
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A VARIATIONAL FRAMEWORK FOR GRAPH GENERA-
TION WITH FINE-GRAINED TOPOLOGICAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Controlled graph generation is the process of generating graphs that satisfy specific
topological properties (or attributes). Fine-grained control over graph properties
allows for customizing generated graphs to precise specifications, which is essential
for understanding and modeling complex networks. Existing approaches can only
satisfy a few topological properties such as number of nodes or edges in output
graphs. This paper introduces CGRAPHGEN, a novel conditional variational
autoencoder that, unlike existing approaches, uses graph adjacency matrix during
training, along with the desired graph properties, for improved decoder tuning and
precise graph generation, while relying only on attributes during inference. In
addition, CGRAPHGEN implements an effective scheduling technique to integrate
representations from both adjacency matrix and attribute distributions for precise
control. Experiments on five real-world datasets show the efficacy of CGRAPHGEN
compared to baselines, which we attribute to its use of adjacency matrix during
training and effective integration of representations, which aligns graphs and their
attributes in the latent space effectively and results in better control.

1 INTRODUCTION

Graph generation is the process of generating graphs that mimic real world structures, e.g. following
a power-law distribution in terms of node degree (Erdös & Rényi, 1959; Barabási & Albert, 1999;
You et al., 2018). Controlled graph generation is the process of generating graphs that satisfy
specific topological attributes (Zahirnia et al., 2024; Martinkus et al., 2022), with applications in drug
discovery (e.g. generating new molecules that satisfy certain chemical properties) (Jin et al., 2018;
Shi et al., 2019; Jin et al., 2020; Luo et al., 2021; Popova et al., 2019; Shi et al., 2020; Liu et al.,
2021; Zang & Wang, 2020; De Cao & Kipf, 2018), synthetic material design (Wang et al., 2022;
Sanchez-Lengeling & Aspuru-Guzik, 2018), simulating social network and social interactions (Pitas,
2016; Zhou et al., 2020; Zeno et al., 2021), program graph generation from source codes (Allamanis
et al., 2018), and completing knowledge graphs (Melnyk et al., 2022; Zhou et al., 2023; Cao et al.,
2023).

Despite significant progress in graph generation, existing works often lack fine-grained control over
structural attributes. Most approaches focus on a limited set of graph attributes as controls (Zahirnia
et al., 2024; Chen et al., 2023; Martinkus et al., 2022). In particular, Zahirnia et al. (2024) proposed
a variational autoencoder that learns a latent adjacency matrix from statistics like number of edges,
triangles, random walks and k-hop neighbors. Chen et al. (2023) proposed a discrete diffusion model
by explicitly focusing on node degrees to control graph generation. Similarly, Madeira et al. (2024)
built on discrete diffusion techniques to incorporate specific graph properties such as planarity or
acyclicity to generate graphs. Finally, Martinkus et al. (2022) proposed a model based on generative
adversarial networks to control graph generation by focusing on eigenvalues and eigenvectors as
more abstract topological properties.

In this paper, we propose Controlled Graph Generation (CGRAPHGEN), a novel end-to-end
conditional variational autoencoder for generating graphs that satisfy fine-grained topological
attributes. CGRAPHGEN implements an effective scheduling technique that integrates representations
from both adjacency matrix and attribute distributions to enable more fine-grained and precise control
for graph generation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The closet approach to ours is GenStat (Zahirnia et al., 2024), which is a standard autoencoder model
for controlled graph generation. It encodes given graph attributes to produce a latent adjacency
matrix, which is then used by a decoder to produce the attributes. CGRAPHGEN differs from GenStat
from several aspects: it uses both graph attributes and the adjacency matrix of graphs during training
for improved decoder tuning, while relying only on attributes during inference; it introduces a
novel scheduling technique to integrate latent representations from adjacency matrix and attribute
distributions for effective training; and, unlike previous approaches, it can handle any number of fine-
grained control attributes without any modification, which provides flexibility in graph generation.

The contributions of the paper are:

• CGRAPHGEN, a novel conditional variational autoencoder to generate graphs conditioned
on topological attributes. It uses both graph adjacency matrix and attribute vectors during
training for precise graph generation, while relying only on attributes during inference.

• MIXTURE-SCHEDULER, a novel scheduling technique to effectively integrate representa-
tions from adjacency matrix and attribute distributions for effective fine-grained topological
control in generation.

We evaluate CGRAPHGEN across multiple datasets and our results show its efficacy across the datasets
compared to baselines. We find that mixing attribute representations from prior distribution and
adjacency matrix representations from posterior distributions helps align graphs and their attributes
in the latent space effectively and results in better control. In addition, slower rates of including
information from the prior helps more accurate graph generation. Lastly, we find that increasing the
number of control attributes helps the model with more precise graph generation. 1

2 CONTROLLED GRAPH GENERATION

Problem Definition Given a graph attribute vector c, which represents fine-grained information
about the topology of a target graph G (see examples of these attributes in §2.1), we aim to generate
a graph Ĝ such that its structure satisfies the desired attributes in c.

Solution Overview During training, CGRAPHGEN uses the adjacency matrix A of the target graph
G= (V,E) and its corresponding attribute vector c to learn controlled graph generation, i.e. joint
distributions of training graphs and their attributes. At the inference time, however, CGRAPHGEN
only uses control attribute vector to generate graphs that satisfy the given attribute vectors. As
Figure 1 shows, CGRAPHGEN encodes the structural representation ZG from adjacency matrix A to
parameterize the posterior distribution qϕ, and the attribute representation Zc from the attribute vector
c to build prior distribution pθ. CGRAPHGEN samples from distributions qϕ and pθ to combines ZG

and Zc using MIXTURE-SCHEDULER to obtain the latent representation Z, which balances structural
and attribute information. The MIXTURE-SCHEDULER aims to bring posterior qϕ and pθ closer to
each other, as they represent graphs with the same topological structure. The decoder then learns
the likelihood distribution pψ from Z to generate a graph Ĝ that satisfies the attribute vector c. At
inference time, CGRAPHGEN relies only on the prior distribution pθ and likelihood pψ to condition
graph generation based on attribute vectors.

2.1 CONTROL ATTRIBUTES

We provide a list of structural attributes that provide explicit and precise control over the graph
generation process. These include number of nodes & edges, which define the scale of a graph;
number of local bridges, where a local bridge is an edge that is not part of a triangle in the subgraph,
they transfer information between different parts of graphs; graph density, which is fraction of edges
in the graph, computed as e

v(v−1) , where e is the number of edges and v is the number of nodes
in the graph; edge connectivity, which is the minimum number of edges that must be removed to
disconnect the given graph; node connectivity, which is the minimum number of nodes that must be
removed to disconnect the given graph; number of maximum cliques, which is the count of maximal
complete subgraphs in a graph; graph diameter, which is the length of the shortest path between the

1The code, data and its splits will be released

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0

0

0
.

.
.

.
.

.
1

1
1

1

1
1

1

0
1
.

.

.
.

.

.

.
.

0

0

0
.

.
.

.
.

.
1

1
1

1

1
1

1

0
1
.

.

.
.

.

.

.
.

0

0

0
.

.
.

.
.

.
1

1
1

1

1
1

1

0
1
.

.

.
.

.

.

.
.

 Attributes c

 Attributes c

Traininig Phase

Inference Phase

Figure 1: CGRAPHGEN uses both graph attributes and adjacency matrix during training for improved
decoder tuning. It implements a novel scheduling technique to effectively integrate attributes and
graph distributions to provide fine-grained topological control in generation. At test and inference
times, it only relies on desired attributes to generate graphs.

most distanced nodes in a graph; treewidth min degree, which is an integer quantifying the degree
to which a graph deviates from a tree; closeness centrality, which is the average distance of a node
to all other nodes in the graph, in case of disconnected graphs, to all other nodes in the connected
component containing the node, we compute the average of closeness centrality scores across all
nodes; clustering coefficient, which is the fraction of triangles that exist in a node’s neighborhood,
we compute the average of clustering coefficients across nodes; and transitivity, which is the fraction
of all possible triangles present in a graph, computed as 3× |triangles|/|triads|, where a “triad” is
a set of three vertices connected by only two edges.

Importance These attributes enable precise control over graph generation and make it possible to
generate graphs that satisfy diverse and complex structural requirements. For example, attributes like
transitivity and graph density can be adjusted to manage connectivity of graphs, e.g. optimizing the
design of local area networks where higher density provides robust communication, or controlling
the arrangement of atoms in molecular structures. By controlling these attributes at the granular level,
we can generate graphs that satisfy specific needs. This has various applications, generating balanced
graph datasets in terms of structural attributes, augmenting small-scale datasets by generating similar
but distinct subgraphs; and finding novel structures in specific domains, such as chemistry and molec-
ular biology, where identifying novel compounds with specific properties is crucial for drug discovery.

2.2 LEARNING REPRESENTATIONS

Graph Encoder CGRAPHGEN encoder uses a convolution neural networks (CNNs)2 to encode
structural information of graph G into a latent representation ZG and obtain parameters for the
posterior distribution qϕ. We define this distribution as follows:

qϕ (ZG|G) = N (ZG|µϕ (G) ,Σϕ (G)) , (1)

where N denotes the Gaussian distribution with parameters µϕ (G) and Σϕ (G) as the mean vector
and covariance matrix, obtained from a neural network with parameters ϕ.

Attribute Encoder To control graph generation, the attribute encoder learns the representation of
the attribute vector c, such that attribute vector that are similar to each other remains similar in the
latent space. We learn the parameters for the prior distribution pθ using a normal distribution with the

2The framework is compatible with GNNs but we focus on CNNs due to better performance in experiments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

mean obtained from a non-linear transformation of c:

pθ (Zc|c) = N (Zc|µθ = f (c) ,Σθ = I) , (2)

where f(c) is a non-linear transformation of the attribute vector obtained by training a feed forward
neural network, and Σθ is the unit variance.

2.3 MIXTURE-SCHEDULER

0 200 400 600 800 1000
t

0.0

0.2

0.4

0.6

0.8

1.0

(t
)

Mixture-Scheduler

= 1
= 10
= 0.1

Figure 2: α > 0 controls the inclusion
factor while creating final representation
Z from pθ and qϕ. It specifies how quickly
the prior is integrated during training. A
smaller α means less inclusion of pθ dur-
ing the initial epochs and more inclusion
toward the end of training.

Compare to conventional approach of sampling from
distributions to bring prior and posterior distributions
closer, e.g. through Wasserstein distance (Kantorovich,
1960) or KL divergence (kul, 1951), we introduce
MIXTURE-SCHEDULER to integrate the prior pθ and
posterior qϕmore effectively–learn better representa-
tions that satisfy desired attribute c. Specifically, we
define the mixture by combining approximate sample
and prior sample as follows:

Z = β(t)Zc + (1− β(t))ZG, (3)

where β(t) is the inclusion factor at epoch t, which
controls how much of the prior is incorporated at each
stage of training. It is obtained using the following
scheduler function:

β(t) = min
(
γ, (1− (1− β0)(1− t))

1
α

)
, (4)

where γ is a value between [0, 1] and sets the maximum possible inclusion from prior pθ; α > 0
specifies how quickly the prior is integrated during training; t represents the current epoch; and β0
represents initial inclusion value. The intuition behind developing (4) is to provide flexible control
over the contributions of the prior and posterior and allow smooth and gradual transition between
them. This approach is principled and helps balance structural and attribute information effectively.

2.4 GRAPH GENERATION

We use a Bernoulli distribution to model edge probabilities between node pairs and generate the
adjacency matrix A. The graph decoder learn the likelihood distribution pψ from Z to maximize the
probability of generating graphs satisfy c:

pψ (G|Z, c) ∼ Bernoulli (D (Z)) , (5)

whereD is the decoder and 1 from the Bernoulli distribution indicates an edge between a pair of nodes.

Training Objective We use the following objective function to learn model parameters:

L (ϕ, θ, ψ|G, c) = Eqϕ(Z|G) [log pψ (G|Z, c)]− λWD ·DWD (qϕ (ZG|G) , pθ (Zc|c)) (6)

+λc · Epθ(Zc|c)

[
(c− d (Zc))

2
]
,

where the expected log-likelihood term is the reconstruction loss, which encourages generating graphs
that are closer to the given graph G conditioned on Z and c, the Wasserstein Distance term (DWD)
regularizes the difference between the approximate posterior qϕ(z|G) and the prior pθ(z|c), and
λWD and λc are hyperparameters to balance the regularization terms. The objective encourages
reconstruction of attribute vectors c.

Inference Process During inference, the model generates a graph conditioned on the desired
attribute vector c using pθ, see Figure 1, where pθ creates a latent representation to set the parameters
for the pψ distribution to sample and generate graphs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

Datasets We use a wide range of datasets for experiments:

WordNet (Miller, 1995): a large lexical dataset of English words where nouns, verbs, adjectives and
adverbs are grouped into sets of synonyms, and each word represents a distinct concept. Words are
connected to each other by different relationships. We considered hypernyms, hyponyms, meronyms,
and holonyms to create different WordNet graphs.

Table 1: Data statistics in terms of number
of graphs and attribute vectors.

Train Val Test
WordNet 52,675 2,926 2,927
Citeseer 1,406 78 79
Arxiv 47,538 2,641 2,641
MUTAG 169 10 9
MOLBACE 1,323 74 74

Ogbn-arxiv (Hu et al., 2020): The Open Graph Bench-
mark dataset includes a citation network between arxiv
papers in computer science, where each node is a paper
and an edge represents a citation from one paper to
another. In addition, each paper contains an embedding
vector obtained from the average of the words present
in the title and abstract of the paper.

Citeseer (Kipf & Welling, 2017): a citation network of
scientific articles, where nodes are papers and edges indicate citations between them.

MUTAG (Morris et al., 2020): a molecular dataset where each graph represents a chemical compound
and classified as if the given molecule have mutagenic effect on specific gram negative bacterium.

MOLBACE (Hu et al., 2020): a molecular dataset where each graph represents a chemical compound.

We create several datasets of graphs by considering the k-hop neighbors, k = {2, 3} of each node in
the above graphs to develop training, validation and test data splits for controlled graph generation.
Table1 shows the statistics of the resulting datasets.

Settings Following previous works (De Cao & Kipf, 2018; Zahirnia et al., 2024), we set the
maximum number of nodes to V = 50 in experiments. This threshold is appropriate for GNNs due
to the nature of how GNNs process graph data, especially when considering the common practice
of sampling 1-2 hop neighbors form localized subgraphs for nodes. We set the number of hops
to k = 2 for all datasets except for Citeseer, for which we use k = 3 due to its smaller size. In
addition, we use the Networkx package (Hagberg et al., 2008) to obtain graph attributes. We consider
maximum number of 1000 training iteration for Citeseer and 200 iterations for other datasets. We run
all experiments on a single A100 40GB GPU. Other settings are detailed in Appendix 6.1.

Evaluation Metrics We use mean absolute difference (MAD↓) metric for evaluation. MAD
computes the absolute difference between the attributes of predicted graphs and their corresponding
target graphs. We average these differences for each dataset.

Baselines We compare CGRAPHGEN against the following baselines. For fair evaluation, we
incorporate our control attributes to all baseline models except GraphRNN which is a free generative
model. We provide it’s performance for reference.

GraphRNN (You et al., 2018): GraphRNN generates graph iteratively by training on a representative
set of graphs using breath first search of nodes and edges and implements node and edge RNNs to
generate target graphs. GraphRNN is not a controlled generation approach.

EDGE (Chen et al., 2023): is a diffusion based generative model which iteratively removes edges to
create a completely disconnected graph and uses decoder to iteratively reconstruct the original graph.
It explicitly uses adjacency matrix to satisfy the statistics of the generated graphs during training.

GenStat (Zahirnia et al., 2024): learns the latent adjacency matrix conditioned on graph level attributes,
and decodes it to recreate attribute statistics and use them to generate graphs.

3.1 MAIN RESULTS

Table 2 shows the overall performance of models across datasets. CGRAPHGEN achieves a lower
MAD (↓) compared to other baselines, which indicates that its generated graphs more accurately
satisfy the specified topological properties.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Performance of CGRAPHGEN compared with baselines models. Average mean absolute
difference, MAD(↓), is the average of absolute mean error in satisfying target attributes.

WordNet Citeseer Ogbn-Arxiv MUTAG MOLBACE Average
MAD MAD MAD MAD MAD MAD

GraphRNN (You et al., 2018) 3.26 5.05 4.80 1.71 3.81 3.73

GenStat (Zahirnia et al., 2024) 4.11 5.34 5.53 4.14 3.05 5.20
EDGE (Chen et al., 2023) 3.91 4.97 5.52 2.62 3.07 4.16

CGRAPHGEN 1.80 1.71 2.14 1.00 1.90 1.71

EDGE outperforms GenStat in controlled graph generation. This is mainly because EDGE explicitly
models adjacency matrix, whereas GenStat treats adjacency matrix as a latent variable. In contrast,
CGRAPHGEN generates graphs from a structure-aware distribution conditioned on attributes (and on
graphs during training). Thus, during inference process, CGRAPHGEN is able to generate graphs
with attributes that closely match the specified ones, and result in lower MAD scores.

Output Visualization Table 3 shows examples of different graphs generated by CGRAPHGEN,
GenStat, and EDGE across datasets. The value under each graph indicates the MAD score between
generated and test graphs. As evident from the Table, CGRAPHGEN generates graph that are more
similar to the target graphs compared to other baseline models. We attribute this improvement to
CGRAPHGEN’s ability to perform fine-grained controlled generation using graph attributes.

Table 3: Graph visualization across datasets. Examples are taken from test splits of datasets.

Wordnet Citeseer Ogbn-Arxiv Mutag Molbace

Te
st

C
G

R
A

P
H

G
E

N
M

A
D

0.85 0.00 0.10 2.36 2.85 3.71 0.76 1.09 0.51 0.68

G
en

St
at

M
A

D

2.61 8.44 2.67 7.11 9.32 1.28 4.01 1.67 6.09 0.84

E
D

G
E

M
A

D

3.95 0.56 15.32 10.6 7.29 3.52 0.88 3.01 4.82 2.44

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0

0.25

0.50

0.75

1
average clustering closeness centrality density diameter

0

0.25

0.50

0.75

1
edge connectivity edges length of cliques local bridge

5 10
0

0.25

0.50

0.75

1
node connectivity

5 10

nodes

5 10

transitivity

5 10

treewidth min degree

Number of Attributes

Av
er

ag
e

Di
ffe

re
nc

e

Figure 3: The “average difference” error trend for each attribute as additional attributes are gradually
included in each subsequent independent training run till all the attributes are covered. The x-axis
shows the number of attributes considered for each run. Average difference is the normalized error
between gold standard attributes and attributes calculated from generated graph. As the number
of attributes increases, the error decreases and gradually stabilizes for each attribute. This shows
that fine-grained attributes, beyond just the number of nodes and edges, are crucial for generating
graphs that satisfy the specified attributes. As more constraints are added in using new attributes, the
structural quality of the generated graph improves.

4 DISCUSSION

We conducted several ablation studies to understand the effectiveness of CGRAPHGEN in controlled
graph generation. We analyze scalability to larger number of nodes; provide insights on generating
graphs by masking fundamental attributes like number of nodes and edges, while providing all other
fine-grained attributes; and provide a detailed study on MIXTURE-SCHEDULER, where we analyze
the effects of limiting the inclusion factor and varying the rate of inclusion.

Scalability to larger graphs We analyse the effect of increasing the maximum number of nodes,
|V |, on CGRAPHGEN’s MAD performance. Table 4 shows that MAD increases as the maximum
number of nodes grows. This is because larger graphs have greater structural complexity, with more

Table 4: MAD increases as
number of nodes grows.

#Nodes MAD(↓)
60 5.13
80 12.98
100 25.93
200 31.90

potential edges and relationships that are harder to generate accu-
rately. This makes it challenging for the model to capture both local
and global topological properties, and potentially leads to cumulative
errors in matching node-specific attributes like degrees and central-
ity. In addition, larger graphs often contain more variability and
sparsity, which further complicates satisfying the desired structural
attributes and result in higher deviations between the generated and
target graphs.

More control attributes improve results Graph attributes determines the structural details for
generated graphs. Figure 3 shows the effect of gradually adding more attributes during training.
Starting with two basic graph attributes (number of nodes and edges), we retrain the model while
adding one randomly selected attribute at a time. and report the trend of average difference. As
Figure 3 shows, as the number of control attributes increases, the error decreases and stabilizes, which
indicates that CGRAPHGEN learns more about graph structure and generates more accurate graphs
using more fine-grained attributes. We believe generating graph using only nodes and edges can results
in multiple possibilities of the graphs with different structural properties, which gives more freedom

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Citeseer Mutag Molbace Arxiv Wordnet
Dataset

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
AD

Without Nodes and Edges Attributes
With Nodes and Edges Attributes

(a) Performance of CGRAPHGEN
without using number of nodes &
edges as controls.

Citeseer Mutag Molbace Arxiv Wordnet
Dataset

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
AD

(t) = 0
(t)
(t) =

(b) Effect of inclusion factors on
generation error across different
datasets.

Citeseer Mutag Molbace Arxiv Wordnet
Dataset

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
AD

= 0.1 = 10 = 1

(c) Effect of α on error in gen-
erating graphs across different
datasets.

Figure 4: Ablation Analysis

to the model and allows it to differ from desired graph. However, as more restrictive constraints are
enforced like density or closeness centrality, the quality of the generated graph improves.

Generation without number of nodes and edges as attributes Figure 4(a) compares the per-
formance of CGRAPHGEN before and after masking two basic graph attributes (number of nodes
and edges as controls) for training the model. The model performs almost similarly without these
attributes, which indicates that CGRAPHGEN can infer the number of nodes and edges with minimal
error based on other fine-grained attributes.

4.1 MIXTURE-SCHEDULER ANALYSIS

We conduct ablation study of MIXTURE-SCHEDULER to answer following questions: (Q1) Does
including the prior distribution pθ help? (Q2) How does the rate of inclusion affect model’s perfor-
mance? (Q3) How much of the prior should be included?

Q1: Does including the prior distribution pθ help? To understand the effect of using MIXTURE-
SCHEDULER, we consider three scenarios: (i) when the model only learns from qϕ distribution (β(t)
= 0), (ii) when the model gradually combine pθ and qϕ as training progresses (β(t) → γ), and (iii)
when the model combines both pθ and qϕ with constant influence factor β(t) = γ. As shown in
Figure 4(b), combining representations from both distributions pθ and qϕ helps to generate better
graphs compared to using only representations from qϕ. In addition, gradual increase in influence
factor β(t) → γ performs better compared to keeping it constant β(t). We conclude relying only on
graph representation from qϕ without considering attribute representation from pθresults in higher
MAD error and lower performance.

Q2: How does the rate of inclusion affect model’s performance? To answer the second question,
we analyze different rates of inclusion. As Figure 4(c) shows, a slow inclusion rate (α = 0.1) often
helps model in learning better representations compared faster inclusion rates, e.g. (α=10). This
result suggests that initially focusing on the qϕ and gradually incorporating the pθ yields better latent
representations.

Q3: How much of the prior should be included? To understand the effect of combining attributes
representation from pθwith graph representations from qϕ, we vary the influence of prior distribution
using different values of maximum possible inclusion, γ. We set γ from [0,1] with step size of
0.1. When γ=0, there is no influence from pθ, and when γ = 1, no information from posterior qϕ is
considered. Any values in between combines information from pθ and qϕ distributions. Figure 5
shows that smaller values of γ result in lower error, which indicates that a limited inclusion of the pθ
helps generate better graphs by controlling the contributions of both distributions.

4.2 DE-NOISING GRAPH ATTRIBUTES

We evaluate CGRAPHGEN’s robustness to noisy attributes by masking one attribute at a time during
inference. For this experiment, we use our best trained model and freeze its parameters. Then, we
run inference 12 times, once per attribute and during each run we set the attribute value to zero while

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
 to control inclusion of p distribution

1

2

3

4

5

M
AD

Mutag
Citeseer
Molbace
Wordnet
Arxiv

Figure 5: The relationship between γ and
MAD error values. The inclusion factor γ
controls the contribution of prior pθ to learn
final representation Z. When γ = 0, only
posterior qϕ is used. The results show that
MIXTURE-SCHEDULER reduces MAD error
by combining information form both distri-
butions. However, as γ increases and more
information is drawn from the prior pθ, the
generation error increases. Thus limiting the
value of γ provides better control over gener-
ated graphs.

D
en

si
ty

Ed
ge

s
N

od
es N
C

Av
g

Cl
us

t
CC LB

Tr
an

si
ti

vi
ty EC

Cl
iq

ue
s

TW
M

D
D

ia
m

et
er

Attributes

1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

M
AD

without noise with noise

Figure 6: MAD on test data when masking
only one attribute with noise while keeping
others unchanged. The dotted line shows
CGRAPHGEN’s performance on Citeseer
without any masking. Each bar shows MAD
when when a specific attribute is masked.
Abbreviations NC (node connectivity), EC
(edge connectivity), TWMD (tree width min
degree), Avg Clust (average clustering), LB
(number of local bridge), Clique (number of
cliques).

keeping other attributes unchanged. We run the model on the entire test graphs. Figure 6 shows the
results, where the dotted horizontal line shows the MAD error value of CGRAPHGEN without masking
any attribute and serves as a reference to compare against each independent inference run. The results
show that CGRAPHGEN is often able to ignore noisy attributes and generate accurate graphs based
on the remaining attributes, which demonstrates its resilience to missing control attributes.

5 CONCLUSION AND FUTURE WORK

We presented CGRAPHGEN, a novel approach to controlled graph generation that generates graphs
satisfying fine-grained topological attributes. CGRAPHGEN introduces a novel scheduling technique,
MIXTURE-SCHEDULER, which effectively combines attribute representations with adjacency matrix
representations to learn accurate latent representations for graph generation during training. It enables
precise control over generated graphs, even without explicitly specifying some of the basic graph
properties such as the number of nodes and edges. Our experiments demonstrate that CGRAPHGEN
produces graphs with lower error by integrating structural information gradually and leveraging
multiple control attributes. In future, we aim to extend CGRAPHGEN to handle dynamic or temporal
graphs, where the graph structure evolves over time for applications in social network analysis, traffic
prediction, and temporal knowledge graphs.

REFERENCES

On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951. URL
https://www.jstor.org/stable/2236703.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/pdf?id=BJOFETxR-.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999. URL https://www.science.org/doi/full/10.1126/
science.286.5439.509.

Pengfei Cao, Yupu Hao, Yubo Chen, Kang Liu, Jiexin Xu, Huaijun Li, Xiaojian Jiang, and Jun
Zhao. Event ontology completion with hierarchical structure evolution networks. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical

9

https://www.jstor.org/stable/2236703
https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=BJOFETxR-
https://www.science.org/doi/full/10.1126/science.286.5439.509
https://www.science.org/doi/full/10.1126/science.286.5439.509

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp.
306–320. Association for Computational Linguistics, 2023. URL https://aclanthology.
org/2023.emnlp-main.21.

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. Efficient and degree-guided graph generation via
discrete diffusion modeling. In International Conference on Machine Learning, pp. 4585–4610.
PMLR, 2023. URL https://proceedings.mlr.press/v202/chen23k/chen23k.
pdf.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
2018. URL https://arxiv.org/pdf/1805.11973.

P Erdös and A Rényi. 2017-10-20t13:47:06.000+0200. Publicationes Mathematicae Debrecen, 6:
290–297, 1959. URL https://publi.math.unideb.hu/load_doi.php?pdoi=10_
5486_PMD_1959_6_3_4_12.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008. URL https://www.researchgate.net/publication/236407765_
Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. Advances in neural information processing systems, 33:22118–
22133, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018. URL http://proceedings.mlr.press/v80/jin18a/jin18a.pdf.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020. URL https://proceedings.mlr.press/v119/jin20a/jin20a.pdf.

L. V. Kantorovich. Mathematical methods of organizing and planning production. Management
Science, 6(4):366–422, 1960. ISSN 00251909, 15265501. URL http://www.jstor.org/
stable/2627082.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular graph generation
with energy-based models. In Energy Based Models Workshop - ICLR 2021, 2021. URL https:
//openreview.net/forum?id=Gc51PtL_zYw.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021. URL
https://proceedings.mlr.press/v139/luo21a.html.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. arXiv preprint arXiv:2406.17341, 2024. URL https://arxiv.
org/pdf/2406.17341.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators.
In International Conference on Machine Learning, pp. 15159–15179. PMLR, 2022. URL
https://proceedings.mlr.press/v162/martinkus22a/martinkus22a.pdf.

10

https://aclanthology.org/2023.emnlp-main.21
https://aclanthology.org/2023.emnlp-main.21
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://arxiv.org/pdf/1805.11973
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://proceedings.mlr.press/v80/jin18a/jin18a.pdf
https://proceedings.mlr.press/v119/jin20a/jin20a.pdf
http://www.jstor.org/stable/2627082
http://www.jstor.org/stable/2627082
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=Gc51PtL_zYw
https://openreview.net/forum?id=Gc51PtL_zYw
https://proceedings.mlr.press/v139/luo21a.html
https://arxiv.org/pdf/2406.17341
https://arxiv.org/pdf/2406.17341
https://proceedings.mlr.press/v162/martinkus22a/martinkus22a.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Igor Melnyk, Pierre Dognin, and Payel Das. Knowledge graph generation from text. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 1610–1622, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.116. URL
https://aclanthology.org/2022.findings-emnlp.116.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995. URL https://dl.acm.org/doi/pdf/10.1145/219717.219748.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

Ioannis Pitas. Graph-based social media analysis. CRC Press, 2016.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019. URL
https://arxiv.org/pdf/1905.13372.

Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine
learning: Generative models for matter engineering. Science, 361(6400):360–365, 2018. URL
https://www.science.org/doi/10.1126/science.aat2663.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-
based autoregressive model for molecular graph generation. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/pdf?id=S1esMkHYPr.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-
based autoregressive model for molecular graph generation. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=S1esMkHYPr.

Shiyu Wang, Xiaojie Guo, and Liang Zhao. Deep generative model for periodic
graphs. Advances in Neural Information Processing Systems, 35, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5708–5717. PMLR, 10–15 Jul 2018. URL https://
proceedings.mlr.press/v80/you18a.html.

Kiarash Zahirnia, Yaochen Hu, Mark Coates, and Oliver Schulte. Neural graph gener-
ation from graph statistics. Advances in Neural Information Processing Systems, 36,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 617–626, 2020. URL https://dl.acm.org/doi/pdf/10.1145/3394486.
3403104.

Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes network
generative model. In Proceedings of the Web Conference 2021, pp. 718–729, 2021. URL
https://arxiv.org/pdf/2308.00770.

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph generative model for
temporal interaction networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 401–411, 2020. URL https://dl.acm.org/
doi/pdf/10.1145/3394486.3403082.

11

https://aclanthology.org/2022.findings-emnlp.116
https://dl.acm.org/doi/pdf/10.1145/219717.219748
https://arxiv.org/abs/2007.08663
https://arxiv.org/pdf/1905.13372
https://www.science.org/doi/10.1126/science.aat2663
https://openreview.net/pdf?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://dl.acm.org/doi/pdf/10.1145/3394486.3403104
https://dl.acm.org/doi/pdf/10.1145/3394486.3403104
https://arxiv.org/pdf/2308.00770
https://dl.acm.org/doi/pdf/10.1145/3394486.3403082
https://dl.acm.org/doi/pdf/10.1145/3394486.3403082

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wentao Zhou, Jun Zhao, Tao Gui, Qi Zhang, and Xuanjing Huang. Inductive relation inference of
knowledge graph enhanced by ontology information. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore,
December 6-10, 2023, pp. 6491–6502. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.findings-emnlp.431.

6 APPENDIX

6.1 SETTINGS

We set γ to 0.3 for Mutag, 0.1 for Molbace, Citeseer, and arxiv; and 0.2 for Wordnet dataset. For the
CNN encoder, we used two layers of CNN with kernel size of 5 and 32, 64 channels respectively. For
the decoder, we used two layers of CNN with 64,32 channels respectively. We consider a batch-size
of 1,028.

12

https://aclanthology.org/2023.findings-emnlp.431

	Introduction
	Controlled Graph Generation
	Control Attributes
	Learning Representations
	Mixture-Scheduler
	Graph Generation

	Experiments
	Main Results

	Discussion
	Mixture-Scheduler Analysis
	De-noising graph attributes

	Conclusion and Future Work
	Appendix
	Settings

