
Indian Language Transliteration using Deep
Learning

Akshat Joshi*, Kinal Mehta*, Neha Gupta*, Varun Kannadi Valloli*
*

All authors contributed equally

Centre for Development of Advanced Computing (C-DAC), GIST Group, Pune, India

{akshatj, kinalm, nehag, varunkv}@cdac.in

Abstract—Transliteration of Indian languages has been a
challenging problem, given their complex nature, which has
conventionally been handled by rule based systems developed
by trained linguists. Scalability is a prominent issue with these
systems and given the number of language pairs possible for
Indian languages, a scalable pipeline is necessary for swift
development of these systems. Deep learning systems are
pragmatic for building a scalable pipeline, as they are
completely data driven. We experimented with LSTMs and
Sequence to Sequence models to find an optimal model for the
scalable pipeline by comparing the results. The results show
Sequence to Sequence models are a better fit for this solution.
We also discuss techniques for pre-processing the data and
post processing the output for optimal performance.

Keywords— LSTM, Seq2Seq, Transliteration, NLP, Decoder,
Encoder, Akshar

I. INTRODUCTION

Transliteration is the process of transforming words
written in one script to another script without losing their
phonological characteristics. It enables readers familiar with
the one script (target script) to read the text written in the
other script (source script). This technique is widely
employed in Machine Translation systems for converting
Named Entities to their desired form in the target language in
a different script. Transliteration now-a-days is also heavily
used in Transliterated inputting, i.e., facilitating users to use
the keyboard of one script to input languages represented by
a different script. If a particular text belongs to a dual script
language like Sindhi which is written in both Devanagari and
Perso-Arabic script, the effect of transliteration is as good as
that of a translation.

Our main focus was on English⭤ Indian Language and
Indian Language⭤ Indian Language transliteration system
using deep learning. Traditionally this problem has always
been solved with the help of rule-based systems [1][2] which
were mostly hand-crafted by linguists. The shortcomings of
these systems are, the linguists are expected to have good
command over both the source and target languages and
scripts, and such skilled resources, cannot be expected to be
available for all possible language pairs. The rule-based
systems come with many drawbacks like unscalability,
inflexibility and being limited in terms of handling all
possibilities in the solution space. In contrast to the rule-
based systems, deep learning-based systems only need data
and the compute capability which are abundantly available
these days [3]. Hence, we decided to design a transliteration
system that would leverage this and provide a scalable
solution towards this problem.

We experimented with Sequence to Sequence [4] and
LSTM [5] models for building the transliteration systems.
We evaluated the performance of these models not only on

raw parallel corpus, but also after preprocessing the parallel
corpus with techniques like Epsilon insertion [6] and
reordering of the input sequences.

The problem is complicated as different basic alphabets
and phonetic systems are used by different languages [7].
Moreover, lengths of the input and output sequences also
vary. The parallel corpus can have entries with ambiguous
mappings, making the problem more subjective to such an
extent that evaluation of such systems becomes very
challenging. This paper discusses the experiments and results
in our attempts at transliteration using Deep Learning.

The rest of our paper is organized as follows. We address
our motivation in section II. Section III discusses our
datasets and their descriptions. The language specific
challenges are discussed in section IV followed by the
experiments and results in section V. Section VI describes
the patterns observed in the outputs which could be used for
post processing and finally we conclude in section VII.

II. MOTIVATION

India is a multilingual country with vastly different
cultures. Most of the cultures have their own languages
which are in some way unique and fundamentally different
from one another [14]. The administrative regions (States) in
India, by and large, were created on the basis of linguistic
division. This linguistic division paved a path for very robust
linguistic preservation of Indian languages with the State
support. Hence, many of these regions have a very prominent
presence of local languages in communication they have
with the populace. With vast amounts of cross-cultural
exchanges taking place, transliteration takes a centre-stage in
information exchange.

Traditional Transliteration systems were mostly rule-
based. Even though they are quite accurate, their
performance heavily depends on the linguist's domain
knowledge and adeptness. Scaling-up of such systems for a
large number of mainstream and obscure native languages
was not easy due to the human factor involved. Even if all
the known rules are put in place, it still leaves out some cases
which require handling on case to case basis. Conventional
machine learning techniques like Support Vector Machines
[8], Hidden Markov Models [9], Decision trees [10] etc. are
also unscalable as they require feature engineering. This is
where deep learning comes into play. Building a data driven
model for transliteration helps not only in scalability but also
in handling certain corner cases which could be dealt with
from the data itself. The transliteration data in most of the
cases is not completely consistent as transliteration is a
highly subjective problem. The ambiguities in the data can
degrade the model's performance, but deep learning is robust
to noise, the caveat being that it is data hungry.

III. DATASETS

We evaluate our models on Hindi (Devanagari)⭤ English
(Latin), Sindhi (Perso-Arabic)⭤ Sindhi (Devanagari) and
Kannada (Kannada) to English (Latin) transliteration. The
datasets we used are described in Table 1. The datasets are in
a parallel corpus format, i.e., source-word"\t"target-word.
For Hindi⭤ English transliteration, we used a list of 200k
proper nouns augmented by another 40k loan words. The
Sindhi (Perso-Arabic)⭤ Sindhi (Devanagari) and Kannada
(Kannada) to English (Latin) had a similar composition. For
the seq2seq models we trained, the dataset was not pre-
processed, however for LSTM models using Epsilon
Insertion(EI)[6], we inserted '-' for alignment of characters,
e.g., 'gha' was mapped to '--घ'. The problems we encountered
in EI, which are language specific, are discussed in the
challenges section.

TABLE 1: DATASET DESCRIPTION

Language
(script1⭤
script2)

Dataset
size

Avg.
word
length
script1

Avg.
word
length
script2

Vocab
script1

Vocab
script2

Sindhi
(Devanagri ⭤

Arabic)
363231 6.26 6.25 69 76

Kannada
(Kannada-

Latin)
421128 7.38 8.23 89 26

Hindi
(Devanagri ⭤

Latin)
246024 8 9 70 26

IV. CHALLENGES

From prior discussions, we know that transliteration is
not a trivial problem. Building a generic model and
expecting it to portray the same behaviour with different
language pairs is naive. Language specific nuances introduce
a set of challenges which causes the models to behave
differently for different language pairs. This section will
discuss a few prominent issues we faced with Hindi, Sindhi
and Kannada.

A. Hindi

Hindi is a language primarily written in Devanagari script
which is an alphasyllabary derived from the ancient Brahmi
script. Apart from having regular character categories like
Consonant and Vowel, it also has some special characters
which are of dependent nature, i.e., they get attached to their
preceding character, e.g., Vowel signs, Anusvara etc. This
makes Hindi a complex language. Apart from that, all the
Indian languages have a special character to form the
conjuncts, called as Halanta. This character kills the inherent
vowel in the preceding consonant thereby forming the
conjunct. In addition, the Halanta behaves in a peculiar
manner which is not observed for any character in any of the
non-brahmi derived scripts. It not only maps to nothing in the
target script, but also introduces variations in the way the
other characters are to be depicted in the target script.

B. Sindhi

Sindhi is one those Indian languages which is
prominently written in two totally different scripts. One is
Devanagari and the other is Perso-Arabic. These scripts not

only greatly differ in their character set but also belong to
different writing systems.

Sindhi when written in Devanagari is written in a very
definitive manner and there are hardly any ambiguities in
terms of the pronunciation of the words. However, the same
when written using Perso-Arabic script, there is a lot of
contextual information involved and many of the intended
sounds are not directly available in the form of actual
characters. Those sounds are to be deciphered by the reader,
keeping in mind the context of the word. The same word can
be read differently in different contexts, e.g., the word

 can be read as शहज़ादȣ /shehzadi/ as well as शहज़ादे - شهزادي

/shehzade/ depending on the context of the word.

C. Kannada

Kannada is one of the Indian languages that belongs to
the Dravidian family. One of the major differences between
Indo-Aryan and the Dravidian languages is that of
pronunciation of the implicit vowel at the end of the word. In
Hindi, it is \a\ whereas in Kannada, it is \aa\. However,
depending on the word origin, this implicit vowel varies
thereby changing the expected transliteration of the words.

 Another interesting aspect of the Kannada is the
transliteration of the characters ತ \ta\ and ಥ \tha\. While

character "ಥ" is consistently mapped to its intended sound,

i.e., \tha\, the character ತ also expected to map to \tha\ in

some cases and this behaviour is observed to be inconsistent
and yet transliteration systems are supposed to handle such
deviations.

V. EXPERIMENTS AND APPROACHES

We tried out two approaches, first using the LSTM and
the other one using Sequence to Sequence. For each
approach, the input feed method is chosen first and the input
sequence is accordingly reordered and one-hot encoded. The
maximum length of the input is fixed to 36 which was the
length of the longest word in the datasets. Both the
approaches have been discussed below in detail.

A. LSTM:

LSTM networks are capable of modelling sequential
aspects of data and hence have been used widely for Natural
language processing problems. Our model is fed a single
source character and generates a single target character at a
time. For our experiments, we use bidirectional-LSTM [11]
which has two layers; one accesses information in forward
direction and other in the reverse direction. These networks
have access to the past as well as the future information and
hence the output is generated from both the past and future
contexts. This network tries to learn one-to-one mapping
given the neighbouring characters. Since it tries to learn one-
to-one mappings, the source and target words need to be well
aligned for optimal performance. We have experimented
with EI and our extension of it, which aligns the words on
the basis of the constituent akshars [12]. An akshar is a
syllable inherent to the Brahmi based languages. An akshar
comprises a nodal consonant or vowel to which a character
or a sequence of characters such as Halant, Vowel Sign
(Matra) or Diacritic may be adjunct based on specific rules.

Fig. 1. Bidirectional LSTM networks.

Thus, akshar forms a basic building unit for all Brahmi based
languages.

1) Epsilon insertion based on word length match
We used Epsilon insertion for aligning the source and

target words in the dataset. Epsilon, which we represent with
'-', is inserted as a placeholder in the target script for
alignment, e.g., 'ghar' was mapped to '--घर'. This is only
possible when the input is longer than the output, i.e., there is
either a one-to-one mapping or a many-to-one mapping
between the source and target language characters. The
problem with one-to-many relation between the source and
target language characters is that, it requires EI in the source
words, which would not be possible during the prediction
because our implementation of EI requires both input and
output beforehand, if one-to-many relation exists, for
successfully aligning the words.

2) Epsilon insertion based on akshar length match:
In this case we split the input and output by akshars, in

case of Brahmi derived languages, and by equivalent set of
characters (referred here as syllables) in case of non-brahmi
derived languages, and then make the respective
syllables/akshars of same length, by inserting the epsilon
character '-' wherever required. This ends up making the
source and target words of the same length.

E.g., as seen in the following table, there are two akshars
in source word "गुÜता" and respectively two syllables in the
target word "gupta". The EI can be seen in the second
syllable where its equivalent akshar has four characters while
the syllable has only three.

TABLE 2: SYLLABLE EPSILON INSERTION

Source akshars ग ◌ ु प ◌ ्त ◌ा

Target syllables g u - p t a

This method should theoretically perform better as each
akshar/syllable in the source language has a corresponding
unique akshar/syllable in the target language. The model gets
to learn these mappings between the syllables, as opposed to
characters, thereby minimizing the ambiguity. This enhances
the previous raw input to a refined state, i.e., after processing
the input data with this method, it does hold information.

This is only possible when the individual syllables in the
target script are shorter in length than the syllables in the
source script, as we won't be able to determine where to
insert the epsilons in the source script during the prediction
time, without the knowledge of the target script syllables.
This problem is described in Table 3.

TABLE 3: SHORTER SOURCE AKSHAR

प ◌् र ◌े म -व त ◌ी
-pre m va ti

In this case, both the source and target words need
epsilon insertion. This is possible during training time as we
have both the input and output words which are necessary for
our alignment algorithm. However, during prediction, it is
not possible to align the akshars/syllables and the system
falters.

3) Syllable split:
The character by character feeding approach suffers

heavily due to alignment mismatch in terms of phonetic
syllables in source and target languages. This approach tries
to overcome that shortcoming by introducing the length
matching at the phonetic syllable level thereby trying to
bring in a better context. Eventually we one-hot encoded the
syllables.

As compared to basic alphabets, the number of unique
syllables is far greater in number. This increases the problem
complexity which not only demands relatively much larger
corpus but also the compute capability. Moreover, larger
one-hot vectors also increase the memory footprint. Due to
these reasons the method is not scalable, and as expected, the
results were poor.

B. Sequence-to-sequence:

 Sequence-to-sequence models consist of two neural
networks. The encoder network takes the input sequence one
character at a time and generates the context vector. The
decoder network is initialized with this context vector (final
encoder states). Then the decoder network is used to generate
the target sequence one character at a time. This system is
adopted here as it handles the difference in the syntax and
length mismatch. This makes the model very flexible and
scalable. The system works as illustrated in the fig 2.

The direction in which we feed input sequence to the
encoder also affects the output [4][13]. We experimented
with a different input feed directions and compared the
performance of the systems, however the output was always
in the forward direction. The feed directions we

Fig. 2. Sequence-to-sequence model with encoder and decoder network

experimented with are discussed below, followed by the
results.

1) Forward feed:
Here we directly feed the sequences as we read. This is

logically the most obvious input format, however research
shows that there are better feed directions[13]. The sample
input and output for the pair "साहȣन ⭤ sahin" with different
feed directions has been shown in Table 4.

2) Reverse feed:
Here we reverse the input sequence to the encoder. This

somehow gives better results than the forward feed,
especially for longer words.

3) Reverse spaced-out feed:
It was observed that, regardless of the feed direction, the

model's performance for the longer and obscure words still
had some issues. We hypothesized that, as large chunk of the
training corpus comprised of shorter words, the initial few
bits of the word encoding contribute more to the context
building than the succeeding ones explaining the issues with
longer words. We spaced-out the characters throughout the
maximum length (36 in our case) of the input word in an
attempt at building a more uniform distribution at context
building of the words.

TABLE 4: FEED DIRECTION SAMPLES

 Input Output

Forward स ◌ा ह ◌ी न \n - - - - - - - - \t s a h i n \n - - - - - - -

Reverse न ◌ी ह ◌ा स \n - - - - - - - - \t s a h i n \n - - - - - - -

Reverse Spaced
out

न - ◌ी - ह - ◌ा - स - \n - - - \t s a h i n \n - - - - - - -

The models are evaluated using Word Error Rate (WER)
and Character Error Rate (CER) as evaluation metrics. The
results of the discussed feed directions are shown in Table 5.
We have tested the models with different feeds for only one
language pair, since the feed direction is not language
specific. The results clearly show that reverse feed reduces
the CER and WER. This could be because reversing the
order generates many short-term dependencies as stated in
[4] [6].

TABLE 5: RESULTS OF SEQ2SEQ OVER FEED DIRECTIONS

Model
Seq2Seq

Feed-
direction

Character
Error
rate

Word
Error
rate

E2H Forward 26.1 56.87

E2H Reverse 24.91 55.37

E2H
Reverse

spaced out 26.04 56.83

H2E Forward 16.66 42.18

H2E Reverse 16.17 42.18

H2E
Reverse

spaced out 16.45 42.18

We have used only one hidden layer with 256 neurons for

both encoder and decoder. During the training, time we used
teacher enforcing, i.e., the decoder is fed with the actual
previous character instead of the character predicted by the
decoder in previous time-step. During the prediction, the
decoder is fed with the previous predicted character. We use

greedy search algorithm for the word prediction. Table 6
shows the results of the Sequence to Sequence models which
are fed reverse input on different language pairs.

TABLE 6: RESULTS OF SEQ2SEQ OVER LANGUAGE PAIRS

Language pair WER CER
Sindhi(Devanagari) to Sindhi(Arabic) 65.41 16.82
Sindhi(Arabic) to Sindhi(Devanagari) 23.85 5.29

Kannada toEnglish 53.13 12.15
English to Kannada 55.37 24.91

Hindi to English 42.18 16.17

VI. POST PROCESSING

The sequence to sequence model outputs a probability
distribution over ‘k’ output classes, i.e., the models have a
softmax activation on the output layer. We found patterns in
the probability distribution that validates the hypothesis that
sequence to sequence models can handle certain language
specific challenges appropriately. These patterns are
discussed below.

Tables 7, 8 and 9 clearly show the patterns in the
probability distribution. The probability difference between
the two most probable characters show how plausible the
output class is, i.e., a higher difference (~0.9 which is the
norm) indicates how unrivalled the output is and a lower
difference (< 0.45) points to a case where there could be
another plausible contender for the output.

A. Alternative matra combinations

In Indian languages, there are different vowel signs used
to represent varying lengths of the vowel sound, e.g., in
Devanagari ' ि◌ ' represents shorter ' i ' vowel whereas ' ◌ी '
represents the longer one. However, in practice the usage of
the same is not consistent and is highly subjective to various
parameters. This gives rise to ambiguous mappings in the
dataset and the following results portray how sequence to
sequence models handle these ambiguities.

TABLE 7: PREDICTIONS FOR DIP WHICH CAN MAP TO िदप AND दीप

Time-step
Most

probable
char

2nd
most

probable
char

Probability
difference

1 द ड 0.8791721

2 ि◌ ◌ी 0.3205122

3 प फ 0.9884761

The aberration in the probability difference clearly shows
how the sequence to sequence model has adapted to the
ambiguous mappings in the data and has assigned significant
enough probability to both the characters in the second time-
step for them to be plausible outputs.

B. Similar mappings for Retroflex and Dental
Varga consonants

Among all the character classifications [12] in Indian
languages, the transliterated interpretation of two of the
vargas, i.e., Retroflex and Dental, quite often conflict with
each other. E.g., Table 8 describes such a relationship

between ' द ' and ' ड ', which can be extrapolated to the rest of

the pairs, i.e., ट-त, ठ-थ, ड-द, ढ-ध and ण-न.

TABLE 8: PREDICTIONS FOR RETROFLEX AND DENTAL CONFLICTS

Time-
step

Most
probable

char

2nd most
probable

char

Probability
difference

1 म क 0.99647903

2 ◌ो ◌ॉ 0.9649083

3 द ड 0.31311885

4 ◌ी ि◌ 0.79156876

In the third time-step, it is clearly visible that the data has
dictated ambiguous mappings between द and ड, which has
manifested in the form of marginal probability difference.
The cases described in VII.A and VII.B can be handled using
simple substitution.

C. Matra insertion/deletion

We observed that in some cases where the probability
difference is low and one of the two most probable
characters is a matra, a mere substitution results in the
removal of a valid non-matra character. This case is shown in
Table 9. This case can be handled by the insertion of the ' ◌ा '
matra instead of substitution.

TABLE 9: PREDICTIONS FOR MATRA INSERTION/DELETION

Time-
step

Most
probable

char

2nd most
probable

char

Probability
difference

1 क ख 0.997335

2 म ◌ा 0.106853

VII. CONCLUSION

In this paper, we compared the performance of scalable
system for transliteration of Indian languages using deep
learning. The results show that the reverse feed sequence 2
sequence models are the most successful of the lot. Sequence
2 sequence models perform better than the other models, not
only in terms of the performance metrics but also in terms of
handling the language specific nuances discussed. However,
they do have a critical drawback, i.e., they need a large
dataset for training good models. The LSTM models do not
need such large datasets; however, they are incapable of
handling issues which seq2seq handles.

REFERENCES

[1] C-DAC GIST, "https://www.cdac.in/index.aspx?id=mlc_gist_ntrans".

Accessed on: 29th July 2018

[2] Kanwaljit Kaur. Machine transliteration: A Review of
Literature.International Journal of Engineering Trends and
Technology (IJETT) – Volume 37 Number 6 - July 2016

[3] "https://datascience.berkeley.edu/machine-learning-neural-systems/".
Accessed on: 29th July 2018

[4] Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence
Learning with Neural Networks. arXiv:1409.3215 2014

[5] Sepp Hochreiter and Jurgen Schmidhuber. Long Short ¨Term
Memory. Technical Report FKI-207-95, Technische Universitat M ¨
unchen, M ̈unchen, August 1995.

[6] Mihaela Rosca, Thomas Breuel. Sequence-to-sequence neural

network models for transliteration. arXiv:1610.09565v1 2016

[7] "https://www.omniglot.com/writing/index.htm". Accessed on: 29th
July 2018

[8] P. H. Rathod, M L Dhore, R. M. Dhore, HINDI AND MARATHI TO
ENGLISH MACHINE TRANSLITERATION USING SVM,
International Journal on Natural Language Computing (IJNLC), 2(4),
2013, pp. 57-71.

[9] XIA Li-sha, FANG Hua-jing, ZHENG Luo. Survey on Hidden
Markov Model Based Fault Diagnosis and Prognosis.

[10] Kotsiantis, S.B. Artif Intell Rev (2013) 39: 261.
https://doi.org/10.1007/s10462-011-9272-4

[11] Wöllmer, M., Eyben, F., Graves, A. et al. Cogn Comput (2010) 2:
180. https://doi.org/10.1007/s12559-010-9041-8

[12] Govind et. al. "https://archive.icann.org/en/topics/new-
gtlds/devanagari-vip-issues-report-03oct11-en.pdf"

[13] Oriol Vinyals, Samy Bengio, Manjunath Kudlur. ORDER
MATTERS: SEQUENCE TO SEQUENCE FOR SETS.
arXiv:1511.06391

[14] "http://mhrd.gov.in/language-education". Accessed on: 14th August
2018

