
Under review as a conference paper at ICLR 2023

TRIPLET LEARNING OF TASK REPRESENTATIONS IN
LATENT SPACE FOR CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning is a mechanism where a model is trained on tasks sequentially
and learns current task while retaining the knowledge of previous tasks. Existing
methods that utilize latent space include rehearsal with latent spaces and latent
space partitioning. However, latent space overlapping can cause interference be-
tween knowledge of different tasks, leading to performance drop on specific met-
rics, e.g., classification accuracy or quality of image reconstruction. To solve this
problem, we propose a method of training autoencoder with triplet loss applied to
partition its latent space. We denote the output of the encoder and some manually
chosen layers of the decoder as original latent space and intermediate latent space,
respectively. Specifically, we use triplet loss in the intermediate latent space to
mitigate the overlapping by clustering latent variables of same classes and sepa-
rating that of different classes. We test our method on several datasets, including
MNIST, FashionMNIST, Omniglot, and CelebA. From those experiments, our
model shows an FID of 19 on MNIST and a recall of 0.272 on CelebA, which
are better than the state-of-the-art models when trained in similar setups. Qualita-
tively, we confirm better partitioning results of the proposed method by comparing
the visualization of latent space with other latent space methods.

1 INTRODUCTION

Considering the real learning scenario that learns various data sequentially, many researchers have
studied on continual learning that learns data incrementally. In continual learning setup, we cannot
train a model on all training data repeatedly. Instead, the model is trained with the tasks coming
one by one and in some cases the previous task is not available after the model learns it due to
the reasons such as limitation of memory, privacy issue, etc. Under this setup, the model tends to
forget previously learned knowledge about previous tasks after learning new tasks, which is called
catastrophic forgetting. Thus, continual learning aims to make the model able to learn the new task
without suffering from the forgetting problem. Catastrophic forgetting can be widely observed in all
kinds of deep neural networks when trained under continual learning setup.

To overcome the catastrophic forgetting, various methods that use generative model for replaying
previous tasks are investigated, and show high performance in continual learning setup. In these
methods, the generative model needs to learn a new distribution of new task data, without disturb-
ing the distribution of old task data. Ideally, a model can learn the new task better based on the
learned knowledge, but the possible overlapping between distributions of knowledge can result in
performance drop.

To preserve the learned knowledge, we focus on latent space, which consists of variables from
the output of the layers. The knowledge that a human learned are somehow stored in the direct
connections and synapses between neurons in the brain. Similarly, the knowledge learned by a
neural network can be reflected through latent space. When we visualize the latent space of a well-
trained classification model on dataset like MNIST, we can find the latent space of different classes
of data are well clustered. Otherwise, overlapping of latent spaces or dispersed latent variables can
be found, which means the knowledge between different data interfere with each other, causing the
forgetting problem. Overlapping is not a problem only of image generation. Essentially, any method
that embeds data to an embedding space can suffer from this problem.

1

Under review as a conference paper at ICLR 2023

Figure 1: Concept explained: apply triplet loss to image generation under continual learning setup.

Inspired by the idea of triplet loss ((Schroff et al., 2015)), which is the most widely used loss function
in deep metric learning, we propose a method for partitioning latent space of the generative model
under continual learning setup. Let x1, x2 be the data samples that have the same label y1, and
x3 has a different label y3, and a model M which converts data x to latent variable z. The goal
of partitioning latent spaces is training a model M which satisfies that the value of ||z1, z2|| (i.e.
distance) is lower than ||z1, z3|| or ||z2, z3||. The loss function can be defined as follows:

Ltri = max (0, ||z1, z2|| − ||z1, z3||+margin) , (1)

where margin is a hyperparameter that stimulates the model to adjust the distance between between
data pair of different classes longer than the distance between data pair of same class for at least a
distance of margin.

In our study(Figure 1), we use an autoencoder as a model; we use two latent spaces: the output of
the encoder (called as the original latent space) and the output of a manually chosen layer in the
decoder (called as the common latent space). In the process of continual learning, when the data
of the new task reaches the middle layer, the parameters of the middle layer should be updated to
ensure that the newly learned knowledge cannot be confused with the previous knowledge, or cause
confusion between the knowledge learned on the previous tasks. To solve the potential confusion
problem, we use triplet loss to adjust the latent variables in the common latent space to make the
latent variables of the same class of data close to each other, forming a non-scattered latent space.
At the same time, we can increase the distance between latent variables of different classes of data,
so that the latent spaces of different classes of data will not interfere with each other. Every time
there is a new task, we perform the above operations to achieve the objective of learning the new
task without losing the performance on previous tasks.

2 RELATED WORK

Regularization methods focus on how parameters are updated. In some works, authors prevent
important parameters from updating significantly by their importance. The parameters that are re-
sponsible for some previous tasks are considered as important for those tasks. Therefore, preserving
these parameters are necessary to mitigate performance drop on previous tasks. There are differ-
ent ways to measure the importance of parameters. Zenke et al. (2017) compute the importance of
certain parameter to a task by adding a little perturbation to the parameter and check how much the
value of the loss function for this task changes. The more change of the loss function value, the more
important the parameter is to the task, i.e. we should prevent it from changing to preserve the perfor-
mance on this task. Every time there is a new task, the importance of parameters will be computed
and updated. Slightly differently, Aljundi et al. (2018) consider a model as a function and computer
the importance of parameters by checking the change of the model after adding a perturbation to
the parameters. Aljundi et al. (2018) claim that using loss function value as the measurement can
be difficult when the loss gets into a local minimum. One limitation of methods like (Aljundi et al.,

2

Under review as a conference paper at ICLR 2023

2018) and (Zenke et al., 2017) is that if all parameters are considered important to some certain
task(s), no parameters will be left for learning new tasks, because update of any parameters will
cause forgetting on previous tasks.

The first kind of replay method is rehearsal with real data. Just like human review what he or she
learned to prepare for an exam, model needs to review the data of previous tasks when learning new
tasks. In (Rebuffi et al., 2017), the model samples from each class of data of the current task and
saves the samples to memory. The sampled data are chosen to best represent the mean value of its
class, and will be used to When testing, the mean value of each class will be computed based on the
sampled data to do the nearest-mean classification. However, re-calculation of the mean value of
class in an ever-changing data stream, which is the more common scenario, can be computationally
expensive. De Lange & Tuytelaars (2021) proposed a method to compute and update the prototype
dynamically at a lower cost, as well as a mechanism that can keep the rate of samples of different
classes remain at a specific value. However, real data replay methods may suffer from the overfitting
problem because the buffered images cannot represent the whole distribution.

Another way to do replay is called pseudo replay, where a generative model is trained together with
the main model. The generative model is used to generate pseudo data of previous tasks, which
will be used to train the main model with current task data. Deep Generative Replay (Shin et al.,
2017) uses a generator to generate pseudo replay data for the classification model and achieves close
performance compared to real data replay. Lavda et al. (2018) connect a VAE with a classifier,
and separate the model with a pair of ever-updating teacher and student: the teacher generates data
corresponding to previous tasks, the student learns both on generated data and current task data,
after which the student will become a teacher for next task. However, since a generative model itself
can also suffer from catastrophic forgetting, pseudo replay methods have been criticized for simply
shifting the forgetting problem to a generative model instead of fundamentally solving the problem.
Atkinson et al. (2018) address this issue by applying pseudo data replay on both the classifier and
DCGAN ((Radford et al., 2015)), the generative model they used. Since the training of generative
model itself is not an easy job, the performance of pseudo data replay methods can be limited to the
performance of the generative model.

The two kinds of methods mentioned above either use real data or generated data, which can be
spatially ineffective. Instead, some methods utilize the output of a certain intermediate layer of the
network, i.e. latent layer, to do replay, which can save much more space than replay with real data.
Latent Replay for Real-Time Continual Learning (Pellegrini et al., 2020) aims to solve the forgetting
problem of classification on edge devices that only have light computational ability. Pellegrini et al.
(2020) choose a layer as the latent layer, and save the output of the latent layer as patterns of tasks
learned so far to an external memory. When training, layers between latent layer and output layer
are set with a larger learning rate and are trained on both current data and saved patterns, while the
layers between input layer and latent layer are set with a lower learning rate and are trained with
only current data. But the issue is that if the model is suffering from forgetting problem, the output
of some intermediate layer may contain chaotic information about the real data, i.e. not qualified to
represent the real data. Thus, the replay won’t be effective. The common drawback is that although
these methods utilize latent spaces, there is not any straightforward optimization about the latent
spaces. So, it is reasonable to think that we need a method to do operation, e.g. adjusting the
distance between latent spaces or clustering latent variables, on the latent space-level, which can be
achieved by using techniques of deep metric learning.

Deep metric learning has been applied to many different jobs to enhance the model’s ability of
representation learning. Chen et al. (2020) use contrastive learning ((Chopra et al., 2005)) to let the
model learn a better representation of the data. Under unsupervised learning setup, we don’t have
class labels to define whether two data samples are similar or not. Therefore, Chen et al. (2020)
use data augmentation: two augmentations are considered to be similar if they come from the same
image, or are not similar if they come from different images. Experimental results show that (Chen
et al., 2020) can help their model learn better representation, achieving close results with models
trained under supervised learning setup. Jeong & Shin (2021) use the contrastive learning loss from
(Chen et al., 2020) together with other loss functions to alleviate the overfitting problem of the
discriminator of GAN, making it possible to apply a wider range of data augmentation. In (Jeong
& Shin, 2021), besides the contrastive loss used in (Chen et al., 2020), the authors define that the
data samples from real and generated data are not similar. Together with traditional classification

3

Under review as a conference paper at ICLR 2023

loss, the discriminator learns better representation, and therefore can distinguish real and generated
samples more effectively.

One of the methods that utilizes deep metric learning in continual learning setup is (Cha et al., 2021),
whose authors applied contrastive learning to classification job under continual learning setup. Cha
et al. (2021) found that the model can learn more robust representations against catastrophic for-
getting when trained with contrastive loss than when trained with cross entropy. When training on
tasks, samples of current task are used as anchor samples, and samples of past tasks that are saved
in a memory buffer are used as negative samples. In this way, the model will not get confused
about current and past tasks, which can also be considered as a way to prevent overlapping between
representations of new and old tasks. What’s more, to enable the model to learn transferable knowl-
edge between tasks, Cha et al. (2021) use instance-wise relation distillation (IRD) to quantify the
discrepancy between the instance-wise similarities of the representations of current and past tasks.

3 TRIPLET LEARNING FOR LATENT SPACE PARTITIONING

In this section, we present the proposed method. To achieve better performance under continual
learning setup, we focus on the partitioning of latent spaces. We use a Variational Autoencoder
(VAE) as the base model, which consists of an encoder and a decoder. Inspired by (Pellegrini et al.,
2020), we manually choose an intermediate layer of the decoder as the latent layer. The output of
the encoder is denoted as original latent space O, and the output of the latent layer is denoted as
the common latent space C, where we apply triplet learning to do latent space partitioning. Our
training consists of two phases: (1) learning phase, where the model learns the current task and (2)
partitioning phase, where we do latent space partitioning to let the model refine the knowledge of
current and previous tasks. Through these two phases, the model learns a new task and consolidates
the new knowledge together with previous ones. Figure 2 and Figure 3 showed the overview and the
schematic diagram of our method.

Figure 2: Overview of our method. (a) is the learning phase, where the model learns a new task
through standard VAE training, with possibility of overlapping of latent spaces. (b) is the partitioning
phase, where we apply triplet loss to do latent space partitioning.

4

Under review as a conference paper at ICLR 2023

Figure 3: A schematic diagram of latent space partitioning.

3.1 FORMAL DEFINITIONS

Basic terminologies. X = {x1, x2, . . . xn} is the training dataset containing n images; q is the
encoder that maps an image x to a latent variable λ; p is the decoder that regenerates an image x′

using λ.

Latent space partitioning. Generally, the corresponding output of a data sample is denoted as latent
variable, and all the latent variables of the data samples of the same class form the latent space of that
class of data. What’s more, we see the process that the latent layer is updated on tasks sequentially
as a process of putting the latent spaces of the current task to the common latent space C. So, by
latent space partitioning in common latent space C, we mean the partitioning of latent spaces of data
samples of different classes.

Model version. We denote the model after partitioning phase of task i as Mi. Similarly, the original
latent space O and common latent space C after learning of task i is Oi and Ci, respectively.

Distribution of two latent spaces. We denote the distribution of original latent space and common
latent space as PO and PC .

3.2 LEARNING PHASE

In learning phase, we let the model learn the current task through regular VAE training, where we
use reconstruction loss to optimize the ability to regenerate an image. When the first task comes,
the model learns the task from an initialization of Gaussian distribution. After learning the first task,
the model learns task i from model Mi−1, i > 1. We use the optimization proposed by Kingma &
Welling (2013) to maximizes the variational lower bound of log likelihood.

max
θ,ϕ

Eq(λ|x)[log p(x | λ)]− ηDKL(q(λ | x)∥N (
−→
0 , I)), (2)

where θ,ϕ are the parameters of the encoder and decoder, respectively; and η > 0 is a hyperparam-
eter that adjust the strength of forcing the distribution of latent variable to be a normal distribution.
In our experiment, we set η = 1 in our experiment.

The learning phase is like the process of a human learns some new knowledge for the first time.
Although he or she can really learn something at the first time, but the learning result may be not
satisfactory enough. Therefore, we need to reinforce the newly learned knowledge while keeping
memory of previously learned knowledge. Here comes the partitioning phase.

3.3 PARTITIONING PHASE

After the learning phase, the model has somehow learned the current task. However, in the mean-
time, overlapping of latent spaces may have happened, causing forgetting towards previous tasks.

5

Under review as a conference paper at ICLR 2023

In the partitioning phase, to solve the potential overlapping problem, we only focus on the decoder
and freeze the encoder. We divide the decoder into two parts: layers between the encoder and the
latent layer and layers between the latent layer and the output layer, which are called front layers and
back layers, respectively. Similar to the usual training mode in transfer learning, the learning rate of
the front layers is set to be one-tenth of the learning rate of the back layers, which is the warm-up
stage of partitioning phase, because we don’t want the lower-level latent variables of front layers to
be changed too much. After the warm-up stage, the whole decoder will be trained with the same
learning rate.

Besides reconstruction loss such as Binary CrossEntropy (BCE) and Mean Squared Loss (MSE), we
apply triplet loss to do partitioning in the common latent space O. Triplet loss is one of the ranking
losses used in deep metric learning, whose core idea is adjusting the distance of samples in the
embedding space. To apply triplet loss, we need to designate the positive latent variable and latent
variable for some certain anchor latent variable. Simply, we define that the latent variables of the
data of the same class are the positive ones; otherwise, the negative ones. The triplet loss is defined
as follows:

ltri = max (∥ca − cp∥ − ∥ca − cn∥+margin, 0) , (3)

where ca, cp, cn are the anchor, positive and negative latent variables (i.e. latent spaces of data of
different classes) in the common latent space, and margin is used to control the strength of partition-
ing.

As for getting the latent spaces, we just use the model itself to generate some data, which includes
latent spaces, predicted class id, etc. We decide some latent variable to be positive or negative
according to the predicted class id. Since there are too many different pairs of anchor-positive
and anchor-negative latent variables that can be generated, we only randomly choose some specific
number of pairs (we use 1 pair in our experiment) for each epoch.

Note that we don’t use memory to save any real samples or latent variables of previous tasks. Instead,
we generate data whenever we need. Thus, what the decoder learns in the partitioning phase is the
ability to cluster latent variables of the data of the same class closer to each other to form a more
compact latent space, as well as pushing latent spaces of data of different classes far away from each
other. This ability is saved in the parameters of the decoder, especially in the latent layer. Since the
partitioning of latent space actually constrains the direction of how the parameters of the decoder
are updated, our method can be considered as a regularization method.

4 EXPERIMENTAL RESULTS

4.1 SETUP AND EVALUATION

We compare the results of our method and other baseline models under similar settings for each
method. We evaluate our method and other methods on some datasets, including gray-scale datasets
like MNIST, FashionMNIST, and a colorful dataset, CelebA ((Liu et al., 2015)), which is a relatively
more complicated dataset.

Figure 4: Schematic diagram: Precision and recall for generative models.

6

Under review as a conference paper at ICLR 2023

Table 1: Results of our method and other baseline methods on MNIST and FashionMNIST.

MNIST FashionMNIST

FID Precision Recall FID Precision Recall

Zenke et al. (2017) 153 0.75 0.76 140 0.21 0.19
Kirkpatrick et al. (2017) 120 0.79 0.38 137 0.24 0.22

Shin et al. (2017) 254 0.70 0.65 133 0.35 0.43
Nguyen et al. (2017) 127 0.78 0.80 138 0.21 0.20

Von Oswald et al. (2019) 148 0.78 0.75 155 0.35 0.21
Rao et al. (2019) 181 0.84 0.74 83 0.46 0.56

Ramapuram et al. (2020) 224 0.63 0.73 201 0.09 0.49
Deja et al. (2021) 41 0.92 0.96 87 0.56 0.65

Ours 19 0.97 0.96 83 0.61 0.65

To evaluate the quality of generated images quantitatively, we use metrics such as FID (Heusel et al.,
2017), precision and recall (Kynkäänniemi et al. (2019), schematic diagram is showed in Figure 4).
FID is used to assess the quality and diversity of generated images and the lower means the better
results. Precision and recall are used to evaluate the ability of the model to capture the distribution
of real data. Specifically, we denote the distribution of generated data and real data as Pg and
Pr[reference], respectively, then Precision =

Pg
∧

Pr

Pg
means the proportion of generated data of

Pg that fall in Pr (the red dots in figure (b)) to the whole Pg , i.e. how much the model predicts the
real distribution wrongly; and Recall =

Pg
∧

Pr

Pr
means the proportion of generated data of Pg that

fall in Pr (the blue dots in figure(c)) to the whole Pr, i.e. how much the model can capture the real
distribution.

4.2 RESULTS ON GRAY-SCALE DATASETS

Table 1 shows the results on gray-scale datasets compared to other methods. Our method achieved
better results on FashionMNIST and especially MNIST, which shows the effectiveness of triplet
learning. We think that the reason is that the data distribution of MNIST and FashionMNIST are not
so complex. What’s more, since the predicted class id, which we use to decide anchor, positive and
negative latent variables, is also generated by the model itself, the model itself can affect its learning
outcome in later training. As a dataset that consists of simpler images (i.e. handwritten digits) than
FashionMNIST, which consists of clothes and pants, etc., MNIST is easier for the model to learn.
Hence, triplet loss works more effectively on MNIST than FashionMNIST.

Figure 5: Comparison of visualised latent space trained on MNIST between our method and Gen-
erative Replay (GR). It is obvious that our method achieved better partitioning result due to triplet
loss.

7

Under review as a conference paper at ICLR 2023

Table 2: Results of our method, Generative Replay and independent models on CelebA. Here, the
independent models mean the mode where we train a model for each single task.

CelebA

FID Precision Recall

Jointly training 88 0.35 0.30
Independent models 103 0.31 0.21

GR 104 0.19 0.13
Ours 90 0.322 0.272

Table 3: Results of our method and other baseline methods on CelebA, when trained after different
epochs and with different margins.

Epoch Metric Margin

1 3 5 10

100
FID 89.714 89.714 89.714 102.21

Precision 0.322 0.340 0.340 0.285
Recall 0.272 0.282 0.267 0.210

150
FID 86.325 86.340 86.339 99.665

Precision 0.42 0.44 0.40 0.315
Recall 0.35 0.36 0.35 0.231

Another discovery is that we achieve much higher precision and recall on both datasets, which
indicates that our method has a better ability to capture the data distribution.

4.3 RESULTS ON MORE COMPLEX DATASET

Image generation under continual learning setup has always been a challenge on complex datasets.
Therefore, we also did some experiments on CelebA. The quantitative results are shown in Table
2. Independent models mean the mode where there is a single VAE model trained for each task,
i.e. knowledge is not transferable between tasks. Except for the upper bound shown by jointly
training mode, our method achieves the best performance on all the metrics, showing the potential
of triplet in latent space partitioning even on complex dataset. As qualitative results, comparison of
the visualization of latent spaces between GR and our method are shown in Figure 5.

4.4 EXPERIMENT OF HOW MARGIN EFFECTS PERFORMANCE

Distance in embedding space is an abstract concept, so we are curious about what value of margin
is better for partitioning. Since our model has already achieved relatively better results on the gray-
scale datasets, we run some experiments on CelebA, to see the effect of margin. Table 3 shows the
results as follows:

We can find out that the margin of 1, 3 and 5 almost work the same, but performance drop is detected
when margin is set to be 10. We infer that the strength of partitioning may increase non-linearly, or
even exponentially with margin.

5 CONCLUSION

We have applied triplet loss to do latent space partitioning straightforwardly to solve the forgetting
problem in continual learning setup, and evaluated different hyperparameters of triplet loss to see
different partition strength. The results show that with the help of triplet loss, we can achieve better
result on different dataset when evaluated with different metrics.

8

Under review as a conference paper at ICLR 2023

One problem of our method is that we neglect the similarity of data from different classes. For ex-
ample, man, woman, kid, old people belong to different classes, but they all share many similarities
of human: two arms, two legs, etc. Total partitioning of latent space means no interference between
knowledge of data of different classes, but it may be not the best circumstance when there is trans-
ferable knowledge between different classes. Then the intuitional problem comes: will it be better
if the latent spaces of data of different classes that share some similarity overlap with each other?
Contrary can check for this hypothesis by using a similarity regularizer into the triplet loss to control
the strength of partitioning, which we leave as a future work.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 139–154, 2018.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-recursal: Solving
the catastrophic forgetting problem in deep neural networks. arXiv preprint arXiv:1802.03875,
2018.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 9516–9525, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pp. 539–546. IEEE, 2005.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8250–8259, 2021.

Kamil Deja, Paweł Wawrzyński, Daniel Marczak, Wojciech Masarczyk, and Tomasz Trzciński.
Multiband vae: Latent space partitioning for knowledge consolidation in continual learning. arXiv
preprint arXiv:2106.12196, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jongheon Jeong and Jinwoo Shin. Training gans with stronger augmentations via contrastive dis-
criminator. arXiv preprint arXiv:2103.09742, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Frantzeska Lavda, Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Continual clas-
sification learning using generative models. arXiv preprint arXiv:1810.10612, 2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

9

Under review as a conference paper at ICLR 2023

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for
real-time continual learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 10203–10209. IEEE, 2020.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative modeling.
Neurocomputing, 404:381–400, 2020.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Johannes Von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

10

	Introduction
	Related work
	Triplet learning for latent space partitioning
	Formal Definitions
	Learning phase
	Partitioning phase

	Experimental results
	Setup and evaluation
	Results on gray-scale datasets
	Results on more complex dataset
	Experiment of how margin effects performance

	Conclusion

