
Adaptive Diffusion Terrain Generator for
Autonomous Uneven Terrain Navigation

Youwei Yu† Junhong Xu† Lantao Liu
Indiana University, Bloomington

{youwyu, xu14, lantao}@iu.edu

Abstract: Model-free reinforcement learning has emerged as a powerful method
for developing robust robot control policies capable of navigating through com-
plex and unstructured terrains. The effectiveness of these methods hinges on
two essential elements: (1) the use of massively parallel physics simulations to
expedite policy training, and (2) an environment generator tasked with crafting
sufficiently challenging yet attainable terrains to facilitate continuous policy im-
provement. Existing methods of environment generation often rely on heuristics
constrained by a set of parameters, limiting the diversity and realism. In this work,
we introduce the Adaptive Diffusion Terrain Generator (ADTG), a novel method
that leverages Denoising Diffusion Probabilistic Models to dynamically expand
existing training environments by adding more diverse and complex terrains adap-
tive to the current policy. ADTG guides the diffusion model’s generation process
through initial noise optimization, blending noise-corrupted terrains from existing
training environments weighted by the policy’s performance in each correspond-
ing environment. By manipulating the noise corruption level, ADTG seamlessly
transitions between generating similar terrains for policy fine-tuning and novel
ones to expand training diversity. Our experiments show that the policy trained by
ADTG outperforms both procedural generated and natural environments, along
with popular navigation methods.

Keywords: Curriculum Reinforcement Learning, Guided Diffusion Model, Field
Robots

1 Introduction

Autonomous navigation across uneven terrains necessitates the development of control policies that
exhibit both robustness and smooth interactions within challenging environments [1, 2, 3]. In this
work, we specifically target the training of a control policy that allows the mobile-wheeled robots
to adeptly navigate through diverse uneven terrains, such as off-road environments characterized by
varying elevations, irregular surfaces, and obstacles.

Recent advancements in reinforcement learning (RL) have shown promise in enhancing autonomous
robot navigation on uneven terrains [4, 5, 6]. While an ideal scenario involves training an RL policy
to operate seamlessly in all possible environments, the complexity of real-world scenarios makes it
impractical to enumerate the entire spectrum of possibilities. Popular methods, including curricu-
lum learning in simulation [7] and imitation learning using real-world collected data [8], encounter
limitations in terms of training data diversity and the human efforts required. Without sufficient
data and training, the application of learned policies to dissimilar scenarios becomes challenging,
thereby hindering efforts to bridge the train-to-real gap. Additionally, existing solutions, such as
scalar traversability classification for motion sampling [9, 10] and optimization methods [11, 12],
may exhibit fragility due to sensor noise and complex characteristics of vehicle-terrain interactions.

†Equal contribution. Demonstrations at https://adtg-sim-to-real.github.io.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://adtg-sim-to-real.github.io

(a) Adjusting Realistic Terrain Diversity and Difficulty with ADTG

250 500

0.005

0.010

0.015

0.020

0.025

0.030

0.035

No
rm

al
ize

d
Va

ria
nc

e

800 1000
Forward Steps

0.0

0.2

0.4

0.6

0.8

1.0

(b) Diffusion Variance
Figure 1: (a) Each row shows denoised terrains at different forward steps K, and each column blends terrains
of varying difficulty using weighting factor w. Decreasing w1 (easier terrain) and increasing w2 raises difficulty.
As K increases, terrains show more novelty while maintaining difficulty. (b) Variance of a typical denoising
diffusion process with a zoom-in view (left).

To tackle this challenge, we propose the Adaptive Diffusion Terrain Generator (ADTG), an environ-
ment generator designed to co-evolve with the policy, producing new environments that effectively
push the boundaries of the policy’s capabilities. Starting with an initial environment dataset, which
may be from existing elevation data or terrains generated by generative models, ADTG is capable
of expanding it into new and diverse environments. The significant contributions include:
1. Adjustable Generation Difficulty: ADTG dynamically modulates the complexity of generated

terrains by optimizing the initial noise (latent variable) of the diffusion model. It blends noise-
corrupted terrains from the training environments, guided by weights derived from the current
policy’s performance. As a result, the reverse diffusion process, starting at the optimized initial
noise, can synthesize terrains that offer the right level of challenge tailored to the policy’s current
capabilities.

2. Adjustable Generation Diversity: By adjusting the initial noise level before executing the
DDPM reverse process, ADTG effectively varies between generating challenging terrains and
introducing new terrain geometries. This capability is tailored according to the diversity present
in the existing training dataset, enriching training environments as needed throughout the training
process. Such diversity is crucial to ensure the trained policy to adapt and perform well in a range
of previously unseen scenarios.

We systematically validate the proposed ADTG framework by comparing it with established envi-
ronment generation methods [13, 5] for training navigation policies on uneven terrains. Our exper-
imental results indicate that ADTG offers enhanced generalization capabilities and faster conver-
gence. Building on this core algorithm, we integrate ADTG with teacher-student distillation [14]
and domain randomization [15] in physics and perception. We evaluate the deployment policy with
zero-shot transfer to simulation and real-world experiments. The results reveal our framework’s
superiority over competing methods [16, 10, 4, 17] in key performance metrics.

2 Related Work

Offroad Navigation. Off-road navigation requires planners to handle more than simple planar
motions. Simulating full terra-dynamics for complex, deformable surfaces like sand, mud, and snow
is computationally intensive. Consequently, most model-based planners use simplified kinematics
models for planning over uneven terrains [3, 18, 19, 20, 21] and incorporate semantic cost maps
to evaluate traversability not accounted in the simplified model [2, 22]. Imitation learning (IL)
methods [8, 23, 24] bypass terrain modeling by learning from expert demonstrations but require
labor-intensive data collection. On the other hand, model-free RL does not require expert data
and has shown impressive results enabling wheeled [7, 25, 4, 26] and legged robots [13, 5, 27,
28] traversing uneven terrains by training policies over diverse terrain geometries. However, the
challenge is to generate realistic environments to bridge the sim-to-real gap. The commonly-used
procedural generation methods [5, 13] are limited by parameterization and may not accurately reflect
real-world terrain geometries. Our work addresses this by guiding a diffusion model trained on
natural terrains to generate suitable terrain surfaces for training RL policies.

2

Automatic Curriculum Learning and Environment Generation. Our method is a form of au-
tomatic curriculum learning [29, 30], where it constructs increasingly challenging environments to
train RL policies. While one primary goal of curriculum learning in RL is to expedite training
efficiency [31, 32, 33], recent work shows that such automatic curriculum can be a by-product of
unsupervised environment design (UED) [34, 35, 36, 37, 38]. It aims to co-evolve the policy and
an environment generator during training to achieve zero-shot transfer during deployment. Unlike
prior works in UED, the environments generated by our method are grounded in realistic envi-
ronment distribution learned by a diffusion model and guided by policy performance. Recently, a
concurrent work proposes Grounded Curriculum Learning [39]. It uses a variational auto-encoder
(VAE) to learn realistic tasks and co-evolve a parameterized teacher policy to control VAE-generated
tasks using UED-style training. In contrast, our work uses a sampling-based optimization method
to control the diffusion model’s initial noise for guided generation.

Controllable Generation with Diffusion Models. Controllable generation aims to guide a pre-
trained diffusion model to generate samples that are not only realistic but also satisfy specific criteria.
A commonly used strategy is adding guided perturbations to modify the generation process of a
pre-trained diffusion model using scores from the conditional diffusion [40, 41] or gradients of cost
functions [42]. Another approach is to directly optimize the weights of a pre-trained diffusion model
so that the generated samples optimize some objective function. By treating the diffusion generation
process as a Markov Decision Process, model-free reinforcement learning has been used to fine-
tune the weights of a pre-trained diffusion model [43, 44]. This approach can also be viewed as
sampling from an un-normalized distribution, given a pre-trained diffusion model as a prior [45].
Our work is closely related to initial noise optimization techniques for guiding diffusion models [46,
47, 48]. Instead of refining the diffusion model directly, these methods focus on optimizing the
initial noise input. By freezing the pre-trained diffusion model, we ensure that the generated samples
remain consistent with the original data distribution. In contrast to existing approaches focusing on
content generation, our work integrates reinforcement learning (RL) with guided diffusion to train
generalizable robotic policies.

3 Preliminaries

3.1 Problem Formulation

We represent the terrain using a grid-based elevation map, denoted as e ∈ RW×H , where W and
H represent the width and height, respectively. This terrain representation is widely adopted in
motion planning across uneven surfaces. Similar to most works in training RL policies for rough
terrain navigation [13, 5], we use existing high-performance physics simulators [49] to model the
state transitions of the robot moving on uneven terrains st+1 ∼ p(st+1|st, at, e). Here, s ∈ S and
a ∈ A represent the robot’s state and action, and each realization of the elevation (i.e., terrain) e
specifies a unique environment. An optimal policy π(a|s, e; θ) can be found by maximizing the
expected cumulative discounted reward. Formally,

θ∗ = argmax
θ

E at∼π(at|st,e),s0∼p(s0),
e∼p(e),st+1∼p(st+1|st,at,e)

[
T∑

t=0

γtR(st, at)

]
, (1)

where p(s0) is the initial state distribution and p(e) denotes the distribution over the environments.
Due to the elevation e imposing constraints on the robot’s movement, the policy optimized through
Eq. (1) is inherently capable of avoiding hazards on elevated terrains. We aim to dynamically evolve
the environment distribution p(e) based on the policy’s performance, ensuring training efficiency and
generating realistic terrain elevations. While constructing a realistic state transition p(st+1|st, at, e)
is also important for reducing the sim-to-real gap, we leave it to our future work.

3.2 Adaptive Curriculum Learning for Terrain-Aware Policy Optimization

A theoretically correct but impractical solution to Eq.(1) is to train on all possible terrains Λ =
(e1, ..., eN), with p(e) as a uniform distribution over Λ. However, the vast variability of terrain

3

geometries makes this unfeasible. Even if possible, it might produce excessively challenging or
overly simple terrains, risking the learned policy to have poor performance [50]. Adaptive Curricu-
lum Reinforcement Learning (ACRL) addresses these issues by dynamically updating the training
dataset [51]. ACRL generates and selects environments that yield the most policy improvement.
In our work, designing an effective environment generator is crucial. It should (1) generate realis-
tic environments matching real-world distributions and (2) adequately challenge the current policy.
Common approaches include using adjustable pre-defined terrain types [13], which offers control
but may lack diversity, and generative models [52], which excel in realism but may struggle with
precise policy-tailored challenges. In the following, we detail the proposed ADTG, which balances
realism and policy-tailored terrain generation.

4 Adaptive Diffusion Terrain Generator

This section introduces the Adaptive Diffusion Terrain Generator (ADTG), a novel ACRL generator
that manipulates the DDPM process based on current policy performance and dataset diversity.
We begin by interpolating between “easy” and “difficult” terrains in the DDPM latent space to
generate terrains that optimize policy training. Next, we modulate the initial noise input based on the
training dataset’s variance to enrich terrain diversity, fostering broader experiences and improving
the policy’s generalization across unseen terrains. We use e, e0, and ek to denote the environment
in the training dataset, the generated terrain through DDPM, and the DDPM’s latent variable at
timestep k, respectively. All three variables are the same size RW×H . Since in DDPM, noises and
latent variables are the same [53], we use them interchangeably.

4.1 Performance-Guided Generation via DDPM

Latent Variable Synthesis for Controllable Generation. Once trained, DDPM can control sample
generation by manipulating intermediate latent variables. In our context, the goal is to steer the
generated terrain surface to maximize policy improvement after being trained on it. While there
are numerous methods to guide the diffusion model [40, 44], we choose to optimize the starting
noise to control the final target [46]. This approach is both simple and effective, as it eliminates the
need for perturbations across all reverse diffusion steps, as required in classifier-free guidance [40],
or fine-tuning of diffusion models [44]. Nevertheless, it still enhances the probability of sampling
informative terrains tailored to the current policy.

Consider a subset of terrain elevations Λ̄ = (e1, e2, . . . , en) from the dataset Λ. To find an initial
noise that generates a terrain maximizing the policy improvement, we first generate intermediate
latent variables (noises) for each training environment in Λ̄ at a forward diffusion time step k, eik ∼
q(eik|ei, k) for i = 1, ..., n. Assume that we have a weighting function w(e, π) that evaluates the
performance improvement after training on each terrain map ei. We propose to find the optimized
initial noise as a weighted interpolation of these latents, where the contribution of each latent eik is
given by the policy improvement in the original terrain environment w(ei, π).

e′k = [Σn
i=1w(e

i, π)eik] / [Σ
n
m=1w(e

m, π)]. (2)

The fused latent variable e′k is then processed through reverse diffusion, starting at time k to synthe-
size a new terrain e′0. The resulting terrain blends the high-level characteristics captured by the latent
features of original terrains, proportionally influenced by their weights. We illustrate this blending
effect in Fig. 1. By controlling weights wi, we can steer the difficulty of the synthesized terrain.

Weighting Function. Policy training requires dynamic weight assignment based on current policy
performance. We define the following weighting function that penalizes terrains that are too easy or
too difficult for the policy:

w (e, π) = exp {r(e, π)} , r(e, π) = −(s(e, π)− s̄)2/σ2. (3)

It penalizes the deviation of terrain difficulty, s(e, π), experienced by the policy π from a desired
difficulty level s̄. This desired level indicates a terrain difficulty that promotes the most significant

4

improvement in the policy. The temperature parameter σ controls the sensitivity of the weighting
function to deviations from this desired difficulty level. We use the navigation success rate [54] to
represent s(·, ·). While alternatives like TD-error [55] or regret [56] exist, this metric has proven
to be an effective and computationally efficient indicator for quantifying an environment’s potential
to enhance policy performance in navigation and locomotion tasks [5, 13]. In Appendix A, we
show that the optimized noise in Eq. (2) and the corresponding weighting function in Eq. (3) can
be derived from formulating the noise optimization problem using Control as Inference [57, 58]
and solving it through Importance Sampling. We denote the procedure of optimizing the noise e′k
using Eq. 2 and generating the final optimized environment by reverse diffusion starting at e′k as
e′ = Synthesize(Λ̄, π, k), where k is the starting time step of the reverse process. As discussed
in the next section, a large k is crucial to maintaining diversity.

4.2 Diversifying Training Dataset via Modulating Initial Noise

The preceding section describes how policy performance guides DDPM in generating terrains that
challenge the current policy’s capabilities. As training progresses, the pool of challenging terrains
diminishes, leading to a point where each terrain no longer provides significant improvement for
the policy. Simply fusing these less challenging terrains does not create more complex scenarios.
Without enhancing terrain diversity, the potential for policy improvement plateaus. To overcome
this, it is essential to shift the focus of terrain generation towards increasing diversity. DDPM’s
reverse process generally starts from a pre-defined forward step, where the latent variable is usually
pure Gaussian noise. However, it can also start from any forward step K with sampled noise as
eK ∼ q(eK |e0) [59]. Fig. 1 shows the variance of generated terrains decreases with fewer forward
steps and vice versa. To enrich our training dataset’s diversity, we propose the following:
1. Variability Assessment: Compute the dataset’s variability Λvar by analyzing the variance of the

first few principal components from a Principal Component Analysis (PCA) on each elevation
map. This serves as an efficient proxy for variability.

2. Forward Step Selection: The forward step k ∝ Λ−1
var is inversely proportional to the variance.

We use a linear scheduler: k = K(1 − Λvar), with K the maximum forward step and Λvar

normalized to 0 ∼ 1. This inverse relationship ensures greater diversity in generated terrains.
3. Terrain Generation: Using the selected forward step k, apply our proposed Synthesize to

generate new terrains, thus expanding variability for training environments.

4.3 ACRL with ADTG Algorithm 1 ACRL with Adaptive Diffusion Ter-
rain Generator
Input: Pretrained DDPM ϵ(·, ·;ϕ), an initial ter-

rain dataset Λ
Output: The optimized privileged policy π∗

Initialize: The privileged policy π
1: while π not converge do
2: e = Selector(Λ, π) ▷ Env. Selection
3: π ← Optim(π, e) ▷ Policy Update
4: k = K(1− Λvar) ▷ Sec. 4.2
5: e′0 = Synthesize(Λ, π, k) ▷ Sec. 4.1
6: Λ← Λ ∪ e′0 ▷ Update Dataset
7: end while

We present the final method pseudo-coded in
Alg. 1 using the proposed ADTG for training
a privileged policy. The algorithm iterates over
policy optimization and guided terrain genera-
tion, co-evolving the policy and terrain dataset
until convergence. The algorithm starts by se-
lecting a training environment that provides the
best training signal for the current policy, which
can be done in various ways [50]. For example,
one can compute scores for terrains based on
the weighting function in Eq. (3) and choose the
one with the maximum weight. Instead of choosing deterministically, we sample the terrain based
on their corresponding weights. The Optim step collects trajectories and performs one policy up-
date in the selected terrain. After the update, we evolve the current dataset by generating a new one,
as shown in lines 4 - 6 of Alg. 1. In practice, we run Alg. 1 in parallel across N terrains, each with
multiple robots. In parallel training, Synthesize begins by sampling N × n initial noises, where
N is the number of new terrains (equal to the number of parallel environments) and n is the sample
size in Eq. (2). It then optimizes over these noises to generate N optimized noises. Finally, these
optimized noises are passed to the DDPM to generate N terrains. When the dataset grows large,

5

it sub-samples terrains from Selector’s complement, with success rates updated by the current
policy. We validate effectiveness of Selector in Sec. 5.1 and Synthesize in Appendix A.3,
which also explains its sub-sampling logic.

ADTG with Policy Distillation. While ADTG can train policies to generalize over terrain ge-
ometries, real-world deployments face challenges beyond geometry. This includes noisy, partial
observations and varying physical properties. To address these, we distill a privileged policy,

DDPM

Latent

CNN

LP

Teacher (PPO)

CNN MLP

Learner (DAgger)

CNN MLP NCP

deployment Policy

Zero-Shot

Sim-to-Real

Tranfer

Privileged policy

Encorder

Teacher
Action

Student
Action

Loss

Noisy State

Depth Meas

Terrain

Privileged State

Reward
ADTG

performance guided ACRL

Figure 2: Framework with our Adaptive Diffu-
sion Terrain Generation (ADTG) and Policy Dis-
tillation. Model-free RL trains privileged policy
on ADTG-generated terrains. The privileged pol-
icy is then distilled into the deployment (Learner)
policy using data aggregation. Iterative training
and terrain generation through ADTG enhance the
deployment policy’s generalization.

which observes the complete elevation map and
noiseless states into a depth vision-based policy
with noisy measurements. The privileged policy is
trained using PPO [60], and the deployment policy
is trained using DAgger [61], utilizing methods sim-
ilar to [6]. To enhance generalization, we integrate
physical and perception domain randomization [15]
(more details in Appendix. C). The training loop in-
tegrating ADTG with teacher-student distillation is
illustrated in Fig. 2 and the Appendix. With ADTG
validated in Sec. 5.1, our whole system is demon-
strated in the sim-to-deploy experiments.

5 Experiments

In this section, we start with the algorithmic eval-
uation to highlight the effectiveness of our ADTG.
Then through sim-to-sim on two kinds of wheeled
robot platforms and sim-to-real on one wheeled and one quadruped robot, we study the performance
of our ADTG policy against ablations and competing methods.

We train in IsaacGym [49] and parallel 100 uneven terrains, each with 100 robots. Among the
elevation dataset [62] as detailed in Appendix C.1, we select 3000 for DDPM training (E-3K), 100
for algorithmic evaluation (E-1H), and 30 for sim-to-sim experiments (E-30). Simulations run on an
Intel i9-14900KF CPU and NVIDIA RTX 4090 GPU. Real-world tests use an NVIDIA Jetson Orin.

5.1 Algorithmic Performance Evaluation

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

R
et

ur
n

ADTG

DTG

N-AT

N-T

N-ADTG

P-ADTG

PGC

PG

Figure 3: The comparison of the normalized re-
turn among our proposed ADTG, the baselines,
and ablation methods.

This section evaluates whether the environment cur-
riculum generated by ADTG enhances the gener-
alization capability of the trained privileged policy
across unfamiliar terrain geometries, on the wheeled
ClearPath Jackal robot. We compare with the fol-
lowing baselines. Procedural Generation Curriculum
(PGC), a commonly used method, uses heuristically
designed terrain parameters [13]. Our implemented
PGC follows ADTG, adapting the terrain via the score function Eq. (3) and dynamically updating
the dataset. First, to ablate our Adaptive curriculum, Diffusion Terrain Generator (ADTG) generates
terrain without curriculum. Procedural Generation (PGC) randomly samples parameters. To ablate
our Diffusion Generator, Natural Adaptive Terrain (N-ADTG) selects terrains directly from E-3K.
To ablate both, Natural Terrain (N-ADTG) randomly samples from E-3K without curriculum. Mono
font means the ablated parts. Second, to test ADTG’s robustness to initialization other than diffusion,
N-ADTG and P-ADTG start with datasets sub-sampled from E-3K and procedural generations.

All methods use the same training and evaluation setup. After each training epoch, policies are tested
in held-out evaluation environments with 200 000 start-goal pairs. Fig. 3 shows the normalized RL
return1. ADTG outperforms PGC and N-AT within 40 epochs, exceeding the return by over 0.1,

1It is calculated by the actual return divided by value function’s upper bound based on our reward function.

6

Suc. Rate (%) Traj. Ratio Orien. Vib. (rad
s

) Orien. Jerk (rad
s3

) Pos. Jerk (m
s3

)
S R D S R D S R D S R D S R D

Falco 26 47 22 2.76 1.24 1.18 0.71 0.15 0.17 275.6 165 143.2 48 42.1 20.3
MPPI 48 71 34 1.21 1.23 1.04 0.75 0.18 0.18 228.7 161.7 81 40.7 34.2 23.6
TERP 33 68 25 1.62 1.16 1.1 0.77 0.13 0.13 210.1 137.6 112.2 37.1 20.2 17.5
POVN 17 28 24 1.23 1.23 1.28 0.68 0.18 0.14 241 120.2 127.5 43.7 38.6 21.3
N-AT 67 x x 1.24 x x 1.08 x x 323.4 x x 57.6 x x
PGC 43 x x 1.92 x x 0.97 x x 236.1 x x 42 x x
Ours 87 80 45 1.52 1.25 1.32 0.65 0.11 0.13 193.5 113.3 73.4 35 20 18.1

Table 1: Statistical results for S(imulation), R(eal-world) and D(une) comparing our method with SOTA works.
S: 30 environments; R: grass, forest, arid, rust, mud, and gravel; D: dune hard, tough, and expert. Green and
Bold indicate the best and second-best results. x means poor performance.

which translates to more than 20 000 successes in our recorded data. As shown in N-ADTG and
P-ADTG, regardless of initial terrains, ADTG consistently generates effective terrains. DTG, N-T,
and PG results validate our curriculum Selector, with PG’s sharp curve changes due to overly
difficult terrains. N-AT lacks dataset evolution, and PGC lacks efficient terrain parameter control. In
summary, ADTG excels at adapting environment difficulty based on evolving policy performance.

5.2 Zero-shot Sim-to-Sim and Sim-to-Real Experiments

This section evaluates the zero-shot transfer capability of sim-to-deploy environments. Metrics in-
clude the success rate, trajectory ratio, orientation vibration |ω|, orientation jerk |∂

2ω
∂t2 |, and position

jerk |∂a∂t |, where ω and a denote angular velocity and linear acceleration. These motion stability in-
dicators are crucial in mitigating sudden pose changes and enhancing overall safety. The trajectory
ratio is the successful path length relative to straight-line distance and indicates navigator efficiency.
All baselines use the elevation map [63] with depth camera and identify terrains as obstacles if the
slope estimated from the elevation map exceeds 20◦. For orientation costs, we obtain the robot’s roll
and pitch by projecting its base to the elevation map.

Baselines. Falco [16], a classic motion primitives planner, and MPPI [10, 64], a sampling-based
model predictive controller, are recognized for the success rate and efficiency. They use the point-
cloud and elevation map to weigh collision risk and orientation penalty. TERP [4], an RL policy
trained in simulation, conditions on the elevation map, rewarding motion stability and penalizing
steep slopes. POVNav [17] performs Pareto-optimal navigation by identifying sub-goals in seg-
mented images [65], excelling in unstructured outdoor environments.

Simulation Experiment. We simulate wheeled robots, ClearPath Jackal and Husky, in ROS Gazebo
on 30 diverse environments (E-30), equipped with a RealSense D435i camera. We add Gaussian
noises to the robot state, depth measurement, and vehicle control to introduce uncertainty. 1000
start and goal pairs are sampled for each environment. We do not include ablations other than N-AT
because of poor algorithmic performance. As Jackal’s results shown in Table 1, our method outper-
forms the baselines. Appendix C.2 provides statistical results for Husky. While all methods show
improved performance due to the Husky’s better navigability on uneven terrains, our method consis-
tently outperformed baseline methods. The depth measurement noise poses a substantial challenge
in accurately modeling obstacles and complex terrains. Falco and MPPI often cause the robot to get
stuck or topple over, and TERP often predicts erratic waypoints that either violate safety on eleva-
tion map or are overly conservative. Learning-based TERP and POVN lack generalizability, with
their performance varying across different environments. This issue is mirrored in N-AT and PGC,
highlighting the success of adaptive curriculum and realistic terrain generation properties of ADTG.

Real-world Experiment. The Jackal robot is equipped with a Velodyne-16 LiDAR, a RealSense
D435i camera, and a 3DM-GX5-25 IMU. We test in 9 diverse representative environments, grass,
forest, arid, rust, mud, gravel, dune-hard, dune-tough, and dune-expert, dis-
played in Fig. 4. For each environment, we sample 36 start-goal pairs. Note that the results of N-AT
and PGC policies are not presented as they achieved limited success in real-world experiments.
Table 1 provides an overview of the performance metrics, with success rates across all methods de-

7

grass forest arid

mud gravel

dune-hard dune-tough dune-expert

rust

(a) Experimental Environments

Ours
MPPI TERP

Falco

Start & Goal

Waypoints

LiDAR

IMU

Camera

(b) Robot and Dune-Hard Example Demonstrations
Figure 4: The left panel shows nine challenging environments, the middle our platform, and the right Dune-
hard, where our method outperformed others in navigating ravines.

tailed in the Appendix C.3. In forest, POVNav struggled with image segmentation of complex
ground elements like foliage and underbrush. Other baselines encountered difficulties due to impre-
cise depth data affecting terrain modeling. All baselines risked getting stuck in muddy, sandy, and
rocky areas. In contrast, our method autonomously engaged in arc movements, avoiding immobi-
lization in slippery environments. In dunes, characterized by steep elevation changes, failures of
other methods were due to incorrect obstacle detection or severe slope changes causing overturn.

In addition, we ablated Physics and Perception domain randomization to study their contributions.
Removing either reduced success rates, though both ablations outperformed baselines due to ADTG.
The perception domain suffered from camera depth issues tied to exposure. Without the physics do-
main, the robot showed improved orientation smoothness but struggled to make reactive behaviors,
since the learned arc movements in slippery areas benefited from this domain.

Real-World Quadruped Locomotion. To validate ADTG’s generalization across different embodi-
ments, we benchmark against PGC and the built-in MPC controller on the Unitree Go1 quadruped in
the same environments as Jackal. Both ADTG and PGC were trained using the Parkour [66] “walk”
policy. Similar to the hiking experiment [5, 13], we conducted a continuous 1.2 km loop, following
MPC’s footprints for fairness. Failures, defined as rollovers, occurred when detours around challeng-
ing areas were not allowed. MPC had 6 rollovers 3 from high-speed commands, 3 on challenging
gravel and dune terrains). ADTG policy exhibited natural postures with 2 failures due to high-speed
commands. PGC policy showed robust prostrate postures but 11 failures due to sudden movements
(jumps) on all terrains except grass. The results highlight ADTG’s advantages in learning robust
behavior. See the appendix for the full Jackal ablation analysis and quadruped experiment details.

6 Conclusion, Limitations and Future Directions

We propose an Adaptive Diffusion Terrain Generator (ADTG) to create realistic and diverse terrains
based on evolving policy performance, enhancing RL policy’s generalization and learning efficiency.
To guide the diffusion model generation process, we propose optimizing the initial noises based
on the potential improvements of the policy after being trained on the environment denoised from
this initial noise. Algorithmic performance shows ADTG’s superiority in generating challenging
but suitable environments over established methods such as commonly used procedural generation
curriculum. Combined with domain randomization in a teacher-student framework, it trains a robust
deployment policy for zero-shot transfer to new, unseen terrains. Extensive sim-to-deploy tests with
wheeled and quadruped robots validate our approach against SOTA planning methods.

Limitations and Future Directions: A key limitation of ADTG is that it evolves only the envi-
ronment distribution, relying on physics simulators for state transitions, limiting deployment in the
complex real world. While domain randomization helps, it’s not a full solution. Future work will
integrate environment distribution and physics to bridge the sim-to-real gap. Additionally, ADTG’s
environment scale is suited for local planning, but larger environments are needed for long-horizon
tasks. We plan to explore hierarchical diffusion models for generating multi-layered environments.

8

References

[1] Z. Jian, Z. Lu, X. Zhou, B. Lan, A. Xiao, X. Wang, and B. Liang. Putn: A plane-fitting based
uneven terrain navigation framework. In IEEE/RSJ Int. Conf. on Intel. Robots and Syst. (IROS),
pages 7160–7166. IEEE, 2022.

[2] X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Schmittle, J. Lee, W. Yuan, Z. Chen,
S. Deng, et al. TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road
Navigation. Robotics: Science and Systems, 2023.

[3] J. Xu, K. Yin, Z. Chen, J. M. Gregory, E. A. Stump, and L. Liu. Kernel-based diffusion ap-
proximated Markov decision processes for autonomous navigation and control on unstructured
terrains. The International Journal of Robotics Research, page 02783649231225977, 2024.

[4] K. Weerakoon, A. J. Sathyamoorthy, U. Patel, and D. Manocha. TERP: Reliable Planning in
Uneven Outdoor Environments using Deep Reinforcement Learning. In Proc. Int. Conf. Robot.
Automat., pages 9447–9453, 2022.

[5] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust percep-
tive locomotion for quadrupedal robots in the wild. Science Robotics, 7(1):eabk2822, 2022.

[6] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged Locomotion in Challenging Terrains
using Egocentric Vision. In Proc. Conf. Robot Learn., number 2, pages 403–415, 2023.

[7] S. Josef and A. Degani. Deep Reinforcement Learning for Safe Local Planning of a Ground
Vehicle in Unknown Rough Terrain. IEEE Robot. and Automat. Letters, 5(4):6748–6755, 2020.

[8] X. Xiao, J. Biswas, and P. Stone. Learning Inverse Kinodynamics for Accurate High-Speed
Off-Road Navigation on Unstructured Terrain. IEEE Robot. and Automat. Letters, 6(3):6054–
6060, 2021.

[9] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.
IEEE Robot. & Automat. Magazine, 4(1):23–33, 1997.

[10] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving
with model predictive path integral control. In Proc. IEEE Int. Conf. Robot. Automat., pages
1433–1440, 2016.

[11] C. Rösmann, F. Hoffmann, and T. Bertram. Timed-Elastic-Bands for time-optimal point-to-
point nonlinear model predictive control. In European Control Conf., pages 3352–3357, 2015.

[12] X. Zhang, A. Liniger, and F. Borrelli. Optimization-Based Collision Avoidance. IEEE Trans.
on Control Sys. Tech., 29(3):972–983, 2021.

[13] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science Robotics, 5(47):eabc5986, 2020.

[14] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by Cheating. In Proc. of the Conf.
on Robot Learning, volume 100, pages 66–75. PMLR, 30 Oct–01 Nov 2020.

[15] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[16] J. Zhang, C. Hu, R. G. Chadha, and S. Singh. Falco: Fast likelihood-based collision avoidance
with extension to human-guided navigation. Journal of Field Robot., 37:1300 – 1313, 2020.

[17] D. Pushp, Z. Chen, C. Luo, J. M. Gregory, and L. Liu. POVNav: A Pareto-Optimal Mapless
Visual Navigator, 2023.

9

http://doi.org/10.1109/IROS47612.2022.9981038
http://doi.org/10.1109/IROS47612.2022.9981038
http://doi.org/10.15607/RSS.2023.XIX.103
http://doi.org/10.15607/RSS.2023.XIX.103
https://doi.org/10.1177/02783649231225977
https://doi.org/10.1177/02783649231225977
https://doi.org/10.1177/02783649231225977
https://doi.org/10.1109/ICRA46639.2022.9812238
https://doi.org/10.1109/ICRA46639.2022.9812238
http://doi.org/10.1126/scirobotics.abk2822
http://doi.org/10.1126/scirobotics.abk2822
https://proceedings.mlr.press/v205/agarwal23a.html
https://proceedings.mlr.press/v205/agarwal23a.html
https://doi.org/10.1109/LRA.2020.3011912
https://doi.org/10.1109/LRA.2020.3011912
https://doi.org/10.1109/LRA.2021.3090023
https://doi.org/10.1109/LRA.2021.3090023
http://doi.org/10.1109/100.580977
http://doi.org/10.1109/ICRA.2016.7487277
http://doi.org/10.1109/ICRA.2016.7487277
http://doi.org/10.1109/ECC.2015.7331052
http://doi.org/10.1109/ECC.2015.7331052
https://doi.org/10.1109/TCST.2019.2949540
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://proceedings.mlr.press/v100/chen20a.html
 https://doi.org/10.48550/arXiv.1910.07113
https://doi.org/10.1002/rob.21952
https://doi.org/10.1002/rob.21952
https://arxiv.org/abs/2310.14065
https://arxiv.org/abs/2310.14065

[18] J. Wang, L. Xu, H. Fu, Z. Meng, C. Xu, Y. Cao, X. Lyu, and F. Gao. Towards Efficient
Trajectory Generation for Ground Robots beyond 2D Environment. In Proc. IEEE Int. Conf.
Robot. Automat., pages 7858–7864, 2023.

[19] L. Xu, K. Chai, Z. Han, H. Liu, C. Xu, Y. Cao, and F. Gao. An Efficient Trajectory Planner for
Car-Like Robots on Uneven Terrain. In IEEE/RSJ Int. Conf. on Intel. Robots and Syst. (IROS),
pages 2853–2860. IEEE, 2023.

[20] H. Lee, J. Kwon, and C. Kwon. Learning-based Uncertainty-aware Navigation in 3D Off-Road
Terrains. In Proc. Int. Conf. Robot. Automat., pages 10061–10068, 2023.

[21] J. Moyalan, Y. Chen, and U. Vaidya. Convex Approach to Data-Driven Off-Road Navigation
via Linear Transfer Operators. IEEE Robot. and Automat. Letters, 8(6):3278–3285, 2023.

[22] S. Triest, M. G. Castro, P. Maheshwari, M. Sivaprakasam, W. Wang, and S. Scherer. Learning
Risk-Aware Costmaps via Inverse Reinforcement Learning for Off-Road Navigation. In Int.
Conf. on Robot. and Automat., pages 924–930, 2023.

[23] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou, and B. Boots. Imitation
learning for agile autonomous driving. The International Journal of Robotics Research, 39
(2-3):286–302, 2020.

[24] S. Siva, M. Wigness, J. Rogers, and H. Zhang. Enhancing Consistent Ground Maneuverability
by Robot Adaptation to Complex Off-Road Terrains. In Conf. on Robot Learn., 2021.

[25] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat. A Sim-to-Real Pipeline for Deep
Reinforcement Learning for Autonomous Robot Navigation in Cluttered Rough Terrain. IEEE
Robot. and Automat. Letters, 6(4):6569–6576, 2021.

[26] U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha. DWA-RL: Dynamically
Feasible Deep Reinforcement Learning Policy for Robot Navigation among Mobile Obstacles.
In IEEE Int. Conf. on Robot. and Automat. (ICRA), pages 6057–6063, 2021.

[27] F. Jenelten, J. He, F. Farshidian, and M. Hutter. DTC: Deep Tracking Control. Science
Robotics, 9(86):eadh5401, 2024.

[28] T. Miki, J. Lee, L. Wellhausen, and M. Hutter. Learning to walk in confined spaces using 3D
representation. arXiv preprint arXiv:2403.00187, 2024.

[29] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic curriculum learn-
ing for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

[30] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone. Curriculum Learning
for Reinforcement Learning Domains: A Framework and Survey. J. Mach. Learn. Res., 21(1),
2020. ISSN 1532-4435.

[31] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D. Silver.
Distributed Prioritized Experience Replay. In Int. Conf. on Learn. Representations, 2018.

[32] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang. Curriculum-guided Hindsight Experience
Replay. In Advances in Neural Info. Processing Syst., volume 32. Curran Associates, Inc.,
2019.

[33] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic Goal Generation for Reinforcement
Learning Agents. In Proc. of Int. Conf. on Mach. Learn, volume 80, pages 1515–1528. PMLR,
10–15 Jul 2018.

[34] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
complexity and zero-shot transfer via unsupervised environment design. Advances in Neural
Info. Processing Syst., 33:13049–13061, 2020.

10

https://doi.org/10.1109/ICRA48891.2023.10160330
https://doi.org/10.1109/ICRA48891.2023.10160330
https://doi.org/10.1109/IROS55552.2023.10341558
https://doi.org/10.1109/IROS55552.2023.10341558
https://doi.org/10.1109/ICRA48891.2023.10161543
https://doi.org/10.1109/ICRA48891.2023.10161543
https://doi.org/10.1109/LRA.2023.3262200
https://doi.org/10.1109/LRA.2023.3262200
https://doi.org/10.1109/ICRA48891.2023.10161268
https://doi.org/10.1109/ICRA48891.2023.10161268
https://doi.org/10.1177/0278364919880273
https://doi.org/10.1177/0278364919880273
https://openreview.net/forum?id=WIE9t_UwOpM
https://openreview.net/forum?id=WIE9t_UwOpM
https://doi.org/10.1109/LRA.2021.3093551
https://doi.org/10.1109/LRA.2021.3093551
https://doi.org/10.1109/ICRA48506.2021.9561462
https://doi.org/10.1109/ICRA48506.2021.9561462
https://doi.org/10.1126/scirobotics.adh5401
 https://doi.org/10.48550/arXiv.2403.00187
 https://doi.org/10.48550/arXiv.2403.00187
https://arxiv.org/abs/2003.04664
https://arxiv.org/abs/2003.04664
https://www.jmlr.org/papers/volume21/20-212/20-212.pdf
https://www.jmlr.org/papers/volume21/20-212/20-212.pdf
https://openreview.net/forum?id=H1Dy---0Z
https://proceedings.neurips.cc/paper_files/paper/2019/file/83715fd4755b33f9c3958e1a9ee221e1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/83715fd4755b33f9c3958e1a9ee221e1-Paper.pdf
https://proceedings.mlr.press/v80/florensa18a.html
https://proceedings.mlr.press/v80/florensa18a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/985e9a46e10005356bbaf194249f6856-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/985e9a46e10005356bbaf194249f6856-Paper.pdf

[35] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer (poet): End-
lessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

[36] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. O. Stanley. Enhanced POET:
Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges
and their Solutions. In Int. Conf. on Mach. Learn., 2020.

[37] M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized level replay. In Int. Conf. on Mach.
Learn., pages 4940–4950. PMLR, 2021.

[38] D. Li, W. Li, and P. Varakantham. Diversity Induced Environment Design via Self-Play, 2023.

[39] L. Wang, Z. Xu, P. Stone, and X. Xiao. Grounded Curriculum Learning. arXiv preprint
arXiv:2409.19816, 2024.

[40] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[41] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[42] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided
conditional diffusion for controllable traffic simulation. In IEEE Int. Conf. on Robot. and
Automat. (ICRA), pages 3560–3566. IEEE, 2023.

[43] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

[44] M. Uehara, Y. Zhao, T. Biancalani, and S. Levine. Understanding Reinforcement
Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review. arXiv preprint
arXiv:2407.13734, 2024.

[45] S. Venkatraman, M. Jain, L. Scimeca, M. Kim, M. Sendera, M. Hasan, L. Rowe, S. Mittal,
P. Lemos, E. Bengio, et al. Amortizing intractable inference in diffusion models for vision,
language, and control. arXiv preprint arXiv:2405.20971, 2024.

[46] H. Ben-Hamu, O. Puny, I. Gat, B. Karrer, U. Singer, and Y. Lipman. D-Flow: Differentiating
through Flows for Controlled Generation. arXiv preprint arXiv:2402.14017, 2024.

[47] K. Karunratanakul, K. Preechakul, E. Aksan, T. Beeler, S. Suwajanakorn, and S. Tang. Opti-
mizing diffusion noise can serve as universal motion priors. In IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, pages 1334–1345, 2024.

[48] X. Guo, J. Liu, M. Cui, J. Li, H. Yang, and D. Huang. Initno: Boosting text-to-image diffusion
models via initial noise optimization. In IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, pages 9380–9389, 2024.

[49] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac Gym: High Performance GPU Based Physics
Simulation For Robot Learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

[50] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Int. Conf. on
Mach. Learn., pages 41–48, 2009.

[51] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic curriculum learn-
ing for deep RL: A short survey. arXiv preprint arXiv:2003.04664, 2020.

11

https://arxiv.org/abs/1901.01753
https://arxiv.org/abs/1901.01753
http://proceedings.mlr.press/v119/wang20l/wang20l.pdf
http://proceedings.mlr.press/v119/wang20l/wang20l.pdf
http://proceedings.mlr.press/v119/wang20l/wang20l.pdf
https://proceedings.mlr.press/v139/jiang21b.html
https://arxiv.org/abs/2302.02119
https://www.arxiv.org/abs/2409.19816
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2211.15657
https://arxiv.org/abs/2211.15657
https://doi.org/10.1109/ICRA48891.2023.10161463
https://doi.org/10.1109/ICRA48891.2023.10161463
https://arxiv.org/abs/2305.13301
https://arxiv.org/abs/2305.13301
https://arxiv.org/abs/2407.13734
https://arxiv.org/abs/2407.13734
https://arxiv.org/abs/2405.20971
https://arxiv.org/abs/2405.20971
https://arxiv.org/abs/2402.14017
https://arxiv.org/abs/2402.14017
https://doi.org/10.1109/CVPR52733.2024.00133
https://doi.org/10.1109/CVPR52733.2024.00133
https://doi.org/10.1109/CVPR52733.2024.00896
https://doi.org/10.1109/CVPR52733.2024.00896
https://openreview.net/forum?id=fgFBtYgJQX_
https://openreview.net/forum?id=fgFBtYgJQX_
https://dl.acm.org/doi/abs/10.1145/1553374.1553380
https://arxiv.org/pdf/2003.04664.pdf
https://arxiv.org/pdf/2003.04664.pdf

[52] A. Jain, A. Sharma, and Rajan. Adaptive & Multi-Resolution Procedural Infinite Terrain Gen-
eration with Diffusion Models and Perlin Noise. In Proc. of the Thirteenth Indian Conference
on Computer Vision, Graphics and Image Processing, 2023. ISBN 9781450398220.

[53] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Info. Processing Syst., volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[54] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic Goal Generation for Reinforce-
ment Learning Agents. In Int. Conf. on Mach. Learn., volume 80 of Proceedings of Machine
Learning Research, pages 1515–1528. PMLR, 10–15 Jul 2018.

[55] M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster, E. Grefenstette, and T. Rocktäschel. Replay-
guided adversarial environment design. Advances in Neural Info. Processing Syst., 34:1884–
1897, 2021.

[56] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. Foerster, E. Grefenstette, and
T. Rocktäschel. Evolving curricula with regret-based environment design. In Int. Conf. on
Mach. Learn., pages 17473–17498. PMLR, 2022.

[57] H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical model inference
problem. Machine learning, 87:159–182, 2012.

[58] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[59] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit: Guided image syn-
thesis and editing with stochastic differential equations. Int. Conf. on Learn. Representation,
2022.

[60] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms, 2017.

[61] S. Ross, G. Gordon, and D. Bagnell. A Reduction of Imitation Learning and Structured Pre-
diction to No-Regret Online Learning. In Proc. of Machine Learn. Research, volume 15, pages
627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[62] S. Krishnan, C. Crosby, V. Nandigam, M. Phan, C. Cowart, C. Baru, and R. Arrowsmith.
OpenTopography: a services oriented architecture for community access to LIDAR topogra-
phy. In Proc. of the 2nd international conference on computing for Geospatial Research &
Applications, pages 1–8, 2011.

[63] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic Terrain Mapping for Mobile Robots
with Uncertain Localization. IEEE Robot. and Automat. Letters, 3(4):3019–3026, 2018.

[64] I. S. Mohamed, K. Yin, and L. Liu. Autonomous Navigation of AGVs in Unknown Cluttered
Environments: Log-MPPI Control Strategy. IEEE Robot. and Automat. Letters, 7(4):10240–
10247, 2022.

[65] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention Mask
Transformer for Universal Image Segmentation. In IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 1280–1289, 2022.

[66] Z. Zhuang, Z. Fu, J. Wang, C. G. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot
Parkour Learning. In Conf. on Robot Learn., 2023.

12

https://doi.org/10.1145/3571600.3571657
https://doi.org/10.1145/3571600.3571657
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.mlr.press/v80/florensa18a.html
https://proceedings.mlr.press/v80/florensa18a.html
https://openreview.net/forum?id=5UZ-AcwFDKJ
https://openreview.net/forum?id=5UZ-AcwFDKJ
https://proceedings.mlr.press/v162/parker-holder22a
https://arxiv.org/abs/0901.0633
https://arxiv.org/abs/0901.0633
https://arxiv.org/abs/1805.00909
https://openreview.net/pdf?id=aBsCjcPu_tE
https://openreview.net/pdf?id=aBsCjcPu_tE
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1145/1999320.1999327
https://doi.org/10.1145/1999320.1999327
https://doi.org/10.1109/LRA.2018.2849506
https://doi.org/10.1109/LRA.2018.2849506
https://doi.org/10.1109/LRA.2022.3192772
https://doi.org/10.1109/LRA.2022.3192772
https://doi.org/10.1109/CVPR52688.2022.00135
https://doi.org/10.1109/CVPR52688.2022.00135
https://openreview.net/forum?id=uo937r5eTE
https://openreview.net/forum?id=uo937r5eTE

Appendix

A Initial Noise Optimization by Control as Inference

In this section, we justify our algorithm design through the lens of control-as-inference [1, 2] to
optimize the initial noise of diffusion models.

A.1 Denoising Diffusion Probabilistic Models Preliminary

Denoising Diffusion Probabilistic Models (DDPMs) [5] are generative models that generate original
data from Gaussian noise through a series of forward and reverse steps. In the forward process,
Gaussian noise is gradually added to the original terrain sample e0 until a final step K, with the
terrain at each step k distributed as q (ek|ek−1) = N

(
ek|
√
1− βkek−1, βkI

)
. We use cosine noise

schedules [6] (β1, ..., βK). The reverse process gradually reduces the noise from eK to generate the
original data e0 using a noise predictor ϵ(ek, k;ϕ). The training loss function for the noise predictor
is L(ϕ) = MSE(ϵk, ϵ(e0 + ϵk, k;ϕ)).

A.2 DDPM Initial Noise Optimization

Let p(ek−1|ek; θ) denote single reverse diffusion step, with θ the diffusion model’s parameters.
Based on [3], we can formulate iterative denoising of the DDPM as a Markov Decision Process
(MDP), where the state evolution (policy and transition function combined) is the reverse diffusion
itself p(sk+1|sk, ak) = p(ek−1|ek; θ), and the reward function is 0 unless at the initial step k = 0:

R(ek, π) =

{
r(e0, π) if k = 0

0 otherwise
(4)

In our work, r(e0, π) evaluates the improvements of the current policy π if trained on the generated
environment e0. The return of the noise ek starting at timestep k as

J (ek) = E [r(e0, π)|et−1 ∼ p(et−1|et; θ)] , (5)

where t ∈ [1, k]. Our goal is to find the noise that maximizes the Eq. (5), e∗k = argmaxek J (ek).
Gradient-based methods using differentiable rewards [4] are challenging to apply in our setup, as
computing the gradient of policy improvement with respect to the initial noise is impractical. This is
because evaluating policy improvement requires simulating the policy on each generated terrain to
compute success rates. Instead, we frame this as a control-as-inference problem, using approximate
sampling to optimize the initial noise for Eq. (5). Following the KL control theory derivation [1],
we aim to find a distribution of the starting noise q̂(ek) that optimizes Eq. (5) while remaining close
to a reference noise distribution q(ek). This is achieved by adding an extra KL cost to the return in
Eq. (5) and taking expectation with respect to the random initial noise

Ĵ (ek) = E
[
J (ek)− log

q̂(ek)

q(ek)

∣∣∣∣ek ∼ q̂(ek)] (6)

=

∫
q̂(ek)

(
J (ek)− log

q̂(ek)

q(ek)

)
dek

=

∫
q̂(ek)

(
log (exp {J (ek)})− log

q̂(ek)

q(ek)

)
dek

= −
∫
q̂(ek) log

q̂(ek)

q(ek) exp {J (ek)}
dek

= −KL (q̂(ek)∥ψ(ek)) ,

where ψ(ek) ∝ q(ek) expJ (ek) is an unnormalized distribution with high density at the high return
region. The Kullback-Leibler (KL) divergence is non-negative, implying that the optimal return is
achieved when q̂ = ψ. Consequently, sampling from ψ is equivalent to sampling from the optimal
noise distribution. While there are multiple methods to sample from ψ, we employ importance

13

sampling to compute the expected value of the noise. This approach is chosen due to its simple
computational structure within this formulation. The importance sampling can then be expressed as

E [ek|ek ∼ ψ(ek)] =
1

Z

∫
ekq(ek) exp {J (ek)} dek (7)

=
1

Z
E [exp {J (ek)} | ek ∼ q(ek)]

≈ 1

Z

1

N

N∑
i=1

exp {J (ek)} ek,

where the samples ek are drawn from the reference distribution. The normalization constant can be
estimated similarly

Z =

∫
q(ek) exp {J (ek)} dek (8)

= E [exp {J (ek)} |ek ∼ q(ek)]

≈ 1

N

N∑
i=1

exp {J (ek)} .

Combining Eq.(7) and Eq.(8), we obtain the expected optimal noise

E [ek|ek ∼ ψ(ek)] ≈
∑N

i=1 exp {J (ek)} ek∑N
i=1 exp {J (ek)}

. (9)

We define the reference distribution as the marginal distribution of the forward diffusion process
q(ek) =

∫
q(ek|e)p(e)de, where p(e) is the distribution over the current training environment

dataset. Sampling from q(ek) involves drawing from p(e) and then from q(ek|e), which is ex-
actly the process described in Section 4.1. This process is efficient because the forward diffusion
q(ek|e) is easy to sample, and we can readily draw samples from p(e) using the available environ-
ment dataset. The steps in our algorithm directly correspond to the computation of the final expected
noise as expressed in Eq. (7). Table 2 illustrates the mapping between these algorithmic steps and
the computational steps of computing Eq. (7).

Control as Inference ADTG

Action/State space Space of initial noise

Optimal policy Optimal initial noise distribution

Optimal action Optimal initial noise e′k

Reward
Negative deviation from the desired
success rate −(s(e, π)− s̄)2/σ2

Sample from proposal ek ∼ q(ek)
Sample from training dataset e ∼ p(e) (Appendix A.3)
Sample from forward diffusion process ek ∼ q(ek|e)

Importance weight Weighting function exp r(e, π) (Eq. (3))

Importance sampling solver (Eq. (7)) Weighted interpolation (Eq. (2))

Table 2: Correspondence of algorithmic steps in ADTG with control as inference using importance sampling.

A.3 Environment Difficulty Manipulated by Diffusion Synthesis

The core assumption underlying our method is that the success rates of the generated terrains by
ADTG are consistent with the weighted combination of the success rates of selected terrains. This
appendix provides empirical evidence to support this assumption. During training, we sample ter-
rains with the success rate outside the 0.6 to 0.85 range for Synthesize. As our dataset expands
rapidly, we uniformly sub-sample up to 1000 terrains as the current (sub-)dataset. If the synthe-
sized terrain’s predicted success rate falls outside the 0.6 to 0.85 range, we adjust by adding suit-
able samples while ensuring the total number under 16. We choose 16 based on the GPU memory

14

limitation. We first set aside 100 terrains as dataset D and assess their success rates using the priv-
ileged policy. For each synthesized terrain, Selector sub-samples N terrains from D, where
N follows the curriculum. For each synthesized terrain, we define the predicted success rate as
s′ = (

∑n
i=1 wisi)/(

∑n
i=1 wi), where w and s denote Synthesize weight and success rate, re-

spectively. The validation involves comparing the actual success rates evaluated by the privileged
policy against the predicted success rates. Fig. 5 illustrates this comparison across 8 diffusion steps,
with each step containing 60 synthesized samples. For clarity, each step’s display is organized into
two rows. The first row presents the predicted success rates, and the second row shows the actual
success rates. The similarity in color between these two rows indicates the consistency of the suc-
cess rates for the generated terrains. Our result shows that most of the samples closely align with
the predicted success rates.

Figure 5: Synthesized terrains’ success rates by diffusion model. For each diffusion step with 60 samples,
the first row presents predicted success rates, and the second shows actual success rates. This shows effective
terrain difficulty manipulation by our Synthesize function.

B System Design

B.1 Privileged Policy

The privileged (teacher) policy is trained using Proximal Policy Optimization (PPO) [7] for goal-
oriented navigation on uneven terrains, minimizing motion vibration and jerk. The design is as
following:

State, Observation, and Action. The state str
t = [qt, vt, ωt, dt, a

θ
t−1] at timestamp t is ground-truth

motion information, including the orientation in quaternion qt ∈ R4, linear velocity vt ∈ R3, angular
velocity ωt ∈ R3, relative goal distance dt ∈ R2, and previous action aθt−1 ∈ R2. The reference
frame is anchored to the robot base. Normalization is applied to linear and angular velocities. We
refrain from normalizing the relative goal distance, as this allows the policy to adapt to varying
goal range scales. The observation has full access to the elevation map otr ∈ R128×128. Each
observation remains constant during an ACRL episode when ADTG does not evolve terrains. The
action atr

t = [αvv
x
t , αωω

z
t] applied to the robot represents proportional-derivative (PD) targets for

forward linear and yaw angular velocities, where aθt = [vxt , ω
z
t] is the network output, and [αv, αω]

are coefficients for the vehicle drive system.

Rewards. The total reward is structured as a sum of the weighted components: Goal Proximity
c11δg (st) assesses the robot’s closeness to the goal against thresholds δpos and δrot, Orientation
Regulation c21δe(E(qt)) imposes penalties for exceeding safe roll and pitch angles, Movement
Consistency c3||at − at−1||2 + c4||ȧt − ȧt−1||2 incentives consistent and gradual actions, Ground-
contact and Safety c5 dim(f = 0)+ c6 dim(f > δF) discourages situations where the contact force
mean ground contact loss or a collision risk. The total reward is parameterized as follows:

r =5.0× 1δpos≤0.25(st) + 0.001× 1δrot≤π/3(st)

− 0.01× 1δe>π/12(qt)

− 0.01× ∥at − at−1∥2 − 0.0001× ∥ȧt − ȧt−1∥2
− 0.01× dim(f > 100)− 0.001× dim(f ≤ 0.00001).

(10)

15

Start and Termination. Episodes start with robots in random poses and assigned navigation targets.
The initial state s0 is sampled by position, velocity, and yaw, with other parameters managed by the
physics engine. The state z considers terrain geometry to avoid immediate failure. Initially, goals are
within a circular sector, with a radius of dmax = [0.5, 3.0]m and a central angle of [−π/3, π/3]rad.
As the policy progresses to success rate of 60%, the radius and angle incrementally increase by
0.5m and π/18 until a semicircle with a radius of 6m. An episode ends upon reaching the goal
or triggering safety or running length constraints. The maximum episode length is dmax/∆t/vavg,
with vavg = 0.3m/s the minimum average velocity and ∆t = 0.005 s the simulator timestep. Early
termination occurs if the roll or pitch angle exceeds δquat = π/9, or if the robot collides with the
environment, or if two or more wheels are off the ground, risking toppling or entrapment.

B.2 Deployment Policy

The deployment (student) policy θ̂ is trained via Dataset Aggregation (DAgger) [8] to minimize
the mean squared error to match the teacher’s actions. At each timestamp t, the deployment policy
observes ot = (s̃t, It), where s̃t is the noisy state and It is a depth image. The depth sensor
captures calibrated depth images with [640×480] resolution and 87◦ horizontal field-of-view, which
mirror our sim-to-deploy experimental settings. Due to partial observability, the policy considers
past information to decide the next action at ∼ π̂(at|at,ot; θ̂), where at and ot are action and
observation histories, H is the maximum history length. To enhance generalization, we integrate
physical domain randomization and perception domain randomization as following:

Physics Domain Randomization. An environment appears as geometry and is characterized by
physics ep = {epv , epg ; epm , epf , epa} ∈ R10, which is separated into environment properties and
robot-environment interactions. epv : Dynamic friction, static friction, and restitution coefficients,
affecting slipperiness; epg : Gravity; epm : Mass, simulating extra burdens or flat tires; epf : External
forces; epa : Discrepancies in actuator setpoints.

Perception Domain Randomization. Since velocity relies on the inertial measurement unit (IMU),
which is typically noisy [14], we add Gaussian noise to simulate this: ṽ ∼ N (v, σ2

v) for linear
velocity and ω̃ ∼ N (ω, σ2

ω) for angular velocity, where v and ω are ground-truth in the simulator.
Based on the empirical study [15], depth cameras suffer from precision and lateral noise, as well as
invalid values at full sensor resolution (nan ratio). We model precision noise asN (0, p0+p1d+p2d

2)
and lateral noise asN (0, l0 + l1 · θ/(π/2− θ)), where d is the measured depth of pixel (u, v) and θ
is its azimuth. The nan ratio is modeled by a uniform distribution U(0, δnan).

C Sim-to-Deploy Experiments

During training, the IsaacGym simulator runs at 200 Hz, and the policy runs at 50 Hz. In simulation
experiments, ROS Gazebo provides odometry at 1000 Hz. In real-world experiments with Jackal,
Faster-LIO [13] with IMU preintegration [14] fuses Lidar and IMU for 200 Hz odometry. Both
settings use a depth camera RealSense D435i with [640× 480] resolution at 30 fps, synchronized to
odometry using ROS approximate time.

C.1 Simulation Training Setups

Uneven Terrain Datasets. To generate datasets, we utilize a digital elevation model (DEM) rep-
resented as a raster obtained from a real-world high-resolution topography dataset 2. The entire
map is seamlessly divided into tiles of size [128 × 128] with resolution 0.1m. 3000 training data
for DDPM and 100 evaluation data for algorithmic performance are randomly selected within a
specific geographical range, defined by latitude and longitude intervals: [33.5874,−116.0058],
[33.5874,−115.9991], [33.5929,−116.0058], [33.5929,−115.9991]. For sim-to-sim deploy-
ment experiment in ROS Gazebo, we get 30 terrains, each of size [320 × 320] with resolu-

2https://opentopography.org

16

https://opentopography.org

tion 0.1m, from latitude and longitude intervals: [44.1859,−113.8802], [44.1881,−113.8803],
[44.1881,−113.8773], [44.1859,−113.8773].

Terrain

Encoder

Teacher (PPO)

Expand [128x128x3]
Normalize

ResNet-18
(First 16 layers; Frozen)

Dense (256)

Privileged State
[Nx14]

Expand (-1, -1, 4, 4)

+

Conv(256, 3, 1, 1)

Conv(128, 3, 1, 0)

Dense (256)

[N
, 1

2
8

, 1
2

8]

Ex
p

an
d

[N
, 3

, 1
2

8
, 1

2
8

]

N
o

rm
al

iz
e

Privileged
State

[N
, 1

4
]

FC
-2

56

Ex
p

an
d [N, 256, 4, 4]

[N
, 5

12
, 4

, 4
]

FC
-2

56

Fl
at

te
n FC

-1
28

R
eL

U

R
eL

U

FC
-2

Ta
n

H

FC
-1

28

FC
-1

Ta
n

H

Actor

Critic

Depth
Image

+

[4
8

0,
 6

4
0

]

Ex
p

an
d

[3
, 2

24
, 2

24
]

N
o

rm
al

iz
e

Noisy
State

[1
4

]

FC
-2

56

Ex
p

an
d

[256, 4, 4]

[5
1

2,
 4

, 4
]

FC
-1

02
4

Fl
at

te
n

FC
-5

12

R
eL

U

R
eL

U

R
N

N
Ta

n
H

Action

Teacher

Student

Encoder

Encoder

Figure 6: The network architecture for the teacher
(privileged) and student (deployment) policies, with N
parallel robots training. The encoder uses the first 16
layers of ResNet-18, referred to as ResNet-16.

Policy Parameterization. Our privileged
(teacher) and deployment (student) policies use
an encoder-decoder architecture. The encoder
utilizes the first 16 layers of ResNet-18 [9] to
extract feature representations from the terrain
elevation or depth image. The deployment pol-
icy employs a neural circuit policy (NCP) [10],
specifically the closed-form continuous-time
(CfC) network, to generate linear and angular
commands. While Vanilla RNN, LSTM, GRU,
and NCP achieve similar accuracy with suffi-
cient learning steps, we choose NCP for its su-
perior performance with significantly fewer pa-
rameters [10]. We show details of PPO in Ta-
ble 3, networks in Fig. 6, and domain random-
ization in Table 4. This setting keeps consistent
for sim-to-sim and sim-to-real experiments.

Hyperparameter Value Hyperparameter Value
Hardware Configuration One RTX 4090 PPO Clipping Parameter 0.2
Action Coefficient [2.0, 1.4] Optimizer Adam
Discount Factor 0.99 Learning Rate 5× 10−4

Learning Epoch 2 Max Iterations 1× 105

Generalized Advantage Estimation 0.95 Batch Size 5× 105

Entropy Regularization Coefficient 0.005 Minibatch Size 5× 104

Table 3: Hyperparameters for Privileged Policy PPO.

Parameter Type Distribution Curriculum Range
Environment
Dynamic Friction Set Gaussian [0.1, 1.0]
Restitution Set Gaussian [0, 0.2]
Gravity Add Gaussian [0, 0.5]
Robot
Mass Add Uniform [0, 1.5]
Position Add Gaussian [0, 0.05
Orientation Add Gaussian [0, 0.01]
Angular Velocity Add Gaussian [0, 0.1]
Linear Velocity Add Gaussian [0, 0.1]
Robot-Environment Interaction
Depth Precision Add Gaussian [0.0015, 0.015]
Depth Noise Add Gaussian [0, 0.01]
Depth Nan Ratio Set Uniform [0, 0.3]
External Force Add Gaussian [0, 0.5]
Actuator Add Uniform [0, 0.05]
Procedural Environment Generation
Random Uniform Set Uniform Height [−0.45, 0.45], Step [0.005, 0.045]

Slope Set Uniform [0.05,
√
3/2]

Discrete Obstacles Set Uniform Height [0.4, 10], Size [0.1, 2.0], Num. [1, 20]
Wave Set Uniform Num. [1, 20], Amp. [0.1, 4/Num]

Table 4: Domain Randomization Parameters.

Additionally, we justify the procedural environment generation implemented in [11], where the
height data type should be changed from integer to double to accommodate our parameter ranges. In
the Random Uniform terrain, “step” represents the maximum height difference between two adjacent
elevation grids. We choose 0.045m as the upper step limit because it is consistent with Jackal’s
dimensions, where the chassis-to-ground distance is 0.058m based on our measurements. Wave

17

environment generates terrains based on the trigonometric functions. Similarly, other procedurally
generated environments are also navigable.

C.2 Sim-to-Sim Experiment

In addition to benchmarking on the ClearPath Jackal robot, we train the ClearPath Husky robot using
the same settings as the Jackal and tested in the same ROS Gazebo environments E-30 detailed in
Sec. C.1. We evaluated across 30 environments, each containing 1000 pre-sampled start-goal pairs,
resulting in total 30 000 trials. The results in Table 5 demonstrate that our method generalizes effec-
tively across different wheeled platforms, maintaining an advantage over other methods in terms of
success rate, orientation vibration, and position jerk. All methods performed better overall with the
Husky, due to its better navigability on uneven terrains than Jackal. However, the performance dif-
ferences between our method, Natural Adaptive Terrain (N-AT), and Procedural Generation Curricu-
lum (PGC) relative to other methods mirror those observed in the Jackal experiment, with challenges
such as perception noise and erratic prediction persisting for competing methods. In summary, our
method generalizes well across different wheeled platforms and maintains a performance advantage
over baseline methods.

Succ. Rate (%) Traj. Ratio Orien. Vib. (rad
s

) Orien. Jerk (rad
s3

) Pos. Jerk (m
s3

)
Falco [16] 53 1.47 1.85 91.6 33.6
MPPI [17] 65 1.32 0.74 145.5 33.7
TERP [18] 46 1.54 0.7 141.1 33.1
POVN [19] 43 2.5 1.28 121.4 34.6
N-AT 69 1.31 0.98 170.3 42.1
PGC 68 2.1 1.05 233.7 42
Ours 85 1.34 0.65 125.7 32

Table 5: Statistical results for Husky Gazebo simulation comparing our method with baselines of PGC and
N-AT as well as previous works. 30 environments have 1000 start-goal pairs in each. Green and Bold indicate
the best and second-best results.

C.3 Sim-to-Real Experiment

Wheeled Robot Navigation. In the Jackal real-world experiment, we ablate the physics (w/o
Physics) and perception (w/o Percept) domain randomization (DR) to study their contributions,
shown in Table 6 and Table 7. We observed varying contributions of physics and perception do-
main randomization. First, in forest, mud, and gravel, removing either domain decreased the
success rate, but these ablations still performed better than baselines due to ADTG. In arid and
rust, the perception domain was crucial because of increased perception noise. Second, we iden-
tified drawbacks in the perception domain, particularly in dunes where the camera depth quality
heavily depended on exposure, which is difficult to model. Last, without the physics domain, the
robot showed improved orientation smoothness but struggled to make reactive behaviors, since the
learned arc movements in slippery areas benefited from this domain. Additionally, for computa-
tional efficiency per frame, our method averaged 28.68ms over 104 frames, compared to MPPI’s
20.78ms, Falco’s 50.15ms, and POVNav’s 157.22ms.

Suc. Rate (%) Traj. Ratio Orien. Vib. (rad
s

) Orien. Jerk (rad
s3

) Pos. Jerk (m
s3

)
R D R D R D R D R D

Ours 80 45 1.25 1.32 0.11 0.13 113.3 73.4 20 18.1
Ours w/o Physics DR 74 42 1.18 1.35 0.1 0.13 112.6 74.2 25 20.3
Ours w/o Percept DR 72 48 1.27 1.31 0.11 0.12 117 72.5 24.6 17.9

Table 6: Statistical results for R(eal-world) and D(une) comparing our method with ablations of physics and
perception domain randomization. R: grass, forest, arid, rust, mud, and gravel; D: dune hard, tough, and expert.
Each environment for each method has 36 start-goal pairs. Green and Bold indicate the best and second-best.

The issue of imprecise depth measurements is highlighted in Fig. 7, where portions of the elevation
map appear above the trajectories due to depth measurements inaccurately portraying unstructured
objects. Compared to baselines that rely on elevation maps, our method showed more success.
This is because the perception randomization during training introduces depth noises, allowing the

18

Success Rate (%)
Grass Forest Arid Rust Mud Gravel Dune-Hard Dune-Tough Dune-Expert

Falco [16] 100 25 58 33 39 28 31 17 17
MPPI [17] 100 22 92 56 86 69 75 17 11
TERP [18] 100 19 86 53 83 64 53 11 11
POVN [19] 100 0 14 22 17 14 42 14 17
Ours 100 33 100 58 97 92 75 39 22
Ours w/o Physics DR 100 28 97 58 78 81 72 36 17
Ours w/o Percept DR 100 25 89 50 81 89 72 39 33

Table 7: Detailed results of success rate among Falco, MPPI, TERP, POVNav, and our method with ablations
of physics and perception domain randomization. Each environment for each method has 36 start-goal pairs.

Figure 7: Qualitative presentation of four real-world experiments, with each featuring rectified RGB and depth
images, accompanied by an elevation map marked with four distinct trajectories: [Green] Ours, [Orange] Falco,
[Red] MPPI, [Blue] TERP. From left to right: [Arid] [Mud] Characterized by dense shrubbery, this scenario
highlights our method’s ability to navigate slippery conditions and obstacles effectively. [Dune-Tough] [Dune-
Expert] Our method’s preference for flatter regions proves to be a safer strategy in an environment fraught with
unpredictable ravines.

policy to be more robust against misleading depth measurements. Similar results are also observed
in a recent work for legged locomotion [5]. The complex vehicle-terrain interactions posed another
challenge. As shown in Fig. 7, our method’s trajectories had more curves, representing reactive
behavior in slippery areas and leading to the relatively large trajectory ratio in Table 1. The learned
arc movements are simple but effective, which will be explored further in our future research.

Quadruped Robot Locomotion. Refer to Parkour [12] Appendix B for detailed training in simu-
lation. The parameters that differ from Parkour are as follows, with all other settings remaining the
same. We set the maximum iteration of PPO to 1× 105 and the number of parallel environments to
200. For the environment, the terrain size is [128× 128] with a horizontal scale of 0.1. The nine ex-
perimental environments with various challenges, including slippery surfaces, sloped terrains, and
unpredictable ravines. These environments are the same as those used in the ground vehicle ex-
periment but were traversed continuously in a loop. The gaits of our ADTG and the built-in Go1
MPC were natural, unlike the Procedural Generation Curriculum (PGC), which showed robust but
prostrate postures. The PGC policy performed well but faced limitations due to sudden movements
(jumps) that caused the robot to roll over, as shown in Fig. 8. PGC’s issue may originate from its
over-challenging unrealistic environments and we propose to investigate in the future.

Figure 8: Failure case of the Procedural Generation Curriculum policy due to rapid movements.

19

Appendix References

[A1] Kappen, Hilbert J., Vicenç Gómez, and Manfred Opper. ”Optimal control as a graphical model
inference problem.” Machine learning 87 (2012): 159-182.

[A2] Levine, Sergey. ”Reinforcement learning and control as probabilistic inference: Tutorial and
review.” arXiv preprint arXiv:1805.00909 (2018).

[A3] Uehara, Masatoshi, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. ”Understanding
Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review.”
arXiv preprint arXiv:2407.13734 (2024).

[A4] Ben-Hamu, Heli, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lip-
man. ”D-Flow: Differentiating through Flows for Controlled Generation.” arXiv preprint
arXiv:2402.14017 (2024).

[A5] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. ”Denoising diffusion probabilistic models.” Ad-
vances in neural information processing systems 33 (2020): 6840-6851.

[A6] Nichol, Alexander Quinn, and Prafulla Dhariwal. ”Improved denoising diffusion probabilistic
models.” In International conference on machine learning, pp. 8162-8171. PMLR, 2021.

[A7] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

[A8] Ross, S., Gordon, G., and Bagnell, D. (2011, June). A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics (pp. 627-635). JMLR Workshop and
Conference Proceedings.

[A9] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-
778).

[A10] Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., and Grosu, R. (2020). Neural
circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10), 642-652.

[A11] Makoviychuk, Viktor, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller et al. ”Isaac gym: High performance gpu-based physics simulation for
robot learning.” arXiv preprint arXiv:2108.10470 (2021).

[A12] Zhuang, Ziwen, Zipeng Fu, Jianren Wang, Christopher Atkeson, Soeren Schwertfeger,
Chelsea Finn, and Hang Zhao. ”Robot parkour learning.” arXiv preprint arXiv:2309.05665
(2023).

[A13] Bai, C., Xiao, T., Chen, Y., Wang, H., Zhang, F., and Gao, X. (2022). Faster-LIO: Lightweight
tightly coupled LiDAR-inertial odometry using parallel sparse incremental voxels. IEEE
Robotics and Automation Letters, 7(2), 4861-4868.

[A14] Y. Yu et al., ”Fast Extrinsic Calibration for Multiple Inertial Measurement Units in Visual-
Inertial System,” 2023 IEEE International Conference on Robotics and Automation (ICRA),
London, United Kingdom, 2023, pp. 01-07.

[A15] G. Halmetschlager-Funek, M. Suchi, M. Kampel and M. Vincze, ”An Empirical Evaluation
of Ten Depth Cameras: Bias, Precision, Lateral Noise, Different Lighting Conditions and Ma-
terials, and Multiple Sensor Setups in Indoor Environments,” in IEEE Robotics & Automation
Magazine, vol. 26, no. 1, pp. 67-77, March 2019.

20

[A16] Zhang, Ji, Chen Hu, Rushat Gupta Chadha, and Sanjiv Singh. ”Falco: Fast likelihood-based
collision avoidance with extension to human-guided navigation.” Journal of Field Robotics 37,
no. 8 (2020): 1300-1313.

[A17] Williams, Grady, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou.
”Aggressive driving with model predictive path integral control.” In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1433-1440. IEEE, 2016.

[A18] Weerakoon, Kasun, Adarsh Jagan Sathyamoorthy, Utsav Patel, and Dinesh Manocha. ”Terp:
Reliable planning in uneven outdoor environments using deep reinforcement learning.” In 2022
International Conference on Robotics and Automation (ICRA), pp. 9447-9453. IEEE, 2022.

[A19] Pushp, Durgakant, Zheng Chen, Chaomin Luo, Jason M. Gregory, and Lantao Liu. ”POV-
Nav: A Pareto-Optimal Mapless Visual Navigator.” arXiv preprint arXiv:2310.14065 (2023).

21

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Adaptive Curriculum Learning for Terrain-Aware Policy Optimization

	Adaptive Diffusion Terrain Generator
	Performance-Guided Generation via DDPM
	Diversifying Training Dataset via Modulating Initial Noise
	ACRL with ADTG

	Experiments
	Algorithmic Performance Evaluation
	Zero-shot Sim-to-Sim and Sim-to-Real Experiments

	Conclusion, Limitations and Future Directions
	Initial Noise Optimization by Control as Inference
	Denoising Diffusion Probabilistic Models Preliminary
	DDPM Initial Noise Optimization
	Environment Difficulty Manipulated by Diffusion Synthesis

	System Design
	Privileged Policy
	Deployment Policy

	Sim-to-Deploy Experiments
	Simulation Training Setups
	Sim-to-Sim Experiment
	Sim-to-Real Experiment

