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Abstract—Transliteration of Indian languages has been a 
challenging problem, given their complex nature, which has 
conventionally been handled by rule based systems developed 
by trained linguists. Scalability is a prominent issue with these 
systems and given the number of language pairs possible for 
Indian languages, a scalable pipeline is necessary for swift 
development of these systems. Deep learning systems are 
pragmatic for building a scalable pipeline, as they are 
completely data driven. We experimented with LSTMs and 
Sequence to Sequence models to find an optimal model for the 
scalable pipeline by comparing the results. The results show 
Sequence to Sequence models are a better fit for this solution. 
We also discuss techniques for pre-processing the data and 
post processing the output for optimal performance.  
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I. INTRODUCTION  

Transliteration is the process of transforming words 
written in one script to another script without losing their 
phonological characteristics. It enables readers familiar with 
the one script (target script) to read the text written in the 
other script (source script). This technique is widely 
employed in Machine Translation systems for converting 
Named Entities to their desired form in the target language in 
a different script. Transliteration now-a-days is also heavily 
used in Transliterated inputting, i.e., facilitating users to use 
the keyboard of one script to input languages represented by 
a different script. If a particular text belongs to a dual script 
language like Sindhi which is written in both Devanagari and 
Perso-Arabic script, the effect of transliteration is as good as 
that of a translation.  

Our main focus was on English⭤ Indian Language and 
Indian Language⭤ Indian Language transliteration system 
using deep learning. Traditionally this problem has always 
been solved with the help of rule-based systems [1][2] which 
were mostly hand-crafted by linguists. The shortcomings of 
these systems are, the linguists are expected to have good 
command over both the source and target languages and 
scripts, and such skilled resources, cannot be expected to be 
available for all possible language pairs. The rule-based 
systems come with many drawbacks like unscalability, 
inflexibility and being limited in terms of handling all 
possibilities in the solution space. In contrast to the rule-
based systems, deep learning-based systems only need data 
and the compute capability which are abundantly available 
these days [3]. Hence, we decided to design a transliteration 
system that would leverage this and provide a scalable 
solution towards this problem. 

We experimented with Sequence to Sequence [4] and 
LSTM [5] models for building the transliteration systems. 
We evaluated the performance of these models not only on 

raw parallel corpus, but also after preprocessing the parallel 
corpus with techniques like Epsilon insertion [6] and 
reordering of the input sequences. 

The problem is complicated as different basic alphabets 
and phonetic systems are used by different languages [7]. 
Moreover, lengths of the input and output sequences also 
vary. The parallel corpus can have entries with ambiguous 
mappings, making the problem more subjective to such an 
extent that evaluation of such systems becomes very 
challenging. This paper discusses the experiments and results 
in our attempts at transliteration using Deep Learning. 

The rest of our paper is organized as follows. We address 
our motivation in section II. Section III discusses our 
datasets and their descriptions. The language specific 
challenges are discussed in section IV followed by the 
experiments and results in section V. Section VI describes 
the patterns observed in the outputs which could be used for 
post processing and finally we conclude in section VII.  

II. MOTIVATION 

India is a multilingual country with vastly different 
cultures. Most of the cultures have their own languages 
which are in some way unique and fundamentally different 
from one another [14]. The administrative regions (States) in 
India, by and large, were created on the basis of linguistic 
division. This linguistic division paved a path for very robust 
linguistic preservation of Indian languages with the State 
support. Hence, many of these regions have a very prominent 
presence of local languages in communication they have 
with the populace. With vast amounts of cross-cultural 
exchanges taking place, transliteration takes a centre-stage in 
information exchange. 

Traditional Transliteration systems were mostly rule-
based. Even though they are quite accurate, their 
performance heavily depends on the linguist's domain 
knowledge and adeptness. Scaling-up of such systems for a 
large number of mainstream and obscure native languages 
was not easy due to the human factor involved. Even if all 
the known rules are put in place, it still leaves out some cases 
which require handling on case to case basis. Conventional 
machine learning techniques like Support Vector Machines 
[8], Hidden Markov Models [9], Decision trees [10] etc. are 
also unscalable as they require feature engineering. This is 
where deep learning comes into play. Building a data driven 
model for transliteration helps not only in scalability but also 
in handling certain corner cases which could be dealt with 
from the data itself. The transliteration data in most of the 
cases is not completely consistent as transliteration is a 
highly subjective problem. The ambiguities in the data can 
degrade the model's performance, but deep learning is robust 
to noise, the caveat being that it is data hungry.  



III. DATASETS 

We evaluate our models on Hindi (Devanagari)⭤ English 
(Latin), Sindhi (Perso-Arabic)⭤ Sindhi (Devanagari) and 
Kannada (Kannada) to English (Latin) transliteration. The 
datasets we used are described in Table 1. The datasets are in 
a parallel corpus format, i.e., source-word"\t"target-word. 
For Hindi⭤ English transliteration, we used a list of 200k 
proper nouns augmented by another 40k loan words. The 
Sindhi (Perso-Arabic)⭤ Sindhi (Devanagari) and Kannada 
(Kannada) to English (Latin) had a similar composition. For 
the seq2seq models we trained, the dataset was not pre-
processed, however for LSTM models using Epsilon 
Insertion(EI)[6], we inserted '-' for alignment of characters, 
e.g., 'gha' was mapped to '--घ'. The problems we encountered 
in EI, which are language specific, are discussed in the 
challenges section. 

TABLE 1: DATASET DESCRIPTION 

Language 
(script1⭤  
script2) 

Dataset 
size 

Avg. 
word 
length 
script1 

Avg. 
word 
length 
script2 

Vocab 
script1 

Vocab 
script2 

Sindhi 
(Devanagri ⭤  

Arabic) 
363231 6.26 6.25 69 76 

Kannada 
(Kannada-

Latin) 
421128 7.38 8.23 89 26 

Hindi 
(Devanagri ⭤  

Latin) 
246024 8 9 70 26 

 

IV. CHALLENGES 

From prior discussions, we know that transliteration is 
not a trivial problem. Building a generic model and 
expecting it to portray the same behaviour with different 
language pairs is naive. Language specific nuances introduce 
a set of challenges which causes the models to behave 
differently for different language pairs. This section will 
discuss a few prominent issues we faced with Hindi, Sindhi 
and Kannada. 

A. Hindi 

Hindi is a language primarily written in Devanagari script 
which is an alphasyllabary derived from the ancient Brahmi 
script. Apart from having regular character categories like 
Consonant and Vowel, it also has some special characters 
which are of dependent nature, i.e., they get attached to their 
preceding character, e.g., Vowel signs, Anusvara etc. This 
makes Hindi a complex language. Apart from that, all the 
Indian languages have a special character to form the 
conjuncts, called as Halanta. This character kills the inherent 
vowel in the preceding consonant thereby forming the 
conjunct. In addition, the Halanta behaves in a peculiar 
manner which is not observed for any character in any of the 
non-brahmi derived scripts. It not only maps to nothing in the 
target script, but also introduces variations in the way the 
other characters are to be depicted in the target script. 

B. Sindhi 

Sindhi is one those Indian languages which is 
prominently written in two totally different scripts. One is 
Devanagari and the other is Perso-Arabic. These scripts not 

only greatly differ in their character set but also belong to 
different writing systems.  

Sindhi when written in Devanagari is written in a very 
definitive manner and there are hardly any ambiguities in 
terms of the pronunciation of the words. However, the same 
when written using Perso-Arabic script, there is a lot of 
contextual information involved and many of the intended 
sounds are not directly available in the form of actual 
characters. Those sounds are to be deciphered by the reader, 
keeping in mind the context of the word. The same word can 
be read differently in different contexts, e.g., the word  

 can be read as शहज़ादȣ /shehzadi/ as well as शहज़ादे - شهزادي

/shehzade/ depending on the context of the word.  

C. Kannada  

Kannada is one of the Indian languages that belongs to 
the Dravidian family. One of the major differences between 
Indo-Aryan and the Dravidian languages is that of 
pronunciation of the implicit vowel at the end of the word. In 
Hindi, it is \a\ whereas in Kannada, it is \aa\. However, 
depending on the word origin, this implicit vowel varies 
thereby changing the expected transliteration of the words.  

 Another interesting aspect of the Kannada is the 
transliteration of the characters ತ \ta\ and ಥ \tha\. While 

character "ಥ" is consistently mapped to its intended sound, 

i.e., \tha\, the character ತ also expected to map to \tha\ in 

some cases and this behaviour is observed to be inconsistent 
and yet transliteration systems are supposed to handle such 
deviations.  

V. EXPERIMENTS AND APPROACHES 

We tried out two approaches, first using the LSTM and 
the other one using Sequence to Sequence. For each 
approach, the input feed method is chosen first and the input 
sequence is accordingly reordered and one-hot encoded. The 
maximum length of the input is fixed to 36 which was the 
length of the longest word in the datasets. Both the 
approaches have been discussed below in detail. 

A. LSTM: 

LSTM networks are capable of modelling sequential 
aspects of data and hence have been used widely for Natural 
language processing problems. Our model is fed a single 
source character and generates a single target character at a 
time. For our experiments, we use bidirectional-LSTM [11] 
which has two layers; one accesses information in forward 
direction and other in the reverse direction. These networks 
have access to the past as well as the future information and 
hence the output is generated from both the past and future 
contexts. This network tries to learn one-to-one mapping 
given the neighbouring characters. Since it tries to learn one-
to-one mappings, the source and target words need to be well 
aligned for optimal performance. We have experimented 
with EI and our extension of it, which aligns the words on 
the basis of the constituent akshars [12]. An akshar is a 
syllable inherent to the Brahmi based languages. An akshar 
comprises a nodal consonant or vowel to which a character 
or a sequence of characters such as Halant, Vowel Sign 
(Matra) or Diacritic may be adjunct based on specific rules. 



  

 

Fig. 1. Bidirectional LSTM networks. 

Thus, akshar forms a basic building unit for all Brahmi based 
languages. 

 

1) Epsilon insertion based on word length match 
We used Epsilon insertion for aligning the source and 

target words in the dataset. Epsilon, which we represent with 
'-', is inserted as a placeholder in the target script for 
alignment, e.g., 'ghar' was mapped to '--घर'. This is only 
possible when the input is longer than the output, i.e., there is 
either a one-to-one mapping or a many-to-one mapping 
between the source and target language characters. The 
problem with one-to-many relation between the source and 
target language characters is that, it requires EI in the source 
words, which would not be possible during the prediction 
because our implementation of EI requires both input and 
output beforehand, if one-to-many relation exists, for 
successfully aligning the words. 

2) Epsilon insertion based on akshar length match: 
In this case we split the input and output by akshars, in 

case of Brahmi derived languages, and by equivalent set of 
characters (referred here as syllables) in case of non-brahmi 
derived languages, and then make the respective 
syllables/akshars of same length, by inserting the epsilon 
character '-' wherever required. This ends up making the 
source and target words of the same length. 

E.g., as seen in the following table, there are two akshars 
in source word "गुÜता" and respectively two syllables in the 
target word "gupta". The EI can be seen in the second 
syllable where its equivalent akshar has four characters while 
the syllable has only three.  

TABLE 2: SYLLABLE EPSILON INSERTION 

Source akshars ग ◌ ु प ◌ ्त ◌ा 

Target syllables g u - p t a 

 

This method should theoretically perform better as each 
akshar/syllable in the source language has a corresponding 
unique akshar/syllable in the target language. The model gets 
to learn these mappings between the syllables, as opposed to 
characters, thereby minimizing the ambiguity. This enhances 
the previous raw input to a refined state, i.e., after processing 
the input data with this method, it does hold information. 

This is only possible when the individual syllables in the 
target script are shorter in length than the syllables in the 
source script, as we won't be able to determine where to 
insert the epsilons in the source script during the prediction 
time, without the knowledge of the target script syllables. 
This problem is described in Table 3. 

TABLE 3: SHORTER SOURCE AKSHAR 

प ◌् र ◌े म -व त ◌ी 
-pre m va ti 

In this case, both the source and target words need 
epsilon insertion. This is possible during training time as we 
have both the input and output words which are necessary for 
our alignment algorithm. However, during prediction, it is 
not possible to align the akshars/syllables and the system 
falters. 

3) Syllable split: 
The character by character feeding approach suffers 

heavily due to alignment mismatch in terms of phonetic 
syllables in source and target languages. This approach tries 
to overcome that shortcoming by introducing the length 
matching at the phonetic syllable level thereby trying to 
bring in a better context. Eventually we one-hot encoded the 
syllables. 

As compared to basic alphabets, the number of unique 
syllables is far greater in number. This increases the problem 
complexity which not only demands relatively much larger 
corpus but also the compute capability. Moreover, larger 
one-hot vectors also increase the memory footprint. Due to 
these reasons the method is not scalable, and as expected, the 
results were poor. 

B.  Sequence-to-sequence: 

 Sequence-to-sequence models consist of two neural 
networks. The encoder network takes the input sequence one 
character at a time and generates the context vector. The 
decoder network is initialized with this context vector (final 
encoder states). Then the decoder network is used to generate 
the target sequence one character at a time. This system is 
adopted here as it handles the difference in the syntax and 
length mismatch. This makes the model very flexible and 
scalable. The system works as illustrated in the fig 2. 

The direction in which we feed input sequence to the 
encoder also affects the output [4][13]. We experimented 
with a different input feed directions and compared the 
performance of the systems, however the output was always 
in the forward direction. The feed directions we 



 

Fig. 2. Sequence-to-sequence model with encoder and decoder network 

experimented with are discussed below, followed by the 
results. 

1) Forward feed: 
Here we directly feed the sequences as we read. This is 

logically the most obvious input format, however research 
shows that there are better feed directions[13]. The sample 
input and output for the pair "साहȣन ⭤  sahin" with different 
feed directions has been shown in Table 4.  

2) Reverse feed: 
Here we reverse the input sequence to the encoder. This 

somehow gives better results than the forward feed, 
especially for longer words.  

3) Reverse spaced-out feed: 
It was observed that, regardless of the feed direction, the 

model's performance for the longer and obscure words still 
had some issues. We hypothesized that, as large chunk of the 
training corpus comprised of shorter words, the initial few 
bits of the word encoding contribute more to the context 
building than the succeeding ones explaining the issues with 
longer words. We spaced-out the characters throughout the 
maximum length (36 in our case) of the input word in an 
attempt at building a more uniform distribution at context 
building of the words. 

TABLE 4: FEED DIRECTION SAMPLES 

 Input Output 

Forward स ◌ा ह ◌ी न \n - - - - - - - - \t s a h i n \n - - - - - - - 

Reverse न ◌ी ह ◌ा स \n - - - - - - - - \t s a h i n \n - - - - - - - 

Reverse Spaced 
out 

न - ◌ी - ह - ◌ा - स - \n - - - \t s a h i n \n - - - - - - - 

 

The models are evaluated using Word Error Rate (WER) 
and Character Error Rate (CER) as evaluation metrics. The 
results of the discussed feed directions are shown in Table 5. 
We have tested the models with different feeds for only one 
language pair, since the feed direction is not language 
specific. The results clearly show that reverse feed reduces 
the CER and WER. This could be because reversing the 
order generates many short-term dependencies as stated in 
[4] [6]. 

TABLE 5: RESULTS OF SEQ2SEQ OVER FEED DIRECTIONS 

Model 
Seq2Seq 

Feed-
direction 

Character 
Error 
rate 

Word 
Error 
rate 

E2H Forward 26.1 56.87 

E2H Reverse 24.91 55.37 

E2H 
Reverse 

spaced out 26.04 56.83 

H2E Forward 16.66 42.18 

H2E Reverse 16.17 42.18 

H2E 
Reverse 

spaced out 16.45 42.18 

 
We have used only one hidden layer with 256 neurons for 

both encoder and decoder. During the training, time we used 
teacher enforcing, i.e., the decoder is fed with the actual 
previous character instead of the character predicted by the 
decoder in previous time-step. During the prediction, the 
decoder is fed with the previous predicted character. We use 

greedy search algorithm for the word prediction. Table 6 
shows the results of the Sequence to Sequence models which 
are fed reverse input on different language pairs. 

TABLE 6: RESULTS OF SEQ2SEQ OVER LANGUAGE PAIRS 

Language pair WER CER 
Sindhi(Devanagari) to Sindhi(Arabic) 65.41 16.82 
Sindhi(Arabic) to Sindhi(Devanagari) 23.85 5.29 

Kannada toEnglish 53.13 12.15 
English to Kannada 55.37 24.91 

Hindi to English 42.18 16.17 

 

 

VI. POST PROCESSING 

The sequence to sequence model outputs a probability 
distribution over ‘k’ output classes, i.e., the models have a 
softmax activation on the output layer. We found patterns in 
the probability distribution that validates the hypothesis that 
sequence to sequence models can handle certain language 
specific challenges appropriately. These patterns are 
discussed below. 

Tables 7, 8 and 9 clearly show the patterns in the 
probability distribution. The probability difference between 
the two most probable characters show how plausible the 
output class is, i.e., a higher difference (~0.9 which is the 
norm) indicates how unrivalled the output is and a lower 
difference (< 0.45) points to a case where there could be 
another plausible contender for the output.  

A. Alternative matra combinations 

In Indian languages, there are different vowel signs used 
to represent varying lengths of the vowel sound, e.g., in 
Devanagari ' ि◌ ' represents shorter ' i ' vowel whereas ' ◌ी ' 
represents the longer one. However, in practice the usage of 
the same is not consistent and is highly subjective to various 
parameters. This gives rise to ambiguous mappings in the 
dataset and the following results portray how sequence to 
sequence models handle these ambiguities.  



TABLE 7: PREDICTIONS FOR DIP WHICH CAN MAP TO िदप AND दीप 

Time-step 
Most 

probable 
char 

2nd 
most 

probable 
char 

Probability 
difference 

1 द ड 0.8791721 

2 ि◌ ◌ी 0.3205122 

3 प फ 0.9884761 

 

The aberration in the probability difference clearly shows 
how the sequence to sequence model has adapted to the 
ambiguous mappings in the data and has assigned significant 
enough probability to both the characters in the second time-
step for them to be plausible outputs. 

B. Similar mappings for Retroflex and Dental 
Varga consonants 

Among all the character classifications [12] in Indian 
languages, the transliterated interpretation of two of the 
vargas, i.e., Retroflex and Dental, quite often conflict with 
each other. E.g., Table 8 describes such a relationship 

between ' द ' and ' ड ', which can be extrapolated to the rest of 

the pairs, i.e., ट-त, ठ-थ, ड-द, ढ-ध and ण-न.  

TABLE 8: PREDICTIONS FOR RETROFLEX AND DENTAL CONFLICTS 

Time-
step 

Most 
probable 

char 

2nd most 
probable 

char 

Probability 
difference 

1 म क 0.99647903 

2 ◌ो ◌ॉ 0.9649083 

3 द ड 0.31311885 

4 ◌ी ि◌ 0.79156876 

 

In the third time-step, it is clearly visible that the data has 
dictated ambiguous mappings between द and ड, which has 
manifested in the form of marginal probability difference. 
The cases described in VII.A and VII.B can be handled using 
simple substitution. 

C. Matra insertion/deletion 

We observed that in some cases where the probability 
difference is low and one of the two most probable 
characters is a matra, a mere substitution results in the 
removal of a valid non-matra character. This case is shown in 
Table 9. This case can be handled by the insertion of the ' ◌ा ' 
matra instead of substitution.  

 

TABLE 9: PREDICTIONS FOR MATRA INSERTION/DELETION 

Time-
step 

Most 
probable 

char 

2nd most 
probable 

char 

Probability 
difference 

1 क ख 0.997335 

2 म ◌ा 0.106853 

VII. CONCLUSION 

In this paper, we compared the performance of scalable 
system for transliteration of Indian languages using deep 
learning. The results show that the reverse feed sequence 2 
sequence models are the most successful of the lot. Sequence 
2 sequence models perform better than the other models, not 
only in terms of the performance metrics but also in terms of 
handling the language specific nuances discussed. However, 
they do have a critical drawback, i.e., they need a large 
dataset for training good models. The LSTM models do not 
need such large datasets; however, they are incapable of 
handling issues which seq2seq handles. 
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