at the token alignment scores between all steps in the hypothesis chain:
1 − maxi=2..N maxj=1···i−1[(1/Mi)

∑Mi

l=1 r-aligntoken(hi,l → hj)]. For each pair of sentences, we look at the mean
token alignment, and find those sentences that maximize this alignment score. In other words, Repetition-Token will punish
chains where there are at least two steps with high overlap in token embeddings.

Hallucination
(h → (s, r))

To find irrelevant reasoning steps, we use alignment score to identify steps that are both not related to the context and not in
the reference chain (to avoid punishing for possibly relevant commonsense knowledge): 1−maxi=1..N ([1− r-align(h →
s)] · [1− r-align(h → r)]). Here, 1 is an all-ones vector, and (·) is the element-wise product.

Redundancy (h → r) To find chains that contain information that is not required to solve the problem (i.e., redundant steps), we identify those
hypothesis steps that are least aligned with the the reference steps: mini=1..N r-align(hi → r). This score punishes chains
with steps that are not required for the correct solution.

Semantic
Coverage-Step
((r,h) → s)

This score can be viewed as a measure of how easily a gold reference could be generated by the hypothesis. It compares step
level grounding of the hypothesis with respect to the source, and the gold reference grounding: |(1/T )

∑K
t=1 r-align(rt →

s)− (1/N)
∑N

i=1 r-align(hi → s)|, where |·| indicates absolute value.

Reasoning Alignment
(h → r)

The most straightforward way to evaluate the correctness of the hypothesis chain is to compare the degree of the overlap
between the hypothesis and the reference. One way of doing that is to measure the reasoning alignment between them:
(1/N)

∑N
i=1 r-align(hi → r).

Commonsense
(r → (h, s))

Measures if hypothesis lacks steps that are not stated in the source, but are required to solve the problem such as
general world knowledge (e.g., "velocity is distance divided by time", "1 foot is 12 inches", "all ducks are birds", etc.).
We detect such information by extracting steps in the reference reasoning that are not grounded by the source text:
1−maxi=1..K([1− r-align(r → h)] · [1− r-align(r → s)]).

Missing Step (r→h) To identify steps that are missing from the hypothesis but could be required to solve the problem, we look at the alignment
between reference and the hypothesis, similar to Redundancy. However, here we go through each step in the reference, and
check if there is a similar step in the hypothesis: mini=1..K(r-align(ri→h)).

2Semantic alignment refers to determination of relations between concepts with the same or a similar intended
meaning (Agirre et al., 2013).
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4.2 SEMANTIC SIMILARITY METRICS (ROSCOE-SS)

Semantic similarity metrics quantify the degree of semantic equivalence between pieces of text. As opposed
to the ROSCOE-SA metrics, ROSCOE-SS considers text as a whole, rather than relying on text units
comparisons. We propose the following metrics summarized in Table 4.

Table 4: Semantic similarity metrics (ROSCOE-SS).
Score Description
Informativeness-Chain
(Info-Chain) (h→s)

Similar to Info-Step, this metric quantifies the degree of agreement between the hypothesis chain and the source and is
calculated as [1 + cos(h, s)]/2. We embed reasoning chain and source context as a whole, as opposed to using step-wise
embeddings in *-Step types of metrics introduced in Table 3.

Repetition-Step
(hi↔hj)

Measures repetition-related errors on the step level by checking if it paraphrases information already mentioned in the
previous steps: (1−maxi=2..N maxj=1···i−1[cos(hi, hj)])/2. Unlike Repetition-Token, which is orderless and compares
individual tokens in pairs of steps, Repetition-Step considers step embeddings similarity and is more robust to changing
contexts.

Semantic Coverage-
Chain (r ↔ h)

Reflects the overall degree of similarity between the reference and hypothesis chains, comparing reference and hypothesis
embeddings as a whole: [1 + cos(r,h)]/2.

4.3 LOGICAL INFERENCE METRICS (ROSCOE-LI)

Logical inference metrics (Table 5) measure logical errors between pieces of text. We use an NLI model that
was trained to classify hypothesis-context pairs into entailment, neutral, and contradiction classes (Laurer
et al., 2022) to infer the contradiction probability pcontr.

Table 5: Logical inference metrics (ROSCOE-LI).
Score Description
Self-Consistency
(hi↔hj)

Measures logical entailment errors within the reasoning steps: 1 − maxi=2..N maxj<i pcontr(hi, hj). This metric will
punish chains where there is a pair of steps that are likely to contradict each other.

Source-Consistency
(h ↔ s)

Measures logical entailment errors between any generated reasoning h and the source context s: 1 −
maxi=1..N maxj=1..T pcontr(hi, sj). Specifically, for each reasoning step we measure the probability that it contra-
dicts any sentence in the context. We take the maximum probability of contradiction over all steps, following the logic that
a contradiction anywhere in the reasoning chain signals a failure of the overall argument.

4.4 LANGUAGE COHERENCE METRICS (ROSCOE-LC)

To evaluate language coherence (Table 6), we use perplexity PPL as scored by the GPT2-Large model
(Radford et al., 2019), and English grammatical acceptability pgram as scored by the classifier model from
Krishna et al. (2020). Both models were used as-is with no finetuning.

Table 6: Language coherence metrics (ROSCOE-LC).
Score Description
Perplexity-Chain (h) Average perplexity of all tokens in the generated reasoning steps: 1/PPL(h). The context used to score each token is

the previous tokens in the current and all previous steps. Steps are joined with a space character. To keep the range and
orientation consistent with the other scores we invert the perplexity.

Perplexity-Step (hi) Average perplexity of all tokens in the generated reasoning steps, where the context used to score each token is only the
previous tokens within the current step: 1/[(1/N)

∑N
i=0 PPL(hi)]. To keep the range and orientation consistent with the

other scores we invert the perplexity.

Grammar (hi) Probability of grammatical acceptability of each step, averaged over all steps: (1/N)
∑N

i=0 pgram(hi).

5 EXPERIMENTAL SETUP

Diagnostics Datasets. We construct our first category of labeled datasets by generating perturbations — i.e.,
deterministic modifications — on half of the reference reasoning steps and assign binary labels based on
whether or not a chain has been perturbed. We select seven language understanding and entailment datasets
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that require complex problem solving skills, and have reference step-by-step explanations: Entailment-Bank
(deductive reasoning) (Dalvi et al., 2021), ProofWriter (logical reasoning) (Tafjord et al., 2021); three
arithmetic reasoning datasets MATH (Hendrycks et al., 2021), ASDIV (Miao et al., 2020) and AQUA (Liang
et al., 2018); EQASC (explanations for commonsense question answering) (Aggarwal et al., 2021), and
StrategyQA (question answering with implicit reasoning strategies) (Geva et al., 2021) (see dataset details
in App. E.1). Using our taxonomy, we introduce 12 error perturbation rules and apply on these datasets to
construct our diagnostics datasets (see details in App. E.3).

Human Judged Datasets. We select our second category of datasets from commonly used complex reasoning
tasks: GSM8K (arithmetic reasoning) (Cobbe et al., 2021), DROP (discrete reasoning) (Dua et al., 2019),
ESNLI (deductive and commonsense reasoning) (Camburu et al., 2018), COSMOS-QA (commonsense
reasoning) (Huang et al., 2019) and SemEVAL (Ostermann et al., 2018) (commonsense reasoning). Wei et al.
(2022) provide model generated chain of thought reasoning steps for GSM8K. We used chains produced
by the 175b_verification model to annotate for reasoning errors. For other datasets, we prompt GPT-3
LLM (Brown et al., 2020) with few-shot in-context examples to obtain step-by-step reasoning sequences (see
examples in App. E.2). We use the error types in our taxonomy in Table 2 as human evaluation perspectives
of reasoning errors where we solicit five expert annotators3. The data collection interface provided judges
with the source text (e.g., source and a question, or hypothesis, premise, and a question if they entail) and
associated reasoning text clearly separated into individual steps. Judges were asked to rate the chain as a
whole (e.g., on overall quality) as well as each individual step (e.g., commonsense errors, contradicts with
the previous steps). App. Table 16 summarizes the distribution of error types annotated by the judges. See
App. F for details.

ROSCOE Training. To obtain reasoning step embeddings, we finetune SimCSE (Gao et al., 2021), a
supervised sentence similarity model extending the RoBERTa word embedding model (Liu et al., 2019) on
multi-step reasoning datasets we listed in §5 (see details in Table 11)4. SimCSE is a contrastive learning
model that is trained on triplets of reference reasoning steps, positive and hard-negative hypothesis reasoning
steps to minimize the cross-entropy objective with in-batch negatives. For contrastive learning, we use the
context and reference reasoning steps as a positive sample (s, r), and context and perturbed reference steps
(s,h) as hard-negative pairs. For finetuning, we embed source context and hypothesis chain as a whole,
without splitting it into steps. With the finetuned model we embed each individual step, as well as a reasoning
chain as a whole. We use the pretrained checkpoint of supervised SimCSE model sup-simcse-roberta-base to
initialize our model, and further train it for five epochs on our synthetic train data (details in App. G). We also
compare ROSCOE scores calculated against sup-simcse-roberta-base SimCSE model, and all-mpnet-base-v2
sentence embedding model (Reimers & Gurevych, 2019) to understand metrics sensitivity to the embedding
method.

Baseline Metrics. We use text generation evaluation metrics as baseline metrics and comprehensively
examine the ones outlined in §2, which are: n-gram match based metrics including ROUGE-1, ROUGE-2,
and ROUGE-L (Lin, 2004); pre-trained scores including BLEURT (Sellam et al., 2020), PRISM (Thompson
& Post, 2020), BERTScore (Zhang et al., 2020), BARTScore using the Faithfulness (s → h) direction
for factuality and relevance, and its finetuned variant BARTScore+CNN+Para BARTScore+ (Yuan et al.,
2021); and information alignment metrics of CTC, CTC-Relevancy and CTC-Consistency. We also include
BARTScore-P, which we obtain by finetuneing BART (Lewis et al., 2020) on the same reasoning datasets we
use for finetuning our SimCSE embedding models. Most of our ROSCOE metrics are constructed reference-
free. We also have metrics that use reference reasoning steps which we examine against human judgements.
We use the official code for each metric.

3We chose expert annotators over crowd-sourcing, because our annotation task is cognitively challenging and requires
fine-grained annotation.

4Fine-tuned model is available at https://huggingface.co/facebook/roscoe-512-roberta-base
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Meta Evaluation. We use Somers’ D5 (Somers, 1962), which measures the ordinal association between two
measured quantities, to meta-evaluate each scorer against synthetic and human scores. We prefer Somers’
D over more commonly used Kendall’s τ or Kendall’s τ -b, because it is better in handling the ties of a
biased random variable (Agresti, 2010, Section 7.1.5), which imposes an upper bound on the possible
values Kendall’s τ(-b) can take. For each score Y considered, our correlations are built against the biased
random variable X ∈ [0, 1], represented by the perturbation or error presence indicator and evaluated using
D(Y |X) = τ(X,Y )/τ(X,X).

6 EXPERIMENTAL RESULTS

Controlled Experiments with Diagnostics Datasets. Table 7 shows Somers’ D correlation for metrics mea-
sured reference-free on six different datasets and compares baselines to ROSCOE-* aggregated categories cal-
culated with finetuned embeddings: ROSCOE-SA, ROSCOE-SS, ROSCOE-LI, ROSCOE-LC. Results also
include ROSCOE metrics with all-mpnet-base-v2 (ROSCOE-SA1, ROSCOE-SS1) and sup-simcse-roberta-
base (ROSCOE-SA2, ROSCOE-SS2) sentence embedding models. Correlations for ProofWriter are taken
on its depth-5 subset. We report highest correlation scores across perturbations within each dataset. The
breakdown of all ROSCOE metrics is in App. Table 18.

Table 7: Somers’ D correlation of different metrics on six Diag-
nostics datasets. Metrics are measured reference-free on (s,h).
We take the maximum score over different perturbations. The two
highest correlations for each dataset are bolded and underlined, re-
spectively. Correlations that are not significant (p-value ≥ 0.05) are
omitted when aggregating, and "-" denotes an absence of any signifi-
cant correlation. Breakdown of all baseline and ROSCOE metrics is
shown in App. H.1, Table 18.

EntBank Math AQUA ProofWr. EQASC ASDIV

ROUGE-L 0.365 0.156 0.264 0.106 0.315 0.269
BLEURT 0.257 0.148 0.252 0.024 0.447 -
BERTScore 0.380 0.124 0.220 0.117 0.462 0.322
BARTScore 0.358 0.185 0.317 0.081 0.415 -
BARTScore+ 0.315 0.164 0.251 0.054 0.297 -
BARTScore-P 0.186 0.128 0.215 0.011 0.276 -
PRISM 0.453 0.208 0.191 0.235 0.436 -
CTC Relev. 0.258 0.188 0.217 0.394 0.485 0.382
CTC Consist. 0.310 0.282 0.157 0.513 0.270 0.396

ROSCOE-SA 0.919 0.939 0.971 0.763 1.000 0.879
ROSCOE-SA1 0.913 0.936 0.972 0.771 1.000 0.198
ROSCOE-SA2 0.919 0.939 0.971 0.732 1.000 0.515

ROSCOE-SS 0.955 0.924 0.982 0.624 1.000 0.857
ROSCOE-SS1 0.909 0.932 0.982 0.631 1.000 0.280
ROSCOE-SS2 0.901 0.949 0.991 0.621 1.000 0.289

ROSCOE-LI 0.917 0.331 0.424 0.289 0.793 0.771

ROSCOE-LC 0.604 0.392 0.359 0.788 0.859 0.485

We observe that: (1) ROSCOE can out-
perform all other reference-free methods on
all six diagnostic datasets, (2) the gains for
ROSCOE-SS are more pronounced in four
out of six diagnostics datasets, which sug-
gests that ROSCOE can capture hallucinations
and repetitions in step-wise reasoning. On
Proofwriter, our scorers show lower corre-
lations, because as shown in Table E.1, the
context is a list of facts and rules and the
reasoning steps can include unordered fact
and rule combinations, but still a correct an-
swer can be deduced. This makes it challeng-
ing for ROSCOE to evaluate the steps in se-
quence. Overall, the correlations of the base-
line metrics are much lower than ROSCOE,
because the baseline metrics are designed to
capture the semantic or lexical overlap be-
tween a reference and hypothesis and it is
harder to detect logical consistency without a
golden reference text. ROSCOE is specifically
focused on reference-free settings, and can
gauge each individual step against the source
and other generated steps. In fact, our met-
rics also work well against the baselines in
the reference-based setting (comparing against reference reasoning steps). In App. Table 19 we present
correlations when metrics are measured as reference-based. We also observe that finetuning SimCSE
gives highest improvements on the ASDIV dataset. ASDIV is a 1-step reasoning dataset (see App. Ta-
ble 12), where step is represented by an equation with one of the arithmetic perturbations added. We

5We use SciPy (Virtanen et al., 2020) to calculate correlations and obtain p-values from a hypothesis test where the
null hypothesis is an absence of association.
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hypothesize that including these patterns in finetuning helped the model to better learn relationships be-
tween context and equations, and resulted in higher scores. On EQASC dataset, Repetition* scores are
able to catch all duplicated steps in a chain, i.e., we can separate perturbed and non-perturbed chains
based on the given threshold value for the Repetition* scores, and achieve perfect correlation scores (App.
Table 20). To understand if finetuning actually helps to improve scoring, we compare non-aggregated
metrics (see details in App. Table 18). We observe, that finetuning indeed helps to improve ROSCOE: on
average across datasets, all correlations except Repetition_* scores improve (up to 0.556 on Informativeness-
Chain), with mean Repetition-Token not changing, and mean Repetition-Step degrading by 0.005. We
speculate that since we finetune the model using reasoning chains and context as a whole, it helps to
better capture step-by-step rationales, while possibly degrading on word and sentence-level semantics.

Table 8: Somers’ D correlations of metrics with human judgement.
We report the maximum over the error types in Table 2. All metrics
are measured reference-free on (s,h). The highest two correlations in
each column are bolded and underlined, respectively. Correlations that
are not significant (p-value ≥ 0.05) are omitted when aggregating, and
"-" denotes an absence of any significant correlation. Breakdown of all
baseline and ROSCOE metrics is shown in App. H.2.

DROP GSM8K ESNLI COSMOS SemEVAL
Rouge-L 0.278 0.252 0.557 -0.441 -0.478
BLEURT 0.328 0.256 0.541 0.218 -0.356
BERTScore 0.275 0.235 0.590 -0.420 -0.295
BARTScore -0.835 -0.546 0.549 -0.544 -
BARTScore+ -0.665 - 0.482 -0.186 -
BARTScore-P -0.642 - 0.255 -0.207 -
PRISM -0.733 -0.455 0.580 -0.376 -
CTC-Relevance 0.333 -0.371 0.334 - -0.349
CTC-Consistency 0.462 -0.174 0.647 0.275 -0.301

ROSCOE-SA 0.578 0.392 0.521 0.555 0.337
ROSCOE-SA1 0.790 0.500 0.799 0.638 0.485
ROSCOE-SA2 0.578 0.392 0.599 0.555 0.337

ROSCOE-SS 0.824 0.514 0.530 0.593 0.411
ROSCOE-SS1 0.791 0.471 0.507 0.642 0.508
ROSCOE-SS2 0.799 0.638 0.531 0.658 0.535
ROSCOE-LI 0.584 0.345 0.531 0.444 0.372

ROSCOE-LC 0.205 -0.184 0.447 -0.212 0.517

Meta-Evaluations on Human Judge-
ment Datasets. Table 8 reports a sum-
mary of meta-evaluation of ROSCOE met-
rics comparing against baselines on hu-
man judged datasets. The correlations
are measured based on the presence of
a particular error from Table 2 and we
report the highest correlation across all
error types within each dataset. We ob-
serve that: (1) on all tasks, ROSCOE met-
rics outperform all other baselines when
evaluated as reference-free; (2) overall,
ROSCOE yields considerably better corre-
lations, which indicates that step-by-step
reasoning generations can be more effec-
tively evaluated with ROSCOE. In gen-
eral, most correlations with human judge-
ments are moderate when compared to
the synthetic correlation scores, indicat-
ing that step-by-step reasoning evaluation
is among the cognitively hard tasks for
neural models (Deutsch et al., 2022). In-
terpretable metrics such as ROSCOE can
provide better information about a model’s reasoning skills, thus future work should improve such metrics on
aligning with human judgments. In App. H.2, we show fine-grained experimental analysis per each human
labeled dataset. Specific examples showcasing ROSCOE scoring abilities are summarized in Table 40.

7 ANALYSIS

How sensitive are ROSCOE metrics against level of errors? To evaluate how well metric values match
human assessment of reasoning, we measure sensitivity to the level of errors. We perturb sentences in the
MATH (arithmetic) and EntailmentBank (deductive reasoning) diagnostic datasets (similar to § 5) and inject
different levels of errors into the reasoning text. Using randomly selected perturbation types, we construct
up to a maximum of 3 perturbations per instance. We measure the correlation (Somers’ D) between the
reasoning inconsistency level 1, 2, 3 of the reasoning steps (i.e., the number of injected errors) and the metric
score. Fig. 1 illustrates the results averaged over different perturbations.

We expect the metrics correlate with humans better when the level of errors is high. Both semantic alignment
of the reasoning ROSCOE-SA , and the semantic similarity metrics ROSCOE-SS show consistent behavior
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on both datasets, while baseline metrics fluctuate with low correlations. Baseline metrics perform better on
EntailmentBank. On MATH, ROSCOE-LC and the baseline metrics show minimal impact, which can be that
some of the perturbations applied on the MATH dataset (e.g., RandomOperation, or ShuffleNumbers) are
harder to detect with language model based (BARTScore) and NLI model based (ROSCOE-LC) metrics.

0.00

0.25

0.50

0.75

1.00
MATH

1 2 3
0.00

0.25

0.50

0.75

1.00 EntBank

Level of Error

ROSCOE-SA
ROSCOE-SS
ROSCOE-LI
ROSCOE-LC
BARTScore

BARTScore-P
BERTScore
ROUGE-L
PRISM
BLEURT

Figure 1: Sensitivity of selected
metrics on Somers’ D by injecting
levels of error into reasoning steps.

What does ROSCOE illuminate about scores across errors and tasks?
For an ideal scorer based on ease of use, it would be possible to pick a
set of fixed thresholds that had error discrimination power across datasets.
However, we show that this dataset-agnostic ideal is currently not possible
and an issue endemic across scores, including baselines. We study which
metrics correlate strongly with which perturbations, with a focus of con-
sistency across datasets. From this, we plot the interquartile ranges for
strongly correlated metric and perturbation pairs. We show a sample of
these in Fig. 2, though find that the trends generally hold across metrics
and perturbations (see Fig 6). We note that within a given dataset, scores
are well separated: the perturbed version of a dataset for a given score
and perturbation type shows little interquartile overlap with the original
version. However, this does not hold across datasets – e.g., in (Score: Info-
Chain, Perturbation: Repetition), if one were to set a detective threshold
for the Repetition perturbation based off EntBank (around 0.95), it would
mark almost all values of EQASC as perturbed, even non-perturbed sam-
ples. This shows the challenge of using metrics for classification without
calibration for drifts in both mean and variance across datasets, even if a
metric generally correlates well with detecting a given error.

0.5 0.6 0.7 0.8 0.9 1.0
Info-Chain score

(AQUA, original)
(AQUA, perturbed)

(EQASC, original)
(EQASC, perturbed)
(EntBank, original)

(EntBank, perturbed)
(Math, original)

(Math, perturbed)
(ProofWr., original)

(ProofWr., perturbed)
Score: Info-Chain, Perturbation: Repetition

perturbed
original

0.2 0.4 0.6 0.8 1.0
Faithfulness-Step score

Score: Faithfulness-Step, Perturbation: Negate Step

perturbed
original

0.4 0.2 0.0 0.2 0.4 0.6 0.8
BERTScore score

Score: BERTScore, Perturbation: Repetition

perturbed
original

Figure 2: Box-and-whisker plots of interquartile ranges of scores, for perturbations and reference-free metrics with
strong Somers’ D values. Scores are split by dataset and perturbation use. While interquartile ranges separate well by
perturbation use within a single dataset, there is overlap across datasets. This shows the drift of neural scores across
datasets and applies to both ROSCOE (left, center) and strong baselines (right).

8 CONCLUSION

In this paper, we introduce ROSCOE, a new suite of interpretable, unsupervised metrics that enables evaluation
of step-by-step reasoning generations of LMs when no golden reference generation exists. We present
a taxonomy of reasoning errors used to generate and evaluate our metrics. Experimental results, from
evaluating on both synthetic and human-labeled datasets exhibiting multiple types of reasoning (commonsense,
arithmetic, and logical inference, etc.), demonstrate superior performance compared to prior semantic and
lexical similarly based baseline metrics for text generation. Our analysis shows improved capability in
evaluation of reasoning exhibiting nuances, such as factual and logical errors in step-wise decisions.
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ETHICS STATEMENT

Explainability builds transparency and trust for users, eases bug-fixing and shortens improvement cycles
for metric designers, and will be required by law/regulations for AI systems to be applied to large-scale,
high-stakes domains. In this context, we hope our work will catalyze efforts on the topic of explainable
evaluation metrics for language model rationale generations. We should mention that our evaluation metrics
do not monitor the explanations from integrity or bias perspectives. Our work also uses five human expert
annotators and in the annotation process, annotators need to rate the model generated candidate rationals.
While the model-generated explanations can produce potentially unsafe content, the datasets for annotations
include domains related to logical and arithmetic concepts and general commonsense knowledge. The
anecdotal consensus was that the generations were safe and didn’t include biased statements.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our empirical results, we will open source our code to Github, which will
contain: instructions for installing the virtual environment, data preprocessing, all score generation and
correlation scripts (both for ROSCOE and baselines), and trained embedding models. Detailed explanation of
all the finetuned models and metrics are given in the main paper as well as in the Appendices. We will also
release all the diagnostic and human judgment datasets used in our experiments.
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Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover: Grounded
mathematical proof generation with language models. 2022.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean
Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language models to commonsense
models. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 4602–4625, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.341. URL
https://aclanthology.org/2022.naacl-main.341.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text gen-
eration. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 27263–27277. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning.
arXiv, 2022.

Tianyi Zhang, Varsha Kishore, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SkeHuCVFDr.

14

https://aclanthology.org/2020.emnlp-main.8
https://aclanthology.org/2022.naacl-main.341
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Published as a conference paper at ICLR 2023

APPENDIX

A LIMITATIONS

Our study is the first initial step that investigates the evaluation of the step-by-step reasoning produced by
large language models. Our taxonomy (in Table 2) covers several reasoning errors and we designed our
metrics to evaluate a spectrum of criteria including the ones in the taxonomy. Even though we cannot say we
cover all possible reasoning errors, our metrics are generic enough, work on natural language rationales, and
consider the alignment with the input context and the generated explanation. Nevertheless, we believe our
study can spur others to investigate different reasoning errors and use our code and datasets as templates to
extend further.

Due to the extensive analysis needed to thoroughly test and communicate the ability of our proposed metrics
to capture reasoning errors, we decided to leave some follow-up questions, such as the application of these
metrics for improving downstream task performance, for future exploration.

B FEW-SHOT PROMPTING EXAMPLES (CONT. FROM § 1)

Below is the 2-shot example we used to generate the explanations from GPT-3 as we show in the Fig. 1.

I will explain how to make logical inferences:

Context: John wakes to the sound of his children giggling outside the door. They bust in and say
"Happy Father’s Day!" with a plate full of food. 2022 has been a great year.
Question: Can we infer that John was born before the inauguration of Barack Obama?
Explanation: We can infer that John is a father because of "his children". We can infer that the
current year is 2022. Barack Obama was inaugurated in 2009, so it has been about 13 years since
Obama was inaugurated. John’s children are old enough to speak, so if John were born after Obama’s
inauguration, he would have been younger than 10 when he had children. So, we can infer that John
was born before Obama’s inauguration. The answer is "yes".

Context: Sam sees a piano in the subway stations. Laughing, his friends prod him to play, saying
"Remember how amazing your rendition of Chopsticks was at the Christmas party?"
Question: Can we infer that John majored in piano at Juilliard?
Explanation: Juilliard is a top school for music, so someone who majored in piano at Juilliard would
be an expert pianist. "Chopsticks" is a very simple song to play on the piano. His friends were
therefore likely being sarcastic when they told him to play, which would imply that Sam was not an
expert piano player. So it is unlikely that Sam majored in piano at Juilliard. The answer is "no".

Table 9 illustrates sample if in-context examples we used as prompts to obtain step-wise explanations.
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Table 9: Example prompts used to generate step-by-step explanations using GPT-3.
(Used for ESNLI dataset)
Explain if premise entails hypothesis.
Premise: Tomato sauce (also known as Neapolitan sauce, and referred to in Italy as Salsa di pomodoro) refers to any
of a very large number of sauces made primarily from tomatoes, usually to be served as part of a dish (rather than as
a condiment). Tomato sauces are common for meat and vegetables, but they are perhaps best known as sauces for
pasta dishes.
Hypothesis: Tomato sauce is only rarely used to top pasta.
Explanation: Salsa di pomodoro is made of peppers. The answer is No.

Premise: Kirk Johnson (born 1960) is an American scientist, author, curator, and museum administrator, and is
currently serving as Director of Smithsonian’s National Museum of Natural History. Dr. Johnson is the host of the
PBS Nova series, M̈aking North America,̈ which is a three-part series that describes the shaping of North America,
which aired on November 4, 11 and 18, 2015.
Hypothesis: johnson hosted Making North America when he turned 50.
Explanation: Johnson was born in 1960 and hosted Making North America in 2015, so he was 55, not 50. The
answer is No.

Premise: A person rides his bicycle in the sand beside the ocean.
Hypothesis: A person is on a beach.
Explanation: A person rides beside the ocean means is on a beach if there is sand beside the ocean. The answer is
Yes.

(used for SEMEVAL dataset)
Explain if premise entails hypothesis.
Premise: I went into my bedroom and flipped the light switch. Oh, I see that the ceiling lamp is not turning on. It
must be that the light bulb needs replacement. I go through my closet and find a new light bulb that will fit this lamp
and I place it in my pocket. I also get my stepladder and I place it under the lamp. I make sure the light switch is in
the off position. I climb up the ladder and unscrew the old light bulb. I place the old bulb in my pocket and take out
the new one. I then screw in the new bulb. I climb down the stepladder and I place it back into the closet. I then
throw out the old bulb into the recycling bin. I go back to my bedroom and turn on the light switch. I am happy to
see that there is again light in my room. Which room did the light go out in?
Hypothesis: Bedroom
Label: Correct
Explanation: The answer is bedroom, because the light went out in the bedroom. The person replaced the light bulb
in the bedroom.

Premise: The weather was so nice today that I decided to have a barbecue. I called up some of my friends to invite
them over. I set up some chairs and tables outside for my friends to sit around. I then took out some hot dogs from
my fridge and brought them over to my barbecue. My barbecue is a gas barbecue, so all I had to do was press the
knob and turn it to ignite it. Once I got a little fire going I put my hot dogs on the grill over it to cook. I closed the lid
and left my hot dogs to cook for about ten minutes. After ten minutes I decided to check on them to see if they were
done. They looked like they were cooked, so I put them all on a plate to serve to my friends. I went to my kitchen
and got hot dog buns, ketchup, mustard, and relish to serve on top of the hot dogs. I laid out all of the food and
condiments on the table so my friends could help themselves. We ate the hot dogs and relaxed around the table. Why
are we having the barbecue, to celebrate an occasion, or just because we want to?
Hypothesis: Just because they want to.
Label: Correct
Explanation: The answer is correct, because the weather was nice. They decided to have a barbecue. There is no
mention of any special occasion.

Premise: Another Nurse can in to look at me , took one look at my rash and said OMG and ran out of the room . At
that point I started crying , regretted coming to the hospital alone and started wheezing again . Then the doctor came
in , her eyes were all bugged out . What will I do after the doctor examines me ?
Hypothesis: I will talk with my friends .
Label: Incorrect
Explanation: The premise is about the nurse’s reaction to the patient’s rash, and how the patient feels. The hypothesis
does not follow up from this premise correctly. Instead, it talks about talking with friends.
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C TAXONOMY OF REASONING ERRORS (CONT. FROM § 3)

To gain deeper insights into the types of reasoning errors introduced by LLMs while explaining their decisions,
we propose a new taxonomy of generic reasoning errors for language problem solving. Specifically, we
sampled from the training portions of the logical inference and commonsense reasoning datasets, and
prompted GPT-3 with reasoning explanations using prompts similar to App. B. We used task specific in-
domain examples for prompting. We also analyzed model generated explanations shared in Wei et al. (2022).
We then manually looked into each explanation and identified potential errors that are inconsistent with the
source, question or the prompt and within the reasoning chain. Some tasks require a model to classify the
logical relationship between premise and a hypothesis, others are question and answering tasks. We adjusted
our context and prompts according to the type of the task.

Our reasoning error taxonomy is summarized in Table 10. It contains types of errors concerning an overall
chain or an individual step. Specifically, the chain-level coarse-grained evaluations of the overall reasoning
chain deals with overall quality of the step-by-step thinking, coherence, consistency of the explanation within
itself, and consistency with the context, etc. On the other hand the step-level fine-grained evaluations focus on
the consistency of a reasoning step with the previous steps, if a step conveys new and supporting information
over the previous steps, factuality or logical inference issues. We use these error categories to construct
diagnostics datasets with perturbed errors as well as human judged datasets of reasoning errors. In the
taxonomy, we indicate *-step level errors to differentiate from the chain level error types.
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Table 10: Taxonomy of Step-by-Step Reasoning Errors. Errors used for perturbations in constructing the diagnostic
datasets (Diag.) and for human annotation (Human) of the model generated reasoning chains are also marked. (Cont.
from Table 2.

Error Type Description Example Diag. Human

Grammar Faulty, unconventional, or contro-
versial grammar usage

Reference: He chews 4 pieces of gum a day so over 30 days
he will chew 4*30 = «4*30=120»120 pieces of gum.
Model Expl: He eats 4 pieces of gum a day and lasts 30 days
so he eats 4*30 = «4*30=120»120 pieces of gum.

✓ ✓

Factuality Information about object (i.e. quan-
tity, characteristics) or a personal
named entity does not match infor-
mation provided in the question

Context: Anakin caught 10 fish.
Model Expl: Locsin caught 10 fish.

✓ ✓

Hallucination Information is not provided in the
problem statement and is irrelevant
or wrong

Context: The basketball team went to the steakhouse to eat
dinner. The first player ate a 6-ounce steak. The second
player ate beef tips, containing 8 beef tips, each an ounce
in size. The third player ate a one-pound steak. And the
fourth and fifth players ordered vegetarian meals. In total,
how many ounces of meat were consumed by the team?
Model Expl: The fourth and fifth players ordered vegetarian
meals, for a total of 2 ounces of meat.

✓ ✓

Redundancy Explanation contains redundant in-
formation, which even though
might be factual, is not required to
answer the question

Context: Bob is cold. If something is quiet then it is blue.
All blue things are round. If something is round and smart
then it is cold. Question: Bob is cold.
Model Expl: If something is round and not smart then it is
blue. All blue things are round. Answer: true.

✓

Repetition Step paraphrases information al-
ready mentioned in previous reason-
ing steps

Context: Parker chews 4 pieces of gum a day. A pack of gum
has 15 pieces of chewing gum per pack. How many packs of
gum will he need to last him 30 days?
Model Expl.: He chews 4 pieces of gum a day and there are
30 days in a month so he chews 4*30 = 120 pieces of gum a
month. Parker chews 120 pieces of gum a month. He needs
120 pieces of gum a month and a pack of gum has 15 pieces
of gum so he will need 120/15 = 8 packs of gum.

✓ ✓

Missing step The content of the generated rea-
soning is incomplete and lacks re-
quired information to produce the
correct answer. If this missing steps
are added, the model would produce
the correct answer

Context: A farm has 10 2-legged animals and 15 4-legged
animals. If all animals are healthy, how many pairs of animal
legs in total are on the farm? Answer: 40
Model Expl.: 10 2-legged animals have 10*2=20 legs. 15
4-legged animals have 15*4=60 legs. In total on the farm,
there are 20+60=80 legs.Answer: 80 missing step: Total
number of pairs is 80/2=40

✓ ✓

Coherency Steps contradict each other or do
not follow a cohesive story

Context: If the reactor is intact, then it is safe. If the reactor
is safe, then no graphite is outside it.
Model Expl.: The reactor is intact. All graphite is inside of
it. There are some graphite outside of the the reactor.

✓ ✓

Commonsense Model lacks relations that should
be known from general knowledge
about the world (i.e. how to com-
pute velocity, how many inches in
one foot, all ducks are birds, etc.)

Question: Jordan has 2 children who wear diapers. Each
child requires 5 diaper changes per day. Jordan’s wife
changes half of the diapers. How many diapers does Jor-
dan change per day?
Model Expl.: Jordan has 2*5=10 diapers to change per day.
Jordan’s wife changes 10/2=5.0 diapers per day. For both
children, Jordan changes 10+5=15 diapers per day.

✓

Arithmetic Error in math calculations Reference: If a truck was carrying 20 tons of fertiliser packed
in bags, the total number of bags in a truck is 20*20 = 400
bags
Model Expl: If a truck was carrying 20 tons of fertiliser
packed in bags, the total number of bags in a truck is 20*20
= 40 bags

✓ ✓
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D ROSCOE METRICS DETAILS (CONT. FROM §4)

ROSCOE metrics are constructed under four categories: semantic alignment, semantic similarity, logical
inference, and logical coherence. The details of each metric is explained in §4. At the core of ROSCOE se-
mantic alignment metrics is the reasoning alignment score, which we designed to measure the grounding of
step-by-step reasoning with respect to the source text. Fig. 3 illustrates the reasoning alignment.

Figure 3: Reasoning alignment illustrating the measurement of the Faithfulness-Step and Faithfulness-Token
semantic alignment scores. h = {h1, h2} is a hypothesis chain with tokens {h1,1, h1,2, h1,3, h2,1, h2,2},
and s = {s1, s2, s3} is a context with tokens {s1,1, s2,1, s2,2, s2,3, s3,1, s3,2, s3,3}. Alignment scores from
hypothesis to context are highlighted, and alignment scores from context to hypothesis are underscored. The
reasoning alignment combines token and step level similarities where each alignment value (cell) is the cosine
similarity and explicitly measures the grounding of the token and step-wise reasoning with respect to the
source text.
The variation of scorers of the ROSCOE shares some similarities, thus we explain them here:

BARTScore (Yuan et al., 2021) claims that more high level text can be generated using sequence to sequence
model. It can support different evaluation perspectives such as factuality (by evaluating from source to
hypothesis) or informativeness (by evaluating from both directions between reference and hypothesis).
BARTScore is used to measure the probability of generated text from a source text x to a target set y:

BARTScore =
∑m

t=1 wt log p(yt|y<t, x, θ) (1)
BARTScoreintroduce two variations: (1) finetuning, in which the BART model is finetuned on the task
specific dataset to make the pre-training domain closer to the evaluation domain. (2) prompting, in which a
task specific textual prompt is appended to the source x to get the y. In our experiments we compare the the
BARTScorebaseline and one with the prompting variant BARTScore+to compare in the experiments.

CTC (Compression, Transduction, and Creation) (Deng et al., 2021), is a suite of metrics that unifies
different perspectives of different tasks (e.g, summarization, style transfer, or text rewriting) into information
alignment, which measures weather the information in one generation component is grounded in another. The
information alignment is defined as follows: let x (e.g, dialog context) be the source input, c (e.g., external
world knowledge) be some additional context, and y be the generated output text (e.g., generated response).
The alignment is measured on token level and it is measured as the vector of scores:

align(a → b) = ⟨α1, · · · , αN ⟩ (2)
where each score αi indicates confidence that the n-th token in a aligns with the whole sentence b. Using the
information alignment they define a list of metrics to evaluate text for different tasks. In our experiments we
use two of these metrics that are closer to ROSCOE: the Relevance (CTC Relevance), which measures the
consistency of the generated text with the source and its balanced between the reference, and the Consistency
(CTC Consistency) which deals with the faithfullness of the generated text to the input context by the
alignment between the two.
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E EXPERIMENTAL SETUP DETAILS (CONT. FROM § 5)

E.1 DIAGNOSTIC DATASETS

In the following we present details of each diagnostics dataset used in our work. Table 11 illustrates how
each dataset is used in our experiments. StrategyQA dataset is only used to finetune the SimCSE embeddings
model, because it contains reference reasoning chains in train and validation partitions, but not in the test
partition. The rest of the six diagnostic datasets are used for sentence embedding model finetuning, and
evaluating our models as presented in the experiments results. All datasets with examples are summarised in
Table 12.

Table 11: Summary of datasets used in our work. Reasoning Chain represent whether it contains human
written golden step-wise reasoning explanation. Type indicates whether it is used for constructing Diagnostic
or Human judged datasets. Train/Val./Test indicate whether the dataset is used for training, validation and/or
testing. StrategyQA dataset is only used for finetuning SimCSE embedding model.

Dataset Reasoning Type Train Val. Test Annotated
Chain Instances

EntailmentBank (Dalvi et al., 2021) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 1,840
ProofWriter (Tafjord et al., 2021) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 272,430
MATH (Hendrycks et al., 2021) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 12,500
ASDIV (Miao et al., 2020) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 2,305
AQUA (Liang et al., 2018) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 97,975
EQASC (Aggarwal et al., 2021) ✓ Diagnostic, Finetuning ✓ ✓ ✓ 9,060
StrategyQA (Geva et al., 2021) ✓ Finetuning ✓ ✓ ✗ 2,290
DROP (Dua et al., 2019) ✗ Human judged ✗ ✗ ✓ 210
GSM8K (Cobbe et al., 2021) ✓ Human judged ✗ ✗ ✓ 200
ESNLI (Camburu et al., 2018) ✓ Human judged ✗ ✗ ✓ 149
CosmosQA (Huang et al., 2019) ✗ Human judged ✗ ✗ ✓ 179
SemEval (Ostermann et al., 2018) ✗ Human judged ✗ ✗ ✓ 209

EntailmentBank (EntBank) (Dalvi et al., 2021) is a complex question answering dataset which contains
multi-step entailment trees, namely a tree of multi-premise entailment steps from facts that are known, through
intermediate conclusions to hypothesis of interest (which in this case the question and answer).

ProofWriter (Tafjord et al., 2021) is a question answering dataset for logical reasoning. It contains 500k
questions, answers and proofs over natural-language rulebases. This dataset is mostly used to emulate reason-
ing over rules expressed in language, including proof generation. The datasets proofs include intermediate
conclusions. In our experiments, we used depth-0, depth-1, depth-2, depth-3, and depth-5 OWA sets.

MATH (Hendrycks et al., 2021) is a dataset of 12,500 problems from high school math competitions. Given
a math problem such as in Table 12 models generate a sequence, such as 2

3 , that encodes the final answer.

ASDIV (Miao et al., 2020) (Academia Sinica Diverse MWP Dataset) is a dataset of 2,305 questions on
diverse math word problem solving. It includes a diverse operations such as basic arithmetic or aggregative
operations (e.g., comparisons, set-operations).

AQUA (Liang et al., 2018) is a dataset of 100,000 algebraic word problems with step-wise solutions as shown
below. In the original dataset each question is decomposed in four parts, two inputs and two outputs: the
description of the problem and a question, and the possible (multiple choice) answer options, one being the
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Table 12: We show instances from seven of the Diagnostics Datasets here. (Continue from §5).
Dataset Instance Reference Step-by-Step Solution
EntBank Earth is a kind of celestial object. Stars appear to move

relative to the horizon during the night. A star is a kind
of celestial object celestial body. The earth rotating on its
axis causes stars to appear to move across the sky at night.
Apparent motion is when an object appears move relative
to another object ’s position.
Question: How does the appearance of a constellation
change during the night?
Hypothesis: Solve the following entailment problem:
"Earth is a kind of celestial object. During the night stars
appear to move"

Step1: earth is a kind of celestial object Its position appears
Step2: a star is a kind of celestial object to shift relative /
celestial body to the horizon.
Step3: apparent motion is when an object appears to move
relative to another object ’s position
Step4 Therefore apparent motion of stars is when stars appear
to move relative to earth’s position Step5: The earth rotating on
its axis causes stars to appear to move across the sky at night
Step6: Therefore the earth rotating on its axis causes apparent
motion of stars
Step7: Stars appear to move relative to the horizon during the
night
Step8: Therefore the earth rotating on its axis causes stars to
move relative to the horizon during the night.

ProofWriter Facts: The cow is not big. The cow is not green. The lion
eats the tiger. The lion sees the cow. The lion visits the
cow. The lion does not visit the squirrel. the lion visits the
tiger. The squirrel is big. The squirrel is round. The tiger
is not green. The tiger does not see the cow.
Rules: if something sees the squirrel and the squirrel eats
the cow then the cow is round. if something is green then it
eats the tiger. if the squirrel is round then the squirrel visits
the cow. if something eats the cow then it sees the squirrel.
if something sees the tiger and the tiger visits the squirrel
then it is nice. if something is round then it eats the cow.
if something is kind then it eats the cow. if the tiger visits
the cow then the cow sees the squirrel. if something sees
the cow then the cow eats the tiger.
Question: The cow does not see the squirrel.

Step1: The squirrel is round.
Step2: something is round then it eats the cow.
Step3: The squirrel eats the cow.
Step4: If something sees the squirrel and the squirrel eats the
cow then the cow is round.
Step5: The cow is round.
Step6: If something is round then it eats the cow.
Step7: The cow eats the cow.
Step8: if something eats the cow then it sees the squirrel.
Step9: the cow sees the squirrel.
Answer: True

MATH Context: Tom has a red marble, a green marble, a blue
marble, and three identical yellow marbles.
Question: How many different groups of two marbles can
Tom choose?

Step1: There are two cases here:
Step2: either Tom chooses two yellow marbles (1 result), or he
chooses two marbles of different colors (

(
4
2

)
=6 results.).

Step3: The total number of distinct pairs of marbles Tom can
choose is 1 + 6 = 7.
Answer: 7

ASDIV Context: A sandwich is priced at $0.75. A cup of pudding
is priced at $0.25. Tim bought 2 sandwiches and 4 cups of
pudding.
Question: How much money should Tim pay?

0.75 x 2 + 0.25 x 4 = 2.5
Answer: 2.5

AQUA Context: The entrance fee for a fair is $5 for persons under
the age of 18 and 20% more for persons older. Each ride at
the fair costs $0.50. If Joe goes with her 6 years old twin
brothers, and they each took 3 rides in total.
Question: How much money does Joe end up spending at
the fair?

Step1: Total entrance fee is (2*$5)+(1.20*5) = $16
Step2: Total rides fee is ( 0.50 * 3 ) * 3 = $4.50
Step3: Total money spent is $20.50
Answer: 20.5

EQASC Question: Where is water likely to form beads? Step1: Beads of water are formed by water vapor condensing
Step2: Moisture builds up in condenses air and the wherever
the surfaces are cold.
Answer: Water beads form on cold surfaces.

StrategyQA Question: Are more people today related to Genghis Khan
than Julius Caesar?

Step1: Julius Caesar had three children.
Step2: Genghis Khan had sixteen children.
Step3: Modern geneticists have determined that out of every
200 men today has DNA that can be traced to Genghis Khan.
Answer: True

correct one. In this work we only used the context and question, the step-wise solution and the correct answer
to construct our diagnostic dataset.

EQASC (Aggarwal et al., 2021) is a multi-hop question answering dataset with 98K explanation annotations
for multi-step factual reasoning. Each instance in the dataset comes with a question, multiple answer choices,
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explanation of each answer choice and a free flow explanation of the whole context. In our experiments we
used the correct answer’s explanation to construct our diagnostic datasets.

StrategyQA (Geva et al., 2021) is another multi-step question answering (QA) dataset, that covers a diverse
set of reasoning skills. StrategyQA consists of 2,780 questions, annotated with their decomposition and
per-step evidence.

E.2 HUMAN JUDGED DATASET CONSTRUCTION

In the following we present details of each human judged datasets used in our work. Table 11 lists each
dataset and illustrates how each dataset is used in our experiments. Specifically, all six datasets are used for
evaluations in the experiments results and model finetuning, and one dataset was used for finetuning only.
The dataset details are explained below.

To construct these datasets, we first sample instances from each dataset (see the number of instances sampled
in Table 11). We use GPT-3 with few-shot in-context examples and a prompt to generate step-by-step
reasoning (e.g., "explain step-by-step") for each sampled instance (see in-context examples and prompts
in App. B). Then, using our taxonomy we constructed a list of evaluation perspectives to label the model
generated step-by-step reasoning step of each of these datasets. We explain the details of the perspectives
used to label human judged datasets in § 5 and App. F. All datasets with examples are summarised in in
Table 13. In the following we present details of each human judged datasets.

DROP (Dua et al., 2019), Discrete Reasoning Over the content of Paragraphs, is a dataset of 96K of instances
with context and a question. To solve the tasks, a system must resolve references in the context that match
with the question, and perform discrete operations over them (such as addition, counting, or sorting). These
operations require comprehensive understanding of the content of the input context.

GSM8K (Cobbe et al., 2021) is a dataset of 8.5K linguistically diverse grade school math word problems. On
this dataset, even the largest transformer models fail to achieve high test performance, despite the conceptual
simplicity of this problem distribution.

CosmosQA (Huang et al., 2019) is a dataset of 35K problems that require commonsense-based reading
comprehension, formulated as multiple-choice questions. The questions focus on reading between the lines
over a diverse collection of people’s everyday narratives, asking such questions as "what might be the possible
reason of ...?", or "what would have happened if ...?". The dataset does not introduce step-by-step reasoning
output, and contains multiple choice answers.

ESNLI (Camburu et al., 2018) is the extended version of the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015) of 570K labeled sentence pairs with entailment or contradiction labels. ESNLI
includes human labeled explanations of the entailment decision.

SemEVAL (Ostermann et al., 2018) is a dataset on machine comprehension using commonsense knowledge.
It contains questions that require commonsense knowledge for finding the correct answer.

E.3 SYNTHETIC DIAGNOSTICS DATASET GENERATION WITH PERTURBATION RULES

To construct the diagnostics datasets we apply synthetic perturbations on half of the chains from six datasets
(for details see App. E.1 and the summary Table 11). Also, in Table 14 we illustrate these synthetic
perturbations applied on reasoning steps {ri} of gold reference chains of all the datasets. In there, g∗

indicates a grammar error, which includes changing verb tense, dropping verb, or random word swap. s∗
represents change the semantics of one step in the chain by replacing named entities. To simulate extrinsic
hallucinations, we use random steps from other chains within the same dataset.
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Table 13: We show instances from five of the Human Judged Datasets used in our work. Only GSM8K and ESNLI
include human labeled explanations.

Dataset Instance Reference Answer & Reference Step-by-Step
Solution

GSM8K Question: Tina buys 3 12-packs of soda for a party. Including Tina, 6
people are at the party. Half of the people at the party have 3 sodas each,
2 of the people have 4, and 1 person has 5. How many sodas are left over
when the party is over?

Answer: 11
Step1: Tine buys 3 12-packs of soda for 3*12=36
sodas
Step2: 6 people attend the party, so half of them is
6/2= 3 people
Step3: Each of those people drinks 3 sodas, so they
drink 3*3=9 sodas.
Step4: Two people drink 4 sodas, which means
they drink 2*4=8 sodas.
Step5: With 1 person drinking 5, that brings the
total drank to 5+9+8+3=25 sodas
Step6: As Tina started off with 36 sodas, that
means there are 36-25=11 sodas left.

CosmosQA Context: A woman had topped herself by jumping off the roof of the
hospital she had just recently been admitted to. She was there because
the first or perhaps latest suicide attempt was unsuccessful. She put her
clothes on, folded the hospital gown and made the bed. She walked
through the unit unimpeded and took the elevator to the top floor
Question: What would have happened to the woman if the staff at the
hospital were doing their job properly?

Answer: The woman would have been stopped
before she left to take the elevator to the top floor
and she would have lived.

DROP Context: Denver would retake the lead with kicker Matt Prater nailing a
43-yard field goal, yet Carolina answered as kicker John Kasay ties the
game with a 39-yard field goal. . . . Carolina closed out the half with
Kasay nailing a 44-yard field goal. . . . In the fourth quarter, Carolina
sealed the win with Kasay’s 42-yard field goal.
Question: Which kicker kicked the most field goals?

Answer: John Kasay

ESNLI Premise: A child in a yellow plastic safety swing is laughing as a dark-
haired woman in pink and coral pants stands behind her.
Hypothesis: A young mother is playing with her daughter in a swing.

Answer: neutral
Explanation: Child does not imply daughter and
woman does not imply mother.

SemEVAL Context: Now I am going to set the dining table up for dinner. First I put
away all the stuff that is not supposed to be on the table. Next I clean the
table with a tissue paper. Then I arrange some of the decorations on the
table. After that I put down the plates and glasses.lastly in the remaining
spaces on the table I put down what we are going to eat but I dont put
down dessert yet. There is one more thing I do before I am finished setting
up the dining table. I call my family down for dinner. I swept a drop of
sweat of my chin and forehead. It was hard hard work but still it was so
much fun. Oh no my family is done with dinner and now I have to bring
them dessert which is fruit I made myself.
Question: When did they clean the dining table?
Hypothesis: After it was set.

Answer: No

To construct diagnostic data from math datasets, we introduce four additional perturbations to simulate step-
wise explanation errors that might arise in arithmetic reasoning task (Arithmetic error), general knowledge
about relationships and equation construction (Common sense error), and misinformation about object/subject
characteristics (Factuality or Hallucination):

• Shuffle numbers: randomly shuffles all numbers in the chain,
• Shuffle operations: randomly shuffles all math operations in the chain,
• Random number: randomly replaces one number in the chain,
• Random operation: randomly replaces one math operation in the chain.
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Table 14: Synthetic perturbations and corresponding error types of steps {ri} in reference chains used when constructing
diagnostics datasets. g∗(·) represents grammar error, s∗(·) represents semantic change.

Perturbation Type Error Type Reference Reasoning Steps Hypothesis Reasoning Steps
Repeat a step Repetition [r1, r2, r3] [r1, r2, r2, r3]
Remove a step Missing step [r1, r2, r3] [r2, r3]
Shuffle steps Self-coherency [r1, r2, r3] [r3, r1, r2]
Swap a step Self-coherency [r1, r2, r3] [r2, r1, r3]
Negate a step Factuality [r1, r2, r3] [r1,¬r2, r3]
Hallucination Hallucination [r1, r2, r3] [r1, r2, r3, r4]
Grammar error Grammatical [r1, r2, r3] [r1, r2, g

∗(r3)]
Semantic change Factuality [r1, r2, r3] [r1, s

∗(r2), r3]
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F HUMAN ANNOTATIONS (CONT. FROM § 5)

To construct Human Judged Datasets, we perform human annotations on five datasets which we summarize
in Table 11 (Type=’Human judged’). These datasets do not include explanations (except GSM8K and ESNLI),
so we construct model generated reasoning steps and label them with reasoning errors. We explain our
generation process in §5 and App. E.2. We used five expert human annotators to collect reasoning error labels
on five datasets. We asked human evaluators to directly rate the generated reasoning errors on overall chain
level using a Likert scale from 1 to 5. We also asked them to mark whether each error type proposed in our
error taxonomy (§3) appeared in each step in step-level evaluations. In Fig. 4 and Fig. 5 we illustrate the
UI used to collect the data. Table 15 summarizes questions that experts were asked. Table 16 reports the
distribution of errors for each dataset. In general, we found that it was hard to get anonymous crowd workers
to annotate our data accurately even when we paid averages of upwards of $30 an hour, hence relying on
expert annotators. For the annotation sessions reported in the text of the paper, we find that it takes an average
of 754 seconds for expert annotators to complete a session of at most 5 examples, or slightly over 2-and-a-half
minutes per example. This highlights the difficulty of obtaining high-quality annotations on these cognitive
challenging tasks.

Figure 4: Screenshot of expert annotation user interface, showing the context for the initial question as well as the
questions regarding the generated response.

Figure 5: Screenshot of expert annotation user interface, showing questions asked for each step, using the question in
Fig 4. The questions are asked of every step generated by the model, with steps separated by sentence-ending periods.
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Table 15: Evaluation perspectives used to Human Judged the datasets. The perspectives, which we used to ask humans
to label, align with our taxonomy of reasoning errors. (Continued from § 5)

Level Evaluation Label Details
Perspective

Overall QUAL Overall quality [1-5] Does the generated response answer the question in a well-justified
manner? (1=incomprehensible and wrong, 5=clear and correct)

Overall COH Coherency [1-5] Does the whole generated response make sense? (Ie, does it sound
understandable/non-contradictory/sensical, even if it fails to address
the context?) - (1=sounds like nonsense, 5=easy to parse).

Step MISS Missing Step Y/N Is the reasoning in the generated response incomplete and lacking
required information to produce the correct answer? Specifically, does
this response contains steps that, if added in, would make for a well-
supported chain?

Step GRAM Grammar Y/N Does this step contain faulty, unconventional, or controversial grammar
usage? In other words, does the language in this step sounds unnatural?

Step FACT Factuality Y/N Does this step contain information that contradicts the context while
still largely talking about the same concepts? (Ex. Characteristics of
named objects are wrong, named entities changed.)

Step LOGIC Coherency and Logic Y/N Does this step any logical deduction errors (Ie, makes a conclusion
contradictory to previously stated clauses, including clauses within this
step itself; makes a conclusion while not having enough support to
make the conclusion)

Step HALL Hallucination Y/N Does this step contain information not provided in the problem state-
ment that is irrelevant or wrong?

Step RED Redundancy Y/N Does this step contain information not required to answer the question
asked despite being factual and consistent with the context?

Step REP Repetition Y/N Does this step contain any information, possibly paraphrased, already
mentioned in previous step (and thus could be dropped without impact-
ing correctness)?

Step COMMON Commonsense Y/N Does this step contain any errors in relation to general knowledge about
the world (i.e. how to compute velocity, how many inches in one foot,
etc) not explicitly provided in the context?

Step MATH Arithmetic Y/N Does this step contain math equation errors? Note that you should
consider only current step in isolation, rather than issues propagated
from prior steps.

Table 16: Statistics of types of errors in Human Judged datasets. Each column reports the number of examples where
the specified error type exists. (Continue from § 5)

Error Type DROP GSM8K ESNLI COSMOS SemEVAL

Grammar 8 4 5 8 6
Factuality 19 56 15 44 31
Hallucination 4 8 4 9 2
Redundancy 25 13 14 15 19
Repetition 2 2 0 3 3
Missing Step 109 81 40 99 67
Coherency 20 57 17 48 17
Commonsense 3 58 5 18 1
Arithmetic 2 7 1 0 0
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G SENTENCE EMBEDDING MODEL TRAINING (CONT. FROM §6)

Model training. We use the train portions of the perturbed diagnostics datasets to finetune the SimCSE
embeddings model (explained in § 5) and validation portions to select the best embedding model. The test
portions are used to evaluate our metrics against baseline metrics. We randomly select 500,000 samples with
replacement from each dataset to create uniform representation and reduce bias.

The hyperparameters used to finetune SimCSE model are described in Table 17. We use NVIDIA Tesla
V100 Volta GPU instances with 32GB Graphics Card. We perform hyperparameter search, varying batch size
in {32, 64, 256, 512, 1024, 2048}, learning rate in {5e-06, 1e-05, 5e-05, 1e-04}, and max sequence length in
{64, 128, 512}. Not all combinations of batch size and max sequence length were explored due to memory
limitations.

Table 17: Hyperparameters used to fine-tune SimCSE model on perturbed datasets.
Parameter Value

Batch size 64
Max sequence length 512
Training epochs 5
Learning rate 5e-6
Temperature 0.05

Validation. We replace original validation procedure on semantic textual similarity tasks with similarity-
based validation on perturbed reasoning chains. In particular, during training, we select best checkpoint that
maximizes cosine similarity between positive and minimizes cosine similarity between hard-negative pairs
within the batch of size B as the following:∑N

i=1 [cos(si, ri)− cos(si, hi)]

2 ∗B
(3)

Model is evaluated every 100 steps on the development dataset and the best checkpoint is applied at the
inference. Other parameters not described in this section are kept as in the original SimCSE model used for
initialization.

Inference. We compare ROSCOE scores calculated against three embeddings: finetuned SimCSE model,
sup-simcse-roberta-base SimCSE model, and all-mpnet-base-v2 sentence embedding model (Reimers &
Gurevych, 2019). During inference, we set the random seed to 42. Without this, the embedding-based scores
naturally varied by about 0.01.

27



Published as a conference paper at ICLR 2023

H ADDITIONAL EXPERIMENTAL RESULTS (CONT. FROM §6)

H.1 CONTROLLED EXPERIMENTS WITH DIAGNOSTICS DATASETS

In this section, we presented Somers’ D correlation of all metrics on all Diagnostics datasets. Table 18 sum-
marizes the evaluations when investigated reference-free. One of the characteristics of our ROSCOE metrics is
that, they can provide judgement of the model generated reasoning steps with and without the human reference
reasoning chains. In the experiments section in §6, we discussed the results of our unsupervised scores in
comparison to baseline scores when measured reference-free. In Table 19, we summarize the correlation
analysis on ROSCOE metrics in comparison to baselines on diagnostic datasets when reference is present for
evaluation. Specifically, each score is measured between the human provided reasoning steps (reference)
and the model generated reasoning steps (hypothesis). We also display fine-grained meta-evaluations of all
metrics on each diagnostics dataset in separate tables. Specifically, Tables 20, 26 for EQASC, Tables 21, 27
for EntailmentBank, Tables 22, 28 for MATH, Tables 23, 29 for ProofWriter, Tables 24, 30 for ASDIV, and
Tables 25, 31 for AQUA.

To understand if designed reference-free scores capture targeted error types we analyze perturbation-level
correlations summarized in Fig. 6. Out of the all considered scores, Info-Chain is able to cover 10 out of 12
of errors, except Remove Step and Semantic error perturbations. In general we can note that ROSCOE fails to
consistently identify missing step error type represented by Remove Step perturbation across different datasets,
while other synthesized error types are covered by at least one score type.

Reference-based scores are covering all synthetic errors, with Semantic Coverage Chain showing strong
correlations with all types of perturbations (Table 19). We also note that along with ROSCOE scores, the
highest correlation among all reference-based scores belong to ROUGE and BERT scores (Tables 26-31).
ROUGE scores consistently outperform on Repetition, Hallucination, Remove Step, Shuffle Steps, Swap
Steps, Negate Step, and Semantic perturbations, while under performing on Random operation, and Shuffle
operations. We attribute this to the fact that ROUGE is an n-gram based score, so it is better in catching errors
were wording has significantly changed, while failing to catch small changes within steps.

It is worth noting that some scores, especially those among reference-based evaluations, get the highest
possible Somers’ D correlation scores of 1.0. What it means is that in some scenarios, there is a perfect
correlation between the metric and the error type. In other words, for this metric we can find a threshold such
generated chains that have scores greater than the threshold do not have errors of the given type, and in all
generated chains with scores less than the threshold have that error. It is especially evident on referenced-based
metrics that directly compare the reference solution and hypothesis. In this scenario, we build correlation
for two groups: 1) non-perturbed hypothesis: the score is calculated by comparing embedding similarities
of the reference with itself, and we expect to get high scores, 2) perturbed hypothesis: comparing reference
with its perturbed version, where the scores should be lower. In some cases, we are able to perfectly separate
perturbed and non-perturbed chains based on the corresponding metric values by selecting a threshold, in
other cases we cannot due to a number of false-negatives (i.e., a chain gets a high score, although the error is
present). As an example, consider the Semantic Coverage-Chain metric calculated on EQASC dataset using
all-mpnet-base-v2 sentence embeddings, and Hallucination perturbation (Table 26). Here the Somers’ D
correlation score is 1.0. Semantic Coverage-Chain is calculated as a normalized cosine distance between the
chain embedding of the reference solution r, and the chain embedding of the hypothesis h : [1+cos(r,h)]/2.
Recall that in our setup, half of the hypothesis chains are perturbed reference chains, and another half is the
same as the reference. While Hallucination perturbation is an insertion of a random step from a dataset, it
is hard to predict how if will affect the embedding of the chain as a whole, but on the unperturbed chains,
where h == r, the Semantic Coverage-Chain should be: [1 + cos(r, r)]/2 = 1.0. Further review confirmed
that in this dataset there are no false-positive instances, i.e., all chains with perturbations had Semantic
Coverage-Chain score less than 1.0. That means, we can always identify if the chain contains a Hallucination
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error or not, by comparing Semantic Coverage-Chain value with 1.0 (threshold value), which is reflected in
perfect Somers’ D score.

Highest correlations among reference-free scores belong to the Repetition-* scores, that exhibit perfect
correlation on EQASC dataset (Tables 20-25). For other datasets, non-perfect correlations can be attributed to
the small number of false-negatives, i.e. they give low Repetition-* scores for chains with non-duplicated
but similar steps, while all chains with duplicates got almost 0 scores (Fig. 7). In EQASC explanations are
created from a set of facts that are not directly related to each other, but are intended to give an answer when
combined together. Among all datasets considered, these steps are most dissimilar, and thus can be separated
with similarity-based scores.

Figure 6: Relative presence of the strong score-perturbation correlation, measured as the number of datasets
where for each score-perturbation pair Somers’ D correlation value is in the 90th percentile, normalized by the
total number of datasets where this type of perturbation occurs. Statistics collected over ROSCOE reference-
free scores with finetuned SimCSE embeddings. (Continued from §7)
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Figure 7: Box-and-whisker plots of interquartile ranges of scores, for Repetition perturbations and Repetition-*
scores. While all perturbed subsets have 0 or near 0 scores, all datasets except EQASC have some chains that
were also scored as low despite the absence of duplicates.
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Table 18: Somers’ D correlation of all metrics on six Diagnostics datasets. All metrics are measured reference-free on
(s,h). The highest correlation overall for each dataset is in bold. The second best models are underlined. Correlations
that are not significant (p-value >= 0.05) are omitted when aggregating, and "-" denotes an absence of any significant
correlations. Note that ASDIV is a 1-step equation dataset, so there are no repetition and self-consistency scores as there
are no steps to compare. (Continued from §6, more details in App. H.1.).

Metric EntBank Math AQUA ProofWriter EQASC ASDIV

ROUGE-1 0.410 0.176 0.257 0.095 0.342 0.305
ROUGE-2 0.391 0.151 0.206 0.090 0.217 -
ROUGE-L 0.365 0.156 0.264 0.106 0.315 0.269
BLEURT 0.257 0.148 0.252 0.024 0.447 -
BERTScore 0.380 0.124 0.220 0.117 0.462 0.322
BARTScore 0.358 0.185 0.317 0.081 0.415 -
BARTScore+ 0.315 0.164 0.251 0.054 0.297 -
BARTScore-P 0.186 0.128 0.215 0.011 0.276 -
PRISM 0.453 0.208 0.191 0.235 0.436 -
CTC Relevancy 0.258 0.188 0.217 0.394 0.485 0.382
CTC Consistency 0.310 0.282 0.157 0.513 0.270 0.396

ROSCOE Metrics (reference-free metrics only)

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.786 0.362 0.152 0.771 0.785 0.186
Faithfulness-Token 0.581 0.157 0.157 0.436 0.480 0.182
Info-Step 0.638 0.231 - 0.250 0.538 0.198
Repetition-Token 0.913 0.936 0.972 0.596 1.000 n/a

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.419 0.467 0.214 0.082 0.550 0.280
Repetition-Step 0.909 0.932 0.982 0.631 1.000 n/a

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.777 0.229 0.224 0.732 0.630 0.266
Faithfulness-Token 0.663 0.200 - 0.517 0.502 0.515
Info-Step 0.560 0.131 0.183 0.226 0.399 0.275
Repetition-Token 0.919 0.939 0.971 0.606 1.000 n/a

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.524 0.180 0.195 0.045 0.409 0.289
Repetition-Step 0.901 0.949 0.991 0.621 1.000 n/a

ROSCOE-SA with finetuned sup-simcse-roberta sentence embeddings
Faithfulness-Step 0.538 0.614 0.826 0.763 0.907 0.879
Faithfulness-Token 0.519 0.204 0.285 0.499 0.492 0.740
Info-Step 0.599 0.511 0.703 0.317 0.804 0.879
Repetition-Token 0.919 0.939 0.971 0.606 1.000 n/a

ROSCOE-SS with finetuned sup-simcse-roberta sentence embeddings
Info-Chain 0.955 0.777 0.933 0.462 0.995 0.857
Repetition-Step 0.908 0.924 0.982 0.624 1.000 n/a

ROSCOE-LI
Self-Consistency 0.782 0.190 0.368 0.204 0.793 n/a
Source-Consistency 0.917 0.341 0.424 0.289 0.778 0.771

ROSCOE-LC
Perplexity-Step 0.213 0.160 0.110 0.178 0.394 0.485
Perplexity-Chain 0.151 0.175 0.229 0.135 0.379 0.485
Grammar 0.604 0.392 0.359 0.788 0.859 0.470
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Table 19: Somers’ D correlation of all reference-based metrics on six Diagnostics datasets. Metrics are measured using
reference generations on (r,h). The highest correlation overall for each dataset is in bold. The second best models are
underlined. (Continued from §6, more details in App. H.1.)

Metric EntBank Math AQUA ProofWriter EQASC ASDIV

ROUGE-1 1.000 1.000 1.000 1.000 1.000 1.000
ROUGE-2 1.000 1.000 1.000 1.000 1.000 1.000
ROUGE-L 1.000 1.000 1.000 1.000 1.000 1.000
BLEURT 0.821 0.773 0.946 0.829 1.000 0.93
BERTScore 1.000 1.000 1.000 1.000 1.000 1.000
BARTScore 0.983 0.989 0.984 0.986 1.000 0.954
BARTScore+ 0.988 0.963 1.000 0.996 1.000 1.000
BARTScore-P 0.877 0.799 0.905 0.595 0.966 0.83
PRISM 0.939 0.521 1.000 0.997 0.996 1.000
CTC Relevancy 0.457 0.592 0.409 0.725 0.954 0.398
CTC Consistency 0.814 0.804 0.833 0.635 0.974 0.6

ROSCOE Metrics (reference-based metrics only)

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Hallucination 1.000 1.000 1.000 1.000 1.000 1.000
Redundancy 1.000 1.000 1.000 1.000 1.000 1.000
Semantic Coverage-Step 1.000 1.000 1.000 1.000 1.000 1.000
Reasoning Alignment 1.000 1.000 0.143 1.000 1.000 1.000
Commonsense 0.438 1.000 1.000 0.379 1.000 1.000
Missing Step 0.993 1.000 1.000 0.876 1.000 1.000

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000 1.000 1.000 1.000 1.000 1.000

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Hallucination 1.000 1.000 1.000 1.000 1.000 1.000
Redundancy 1.000 1.000 1.000 1.000 1.000 1.000
Semantic Coverage-Step 1.000 1.000 1.000 1.000 1.000 1.000
Reasoning Alignment 1.000 1.000 1.000 1.000 1.000 1.000
Commonsense 0.433 1.000 1.000 0.415 1.000 1.000
Missing Step 0.999 1.000 1.000 0.874 1.000 1.000

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 1.000 0.999 1.000 1.000 1.000 1.000

ROSCOE-SA with finetuned sup-simcse-roberta sentence embeddings
Hallucination 1.000 1.000 1.000 1.000 1.000 1.000
Redundancy 1.000 1.000 1.000 1.000 1.000 1.000
Semantic Coverage-Step 1.000 1.000 1.000 1.000 1.000 1.000
Reasoning Alignment 1.000 1.000 1.000 1.000 1.000 1.000
Commonsense 0.445 1.000 1.000 0.404 1.000 1.000
Missing Step 0.999 1.000 1.000 0.873 1.000 1.000

ROSCOE-SS with finetuned sup-simcse-roberta sentence embeddings
Semantic Coverage-Chain 1.000 0.999 1.000 1.000 1.000 1.000
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Table 20: Somers’ D correlations of all metrics per different perturbation applied on EQASC Diagnostics datasets. All
metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Halluc. Grammar Remove Negate Semantic
Error Step Step Error

Rouge-1 0.264† 0.342† 0.017 0.227† 0.063 -0.023
Rouge-2 0.071 0.205† 0.106† 0.217† 0.099† -0.002
Rouge-L 0.210† 0.315† 0.057 0.179† 0.083† -0.016
BLEURT 0.366† 0.447† -0.028 0.195† 0.204† -0.108†
BERTScore 0.288† 0.462† 0.153† 0.160† 0.052 0.051
BARTScore -0.127† 0.038 0.047 0.415† 0.019 -0.072
BARTScore+ 0.028 0.212† 0.055 0.297† 0.023 -0.028
BARTScore-P -0.039 0.031 -0.038 0.276† -0.003 -0.023
PRISM -0.327† 0.436† 0.267† 0.077† 0.010 0.123†
CTC-Relevancy 0.141† 0.001 0.082† 0.485† 0.002 0.220†
CTC-Consistency 0.001 -0.080† 0.095† -0.154† 0.078† 0.270†
ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step -0.006 0.785† 0.017 -0.040 0.084† -0.243†
Faithfulness-Token -0.031 0.480† -0.001 0.037 0.008 -0.156†
Info-Step 0.006 0.538† -0.003 0.223† 0.085† -0.191†
Repetition-Token 1.000† 0.399† -0.028 -1.000† 0.070 0.074

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.189† 0.550† -0.022 0.220† 0.059 -0.132†
Repetition-Step 1.000† 0.035 -0.034 -1.000† -0.120† 0.030

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step -0.061 0.630† -0.010 0.007 0.308† -0.204†
Faithfulness-Token -0.031 0.502† 0.032 0.045 0.107† -0.168†
Info-Step -0.064 0.399† -0.024 0.241† 0.296† -0.155†
Repetition-Token 1.000† 0.148† -0.138† -1.000† -0.055 -0.080†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain -0.025 0.409† -0.028 0.256† 0.379† -0.163†
Repetition-Step 1.000† 0.001 -0.003 -1.000† -0.465† 0.071

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step -0.044 0.630† 0.293† -0.046 0.907† -0.118†
Faithfulness-Token -0.019 0.485† 0.141† 0.036 0.492† -0.128†
Info-Step -0.041 0.383† 0.266† 0.196† 0.804† -0.068
Repetition-Token 1.000† 0.148† -0.138† -1.000† -0.055 -0.080†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.995† 0.871† 0.588† 0.103† 0.967† 0.121†
Repetition-Step 1.000† 0.037 -0.386† -1.000† -0.953† -0.048

ROSCOE-LI
Source-Consistency -0.020 0.576† 0.112† -0.239† 0.778† 0.268†
Self-Consistency 0.022 0.633† 0.399† -0.713† 0.793† 0.476†

ROSCOE-LC
Perplexity-Chain -0.690† -0.007 0.379† 0.260† 0.118† 0.269†
Perplexity-Step 0.937† 0.965† 0.352† -0.953† 0.081† 0.225†
Grammar -0.025 0.060 0.859† -0.145† 0.139† 0.722†
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Table 21: Somers’ D correlations of all metrics per different perturbation applied on Entailment Bank Diagnostics
datasets. All metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold.
The second best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6,
more details in App. H.1.)

Perturbations → Repet. Halluc. Grammar Remove Shuffle Swap Negate Semantic
Error Step Steps Steps Step Error

Rouge-1 0.391† 0.410† 0.074 0.081 0.113 0.065 0.034 -0.017
Rouge-2 0.356† 0.391† 0.160† 0.116 0.109 0.088 0.109 0.091
Rouge-L 0.209† 0.194† 0.112 0.138† 0.365† 0.229† 0.003 0.063
BLEURT 0.025 0.164† 0.060 0.231† 0.092 0.096 0.257† -0.036
BERTScore 0.264† 0.380† 0.211† 0.150† 0.364† 0.205† 0.050 0.087
BARTScore 0.034 0.063 0.106 0.358† 0.248† 0.183† 0.142† 0.164†
BARTScore+ 0.101 0.047 0.036 0.315† 0.184† 0.155† 0.130† 0.173†
BARTScore-P 0.061 0.012 0.025 0.186† 0.041 -0.008 0.098 0.100
PRISM 0.230† 0.453† 0.279† 0.118 0.331† 0.167† 0.081 0.148†
CTC-Relevancy 0.258† 0.057 -0.026 0.080 -0.020 0.035 0.029 0.159†
CTC-Consistency 0.310† 0.159† -0.058 -0.249† -0.162† -0.023 -0.046 0.194†
ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step 0.023 0.786† 0.231† -0.005 0.111 -0.000 0.098 0.121
Faithfulness-Token 0.098 0.581† 0.250† 0.087 0.009 -0.020 0.179† 0.170†
Info-Step 0.083 0.638† 0.181† 0.161† 0.025 -0.001 0.216† 0.139†
Repetition-Token 0.913† 0.105 0.042 -0.177† 0.139† 0.038 -0.085 -0.058

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.023 0.786† 0.231† -0.005 0.111 -0.000 0.098 0.121
Faithfulness-Token 0.098 0.581† 0.250† 0.087 0.009 -0.020 0.179† 0.170†
Info-Step 0.083 0.638† 0.181† 0.161† 0.025 -0.001 0.216† 0.139†
Repetition-Token 0.913† 0.105 0.042 -0.177† 0.139† 0.038 -0.085 -0.058

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.039 0.419† 0.083 0.071 0.068 0.025 0.040 0.037
Repetition-Step 0.909† 0.148† -0.061 -0.165† 0.067 -0.068 -0.062 -0.056

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step -0.002 0.777† 0.158† -0.015 0.107 0.009 0.358† 0.110
Faithfulness-Token 0.063 0.663† 0.280† 0.084 0.046 0.024 0.279† 0.159†
Info-Step 0.066 0.560† 0.079 0.148† -0.035 0.007 0.450† 0.117
Repetition-Token 0.919† 0.137† -0.010 -0.216† 0.171† 0.005 -0.106 -0.099

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.084 0.515† 0.005 0.119 -0.019 0.023 0.524† 0.048
Repetition-Step 0.901† 0.139† 0.006 -0.188† 0.019 -0.066 -0.144† -0.098

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.105 0.392† 0.204† 0.063 0.093 0.029 0.538† -0.115
Faithfulness-Token 0.079 0.519† 0.271† 0.100 0.055 0.029 0.356† 0.041
Info-Step 0.131† 0.364† 0.227† 0.161† 0.053 0.047 0.599† -0.018
Repetition-Token 0.919† 0.137† -0.010 -0.216† 0.171† 0.005 -0.106 -0.099

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.871† 0.851† 0.752† 0.437† 0.937† 0.672† 0.955† 0.300†
Repetition-Step 0.908† 0.133† -0.013 -0.169† 0.135† -0.043 -0.058 -0.079

ROSCOE-LI
Source-Consistency -0.044 0.289† 0.218† 0.052 0.150† -0.075 0.860† 0.257†
Self-Consistency -0.040 0.403† 0.216† -0.042 0.129† -0.053 0.782† 0.170†

ROSCOE-LC
Perplexity-Chain -0.364† 0.104 0.116 0.151† -0.006 0.085 0.060 0.133†
Perplexity-Step 0.199† 0.168† 0.075 -0.097 0.143† -0.021 -0.019 -0.046
Grammar -0.109 0.076 0.604† 0.075 0.044 -0.063 0.033 0.365†
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Table 22: Somers’ D correlations of all metrics per different perturbation applied on MATH Diagnostics datasets. All
metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Halluc. Grammar Remove Shuffle Swap Negate Random Random Shuffle Shuffle
Error Step Steps Steps Step Number Operation Numbers Operations

Rouge-1 0.176† 0.151† -0.004 0.065† -0.020 0.020 0.028 0.017 0.008 0.022 0.011
Rouge-2 0.107† 0.095† 0.006 0.121† -0.005 0.029 0.010 0.018 -0.011 0.151† -0.002
Rouge-L 0.126† 0.156† 0.004 0.075† 0.008 0.042† 0.023 0.018 0.008 0.082† 0.004
BLEURT 0.143† 0.148† 0.000 -0.023 0.001 0.012 0.049† -0.000 -0.005 -0.036† 0.002
BERTScore 0.124† 0.117† 0.067† 0.089† 0.025 0.029 0.010 0.029 0.016 0.034† 0.017
BARTScore -0.048† -0.066† 0.015 0.185† -0.026 -0.002 -0.030 0.029 0.009 0.075† 0.045†
BARTScore+ 0.015 -0.003 0.049† 0.162† 0.003 0.031 0.002 0.050† 0.047† 0.164† 0.063†
BARTScore-P -0.005 0.002 0.022 0.128† 0.006 0.011 -0.009 0.024 0.002 0.115† 0.059†
PRISM -0.115† 0.208† 0.120† 0.095† 0.029 0.017 -0.003 0.102† 0.069† 0.117† 0.111†
CTC-Relevancy 0.104† 0.041† 0.133† 0.188† 0.027 0.029 0.018 0.043† 0.052† 0.052† 0.001
CTC-Consistency -0.106† 0.145† 0.282† 0.105† 0.096† 0.035† 0.080† 0.079† 0.033 0.046† -0.017

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step 0.029 0.362† 0.016 0.070† -0.024 0.009 0.025 0.060† 0.048† 0.074† 0.060†
Faithfulness-Token 0.000 0.157† 0.000 0.004 -0.004 -0.003 0.018 0.028 0.005 -0.022 0.003
Info-Step 0.024 0.231† 0.022 0.118† -0.018 0.009 0.033† 0.085† 0.074† 0.109† 0.106†
Repetition-Token 0.936† 0.069† -0.018 -0.078† 0.010 0.043† 0.006 -0.041† -0.018 0.035† 0.006

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.059† 0.467† 0.016 0.172† 0.106† 0.091† 0.063† 0.192† 0.089† 0.162† 0.135†
Repetition-Step 0.932† -0.002 -0.036† -0.114† -0.001 0.013 -0.026 -0.134† -0.045† -0.008 -0.030

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step -0.004 0.229† 0.049† 0.046† 0.007 0.010 0.142† 0.073† 0.033 0.031 -0.010
Faithfulness-Token 0.014 0.200† 0.091† -0.004 -0.001 0.009 0.021 0.033† 0.005 0.021 0.008
Info-Step -0.020 0.115† 0.048† 0.092† 0.009 0.020 0.131† 0.086† 0.029 0.042† -0.015
Repetition-Token 0.939† 0.007 -0.093† -0.073† 0.023 0.037† 0.002 -0.058† -0.035† 0.019 -0.002

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.028 0.114† 0.038† 0.071† 0.034† 0.004 0.180† 0.078† 0.051† 0.041† -0.007
Repetition-Step 0.949† 0.019 -0.043† -0.094† -0.012 0.000 -0.062† -0.119† 0.014 0.027 -0.001

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.021 0.223† 0.190† 0.038† -0.031 0.005 0.614† 0.376† 0.415† 0.277† 0.428†
Faithfulness-Token 0.016 0.204† 0.106† -0.005 -0.004 0.008 0.084† 0.067† 0.045† 0.047† 0.052†
Info-Step 0.012 0.133† 0.228† 0.099† -0.021 0.020 0.511† 0.451† 0.452† 0.301† 0.430†
Repetition-Token 0.939† 0.007 -0.093† -0.073† 0.023 0.037† 0.002 -0.058† -0.035† 0.019 -0.002

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.679† 0.588† 0.694† 0.216† 0.746† 0.530† 0.777† 0.698† 0.757† 0.524† 0.662†
Repetition-Step 0.924† 0.024 -0.059† -0.083† -0.019 0.012 -0.052† -0.192† -0.103† -0.011 0.017

ROSCOE-LI
Source-Consistency 0.011 0.071† 0.044† -0.041† -0.002 0.026 0.215† 0.223† 0.123† 0.341† 0.133†
Self-Consistency 0.015 0.069† -0.003 -0.105† -0.014 0.011 0.122† 0.147† 0.068† 0.190† 0.088†

ROSCOE-LC
Perplexity-Chain -0.358† 0.020 0.175† 0.103† 0.100† 0.035† 0.003 0.173† 0.109† 0.154† 0.170†
Perplexity-Step 0.160† 0.127† 0.001 -0.093† -0.016 0.019 0.006 0.003 0.012 0.048† 0.037
Grammar 0.010 0.026 0.392† -0.020 -0.012 0.005 0.112† 0.034† 0.026 0.057† 0.040
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Table 23: Somers’ D correlations of all metrics per different perturbation applied on ProofWriter Diagnostics datasets.
All metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Halluc. Grammar Remove Shuffle Swap Negate Semantic
Error Step Steps Steps Step Error

Rouge-1 -0.124† -0.054† 0.023† 0.095† 0.013 -0.001 0.007 0.006
Rouge-2 -0.093† -0.002 0.068† 0.090† 0.018 -0.004 0.037† 0.047†
Rouge-L -0.120† -0.028† 0.029† 0.089† 0.106† 0.020 0.020 0.027†
BLEURT -0.058† -0.001 -0.027† -0.099† 0.016 0.007 0.024† -0.016
BERTScore -0.049† 0.077† 0.117† 0.082† -0.064† -0.054† 0.023† 0.108†
BARTScore -0.059† -0.096† -0.037† 0.081† -0.013 -0.010 -0.015 -0.061†
BARTScore+ -0.055† -0.067† 0.014 0.054† -0.011 -0.021 0.006 0.032†
BARTScore-P -0.046† -0.049† -0.012 0.010 -0.044† -0.032† -0.020 0.011
PRISM -0.159† 0.159† 0.222† 0.097† 0.017 -0.010 0.060† 0.235†
CTC-Relevancy 0.394† 0.392† 0.123† 0.185† -0.131† -0.052† 0.036† 0.077†
CTC-Consistency 0.496† 0.513† 0.182† 0.223† -0.063† -0.022 0.098† 0.131†
ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step 0.002 0.771† 0.348† 0.165† 0.011 0.013 0.233† 0.515†
Faithfulness-Token 0.004 0.436† 0.264† 0.055† 0.030† 0.006 0.168† 0.310†
Info-Step -0.004 0.250† 0.121† -0.062† 0.023 0.015 0.108† 0.174†
Repetition-Token 0.596† 0.053† -0.041† 0.101† -0.006 -0.003 -0.055† -0.050†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain -0.052† 0.083† 0.033† -0.089† 0.014 0.005 -0.001 0.001
Repetition-Step 0.631† 0.031† -0.027† 0.116† -0.002 0.002 -0.044† -0.042†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.004 0.732† 0.171† 0.154† 0.013 0.012 0.481† 0.494†
Faithfulness-Token 0.010 0.517† 0.334† 0.086† 0.031† 0.005 0.336† 0.395†
Info-Step -0.008 0.226† 0.047† -0.063† 0.027† 0.014 0.172† 0.160†
Repetition-Token 0.606† 0.036† -0.065† 0.097† -0.002 0.009 -0.070† -0.070†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain -0.040† 0.004 -0.015 -0.140† -0.024† -0.011 0.045† -0.006
Repetition-Step 0.621† 0.028† -0.008 0.115† -0.011 0.001 -0.050† -0.043†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.008 0.763† 0.618† 0.180† 0.008 0.004 0.726† 0.536†
Faithfulness-Token 0.012 0.499† 0.475† 0.088† 0.036† 0.000 0.436† 0.403†
Info-Step -0.018 0.243† 0.252† -0.046† 0.016 0.012 0.317† 0.187†
Repetition-Token 0.606† 0.036† -0.065† 0.097† -0.002 0.009 -0.070† -0.070†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.214† 0.248† 0.284† 0.077† 0.330† 0.246† 0.462† 0.122†
Repetition-Step 0.624† 0.039† -0.034† 0.116† -0.007 -0.002 -0.076† -0.034†

ROSCOE-LI
Source-Consistency -0.008 0.027† 0.028† 0.010 -0.044† -0.004 0.289† -0.049†
Self-Consistency 0.011 0.204† 0.084† 0.110† -0.022 -0.020 0.036† 0.065†

ROSCOE-LC
Perplexity-Chain -0.165† 0.047† 0.112† -0.064† 0.135† 0.067† 0.012 0.128†
Perplexity-Step 0.178† 0.112† 0.033† 0.082† -0.008 0.005 -0.036† -0.008
Grammar 0.000 0.042† 0.788† 0.102† 0.007 -0.023 0.007 0.515†
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Table 24: Somers’ D correlations of all metrics per different perturbation applied on ASDIV Diagnostics datasets. All
metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Random Random Shuffle Shuffle
Number Operation Numbers Operations

Rouge-1 0.305† 0.096 0.085 -0.220
Rouge-2 -0.034 -0.014 0.007 -0.038
Rouge-L 0.245† 0.073 0.269† -0.235
BLEURT 0.043 -0.034 0.059 0.015
BERTScore 0.098 0.322† 0.025 0.167
BARTScore 0.107 -0.027 -0.105 0.197
BARTScore+ -0.011 -0.002 -0.075 -0.015
BARTScore-P 0.068 0.043 -0.048 0.121
PRISM -0.009 -0.035 -0.114 0.258
CTC-Relevancy 0.382† 0.155† 0.038 0.000
CTC-Consistency 0.396† 0.189† 0.121 -0.121

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step 0.186† -0.090 0.091 0.091
Faithfulness-Token 0.182† 0.080 0.062 -0.091
Info-Step 0.198† -0.091 0.085 0.167

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.280† 0.005 0.192† 0.091

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.266† 0.082 -0.182† 0.015
Faithfulness-Token 0.273† 0.011 -0.125 0.515†
Info-Step 0.275† 0.125 -0.141† 0.000

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.289† 0.145† -0.084 0.030

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.630† 0.840† 0.670† 0.879†
Faithfulness-Token 0.576† 0.740† 0.552† 0.545†
Info-Step 0.669† 0.844† 0.683† 0.879†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.773† 0.857† 0.795† 0.803†

ROSCOE-LI
Source-Consistency 0.760† 0.771† 0.763† 0.500†
Self-Consistency 0.203† 0.227† 0.206† 0.152

ROSCOE-LC
Perplexity-Chain 0.300† 0.092 0.214† 0.485†
Perplexity-Step 0.300† 0.092 0.214† 0.485†
Grammar 0.170† -0.083 -0.007 0.470†
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Table 25: Somers’ D correlations of all metrics per different perturbation applied on AQUA Diagnostics datasets. All
metrics are measured reference-free on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Hallu. Grammar Remove Shuffle Swap Negate Random Random Shuffle Shuffle
Error Step Steps Steps Step Number Operation Numbers Operations

Rouge-1 0.134 0.055 -0.085 0.257† 0.074 -0.032 0.109 0.056 -0.006 0.131 -0.073
Rouge-2 0.180† 0.004 -0.021 0.206† 0.100 -0.092 0.044 0.051 0.082 0.196† -0.061
Rouge-L 0.072 0.055 -0.059 0.264† 0.145† -0.008 0.120 0.050 0.004 0.148† -0.037
BLEURT 0.010 0.047 -0.066 0.252† -0.003 -0.047 0.071 -0.010 0.020 0.165† -0.023
BERTScore 0.134 0.111 -0.016 0.166† -0.011 -0.043 0.028 0.007 0.079 0.220† -0.036
BARTScore -0.030 -0.269† -0.025 0.317† 0.102 0.051 -0.014 0.060 0.011 0.169† 0.036
BARTScore+ 0.112 -0.037 0.044 0.251† 0.019 -0.053 0.028 0.072 0.066 0.230† -0.009
BARTScore-P 0.082 -0.097 -0.007 0.215† 0.013 -0.027 0.114 0.059 0.042 0.182† 0.028
PRISM -0.119 0.026 0.177† 0.188† 0.071 0.048 0.057 0.191† 0.131 0.182† 0.028
CTC-Relevancy 0.133 -0.016 0.065 0.096 -0.068 0.013 0.024 0.119 -0.017 0.217† 0.072
CTC-Consistency 0.071 -0.050 0.075 0.041 -0.074 0.012 0.004 0.106 -0.006 0.157† 0.024

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Faithfulness-Step 0.098 0.152† -0.013 0.106 0.035 -0.026 0.080 0.057 -0.023 0.026 -0.123
Faithfulness-Token 0.125 0.009 0.008 0.157† 0.047 -0.001 0.057 -0.014 0.076 0.070 -0.006
Info-Step 0.088 0.030 -0.020 0.114 0.068 -0.007 0.015 0.063 0.025 0.068 -0.088
Repetition-Token 0.972† 0.216† -0.125 -0.226† -0.053 -0.061 -0.041 -0.004 -0.024 0.037 -0.001

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.066 0.214† -0.053 0.146† 0.023 -0.035 0.049 0.079 0.038 0.153† -0.081
Repetition-Step 0.982† 0.143† -0.093 -0.169† 0.006 0.002 -0.031 -0.068 -0.028 0.010 0.050

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.089 0.179† -0.043 0.135 -0.016 -0.009 0.224† 0.122 0.096 0.014 -0.156
Faithfulness-Token 0.080 0.062 -0.047 0.117 0.036 -0.011 0.057 0.035 0.024 0.049 -0.059
Info-Step 0.099 0.064 -0.012 0.162† 0.018 -0.023 0.183† 0.138 0.116 0.099 -0.147
Repetition-Token 0.971† 0.072 -0.112 -0.190† -0.062 -0.054 -0.102 -0.034 0.061 0.026 0.079

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.130 0.046 -0.025 0.178† -0.013 -0.024 0.153† 0.108 0.066 0.195† -0.119
Repetition-Step 0.991† 0.125 -0.120 -0.234† 0.007 -0.023 -0.063 -0.155† -0.025 -0.010 0.076

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.169† 0.165† 0.280† 0.000 0.018 -0.113 0.826† 0.394† 0.329† 0.210† 0.236†
Faithfulness-Token 0.063 0.132 0.014 0.084 0.030 -0.045 0.285† 0.079 0.077 0.082 -0.037
Info-Step 0.150† 0.038 0.203† 0.107 0.041 -0.081 0.703† 0.450† 0.327† 0.313† 0.259†
Repetition-Token 0.971† 0.072 -0.112 -0.190† -0.062 -0.054 -0.102 -0.034 0.061 0.026 0.079

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.861† 0.465† 0.399† 0.025 0.463† 0.315† 0.933† 0.589† 0.499† 0.395† 0.337†
Repetition-Step 0.982† 0.141† -0.171† -0.149† -0.094 0.022 -0.143 -0.339† -0.155† -0.016 -0.028

ROSCOE-LI
Source-Consistency -0.044 0.140 -0.061 -0.171† -0.087 0.024 0.316† 0.212† 0.151† 0.419† 0.096
Self-Consistency 0.041 0.368† -0.028 -0.227† 0.019 -0.040 0.104 0.226† 0.106 0.167† 0.093

ROSCOE-LC
Perplexity-Chain -0.288† -0.120 0.179† 0.121 0.021 0.101 0.134 0.190† 0.071 0.194† 0.229†
Perplexity-Step 0.171† 0.182† -0.051 -0.105 -0.013 -0.097 -0.068 0.060 0.011 -0.004 0.079
Grammar 0.091 0.200† 0.359† 0.020 -0.043 -0.008 0.223† 0.094 0.046 0.086 0.171
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Table 26: Somers’ D correlations of all metrics per different perturbation applied on EQASC Diagnostics datasets.
All metrics are measured reference-based on (s,h). The highest correlation overall for each dataset is in bold. The
second best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6,
more details in App. H.1.)

Perturbations → Repet. Hallu. Grammar Remove Negate Semantic
Error Step Step Error

Rouge-1 1.000† 1.000† 0.622† 1.000† 1.000† 0.946†
Rouge-2 1.000† 1.000† 0.998† 1.000† 1.000† 0.946†
Rouge-L 1.000† 1.000† 0.998† 1.000† 1.000† 0.946†
BLEURT 0.829† 0.999† 0.512† 1.000† 0.983† 0.703†
BERTScore 1.000† 1.000† 1.000† 1.000† 1.000† 0.943†
BARTScore 0.784† 0.925† 0.888† 1.000† 0.861† 0.897†
BARTScore+ 0.443† 0.725† 0.530† 1.000† 0.597† 0.885†
BARTScore-P -0.095† 0.284† 0.404† 0.966† 0.476† 0.587†
PRISM 0.879† 0.995† 0.902† 0.996† 0.927† 0.932†
CTC-Relevancy 0.031 -0.124† 0.265† 0.954† 0.321† 0.496†
CTC-Consistency 0.974† 0.965† 0.393† -0.429† 0.711† 0.718†
ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment 0.010 0.995† 0.999† 0.008 1.000† 0.947†
Hallucination -0.000 0.994† 0.998† -0.305† 1.000† 0.949†
Redundancy -0.004 0.994† 0.998† -0.278† 1.000† 0.949†
Commonsense -0.006 0.012 0.998† 1.000† 1.000† 0.949†
Missing Step -0.010 0.012 0.998† 1.000† 1.000† 0.949†
Semantic Coverage-Step 1.000† 1.000† 0.997† 1.000† 1.000† 0.941†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 0.999† 1.000† 1.000† 0.944†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.035 0.995† 1.000† 0.003 1.000† 0.950†
Hallucination 0.006 0.994† 1.000† -0.302† 1.000† 0.949†
Redundancy 0.007 0.994† 1.000† -0.273† 1.000† 0.949†
Commonsense 0.003 0.025 1.000† 1.000† 1.000† 0.949†
Missing Step 0.003 0.028 1.000† 1.000† 1.000† 0.949†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000† 1.000† 0.948†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000† 1.000† 0.946†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.019 0.995† 1.000† 0.027 1.000† 0.949†
Hallucination 0.009 0.996† 1.000† -0.273† 1.000† 0.945†
Redundancy 0.008 0.996† 1.000† -0.248† 1.000† 0.946†
Commonsense 0.007 -0.017 1.000† 1.000† 1.000† 0.945†
Missing Step 0.006 -0.014 1.000† 1.000† 1.000† 0.946†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000† 1.000† 0.946†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000† 1.000† 0.956†
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Table 27: Somers’ D correlations of all metrics per different perturbation applied on Entailment Bank Diagnostics
datasets. All metrics are measured reference-based on (s,h). The highest correlation overall for each dataset is in bold.
The second best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6,
more details in App. H.1.)

Perturbations → Repet. Hallu. Grammar Remove Shuffle Swap Negate Semantic
Error Step Steps Steps Step Error

Rouge-1 1.000† 1.000† 0.582† 1.000† 0.000† 0.000† 1.000† 1.000†
Rouge-2 1.000† 1.000† 1.000† 1.000† 0.982† 0.935† 1.000† 1.000†
Rouge-L 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†
BLEURT 0.197† 0.821† 0.163† 0.786† 0.253† 0.021 0.640† 0.174†
BERTScore 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†
BARTScore 0.574† 0.659† 0.574† 0.802† 0.983† 0.864† 0.479† 0.656†
BARTScore+ 0.195† 0.430† 0.214† 0.839† 0.988† 0.813† 0.253† 0.555†
BARTScore-P 0.159† 0.272† 0.337† 0.633† 0.877† 0.656† 0.355† 0.415†
PRISM 0.707† 0.850† 0.612† 0.781† 0.939† 0.833† 0.466† 0.660†
CTC-Relevancy 0.311† 0.250† -0.039 0.457† 0.266† 0.214† 0.036 0.254†
CTC-Consistency 0.768† 0.814† 0.133† -0.022 0.479† 0.413† 0.233† 0.474†
ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment -0.078 1.000† 1.000† 0.056 -0.034 -0.001 1.000† 0.990†
Hallucination 0.002 1.000† 1.000† -0.200† 0.041 0.017 1.000† 0.995†
Redundancy -0.072 1.000† 1.000† -0.115† 0.034 0.055 1.000† 0.993†
Commonsense 0.025 -0.016 0.438† 0.264† 0.025 -0.012 0.237† 0.327†
Missing Step -0.077 -0.038 0.986† 0.993† 0.040 0.060 0.976† 0.985†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000† 0.003 0.036 1.000† 0.999†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment -0.024 1.000† 1.000† 0.039 0.035 0.004 1.000† 0.990†
Hallucination -0.011 1.000† 1.000† -0.059 -0.042 -0.008 1.000† 0.990†
Redundancy -0.011 1.000† 1.000† -0.023 0.034 0.034 1.000† 0.994†
Commonsense -0.021 0.090 0.433† 0.347† -0.049 0.002 0.276† 0.342†
Missing Step -0.011 0.052 0.988† 0.999† 0.034 0.034 0.976† 0.983†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000† 0.106† 0.040 1.000† 0.994†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.927† 0.929† 0.922† 0.951† 1.000† 0.968† 0.940† 0.941†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.040 1.000† 1.000† -0.013 0.007 -0.080 1.000† 0.999†
Hallucination -0.012 1.000† 1.000† -0.059 0.134† 0.040 1.000† 0.991†
Redundancy 0.025 1.000† 1.000† -0.074 0.041† -0.017 1.000† 0.994†
Commonsense -0.022 -0.039 0.368† 0.324† 0.129† 0.039 0.304† 0.445†
Missing Step 0.025 0.008 0.988† 0.999† 0.041† -0.017 0.971† 0.982†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000† 0.117† 0.038 1.000† 0.994†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.912† 0.934† 0.911† 0.950† 1.000† 0.980† 0.940† 0.931†
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Table 28: Somers’ D correlations of all metrics per different perturbation applied on MATH Diagnostics datasets. All
metrics are measured reference-based on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Hallu. Grammar Remove Shuffle Swap Negate Random Random Shuffle Shuffle
Error Step Steps Steps Step Number Operation Numbers Operations

Rouge-1 0.994† 0.961† 0.451† 0.996† 0.000† 0.000† 1.000† 1.000† 0.000† 0.433† 0.000†
Rouge-2 0.994† 0.961† 0.767† 0.996† 0.990† 0.953† 1.000† 1.000† 0.000† 0.999† 0.000†
Rouge-L 0.994† 0.961† 0.769† 0.996† 0.998† 0.997† 1.000† 1.000† 0.000† 1.000† 0.000†
BLEURT 0.363† 0.561† 0.041† 0.773† 0.103† 0.059† 0.156† 0.121† 0.069† 0.028 0.020
BERTScore 0.972† 0.942† 0.978† 0.978† 1.000† 0.993† 0.964† 1.000† 0.999† 0.998† 0.998†
BARTScore 0.413† 0.531† 0.812† 0.837† 0.966† 0.803† 0.429† 0.938† 0.921† 0.989† 0.932†
BARTScore+ 0.022 0.208† 0.539† 0.829† 0.611† 0.437† 0.153† 0.804† 0.466† 0.963† 0.606†
BARTScore-P -0.084† 0.041† 0.248† 0.474† 0.369† 0.170† 0.015 0.529† 0.367† 0.799† 0.536†
PRISM 0.337† 0.465† 0.386† 0.506† 0.412† 0.392† 0.266† 0.437† 0.347† 0.521† 0.285†
CTC-Relevancy -0.045† 0.168† 0.295† 0.592† 0.253† 0.110† 0.141† 0.140† 0.048† 0.169† 0.041
CTC-Consistency 0.673† 0.804† 0.491† 0.091† 0.393† 0.240† 0.506† 0.372† 0.112† 0.408† 0.148†
ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment -0.012 0.998† 0.835† 0.005 -0.017 -0.013 1.000† 1.000† 1.000† 1.000† 1.000†
Hallucination -0.007 0.999† 0.854† -0.038† -0.019 -0.007 1.000† 1.000† 1.000† 1.000† 1.000†
Redundancy -0.007 0.999† 0.853† -0.040† -0.019 -0.005 1.000† 1.000† 1.000† 1.000† 1.000†
Commonsense -0.030† -0.004 0.852† 0.991† -0.022 -0.005 0.999† 1.000† 1.000† 1.000† 1.000†
Missing Step -0.030† -0.003 0.850† 0.991† -0.021 -0.004 0.999† 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 0.908† 1.000† 0.852† 1.000† -0.005 -0.008 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 0.940† 0.946† 0.799† 0.944† 1.000† 0.980† 0.933† 1.000† 0.999† 0.998† 0.992†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment -0.002 0.998† 0.990† -0.004 -0.003 0.018 0.998† 0.997† 0.997† 1.000† 1.000†
Hallucination -0.006 0.999† 0.993† -0.045† 0.012† 0.003 0.998† 0.996† 0.997† 1.000† 1.000†
Redundancy -0.006 0.999† 0.993† -0.044† 0.012† 0.003 0.998† 0.996† 0.997† 1.000† 1.000†
Commonsense -0.006 0.002 0.983† 0.989† 0.011 0.003 0.995† 0.996† 0.997† 1.000† 1.000†
Missing Step -0.006 0.001 0.983† 0.989† 0.011 0.003 0.995† 0.996† 0.997† 1.000† 1.000†
Semantic Coverage-Step 0.914† 1.000† 0.993† 1.000† 0.038† 0.017† 0.998† 0.997† 0.997† 1.000† 1.000†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.674† 0.773† 0.762† 0.763† 0.999† 0.868† 0.743† 0.985† 0.958† 0.975† 0.886†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.011 0.999† 0.992† 0.019 -0.001 0.025 0.998† 0.998† 0.998† 1.000† 1.000†
Hallucination -0.008 0.999† 0.993† -0.032† 0.011 0.015† 0.998† 0.997† 0.997† 1.000† 1.000†
Redundancy -0.008 0.999† 0.993† -0.031† 0.010 0.016† 0.998† 0.997† 0.997† 1.000† 1.000†
Commonsense -0.008 0.000 0.983† 0.991† 0.010 0.015† 0.995† 0.997† 0.997† 1.000† 1.000†
Missing Step -0.008 0.001 0.983† 0.990† 0.010 0.016† 0.995† 0.997† 0.997† 1.000† 1.000†
Semantic Coverage-Step 0.913† 1.000† 0.993† 1.000† 0.036† 0.016† 0.998† 0.997† 0.997† 1.000† 1.000†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.674† 0.770† 0.769† 0.775† 0.999† 0.865† 0.741† 0.985† 0.957† 0.973† 0.897†
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Table 29: Somers’ D correlations of all metrics per different perturbation applied on ProofWriter Diagnostics datasets.
All metrics are measured reference-based on (s,h). The highest correlation overall for each dataset is in bold. The
second best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6,
more details in App. H.1.)

Perturbations → Repet. Hallu. Grammar Remove Shuffle Swap Negate Semantic
Error Step Steps Steps Step Error

Rouge-1 1.000† 1.000† 0.663† 1.000† 0.000† 0.000† 1.000† 1.000†
Rouge-2 1.000† 1.000† 0.993† 1.000† 0.932† 0.812† 1.000† 1.000†
Rouge-L 1.000† 1.000† 0.993† 1.000† 1.000† 1.000† 1.000† 1.000†
BLEURT 0.349† 0.829† 0.221† 0.695† 0.076† 0.042† 0.788† 0.597†
BERTScore 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†
BARTScore 0.334† 0.430† 0.303† 0.417† 0.986† 0.748† 0.343† 0.391†
BARTScore+ 0.245† 0.391† 0.251† 0.598† 0.996† 0.775† 0.278† 0.515†
BARTScore-P 0.020 0.100† 0.124† 0.260† 0.595† 0.318† 0.114† 0.260†
PRISM 0.829† 0.956† 0.822† 0.924† 0.997† 0.970† 0.871† 0.947†
CTC-Relevancy 0.376† 0.409† 0.354† 0.725† 0.621† 0.396† 0.391† 0.419†
CTC-Consistency 0.537† 0.635† 0.199† 0.009 0.608† 0.412† 0.404† 0.376†
ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment -0.017 0.997† 0.994† -0.049† -0.007 -0.000 1.000† 0.990†
Hallucination 0.015 0.997† 0.990† 0.012 -0.001 -0.004 1.000† 0.939†
Redundancy 0.007 0.997† 0.994† 0.048† -0.000 0.010 1.000† 0.992†
Commonsense 0.012 0.000 0.187† 0.379† -0.002 -0.010 0.180† 0.169†
Missing Step 0.003 -0.001 0.872† 0.843† 0.004 0.011 0.876† 0.870†
Semantic Coverage-Step 0.793† 1.000† 0.994† 1.000† -0.008 0.021† 1.000† 0.984†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 0.994† 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.012 0.998† 1.000† -0.041† 0.000 0.001 1.000† 1.000†
Hallucination 0.016 0.998† 0.998† 0.031† -0.005 0.002 1.000† 1.000†
Redundancy 0.010 0.998† 1.000† 0.037† 0.015† 0.003 1.000† 1.000†
Commonsense 0.017 0.006 0.242† 0.415† -0.005 0.002 0.238† 0.234†
Missing Step 0.010 0.004 0.871† 0.839† 0.016† 0.004 0.874† 0.866†
Semantic Coverage-Step 0.818† 1.000† 1.000† 1.000† 0.059† 0.021† 1.000† 1.000†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.995† 0.998† 0.995† 0.997† 1.000† 0.999† 0.998† 0.997†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 0.016 0.996† 1.000† -0.030† 0.000 0.005 1.000† 1.000†
Hallucination 0.003 0.997† 0.998† 0.016 0.005 -0.010 1.000† 1.000†
Redundancy 0.020† 0.997† 1.000† 0.050† 0.019† 0.003 1.000† 1.000†
Commonsense 0.001 -0.009 0.243† 0.404† 0.010 -0.009 0.253† 0.235†
Missing Step 0.015† -0.007 0.871† 0.839† 0.020† 0.003 0.873† 0.866†
Semantic Coverage-Step 0.817† 1.000† 0.999† 1.000† 0.060† 0.022† 1.000† 1.000†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.994† 0.998† 0.995† 0.996† 1.000† 0.999† 0.998† 0.996†
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Table 30: Somers’ D correlations of all metrics per different perturbation applied on ASDIV Diagnostics datasets. All
metrics are measured reference-based on (s,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Random Random Shuffle Shuffle
Number Operation Numbers Operations

Rouge-1 1.000† 0.000† 0.027† 0.000†
Rouge-2 1.000† 0.000† 1.000† 0.000†
Rouge-L 1.000† 0.000† 1.000† 0.000†
BLEURT 0.876† 0.930† 0.125 -0.212
BERTScore 1.000† 1.000† 1.000† 1.000†
BARTScore 0.871† 0.823† 0.954† 0.924†
BARTScore+ 0.948† 0.839† 1.000† 0.955†
BARTScore-P 0.738† 0.642† 0.830† 0.712†
PRISM 0.998† 0.989† 1.000† 1.000†
CTC-Relevancy 0.398† 0.188† 0.160† -0.136
CTC-Consistency 0.600† 0.131† 0.294† -0.106

ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment 1.000† 1.000† 1.000† 1.000†
Hallucination 1.000† 1.000† 1.000† 1.000†
Redundancy 1.000† 1.000† 1.000† 1.000†
Commonsense 1.000† 1.000† 1.000† 1.000†
Missing Step 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 1.000† 1.000† 1.000† 1.000†
Hallucination 1.000† 1.000† 1.000† 1.000†
Redundancy 1.000† 1.000† 1.000† 1.000†
Commonsense 1.000† 1.000† 1.000† 1.000†
Missing Step 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment 1.000† 1.000† 1.000† 1.000†
Hallucination 1.000† 1.000† 1.000† 1.000†
Redundancy 1.000† 1.000† 1.000† 1.000†
Commonsense 1.000† 1.000† 1.000† 1.000†
Missing Step 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 1.000† 1.000†
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Table 31: Somers’ D correlations of all metrics per different perturbation applied on AQUA Diagnostics datasets. All
metrics are measured reference-based on (r,h). The highest correlation overall for each dataset is in bold. The second
best models are underlined. Correlation scores with p-value < 0.05 are marked with †. (Continued from §6, more details
in App. H.1.)

Perturbations → Repet. Halluc. Grammar Remove Shuffle Swap Negate Random Random Shuffle Shuffle
error step steps steps step number operation numbers operations

Rouge-1 1.000† 1.000† 0.394† 1.000† 0.000† 0.000† 1.000† 1.000† 0.000† 0.000† 0.000†
Rouge-2 1.000† 1.000† 0.866† 1.000† 0.984† 0.967† 1.000† 1.000† 0.000† 1.000† 0.000†
Rouge-L 1.000† 1.000† 0.866† 1.000† 1.000† 1.000† 1.000† 1.000† 0.000† 1.000† 0.000†
BLEURT 0.193† 0.803† 0.129 0.946† 0.076 0.028 0.640† 0.627† 0.385† -0.041 -0.113
BERTScore 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†
BARTScore 0.568† 0.596† 0.688† 0.870† 0.958† 0.883† 0.520† 0.930† 0.834† 0.984† 0.849†
BARTScore+ 0.283† 0.597† 0.613† 0.953† 0.960† 0.901† 0.368† 0.980† 0.521† 0.995† 0.814†
BARTScore-P 0.045 0.025 0.400† 0.679† 0.650† 0.547† 0.148 0.846† 0.559† 0.905† 0.726†
PRISM 0.815† 0.900† 0.724† 0.888† 0.941† 0.901† 0.689† 0.942† 0.772† 0.970† 0.870†
CTC-Relevancy 0.054 -0.044 0.102 0.409† 0.116 0.141 0.062 0.290† 0.030 0.409† 0.023
CTC-Consistency 0.833† 0.766† 0.106 -0.150† 0.270† 0.257† 0.256† 0.774† 0.232† 0.741† 0.063

ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with all-mpnet-base-v2 sentence embeddings

Reasoning Alignment 0.030 0.997† 0.985† -0.014 0.054 -0.076 1.000† 1.000† 1.000† 1.000† 1.000†
Hallucination 0.029 0.992† 0.992† -0.084 0.024 -0.030 1.000† 1.000† 1.000† 1.000† 1.000†
Redundancy 0.032 0.992† 0.992† -0.088 0.023 -0.040 1.000† 1.000† 1.000† 1.000† 1.000†
Commonsense 0.029 0.020 0.992† 1.000† 0.024 -0.038 1.000† 1.000† 1.000† 1.000† 1.000†
Missing Step 0.032 0.023 0.992† 1.000† 0.023 -0.047 1.000† 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 0.947† 1.000† 0.987† 1.000† 0.006 -0.009 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 1.000† 1.000† 0.995† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Reasoning Alignment -0.061 1.000† 1.000† 0.018 0.049 0.006 1.000† 1.000† 1.000† 1.000† 1.000†
Hallucination -0.053 1.000† 1.000† -0.069 -0.017 -0.041 1.000† 1.000† 1.000† 1.000† 1.000†
Redundancy -0.054 1.000† 1.000† -0.063 -0.016 -0.041 1.000† 1.000† 1.000† 1.000† 1.000†
Commonsense -0.053 0.065 0.992† 1.000† -0.017 -0.041 1.000† 1.000† 1.000† 1.000† 1.000†
Missing Step -0.054 0.064 0.992† 1.000† -0.016 -0.041 1.000† 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 0.966† 1.000† 1.000† 1.000† 0.041† 0.008 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.965† 0.965† 0.944† 0.988† 1.000† 1.000† 0.953† 1.000† 1.000† 1.000† 0.973†

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Reasoning Alignment -0.089 1.000† 1.000† 0.085 0.054 0.036 1.000† 1.000† 1.000† 1.000† 1.000†
Hallucination -0.039 1.000† 1.000† 0.003 -0.024 -0.025 1.000† 1.000† 1.000† 1.000† 1.000†
Redundancy -0.043 1.000† 1.000† 0.006 -0.016 -0.016 1.000† 1.000† 1.000† 1.000† 1.000†
Commonsense -0.039 0.083 0.992† 1.000† -0.024 -0.025 1.000† 1.000† 1.000† 1.000† 1.000†
Missing Step -0.043 0.089 0.992† 1.000† -0.016 -0.016 1.000† 1.000† 1.000† 1.000† 1.000†
Semantic Coverage-Step 0.967† 1.000† 1.000† 1.000† 0.041† 0.008 1.000† 1.000† 1.000† 1.000† 1.000†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.957† 0.957† 0.959† 0.980† 1.000† 1.000† 0.971† 1.000† 1.000† 1.000† 0.972†
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H.2 EXPERIMENTS WITH HUMAN JUDGEMENT DATASETS

In this section, we present Somers’ D correlation of all metrics on all Human Judged datasets in separate
tables. Specifically, Table 32 summarizes meta-evaluations for ROSCOE metrics in comparison to baselines
on all human judged datasets. Fine-grained evaluations are presented in Table 33 for DROP, Table 34, 38 for
GSM8K, Table 35, 39 for ESNLI, Table 36 for CosmosQA, and Table 37 for SemEVAL. Human evaluation
perspectives used in evaluations are described in App. Table 15.

Looking at how errors are captured by ROSCOE reference-free scores (Fig. 8), we observe strongest correla-
tions between Redundancy error and Repetition-*, Self-Consistency scores. Repetition error is not present in
this analysis as it has at most 3 occurrences per dataset. Out of the all considered scores, Self-Consistency is
able to cover 6 out of 7 evaluation perspectives, except Missing Step.

Figure 8: Relative presence of the strong score-error correlation, measured as the number of datasets
where for each score and evaluation perspective pair Somers’ D correlation value is in the 90th percentile,
normalized by the total number of datasets where this type of perturbation occurs. Statistics collected over
ROSCOE reference-free scores with finetuned SimCSE embeddings, and evaluation perspectives where at
least 10 errors are present in a dataset.

We further look at specific human annotated examples where our ROSCOE gives highest and lowest scores to
understand strength and weaknesses of the proposed approach. Results are summarized in Table 40. Similar
analysis for diagnostic datasets is summarized in Table 41.
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Table 32: Somers’ D correlations of all metrics on five human judged datasets. All metrics are measured reference-free
on (s,h). The highest correlation overall for each dataset is in bold and second best is underlined. Correlations that are
not significant (p-value ≥ 0.05) are omitted when aggregating, and "-" denotes an absence of any significant correlations.
(Continued from §6, more details in App. H.2.)

DROP GSM8K ESNLI COSMOS SemEVAL
Rouge-1 0.239 0.180 0.559 -0.264 -0.520
Rouge-2 0.320 - 0.502 0.180 -
Rouge-L 0.278 0.252 0.557 -0.441 -0.478
BLEURT 0.328 0.256 0.541 0.218 -0.356
BERTScore 0.275 0.235 0.590 -0.420 -0.295
BARTScore -0.835 -0.546 0.549 -0.544 -
BARTScore+ -0.665 - 0.482 -0.186 -
BARTScore-P -0.642 - 0.255 -0.207 -
PRISM -0.733 -0.455 0.580 -0.376 -
CTC-Relevance 0.333 -0.371 0.334 - -0.349
CTC-Consistency 0.462 -0.174 0.647 0.275 -0.301

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Faithfulness-Step 0.496 - 0.403 - -
Faithfulness-Token 0.417 - 0.521 -0.320 -
Info-Step 0.500 0.178 0.493 - -
Repetition-Token 0.578 0.392 0.441 0.555 0.337

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.297 - 0.423 -0.424 0.330
Faithfulness-Token 0.290 -0.443 0.524 -0.515 0.186
Info-Step 0.301 - 0.542 -0.429 -
Repetition-Token 0.790 0.500 0.799 0.638 0.485

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.477 -0.192 0.502 -0.381 -
Faithfulness-Token 0.454 - 0.540 -0.420 -
Info-Step 0.510 - 0.599 -0.409 -0.321
Repetition-Token 0.578 0.392 0.441 0.555 0.337

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.446 0.385 0.310 - -
Repetition-Step 0.824 0.514 0.530 0.593 0.411

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.406 - 0.507 -0.198 0.367
Repetition-Step 0.791 0.471 0.487 0.642 0.508

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.271 - 0.531 -0.367 -
Repetition-Step 0.799 0.638 0.484 0.658 0.535

ROSCOE-LI
Source-Consistency 0.390 0.172 0.425 0.444 -
Self-Consistency 0.584 0.345 0.531 0.417 0.372

ROSCOE-LC
Grammar - -0.184 0.255 - 0.517
Perplexity-Step 0.205 -0.307 0.345 - -
Perplexity-Chain -0.611 -0.273 0.447 -0.212 -0.373
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Table 33: Somers’ D correlation of all metrics on DROP human judged dataset analyzing step-by-step reasoning on
overall chain and step-level perspectives. All metrics are measured reference-free on (s,h). The highest correlation
overall for each aspect on each dataset is in bold, second best are underlined. Correlation scores with p-value < 0.05
are marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC MATH GRAM MISS

Rouge-1 0.157† -0.160 0.436 0.239† -0.335 -0.731† -0.736 0.030 0.702 0.196 0.173†
Rouge-2 0.137† -0.146 0.488 0.320† -0.284 -0.716† -0.442 0.027 0.584 -0.035 0.129
Rouge-L 0.131† -0.201† 0.465 0.278† -0.345 -0.749† -0.815 -0.012 0.745 0.027 0.146
BLEURT 0.121† -0.101 0.256 0.328† -0.333 -0.725† -0.370 0.078 0.514 0.101 0.087
BERTScore 0.133† -0.115 0.494 0.275† -0.177 -0.647† -0.043 -0.003 0.707 0.098 0.142
BARTScore -0.088 -0.392† 0.575 0.161 -0.454 -0.835† -0.894 -0.225 0.038 0.150 -0.134
BARTScore+ 0.039 -0.159 0.536 0.192 -0.553 -0.665† -0.841 -0.141 0.303 0.261 0.066
BARTScore-P -0.007 -0.152 0.546 0.169 -0.473 -0.642† -0.894 -0.039 0.380 0.265 0.012
PRISM 0.129† -0.081 0.465 0.207 -0.379 -0.733† -0.361 -0.071 0.668 0.165 0.048
CTC-Relevance -0.027 -0.100 -0.072 0.333† -0.041 -0.622† -0.087 -0.091 0.394 0.134 -0.056
CTC-Consistency 0.030 -0.133 0.243 0.462† -0.148 -0.657† -0.106 -0.041 0.769 0.106 -0.002

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Faithfulness-Step 0.096 -0.095 0.572 0.496† 0.143 -0.566† -0.322 0.278 0.760 -0.022 0.042
Faithfulness-Token 0.177† -0.016 0.472 0.417† -0.189 -0.525† -0.038 0.131 0.678 0.002 0.130
Info-Step 0.142† -0.069 0.643 0.500† 0.216 -0.581† -0.284 0.287† 0.846 0.024 0.125
Repetition-Token 0.055 0.210† 0.018 0.170 0.340 0.578† 0.952 0.026 -0.822 -0.140 0.062

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.054 -0.156 0.153 0.297† -0.073 -0.578† -0.111 0.116 -0.221 0.001 -0.042
Faithfulness-Token 0.156† -0.042 0.362 0.290† -0.388 -0.504† -0.216 -0.058 0.288 0.063 0.085
Info-Step 0.090 -0.116 0.308 0.301† -0.153 -0.619† -0.043 0.021 0.250 0.078 0.020
Repetition-Token 0.130† 0.370† 0.027 0.087 0.313 0.790† 0.519 0.114 -0.822 -0.181 0.053

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.084 -0.128 0.195 0.477† -0.061 -0.643† -0.596 0.085 0.236 -0.061 -0.051
Faithfulness-Token 0.186† -0.031 0.414 0.454† -0.245 -0.574† -0.139 0.098 0.514 0.047 0.093
Info-Step 0.141† -0.095 0.443 0.510† -0.121 -0.692† -0.471 0.040 0.731 0.066 0.010
Repetition-Token 0.055 0.210† 0.018 0.170 0.340 0.578† 0.952 0.026 -0.822 -0.140 0.062

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.108 -0.128 0.462 0.222 -0.393 -0.446† -0.375 0.025 0.207 0.446† 0.114
Repetition-Step 0.036 0.400† -0.543 -0.258† 0.165 0.824† 0.909 0.052 -0.822 0.192 -0.016

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.165† 0.020 0.395 0.240† -0.027 -0.480† -0.135 0.122 0.394 0.406† 0.106
Repetition-Step 0.052 0.358† -0.111 -0.115 0.260 0.791† 0.856 0.105 -0.822 0.066 0.015

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.138† -0.090 0.504 0.271† -0.158 -0.664† -0.130 -0.089 0.611 0.381 0.093
Repetition-Step 0.073 0.357† -0.143 -0.085 0.451 0.799† 0.918 0.128 -0.822 0.047 0.021

ROSCOE-LI
Source-Consistency 0.200† 0.243† 0.462 0.390† -0.004 0.085 0.697 0.009 0.365 0.420 0.184†
Self-Consistency 0.032 0.295† -0.076 0.198 0.201 0.584† 0.139 0.187 -0.707 0.344 -0.075

ROSCOE-LC
Grammar 0.220† 0.141 0.250 0.260 0.536 0.001 -0.553 0.169 0.260 0.450 0.111
Perplexity-Step 0.185† 0.034 0.214 -0.002 -0.112 -0.320† -0.827 -0.043 0.332 0.259 0.205†
Perplexity-Chain 0.087 -0.152 0.185 -0.104 -0.515 -0.611† -0.952 -0.178 0.663 0.103 0.117
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Table 34: Somers’ D correlation of all metrics on GSM8K human judged dataset analyzing step-by-step reasoning on
overall chain and step-level perspectives. All metrics are measured reference-free on (s,h). The highest correlation
overall for each aspect on each dataset is in bold, second best is underlined. Correlation scores with p-value < 0.05 are
marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC MATH GRAM MISS

Rouge-1 0.122 0.202† 0.071 0.156 0.275 0.037 0.222 0.073 0.233 0.173 0.180†
Rouge-2 0.089 0.139 0.060 0.102 0.175 -0.016 0.561 0.030 0.113 0.051 0.148
Rouge-L 0.176† 0.268† 0.195† 0.169 0.180 0.054 0.558 0.120 0.212 -0.125 0.252†
BLEURT 0.160† 0.248† 0.134 0.256† 0.099 0.075 0.227 0.124 0.057 0.077 0.210†
BERTScore 0.173† 0.220† 0.112 0.116 0.168 0.095 0.955 0.138 0.113 0.054 0.235†
BARTScore 0.009 0.035 -0.047 0.044 -0.246 -0.261 0.424 -0.002 -0.546† -0.321 -0.003
BARTScore+ 0.064 0.132 0.078 0.054 -0.003 -0.039 0.879 0.085 -0.298 -0.281 0.090
BARTScore-P 0.037 0.059 0.042 0.061 -0.116 -0.102 0.561 -0.002 -0.322 -0.097 0.019
PRISM -0.112 -0.075 -0.099 -0.037 -0.385 -0.455† -0.086 -0.171 -0.341 0.130 -0.093
CTC-Relevance -0.086 -0.148† -0.077 -0.111 0.009 -0.371† 0.566 -0.106 -0.093 -0.061 -0.088
CTC-Consistency -0.157† -0.203† -0.206† -0.129 -0.013 -0.318† 0.556 -0.174† -0.019 -0.056 -0.204†
ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Faithfulness-Step 0.012 0.083 0.097 0.014 -0.138 -0.019 0.182 -0.024 -0.101 0.286 0.027
Faithfulness-Token -0.012 0.036 -0.052 -0.067 -0.099 -0.304 0.788 -0.042 -0.408 0.204 0.016
Info-Step 0.059 0.137 0.178† 0.082 -0.025 0.059 0.364 0.031 -0.303 0.329 0.108
Repetition-Token 0.200† 0.193† 0.186† 0.075 0.224 0.392† 0.788 0.183† 0.443 0.173 0.270†

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step -0.039 -0.016 0.002 -0.027 0.012 -0.376 0.581 -0.173 -0.127 0.102 -0.021
Faithfulness-Token -0.078 -0.002 -0.090 -0.079 -0.141 -0.443† 0.485 -0.137 -0.623† 0.074 -0.068
Info-Step 0.095 0.121 0.099 0.139 0.112 -0.065 0.662 -0.016 -0.056 0.092 0.148
Repetition-Token 0.214† 0.208† 0.184† 0.081 0.500† 0.238 0.747 0.208† 0.498† 0.339 0.306†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step -0.061 -0.034 -0.006 0.002 -0.158 -0.142 0.237 -0.192† -0.221 0.168 -0.045
Faithfulness-Token -0.051 -0.008 -0.087 -0.084 -0.168 -0.352 0.732 -0.098 -0.424 0.145 -0.034
Info-Step 0.059 0.102 0.106 0.124 0.040 0.046 0.545 -0.053 -0.236 0.099 0.131
Repetition-Token 0.200† 0.193† 0.186† 0.075 0.224 0.392† 0.788 0.183† 0.443 0.173 0.270†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.097 0.064 0.059 0.080 0.035 0.385† 0.722 0.103 0.121 -0.110 0.130
Repetition-Step 0.199† 0.166† 0.168 0.145 0.254 0.514† 0.869 0.152 0.230 0.176 0.222†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.059 0.071 0.020 0.043 0.039 0.128 0.288 0.004 0.260 -0.026 0.098
Repetition-Step 0.218† 0.161† 0.167 0.227† 0.309 0.471† 0.323 0.158 0.486 -0.301 0.245†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.042 0.051 0.043 0.057 0.240 0.041 0.808 -0.007 -0.211 0.038 0.130
Repetition-Step 0.322† 0.299† 0.275† 0.227† 0.466 0.638† 0.879 0.192† 0.563† -0.311 0.354†

ROSCOE-LI
Source-Consistency 0.108 0.037 -0.019 0.172† 0.121 0.030 0.551 0.082 -0.005 0.219 0.097
Self-Consistency 0.283† 0.267† 0.177 0.345† 0.207 0.354 0.980 0.219† 0.087 -0.230 0.223†

ROSCOE-LC
Grammar -0.134† -0.159† -0.260† -0.081 -0.234 -0.246 0.056 -0.264† -0.207 0.298 -0.184†
Perplexity-Step -0.297† -0.278† -0.366† -0.307† -0.608† -0.591† -0.136 -0.334† -0.514† 0.148 -0.331†
Perplexity-Chain -0.332† -0.336† -0.322† -0.273† -0.695† -0.682† -0.556 -0.354† -0.697† -0.084 -0.408†
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Table 35: Somers’ D correlation of all metrics on ESNLI human judged dataset analyzing step-by-step reasoning on
overall chain and step-level perspectives. All metrics are measured reference-free on (s,h). The highest correlation
overall for each aspect on each dataset is in bold and second best is underlined. Correlation scores with p-value < 0.05
are marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC MATH GRAM MISS

Rouge-1 0.213† -0.121 -0.373 0.152 -0.060 -0.284 - -0.276† 0.113 -0.403 0.559†
Rouge-2 0.216† -0.075 -0.336 0.169 -0.097 -0.240 - -0.255† -0.080 -0.432 0.502†
Rouge-L 0.222† -0.041 -0.296 0.201 -0.092 -0.245 - -0.259 0.053 -0.429 0.557†
BLEURT 0.154† -0.202 -0.271 0.112 -0.041 -0.230 - -0.322† 0.267 -0.641† 0.541†
BERTScore 0.255† 0.019 -0.205 0.222 0.153 -0.179 - -0.141 -0.360 -0.252 0.590†
BARTScore 0.189† -0.096 -0.260 0.079 0.071 -0.259 - -0.200 0.533 -0.688† 0.549†
BARTScore+ 0.209† -0.059 -0.192 0.166 0.204 -0.147 - -0.168 -0.160 -0.578† 0.482†
BARTScore-P 0.092 -0.096 -0.208 0.213 0.092 -0.209 - -0.192 -0.587 -0.370 0.255†
PRISM 0.264† 0.089 -0.151 0.093 0.224 -0.235 - -0.042 -0.240 -0.329 0.580†
CTC-Relevance 0.071 -0.051 -0.074 0.063 -0.020 -0.098 - -0.093 0.720 -0.205 0.334†
CTC-Consistency 0.029 0.218 0.647† -0.009 0.483 0.021 - 0.350† 0.533 -0.071 -0.060

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Faithfulness-Step 0.236† -0.163 -0.027 0.096 -0.146 -0.139 - -0.293† 0.560 -0.386 0.403†
Faithfulness-Token 0.279† 0.010 -0.145 0.232 0.201 -0.279 - -0.119 0.067 -0.293 0.521†
Info-Step 0.222† -0.127 -0.140 0.143 -0.068 -0.220 - -0.333† 0.400 -0.310 0.493†
Repetition-Token -0.037 -0.020 0.403 0.244 0.330 0.441† - 0.153 0.240 -0.059 -0.436†

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.261† -0.117 -0.058 0.242 -0.425 -0.296† - -0.248† 0.480 -0.244 0.423†
Faithfulness-Token 0.270† -0.083 -0.216 0.136 0.313 -0.248 - -0.097 0.347 -0.433 0.524†
Info-Step 0.290† -0.006 -0.049 0.286† -0.102 -0.245 - -0.246† 0.373 -0.342 0.542†
Repetition-Token -0.040 0.129 -0.189 0.169 0.799† 0.617† - 0.151 -0.267 0.084 -0.445†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.262† -0.083 -0.244 0.257 -0.163 -0.372† - -0.283† 0.413 -0.375 0.502†
Faithfulness-Token 0.275† 0.004 -0.230 0.206 0.214 -0.303† - -0.140 0.347 -0.321 0.540†
Info-Step 0.295† 0.046 -0.126 0.299† -0.071 -0.306† - -0.208 0.333 -0.397† 0.599†
Repetition-Token -0.037 -0.020 0.403 0.244 0.330 0.441† - 0.153 0.240 -0.059 -0.436†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.083 -0.197 -0.466 -0.225 -0.510 -0.259 - -0.067 0.267 0.074 0.310†
Repetition-Step -0.021 0.103 -0.063 0.249 0.310 0.530† - 0.178 -0.107 0.053 -0.433†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.191† -0.233 -0.438 0.052 -0.153 -0.253 - -0.368† 0.533 -0.452 0.507†
Repetition-Step 0.007 0.280 0.173 0.365† 0.694 0.487† - 0.225 0.213 0.193 -0.472†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.211† -0.083 -0.192 0.212 0.024 -0.319† - -0.257† 0.400 -0.455 0.531†
Repetition-Step -0.015 0.180 0.397 0.332 0.367 0.484† - 0.115 0.013 0.125 -0.501†

ROSCOE-LI
Source-Consistency 0.012 -0.028 0.334 0.425† 0.299 -0.055 - 0.112 0.600 -0.258 -0.222†
Self-Consistency -0.028 0.354† 0.156 0.087 0.561 0.370† - 0.531† -0.333 0.222 -0.351†

ROSCOE-LC
Grammar 0.063 0.069 -0.411 -0.003 0.122 -0.286 - 0.255† -0.027 0.411 -0.072
Perplexity-Step 0.084 0.087 -0.655† -0.153 0.255 -0.254 - -0.148 -0.147 0.090 0.345†
Perplexity-Chain 0.027 0.081 -0.616† -0.289 0.075 -0.447† - -0.155 -0.533 0.249 0.447†

48



Published as a conference paper at ICLR 2023

Table 36: Somers’ D correlation of all metrics on COSMOS human judged dataset analyzing step-by-step reasoning
on overall chain and step-level perspectives. All metrics are measured reference-free on (s,h). The highest correlation
overall for each aspect on each dataset is in bold and second best is underlined. Correlation scores with p-value < 0.05
are marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC GRAM MISS

Rouge-1 -0.011 -0.007 -0.182 -0.077 0.292 -0.576† -0.807 -0.264† -0.644† 0.113
Rouge-2 0.021 0.028 -0.075 -0.131 0.239 -0.561† -0.174 -0.108 -0.314 0.180†
Rouge-L 0.011 -0.013 -0.094 -0.044 0.252 -0.637† -0.436 -0.114 -0.441† 0.141
BLEURT 0.098 0.088 0.019 -0.054 0.097 -0.686† -0.617 -0.181† -0.522† 0.218†
BERTScore 0.095 0.113 0.059 -0.055 0.234 -0.478† -0.492 -0.058 -0.420† 0.114
BARTScore 0.009 0.024 0.159 -0.026 0.001 -0.544† -0.208 -0.122 -0.420 0.124
BARTScore+ 0.048 0.061 -0.102 -0.004 0.159 -0.507† -0.602 -0.186† -0.499† 0.159
BARTScore-P 0.009 0.021 -0.149 0.010 0.267 -0.385† -0.508 -0.207† -0.453† 0.142
PRISM 0.058 0.091 -0.046 -0.156 0.311 -0.446† -0.428 -0.036 -0.376† 0.157
CTC-Relevance 0.070 0.035 0.246 0.155 0.233 -0.294 -0.780 -0.001 -0.349 0.016
CTC-Consistency 0.093 0.097 0.275† 0.084 0.140 -0.032 -0.201 0.051 0.064 -0.006

ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.089 0.109 -0.008 0.149 0.256 -0.322 -0.216 -0.019 0.034 -0.011
Faithfulness-Token 0.038 0.039 -0.032 -0.093 0.285 -0.472† -0.220 -0.026 -0.320† 0.012
Info-Step 0.109 0.082 -0.011 0.119 0.302 -0.340 -0.811 -0.039 -0.135 0.057
Repetition-Token 0.050 0.120 0.187 0.103 0.103 0.555† 0.231 0.192† 0.458† -0.233†

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step -0.011 0.044 -0.008 -0.012 0.127 -0.424† -0.235 -0.061 -0.268 -0.096
Faithfulness-Token 0.035 0.078 -0.124 -0.128 0.323 -0.515† -0.667 -0.036 -0.230 -0.008
Info-Step 0.011 0.043 -0.047 -0.023 0.186 -0.429† -0.481 -0.081 -0.268 -0.037
Repetition-Token 0.045 0.092 0.275† 0.122 0.298 0.638† 0.398 0.252† 0.386 -0.184†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.036 0.022 0.072 0.111 0.184 -0.381† -0.318 -0.076 -0.237 -0.053
Faithfulness-Token 0.036 0.030 -0.003 -0.058 0.205 -0.486† -0.333 -0.056 -0.420† -0.020
Info-Step 0.026 -0.025 0.069 0.079 0.248 -0.409† -0.720 -0.088 -0.292 0.000
Repetition-Token 0.050 0.120 0.187 0.103 0.103 0.555† 0.231 0.192† 0.458† -0.233†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain 0.013 0.089 0.159 0.048 0.139 -0.219 -0.932 0.113 -0.390 -0.117
Repetition-Step 0.011 0.050 0.178 0.132 -0.046 0.593† 0.670 0.295† 0.330 -0.244†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.073 0.091 -0.174 0.033 0.145 -0.215 -0.409 -0.198† -0.411† 0.103
Repetition-Step 0.047 0.127 0.124 0.060 0.153 0.642† 0.617 0.346† 0.563† -0.184†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain 0.114 0.055 0.034 -0.005 0.218 -0.367† -0.879 -0.046 -0.222 0.153
Repetition-Step 0.061 0.127 0.095 0.076 0.246 0.658† 0.500 0.256† 0.496† -0.145

ROSCOE-LI
Source-Consistency 0.184† 0.183† 0.150 0.285† 0.241 0.444† 0.091 0.111 0.303 0.011
Self-Consistency 0.048 0.080 0.190 0.173 -0.021 0.417† 0.610 0.192† 0.401† -0.252†

ROSCOE-LC
Grammar 0.093 0.189† -0.065 0.084 0.022 -0.013 0.356 -0.013 0.386 0.051
Perplexity-Step 0.122† 0.157† -0.208 -0.021 0.034 0.028 -0.140 -0.113 -0.295 0.064
Perplexity-Chain 0.083 0.047 -0.193 0.001 -0.073 -0.311† -0.561 -0.212† -0.542† 0.130
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Table 37: Somers’ D correlation of all metrics on SemEVAL human judged dataset analyzing step-by-step reasoning
on overall chain and step-level perspectives. All metrics are measured reference-free on (s,h). The highest correlation
overall for each aspect on each dataset is in bold and second best is underlined. Correlation scores with p-value < 0.05
are marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC GRAM MISS

Rouge-1 -0.199† -0.208† -0.246 -0.118 -0.053 -0.520† -0.398 -0.206 -0.230 0.108
Rouge-2 -0.086 0.060 -0.478 -0.063 0.561 -0.232 -0.083 -0.073 0.141 0.090
Rouge-L -0.198† -0.209† -0.498 -0.104 0.090 -0.478† -0.396 -0.115 -0.156 0.058
BLEURT -0.313† -0.383† -0.372 -0.208 -0.034 -0.482† -0.383 -0.356† -0.104 -0.074
BERTScore -0.051 0.064 -0.517 -0.035 0.524 -0.002 -0.218 -0.295† 0.266 0.063
BARTScore -0.084 -0.059 -0.140 -0.137 -0.369 -0.054 0.209 -0.284 -0.040 -0.056
BARTScore+ -0.046 -0.098 0.652 -0.033 -0.073 0.056 0.204 -0.204 0.048 -0.016
BARTScore-P -0.075 -0.168 0.633 -0.080 0.107 0.096 0.277 -0.230 0.054 -0.082
PRISM -0.082 -0.040 -0.469 -0.115 0.073 -0.174 -0.354 -0.134 -0.079 0.075
CTC-Relevance -0.146† -0.219† 0.256 -0.047 0.442 -0.071 -0.121 -0.349† 0.101 -0.145
CTC-Consistency -0.178† -0.241† 0.101 0.009 0.583 -0.301† -0.296 -0.335† 0.208 -0.142

ROSCOE Metrics (reference-free on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Faithfulness-Step 0.157† 0.198† 0.275 0.189 0.694 0.233 -0.262 -0.115 0.092 0.115
Faithfulness-Token 0.030 0.182† -0.150 0.009 0.714 0.116 -0.442 -0.101 0.262 0.085
Info-Step 0.068 0.113 0.111 0.055 0.835 0.003 -0.252 -0.187 0.196 0.129
Repetition-Token 0.062 0.150 0.401 0.021 -0.078 0.337† 0.670 -0.074 -0.007 -0.131

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Faithfulness-Step 0.197† 0.221† 0.005 0.201 0.461 0.330† -0.160 -0.019 0.182 0.108
Faithfulness-Token 0.030 0.161 -0.208 0.013 0.597 -0.044 -0.495 -0.111 0.063 0.186†
Info-Step 0.111 0.127 -0.111 0.125 0.544 0.161 -0.073 -0.176 0.210 0.076
Repetition-Token 0.134† 0.178† 0.662 0.066 0.364 0.485† 0.772 -0.004 0.157 -0.115

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Faithfulness-Step 0.028 0.123 -0.459 0.112 0.908 0.174 -0.199 -0.162 0.021 0.059
Faithfulness-Token -0.021 0.133 -0.227 0.021 0.752 0.084 -0.398 -0.134 0.119 0.052
Info-Step -0.040 -0.003 -0.362 0.024 0.777 0.015 -0.296 -0.321† 0.038 0.039
Repetition-Token 0.062 0.150 0.401 0.021 -0.078 0.337† 0.670 -0.074 -0.007 -0.131

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Info-Chain -0.040 0.008 -0.082 -0.005 0.539 -0.164 -0.015 -0.070 0.086 -0.082
Repetition-Step 0.051 0.143 0.546 0.043 -0.024 0.411† 0.723 0.038 -0.018 -0.195†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Info-Chain 0.076 0.128 -0.700 0.122 -0.005 0.367† 0.117 -0.140 0.068 -0.018
Repetition-Step 0.077 0.117 0.633 0.036 0.141 0.508† 0.684 -0.026 0.025 -0.155

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Info-Chain -0.115 -0.038 -0.169 0.059 0.539 -0.260 -0.476 -0.169 -0.081 -0.009
Repetition-Step 0.104 0.132 0.787 0.042 0.136 0.535† 0.811 0.006 0.069 -0.169†

ROSCOE-LI
Source-Consistency 0.059 0.016 0.546 0.206 -0.029 0.006 0.010 -0.241 -0.139 -0.063
Self-Consistency 0.162† 0.250† 0.536 0.104 0.383 0.372† 0.223 -0.091 0.061 -0.075

ROSCOE-LC
Grammar -0.076 0.014 0.101 -0.223† -0.335 0.104 0.393 -0.215 0.517† -0.144
Perplexity-Step -0.026 -0.053 0.797 0.037 -0.607 0.020 -0.019 -0.071 -0.330 -0.039
Perplexity-Chain -0.141† -0.237† 0.324 -0.126 -0.650 -0.373† -0.481 -0.151 -0.284 0.039
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Table 38: Somers’ D correlation of all metrics on GSM8K human judged dataset analyzing step-by-step reasoning on
overall chain and step-level perspectives. All metrics are measured reference-based on (s,h). The highest correlation
overall for each aspect on each dataset is in bold, second best is underlined. Correlation scores with p-value < 0.05 are
marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC MATH GRAM MISS

Rouge-1 0.572† 0.506† 0.590† 0.513† 0.532† 0.498† 0.694 0.533† 0.582† 0.430 0.686†
Rouge-2 0.551† 0.520† 0.566† 0.511† 0.467† 0.439† 0.758 0.555† 0.617† 0.480 0.713†
Rouge-L 0.591† 0.542† 0.605† 0.559† 0.452† 0.613† 0.662 0.575† 0.715† 0.457 0.730†
BLEURT 0.487† 0.391† 0.502† 0.389† 0.392 0.222 0.682 0.404† 0.233 0.283 0.597†
BERTScore 0.505† 0.425† 0.488† 0.475† 0.477† 0.585† 0.763 0.483† 0.677† 0.347 0.627†
BARTScore 0.429† 0.352† 0.522† 0.317† 0.315 0.128 0.692 0.436† 0.279† 0.237 0.555†
BARTScore+ 0.531† 0.455† 0.579† 0.460† 0.273 0.303 0.722 0.501† 0.577† 0.334 0.679†
BARTScore-P 0.343† 0.280† 0.376† 0.268† 0.210 0.062 0.621 0.298† 0.207 0.227 0.441†
PRISM 0.579† 0.511† 0.593† 0.531† 0.363† 0.392† 0.707 0.557† 0.540† 0.423 0.728†
CTC-Relevance -0.047 -0.093 -0.065 -0.065 -0.134 -0.286 0.460 -0.055 0.056 0.242 -0.102
CTC-Consistency -0.272† -0.279† -0.259† -0.264† -0.182 -0.385† -0.399 -0.192† -0.233 0.028 -0.320†
ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Hallucination 0.466† 0.460† 0.398† 0.445† 0.371† 0.462† 0.091 0.439† 0.624† 0.319 0.519†
Redundancy 0.464† 0.463† 0.396† 0.455† 0.379† 0.552† 0.242 0.459† 0.699† 0.472 0.538†
Semantic Coverage-Step -0.030 0.002 0.017 -0.154 -0.237 -0.084 -0.298 0.023 0.335 0.064 0.002
Missing Step 0.484† 0.419† 0.509† 0.364† 0.357† 0.325 0.333 0.438† 0.685† 0.207 0.590†
Reasoning Alignment 0.613† 0.590† 0.570† 0.573† 0.464† 0.529† 0.460 0.587† 0.725† 0.446 0.711†
Commonsense 0.411† 0.348† 0.424† 0.289† 0.264 0.246 0.404 0.358† 0.677† 0.367 0.494†

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Hallucination 0.702† 0.621† 0.704† 0.630† 0.629† 0.422† 0.818 0.644† 0.340 0.064 0.846†
Redundancy 0.453† 0.411† 0.451† 0.417† 0.406† 0.353† 0.505 0.468† 0.195 0.204 0.570†
Semantic Coverage-Step -0.066 -0.062 0.005 -0.042 -0.148 0.329† -0.576 0.006 0.232 0.291 -0.085
Missing Step 0.501† 0.449† 0.520† 0.450† 0.402† 0.224 0.566 0.488† 0.503† 0.186 0.572†
Reasoning Alignment 0.583† 0.523† 0.559† 0.558† 0.380† 0.381† 0.571 0.569† 0.418† 0.296 0.716†
Commonsense 0.626† 0.529† 0.657† 0.594† 0.578† 0.305 0.828 0.574† 0.421† -0.125 0.758†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Hallucination 0.806† 0.707† 0.731† 0.729† 0.625† 0.357† 0.611 0.712† 0.575† -0.105 0.896†
Redundancy 0.734† 0.661† 0.665† 0.699† 0.598† 0.463† 0.717 0.664† 0.517† -0.061 0.840†
Semantic Coverage-Step 0.063 0.063 0.127 0.057 0.216 0.300 -0.111 0.161 -0.205 0.492 0.023
Missing Step 0.722† 0.631† 0.685† 0.691† 0.517† 0.353† 0.808 0.655† 0.482† 0.003 0.821†
Reasoning Alignment 0.712† 0.628† 0.654† 0.711† 0.487† 0.435† 0.717 0.655† 0.603† 0.161 0.848†
Commonsense 0.780† 0.659† 0.721† 0.727† 0.486† 0.324 0.813 0.691† 0.510† -0.217 0.887†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.404† 0.364† 0.452† 0.324† 0.214 0.381† 0.601 0.350† 0.172 -0.196 0.444†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 0.170† 0.171† 0.189† 0.203† -0.055 0.205 0.237 0.186† -0.014 0.041 0.243†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.411† 0.375† 0.422† 0.460† 0.301 0.439† 0.742 0.381† 0.275 0.148 0.506†
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Table 39: Somers’ D correlation of all metrics on ESNLI human judged dataset analyzing step-by-step reasoning on
overall chain and step-level perspectives. All metrics are measured reference-based on (s,h). The highest correlation
overall for each aspect on each dataset is in bold, second best is underlined. Correlation scores with p-value < 0.05 are
marked with †. (Continued from § 6, more details in App. H.2)

QUAL COH COMMON FACT HALL RED REP LOGIC MATH GRAM MISS

Rouge-1 0.255† -0.234 -0.506† 0.072 0.359 -0.078 - -0.310† -0.054 -0.487 0.662†
Rouge-2 0.223† -0.189 -0.629† 0.103 0.429 -0.081 - -0.344† -0.149 -0.493 0.568†
Rouge-L 0.227† -0.177 -0.647† 0.084 0.383 -0.089 - -0.351† -0.500 -0.493 0.628†
BLEURT 0.221† -0.170 -0.197 0.078 -0.090 -0.108 - -0.202 0.216 -0.447 0.611†
BERTScore 0.362† -0.036 -0.281 0.182 0.269 0.143 - -0.153 0.068 -0.369 0.661†
BARTScore 0.121 -0.304 -0.200 0.003 0.007 -0.339† - -0.322† 0.338 -0.478 0.513†
BARTScore+ 0.129 -0.113 -0.306 0.164 0.048 -0.036 - -0.367† -0.095 -0.378 0.341†
BARTScore-P 0.096 -0.037 -0.244 0.188 -0.017 0.028 - -0.222 -0.946 -0.244 0.173
PRISM 0.314† 0.032 -0.386 0.086 0.438 0.063 - -0.131 -0.378 -0.328 0.684†
CTC-Relevance 0.072 0.331† 0.383 0.034 0.352 -0.001 - 0.400† 0.405 0.231 0.033
CTC-Consistency -0.051 0.150 -0.078 -0.130 0.083 0.105 - 0.085 0.676 0.056 0.006

ROSCOE Metrics (reference-based on (s,h))
ROSCOE-SA with finetuned sup-simcse-roberta-base sentence embeddings

Hallucination 0.156† 0.152 0.461 -0.011 -0.021 0.160 - 0.132 0.743 -0.275 0.170
Redundancy 0.142 0.234 0.553† 0.046 0.283 0.119 - 0.159 0.500 -0.253 0.145
Semantic Coverage-Step 0.153† -0.094 0.172 -0.192 -0.241 -0.065 - -0.020 -0.730 0.086 0.327†
Missing Step 0.234† -0.197 -0.375 0.239 -0.010 -0.275 - -0.226 0.527 -0.400 0.558†
Reasoning Alignment 0.278† -0.062 -0.003 0.072 0.100 -0.049 - -0.047 -0.108 -0.433 0.495†
Commonsense 0.142 -0.094 -0.353 0.213 0.207 -0.184 - -0.148 0.676 -0.447 0.368†

ROSCOE-SA with all-mpnet-base-v2 sentence embeddings
Hallucination 0.174† 0.094 0.350 0.066 -0.210 -0.021 - 0.181 0.554 -0.089 0.141
Redundancy 0.219† 0.227 0.531 0.153 0.031 0.116 - 0.293 0.405 -0.133 0.133
Semantic Coverage-Step 0.185† -0.108 -0.039 0.099 -0.490 -0.229 - -0.185 -0.122 0.083 0.350†
Missing Step 0.303† -0.173 -0.603† -0.017 0.159 -0.031 - -0.180 0.689 -0.650† 0.679†
Reasoning Alignment 0.428† -0.028 -0.128 0.294† 0.121 0.095 - -0.066 -0.351 -0.547† 0.657†
Commonsense 0.211† -0.029 -0.567† 0.062 0.324 -0.016 - -0.071 0.946 -0.564 0.489†

ROSCOE-SA with sup-simcse-roberta-base sentence embeddings
Hallucination 0.190† 0.086 -0.311 0.171 -0.138 -0.050 - 0.001 -0.149 -0.322 0.272†
Redundancy 0.166† 0.177 -0.208 0.249 -0.038 -0.007 - 0.023 -0.405 -0.331 0.235†
Semantic Coverage-Step 0.196† -0.235 -0.058 0.167 -0.341 -0.187 - -0.153 -0.338 -0.078 0.425†
Missing Step 0.307† -0.165 -0.508† 0.143 0.124 -0.105 - -0.139 0.405 -0.558† 0.623†
Reasoning Alignment 0.374† -0.049 -0.406 0.317† 0.114 0.024 - -0.148 -0.608 -0.603† 0.642†
Commonsense 0.197† 0.004 -0.467 0.087 0.352 0.021 - -0.047 0.919 -0.464 0.389†

ROSCOE-SS with finetuned sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.152† -0.185 -0.356 0.266 -0.021 -0.311 - -0.255† 0.500 0.022 0.287†

ROSCOE-SS with all-mpnet-base-v2 sentence embeddings
Semantic Coverage-Chain 0.320† -0.213 -0.203 0.045 -0.066 0.013 - -0.309† 0.446 -0.517 0.679†

ROSCOE-SS with sup-simcse-roberta-base sentence embeddings
Semantic Coverage-Chain 0.339† -0.196 -0.378 0.269 0.072 -0.088 - -0.148 0.324 -0.539† 0.643†
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Table 40: ROSCOE performance analysis on examples from Human Judged datasets. Errors are highlighted in red.
(Cont. from $ 6)

Dataset Context Reasoning chain Score type:
Score value;
Errors

Comment

DROP Over the next year, however, the Polish forces
were subject to attrition, as the Sejm again
refused to raise taxes and pay the army, result-
ing in mass desertions of unpaid soldiery. The
Polish problems were further aggravated by
the incompetent leadership of hetman Michał
Kazimierz Pac, who obstructed Sobieski’s
leadership, while the Ottomans continued to
receive reinforcements. Nonetheless in 1674
the Commonwealth resumed the offensive,
taking advantage of a new Muscovy-Ottoman
conflict that year, and the Polish-Ottoman
war remained undecided. Sobieski’s force
of 6,000 defeated 20,000 Turks and Tatars un-
der Ibrahim Shyshman in the battle of Lwow
in August 1675. Even after the Battle of
Trembowla, the Sejm still refused his pleas
for more funds and a larger army. In 1676,
after Sobieski’s 16,000 withstood the two-
week siege of Żurawno, by 100,000 men un-
der Ibrahim Pasha, a new peace treaty was
signed, the Treaty of Żurawno. The peace
treaty partially reversing those from Buczacz:
the Ottomans kept approximately two thirds
of the territories they gained in 1672, and
the Commonwealth no longer was obliged to
pay any kind of tribute to the Empire; a large
number of Polish prisoners were released by
the Ottomans. How many was the difference
beween Sobieski’s force and the Turks and
Tatars? Claim: 14000. Is the Claim supported
by the Situation?

6000-20000=14000 The answer is yes. Info-Step:
0.514;
COMMON,
MATH

Common Sense Er-
ror: Model should
subtract smaller
value (6,000) from
bigger (20,000) to
answer the ques-
tion. Arithmetic
error: 6,000 minus
20,000 is -14,000.

DROP The first Azov campaign began in the spring
of 1695. Peter the Great ordered his army to
advance towards Azov. The army comprised
crack regiments and the Don Cossacks and
was divided into three units under the com-
mand of Franz Lefort, Patrick Gordon and
Avtonom Golovin. Supplies were shipped
down the Don from Voronezh.In 1693 the Ot-
toman garrison of the fortress was 3,656, of
whom 2,272 were Janissaries.Between June
27-July 5 the Russians blocked Azov from
land but could not control the river and pre-
vent resupply. After two unsuccessful attacks
on August 5 and September 25, the siege was
lifted on October 1. Another Russian army
under the command of Boris Sheremetev set
out for the lower reaches of the Dnieper to
take the Ottoman forts there. The main fort
at Gazi-Kerman was taken when its powder
magazine blew up, as well as Islam-Kerman,
Tagan and Tavan, but the Russians were not
able to hold the area and withdrew most of
their forces. By the Treaty of Constantinople
the remaining Russians were withdrawn and
the lower Dnieper was declared a demilita-
rized zone. What happened first: Russians
blocked Azov or Treaty of Constantinople?
Claim: Russians blocked Azov. Is the Claim
supported by the Situation?

The first Azov campaign began in the
spring of 1695. Peter the Great ordered
his army to advance towards Azov. The
army comprised crack regiments and
the Don Cossacks and was divided into
three units under the command of Franz
Lefort, Patrick Gordon and Avtonom
Golovin. Supplies were shipped down
the Don from Voronezh.In 1693 the
Ottoman garrison of the fortress was
3,656, of whom 2,272 were Janis-
saries.Between June 27-July 5 the Rus-
sians blocked Azov from land but could
not control the river and prevent resup-
ply. After two unsuccessful attacks on
August 5 and September 25, the siege
was lifted on October 1. Another Rus-
sian army under the command of Boris
Sheremetev set out for the lower reaches
of the Dnieper to take the Ottoman forts
there. The main fort at Gazi-Kerman
was taken when its powder magazine
blew up, as well as Islam-Kerman.

Info-Step:
0.966, RED

Redundancy:
Model repeats
sentences from
context that are not
directly relevant to
the question and
can be dropped.
Info-Step score is
however high, be-
cause it measures
two-way similarity
between context
and reasoning
chain, thus being
not informative.
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Dataset Context Reasoning chain Score type:
Score value;
Errors

Comment

GSM8K John has 3 boxes. Each box is 5 inches by
6 inches by 4 inches. The walls are 1 inch
thick. What is the total inner volume of all
3 boxes?

Each box is 5*6*4=«5*6*4=120»120
cubic inches. So they have a to-
tal of 120*3=«120*3=360»360 cu-
bic inches. So the total vol-
ume is 360*1=«360*1=360»360 cu-
bic inches. Answer: 360

Self-
Consistency:
0.361, REP

There are only 2
Repetition errors in
the dataset, both have
Self-Consistency score
below 0.362. Most
of the other chains
have higher scores,
thus Somers’ D cor-
relation score for
Self-Consistency and
Repetition is 0.98 on
GSM8K dataset.

GSM8K Mary is an avid gardener. Yesterday, she
received 18 new potted plants from her fa-
vorite plant nursery. She already has 2 pot-
ted plants on each of the 40 window ledges
of her large country home. Feeling gener-
ous, she has decided that she will give 1
potted plant from each ledge to friends and
family tomorrow. How many potted plants
will Mary remain with?

Mary has 2 potted plants on each of
the 40 window ledges, for a total of
2*40 = «2*40=80»80 potted plants.
She has 18 new potted plants, for a
total of 80+18 = «80+18=98»98 pot-
ted plants. She is giving away 1 pot-
ted plant from each of the 40 win-
dow ledges, for a total of 1*40 =
«1*40=40»40 plants. She will be re-
maining with 98-40 = «98-40=58»58
potted plants. Answer: 58

Repetition-
Step: 0.001;
No error

This is an example of a
chain that was scored as
low as chains that actu-
ally have repetitions, be-
cause its steps do sound
similar. Two chains
with actual repetition er-
rors were scored below
0.001. In total, 3 out
of 198 chains without
repetition error where
scored as low as chains
with repetition error, re-
sulting in high 0.869
Somers’ D score.

GSM8K Rory orders 2 subs for $7.50 each, 2 bags of
chips for $1.50 each and 2 cookies for $1.00
each for delivery. There’s a 20% delivery
fee added at check out and she wants to add
a $5.00 tip. What will her delivery order
cost?

The order is $7.50 for the sub, $1.50
for chips and $1.00 for cookies so
the total order is 7.50+1.50+1.00
= $«7.50+1.50+1.00=10.0»10.00.
There’s a 20% delivery fee added
at check out so that’s 10*.20 =
$«10*.20=2.0»2.00. The order is
$10.00 and there’s a $2.00 delivery
fee so 10+2 = $«10+2=12.00»12.00.
She also wants to add a $5.00 tip
which will make the order 12+5 =
$«12+5=17.00»17.00. Answer: 17

Faithfulness-
Token:
0.801; FACT

There was no corre-
lation (Somers’ D
score 0.014) found
between FACT error
and Faithfulness-Step
score. The range of
scores where the error
was and was not present
is the same (0.60, 0.81).
We provide an example
of the chain with FACT
error that was scored
among the highest.

ESNLI People standing in line of a beer and curry
line. Claim: People standing in line. Is the
Claim supported by the Situation?

The people are standing in line for
beer and curry, not just standing in
line. The answer is No.

Source-
Consistency:
0.976; FACT

Although there is a
clear contradiction
with a context, this
chains gets high
Source-Consistency
score. Overall, there
is a large number of
false-positives (with
scores as high as 0.98),
and false-negatives
(with scores as low
as 0.0) resulting in
moderate correlation
score of 0.425.
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Dataset Context Reasoning chain Score type:
Score value;
Errors

Comment

ESNLI Two women are embracing while holding to
go packages. Claim: The men are fighting
outside a deli. Is the Claim supported by
the Situation?

Two women are embracing while
holding to go packages means they
are friends or family. They are not
fighting. The answer is No.

Self-
Consistency:
0.079;
LOGIC

Self-Consistency mea-
sures if steps contra-
dict each other. LOGIC
identifies if there is
a logical deduction er-
ror within one of the
steps. Nevertheless,
Self-Consistency is able
to catch some logical
deduction errors result-
ing in moderate corre-
lation, since contradic-
tions within a step often
lead to logical errors be-
tween steps.

SemEval I spray some Pam into a frying pan. I chop
up small pieces of ham and put them into
the frying pan. I turn the stove on low heat.
I crack two eggs into a bowl. I add a little
bit of water and whisk the eggs until they
are completely mixed up. I pour the egg
mixture into the pan. I turn the heat up to
medium. I put a lid on top of the pan and
continue to cook the mixture. After a few
minutes, I check to see if all the liquid on
top of the egg has cooked so it isn’t runny
anymore. If it is completely cooked, I add
a little bit of shredded cheese on top of the
egg mixture. I cook for a few minutes until
the cheese melts. I get a spatula and flip half
of the egg on top of the other half. Then my
omelet is cooked! Who all ate the break-
fast? Claim: The family.

The answer is incorrect, because there
is no mention of a family. The only
people mentioned are the person cook-
ing the omelet and the nurse.

Faithfulness-
Step: 0.776;
HALL

This chain was given a
score lower that 25% of
Faithfulness-Step scores
within this dataset. Sec-
ond step is misaligned
with the context, con-
taining irrelevant infor-
mation, that resulted in
score punishment.

SemEval I had bought my dad a tie for father’s day.
I’m sure I could have given it to him like
that, but I thought a nice touch would have
been to wrap it. I couldn’t wrap the tie like
that, so I bought a small cardboard box. It
was a bit narrow and the perfect size for a
tie. I put the tie in the box and taped it shut.
I had bought some blue and white wrapping
paper and some tape, so I set that besides
the box. I lay the box on top of the paper
and folded it over. I cut the excess of the
paper off and taped the paper to the box. I
folded all the sides of the paper to tuck it in
to a neat package. When I was done, I put
a nametag on it. I topped off the gift with a
small blue ribbon bow. What is the reason
for the present? Claim: It was Christmas.

The answer is incorrect, because it
was Father’s Day.

Faithfulness-
Step: 0.635;
No error

Faithfulness-Step score
is low, although the
reasoning is correct.
Model failed to produce
higher score because
cosine similarity-based
alignment scores are
low.
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Table 41: ROSCOE performance analysis on examples from Diagnostic datasets. Perturbations are highlighted in red.
(Cont. from $ 6)

Dataset Context Reasoning chain Score type:
Score value;
Perturbation

Comment

ProofWriter Charlie is furry. Erin is furry. Erin is
green. Erin is round. Fiona is blue. Fiona
is furry. Gary is smart. White things are
round. If something is furry and blue then
it is white. If something is blue and round
then it is red. All furry things are blue. If
Charlie is red then Charlie is green. Is the
following True, False, or Unknown? Erin
is round.

The bear visits the cow.
Erin is round.

Faithfulness-
Step: 0.602;
Halucination

Faithfulness-Step scores vary
from 0.5 to 1.0. Metric is able to
catch a hallucination and gives
the chain a low score.

ProofWriter Anne is cold. Anne is not young. Bob is
green. Fiona is cold. Fiona is rough. Gary
is red. Gary is young. Green, rough things
are red. If Gary is cold and Gary is red
then Gary is green. If something is nice
then it is rough. Cold, rough things are
kind. If something is cold and nice then
it is young. If something is kind and cold
then it is green. All red things are nice. Is
the following True, False, or Unknown?
Gary is not nice.

Gary is red. All red
things are nice. Gary
is nice.

Faithfulness-
Step: 0.740;
No perturba-
tion

Faithfulness-Step scores for
chains without perturbations
vary from 0.740 to 0.990. Even
though first two sentences are
aligned with the context, the
last sentence in the chain lowers
overall average.

EQASC What insect goes through a brood process
which are the larval and pupal steps com-
bined. Answer: An ant has a brood which
is the larval and pupal process of the ant
after hatching

Most pupal steps go
through larval stages
after hatching. Brood
are the larval and pupal
stages of the ant.

Grammar:
0.258 ; Se-
mantic Error

In this subset, Grammar scores
vary between 0.258 and 0.996. To
score grammatical correctness we
used pre-trained model, that also
punishes chains that sound unnat-
ural, like in this example. As a re-
sult, we see moderate correlations
between Grammar scores and Se-
mantic Error perturbation.

EQASC What uses a beak for catching prey? An-
swer: a beak is used for catching prey by
eagles.

A beak is used for
catching prey by some
birds. Eagles are a big
bird.

Grammar:
0.529 ; No
perturbation

The Grammar score correctly
identifies grammatical issue. Al-
though no perturbation was not
added in this chain, the reference
itself contained an error.

EntailmentBank A different moon phase occurs approxi-
mately once per week. The first quarter
phase of the moon occurs after the new
moon. For a science activity, Mia had to
draw a picture of the Moon each night. If
Mia drew a new moon, what type of moon
did Mia draw about one week later? An-
swer: first quarter

A different moon phase
doesn’t occur approxi-
mately once per week.
The first quarter phase
of the moon occurs
after the new moon.
Therefore the first quar-
ter phase of the moon
will occur one week af-
ter the new moon

Info-Chain:
0.542; Negate
step

In this subset, Info-Chain scores
calculated using finetuned sup-
simcse-roberta-base belong to the
interval (0.530; 0.999), with 92%
of perturbed instances having
scores less then 0.92, and 95% of
non-perturbed instance that were
scored higher. Even though Info-
Chain embeds chain as a whole, it
turned out to be very sensitive to
negation perturbations, especially
when the model is finetuned, re-
sulting in high Somers’ D correla-
tion score of 0.955.
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Dataset Context Reasoning chain Score type:
Score value;
Perturbation

Comment

EntailmentBank Hunting decreases animal populations. If
a population decreases to zero then that
organism is extinct. An animal is a kind
of organism. Many animals are still being
hunted for their fur. Because of this, many
of these animals are in danger of. Answer:
extinction.

Hunting decreases an-
imal populations. If a
population decreases to
zero then that organism
is extinct. An animal
is a kind of organism.
Therefore if hunting de-
creases the animal pop-
ulation to zero, then the
animal will not be ex-
tinct.

Info-Chain:
0.983; Negate
step

In this case, a negation occurs in
the last step of the chain, which
represents a conclusion and does
not overlap in wording with the
context, and goes undetected by
the metric.

MATH What is 1(2
235423523)? One raise to any power

be one , so our answer
be 1

Grammar:
0.053 ; Gram-
matical Error

Pre-trained model, used to de-
tect grammatical errors, gives low
scores for simple chains. In this
subset, Grammar scores belong to
the interval (0.053; 0.990).

MATH Two fair eight-sided dice have their faces
numbered from 1 to 8. What is the ex-
pected value of the sum of the rolls of
both dice?

To _ the expected value
of a double roll , we
can simply add the ex-
pected values of the in-
dividual rolls , giving
4.5 + 4.5 = 9 .

Grammar:
0.982; Gram-
matical Error

This is an example of a chain
where the classifier model failed
to catch the grammar error
(dropped verb "find"). Even
though the model is able to
identify some grammatical errors,
Grammar score distributions over
perturbed and unperturbed data
overlap significantly, with mean
0.909 and variance 0.005 for un-
perturbed subset, and 0.854 mean
and 0.014 for perturbed. As a re-
sult, the correlation score is 0.392,
which is quite low.

ASDIV The puppet show begins at 2:00 p.m. It
lasts 1 hour and 30 minutes. What time
does it end?

(2 (hour) + 60
(min+hour) / 1 (hour)
/ 60 (min*hour) / 30
(min)) * 60 (min/hour)
= 3 r30; hh:mm = 3:30
p.m.

Info-Step:
0.005; Shuffle
Operations

In this subset, Info-Step varies be-
tween 0.005 and 0.796, flagging
most of the chains with shuffled
steps. Scores are distributed with
mean 0.356 and variance 0.056
for perturbed, and 0.705 and vari-
ance 0.004 for unperturbed chains.
Resulting Somers’ D correlation
score is 0.879.

ASDIV I have 28 cents in my pocket. How coins
could I have on minimization?

28/25=1 r3; 3+1=3;
1/3=4

Info-Step:
0.705; Shuffle
Operations

This is an example of a chain
where perturbation in operations
got higher scores by the model.

ASDIV Mrs. Hilt has $10. She spends $3 on a toy
truck and $2 on a pencil case. How much
money does she have left?

10-(3+2)=5 Info-Step:
0.561; No
perturbation

This is an example of a chain that
was scored on a lower spectrum by
the Info-Step spectrum, although
it had no perturbation or other
type of error included.

57


	Introduction
	Related Work
	Reasoning Error Taxonomy and Datasets Construction
	Reasoning Scorer: ROSCOE
	Semantic Alignment Metrics (ROSCOE-SA)
	Semantic Similarity Metrics (ROSCOE-SS)
	Logical Inference Metrics (ROSCOE-LI)
	Language Coherence Metrics (ROSCOE-LC)

	Experimental Setup
	Experimental Results
	Analysis
	Conclusion
	Limitations
	Few-shot Prompting Examples (Cont. from § 1)
	Taxonomy of Reasoning Errors (Cont. from § 3)
	ROSCOE Metrics Details (Cont. from §4)
	Experimental Setup Details (Cont. from § 5)
	Diagnostic Datasets
	Human Judged Dataset Construction
	Synthetic Diagnostics Dataset Generation with Perturbation Rules

	Human Annotations (Cont. from § 5)
	Sentence Embedding Model Training (Cont. from §6)
	Additional Experimental Results (Cont. from §6)
	Controlled Experiments with Diagnostics Datasets
	Experiments with Human Judgement Datasets


