
VECTOR GRIMOIRE: Codebook-based Shape
Generation under Raster Image Supervision

Marco Cipriano * 1 Moritz Feuerpfeil * 1 Gerard de Melo 1

Abstract
Scalable Vector Graphics (SVG) is a popular for-
mat on the web and in the design industry. How-
ever, despite the great strides made in genera-
tive modeling, SVG has remained underexplored
due to the discrete and complex nature of such
data. We introduce GRIMOIRE, a text-guided
SVG generative model that is comprised of two
modules: A Visual Shape Quantizer (VSQ) learns
to map raster images onto a discrete codebook
by reconstructing them as vector shapes, and an
Auto-Regressive Transformer (ART) models the
joint probability distribution over shape tokens,
positions, and textual descriptions, allowing us to
generate vector graphics from natural language.
Unlike existing models that require direct super-
vision from SVG data, GRIMOIRE learns shape
image patches using only raster image supervi-
sion which opens up vector generative modeling
to significantly more data. We demonstrate the
effectiveness of our method by fitting GRIMOIRE
for closed filled shapes on MNIST and Emoji, and
for outline strokes on icon and font data, surpass-
ing previous image-supervised methods in gener-
ative quality and the vector-supervised approach
in flexibility.

1. Introduction
In the domain of computer graphics, Scalable Vector Graph-
ics (SVG) has emerged as a versatile format, enabling the
representation of 2D graphics with precision and scalabil-
ity. SVG is an XML-based vector graphics format that de-
scribes a series of parametrized shape primitives rather than
a limited-resolution raster of pixel values. While modern
generative models have made significant advancements in
producing high-quality raster images (Ho et al., 2020; Isola

*Equal contribution 1Hasso Plattner Institute. Correspondence
to: Marco Cipriano <marco.cipriano@hpi.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

O
ur

s
Im

2V
ec

Figure 1. Generative results for fonts and icons from GRIMOIRE

and Im2Vec. Since Im2Vec does not accept any conditioning, we
sample after training Im2Vec only on icons of stars or the letter A,
respectively. For GRIMOIRE we use the models trained on the full
dataset conditioned on the respective class.

et al., 2017; Saharia et al., 2022; Nichol et al., 2021), SVG
generation remains a less explored task. Existing works
that have aimed to train a deep neural network for this goal
primarily adopted language models to address the prob-
lem (Wu et al., 2023; Tang et al., 2024). In general, existing
approaches share two key limitations: they necessitate SVG
data for direct supervision which inherently limits the avail-
able data and increases the burden of data pre-processing,
and they are not easily extendable when it comes to visual
attributes such as color or stroke properties. The extensive
pre-processing is required due to the diverse nature of an
SVG file that can express shapes as a series of different
basic primitives such as circles, lines, and squares – each
having different properties – that can overlap and occlude
each other.

An ideal generative model for SVG should however benefit
from visual guidance for supervision, which is not possible
when merely training to reproduce tokenized SVG primi-
tives, as there is no differentiable mapping to the generated
raster imagery. In this paper, we present GRIMOIRE, a novel
pipeline explicitly designed to generate SVG files with only
raster image supervision. Our approach incorporates a dif-
ferentiable rasterizer, DiffVG (Li et al., 2020), to bridge
the vector graphics primitives and the raster image domain.
We adopt a VQ-VAE recipe (Van Den Oord et al., 2017),
which pairs a codebook-based discrete auto-encoder with
an auto-regressive Transformer that models the image space
implicitly by learning the distribution of codes that resem-
ble them. We find this approach particularly promising for

1

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

vector graphics generation, as it breaks the complexity of
this task into two stages. In the first stage of our method,
we decompose images into primitive shapes represented as
patches. A vector-quantized auto-encoder learns to encode
and map each patch into a discrete codebook, and decode
these codes to an SVG approximation of the input patch,
which is trained under raster supervision. In the second
stage, the series of raster patches containing primitives are
encoded and the prior distribution of codes is learned by
an auto-regressive Transformer model conditioned on a tex-
tual description. At inference, a full series of codes can be
generated from textual input, or other existing shape codes.
Therefore, GRIMOIRE supports text-to-SVG generation and
SVG auto-completion as possible downstream tasks out-of-
the-box.

The key contributions of this work are:

1. We frame the problem of image-supervised SVG gener-
ation as the prediction of a series of individual shapes
and their positions on a shared canvas.

2. We train the first text-conditioned generative model
that learns to draw vector graphics with only raster
image supervision.

3. We compare our model with alternative frameworks
showing superior performance in generative capabili-
ties on diverse datasets.

4. We release the code of this work to the research com-
munity1.

2. Related Work
2.1. SVG Generative Models

The field of vector graphics generation has witnessed in-
creasing interest. While a number of works predate the
era of Large Language Models (LLM)(Carlier et al., 2020;
Wang & Lian, 2021), the most recent approaches (Lopes
et al., 2019; Aoki & Aizawa, 2022; Wu et al., 2023; Tang
et al., 2024) have recast the problem as an NLP task, learn-
ing a distribution over tokenized SVG commands. Iconshop
(Wu et al., 2023) introduced a method of tokenizing SVG
paths that makes them suitable input for causal language
modeling. To add conditioning, they employed a pre-trained
language model to tokenize and embed textual descriptions,
which are concatenated with the SVG tokens to form se-
quences that the auto-regressive Transformer can learn a
joint probability on. Chat2SVG introduces a hybrid frame-
work that leverages LLMs and image diffusion models to
generate and refine SVG (Wu et al., 2024). StarVector trains
a multimodal LLM on SVG data (Rodriguez et al., 2024).

1https://github.com/potpov/VectorGrimoire

StrokeNUWA (Tang et al., 2024) introduced Vector Quan-
tized Strokes to compress SVG strokes into a codebook
with SVG supervision and fine-tune a pre-trained Encoder–
Decoder LLM to predict these tokens given textual input.

Another line of work has sought to incorporate visual super-
vision. These approaches generally rely on recent advances
in differentiable rasterization, which enables backpropaga-
tion of raster-based losses through different types of vecto-
rial primitives such as Bézier curves, circles, and squares.
The most important development in this area is DiffVG (Li
et al., 2020), which removed the need for approximations
and introduced techniques to handle antialiasing. They fur-
ther pioneered image-supervised SVG generative models by
training a Variational Autoencoder (VAE) and a Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) on
MNIST (LeCun et al., 1998) and QuickDraw (Ha & Eck,
2017). These generative capabilities have subsequently been
extended in Im2Vec (Reddy et al., 2021), which adopts a
VAE including a recurrent neural network to generate vector
graphics as sets of deformed and filled circular paths, which
are differentiably composited and rasterized, allowing for
back-propagation of a multi-resolution MSE-based pyramid
loss. However, all of these models lack versatile condition-
ing (such as text) and focus on either image vectorization,
i.e., the task of creating the closest vector representation of
a raster prior, or vector graphics interpolation.

A different type of SVG generation enabled by DiffVG
is painterly rendering (Ganin et al., 2018; Nakano, 2019),
where an algorithm iteratively fits a given set of vector
primitives to match an image, guided by a deep perceptual
loss function. To achieve this goal, CLIPDraw (Frans et al.,
2022) rasterized a set of randomly initialized SVG paths and
encoded these with a pre-trained CLIP (Radford et al., 2021)
image encoder, iteratively minimizing the cosine distance
between such embeddings and the text description. Vector
Fusion (Jain et al., 2023) and SVGDreamer (Xing et al.,
2024) leveraged Score Distillation Sampling (SDS) (Poole
et al., 2022) to induce abstract semantic knowledge from
an off-the-shelf Stable Diffusion model (Rombach et al.,
2022). Finally, some other approaches based on neural
implicit representations model vector graphics as continuous
functions encoded in neural networks (Thamizharasan et al.,
2024; Zhang et al., 2024; Polaczek et al., 2025).

2.2. Vector Quantization

VQ-VAE (Van Den Oord et al., 2017) is a well-known
improved architecture for training Variational Autoen-
coders (Kingma & Welling, 2013; Rezende et al., 2014).
Instead of focusing on representations with continuous fea-
tures as in most prior work (Vincent et al., 2010; Denton
et al., 2016; Hinton & Salakhutdinov, 2006; Chen et al.,
2016), the encoder in a VQ-VAE emits discrete rather than

2

https://github.com/potpov/VectorGrimoire

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Discrete
Encoder

Projection
Layer

SVG Predition Head

X1 X2 X3 X4

y1 y2 y3 y4

RGB color

Width

Trained VSQ
Encoder

“The icon of a clock”

BOS ... EOS

Input Raster Patch Quantized Embedding

Ouput Coordinates Other Attributes

SVG

Predicted Raster Patch

Differentiable
Rasterization

VSQ Module

Data Creation for ART training ART Module

Discrete Patch
Positions

Auto-Regressive Transformer

BERT

SOS ...

... EOS

discrete codebook look up

Figure 2. Overview of training pipeline of GRIMOIRE. First, the VSQ module encodes raster input patches into discrete codes and learns
to reconstruct each patch as an SVG shape using visual supervision and optionally, a geometric constraint. After this, each image is
encoded into a series of discrete codes using the trained VSQ encoder. Finally, the ART module learns the joint distribution of these codes
and the corresponding text description. At inference, only text or partial codes are provided for conditioning the ART module.

continuous codes. Each code maps to the closest embedding
in a codebook of limited size. The decoder learns to recon-
struct the original input image from the chosen codebook
embedding. Both the encoder–decoder architecture and the
codebook are trained jointly. After training, the autoregres-
sive distribution over the latent codes is learnt by a second
model, which then allows for generating new images via
ancestral sampling. Latent discrete representations were
already pioneered in previous work (Mnih & Gregor, 2014;
Courville et al., 2011). Mentzer et al. (2023) simplified the
design of the vector quantization in VQ-VAE with a scheme
called finite scalar quantization (FSQ), where the encoded
representation of an image is projected to the nearest po-
sition on a low-dimensional hypercube. In this case, no
additional codebook must be learned, but rather it is given
implicitly, which simplifies the loss formulation. Our work
builds in part on the VQ-VAE framework and includes the
FSQ mechanism.

3. Method
3.1. Stage 1 – Visual Shape Quantizer

The first stage of our model employs a Visual Shape
Quantizer (VSQ), a vector-quantized auto-encoder, whose
encoder EVSQ maps an input image I onto a discrete code-
book V through vector-quantization and decodes that quan-

tized vector into shape parameters of cubic Bézier curves
through the decoder DVSQ. Instead of learning the code-
book (Van Den Oord et al., 2017), we adopt the more ef-
ficient approach of defining our codebook V as a set of
equidistant points in a hypercube with q dimensions. Each
dimension has l unique values: L “ rl1, l2, . . . , lqs. The
size of the codebook |V| is hence defined by the prod-
uct of values of all q dimensions. We define q “ 5 and
L “ r7, 5, 5, 5, 5s for a target codebook size of 4,375 unique
codes, following the recommendations of the original au-
thors (Mentzer et al., 2023).

Before being fed to the encoder EVSQ, each image I P

RCˆHˆW is divided into patches S “ ps1, s2, . . . , snq,
with si P RCˆ128ˆ128, where C “ 3 is the number
of channels. A set of discrete anchor coordinates Θ “

pθ1, θ2, . . . , θnq with θi P N2 being the center coordinate of
si in the original image I is also saved. The original image
I can then be reconstructed using S and Θ.

We experiment on four datasets (see Section A.1). For
MNIST, the patches are obtained by tiling each image in
a 6 ˆ 6 grid. For Fonts and FIGR-8, each patch depicts
a part of the target outline. We also include preliminary
results on Emojis, where our training data is created using
the Segment Anything (SAM) model (Kirillov et al., 2023),
which provides a series of masks for the entire image. In
this extraction pipeline, each mask produces one patch. The

3

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Raw
Images

Extraction
Method

Extracted Patch
and Positions

Bounding Box Coordinates
In the Original Image

Tile Indexes

Sam Box Coordinates,
Layer Hierarchy

Figure 3. Overview of the data generation process for GRIMOIRE.
For FIGR-8, we extract the outlines of each icon and create small
centered raster segments. We save the original anchor position of
each segment for the second stage of our training pipeline. For
the MNIST digits, we simply create patches from a 6 ˆ 6 Grid
and save the index of each tile. For Emoji, we generate an overall
segmentation mask with SAM and create a raster patch from each
mask. The mask bounding box coordinates can be used in the
second stage similarly to the experiments on FIGR-8. The layer
order is created by sorting patches by area. Fonts comes in vector
format and can be easily manipulated to extract strokes, similarly to
FIGR-8. More information about the outline extraction is provided
in subsection A.3.

different extraction approaches and the resulting patches
and coordinates are depicted in Figure 3.

The VSQ encoder EVSQ maps each patch si P RCˆ128ˆ128

to ξ codes on the hypercube EVSQ : RCˆ128ˆ128 ÞÑ V
as follows. Each centered raster patch si is encoded with
a ResNet-18 (He et al., 2016) into a latent variable zi P

Z Ă Rdˆξ with d “ 512. Eventually, each of the ξ codes is
projected to the dimensions q through a linear mapping layer
and finally quantized, resulting in ξ codes pv1, v2, . . . , vξq

with vi P V.

The decoder DVSQ consists of a projection layer, which
transforms all the ξ predicted codes back into the latent
space Z , and a lightweight neural network Φpoints, which
predicts the control points of ν cubic Bézier curves that
form a single connected path.

Finally, the predicted path of ν Bézier curves from Φpoints
passes through the differentiable rasterizer to obtain a raster
output ŝi “ DiffVGpDVSQpEVSQpsiqqq. In order to learn
to reconstruct strokes and shapes, we train the VSQ module
using the mean squared error:

Lrecons “ ps ´ ŝq2. (1)

DVSQ can be extended to predict continuous values for
any visual attribute supported by the differentiable ras-
terizer. Hence, we also propose series of other fully-
connected prediction heads that can optionally be enabled:
Φwidth : Z ÞÑ R predicts the stroke width of the overall
shape, and Φcolor : Z ÞÑ RC outputs the stroke color or the
filling color for the output of Φpoints. All the modules are
followed by a sigmoid activation function.

While Lrecons would suffice for training the VSQ, operating
only on the visual domain could lead to degenerate strokes
and undesirable local minima. To mitigate this, we propose
a novel geometric constraint Lgeom, which punishes the
placement of control point at irregular distances measured
between all combinations of points predicted by Φpoints.

Let P “ pp1, p2, ..., pν`1q be the set of all start and end
points of a curve with pi “ ppxi , p

y
i q and pxi , p

y
i P r0, 1s.

Then ρi,j is defined as the Euclidean distance between two
points pi and pj , ρj is defined as the mean scaled inner
distance for point pj to all other points in P , and δj as the
average squared deviation from that mean for point pj :

ρj “
1

ν

ν`1
ÿ

i“1
i‰j

ρi,j
|i ´ j|

δj “
1

ν

ν`1
ÿ

i“1
i‰j

ˆ

ρi,j
|i ´ j|

´ ρj

˙2

(2)

Lgeom is finally defined as the average of the deviations for
all start and end points in P . Lgeom is then weighted with α
and added to the reconstruction loss.

Lgeom “
1

ν ` 1

ν`1
ÿ

j“1

δj LVSQ “ Lrecons`αˆLgeom (3)

With α being an hyper-parameter. The overall scheme of
GRIMOIRE including the first stage of training is depicted
in Figure 2.

3.2. Stage 2 – Auto-Regressive Transformer

After the VSQ is trained, each patch si can be mapped onto
a code vi of the codebook V using the encoder EVSQ and
the quantization method. However, the predicted patch ŝi
captured by the VSQ does not describe a complete SVG,
as the centering leads to a loss of information about their

4

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

global position θi on the original canvas. Also, the sequence
of tokens is still missing the text conditioning. This is
addressed in the second stage of GRIMOIRE. The second
stage consists of an Auto-Regressive Transformer (ART)
that learns for each image I the joint distribution over the
text, positions, and stroke tokens. A textual description T of
I is tokenized into T “ pτ1, τ2, . . . , τtq using a pre-trained
BERT encoder (Devlin et al., 2018) and embedded. I is
visually encoded by transforming its patches si onto vi P V
via the encoder EVSQ, whereas each original patch position
θi P Θ is mapped into the closest position in a 256 ˆ 256
grid resulting in 2562 possible position tokens. Special
tokens <SOS>, <BOS>, and <EOS> indicate the start of a
full sequence, beginning of the patch token sequence, and
end of sequence, respectively. Each patch token is alternated
with its position token. The final input sequence for a given
image to the ART module becomes:

x “ p<SOS>, τ1, . . . , τt,<BOS>, θ1, v1, . . . θn, vn,<EOS>q

The total amount of representable token values then has a
dimensionality of |V |`2562`3 “ 69, 914 for |V | “ 4,375.
A learnable weight matrix W P Rdˆ69,914 embeds the po-
sition and visual tokens into a vector of size d. The BERT
text embeddings are projected into the same d-dimensional
space using a trainable linear mapping layer. The ART
module consists of 12 and 16 standard Transformer decoder
blocks with causal multi-head attention with 8 attention
heads for fonts and icons, respectively. The final loss for the
ART module is defined as:

LCausal “ ´

N
ÿ

i“1

log ppxi | xăi; θq (4)

During inference, the input to the ART module is repre-
sented as x “ p<SOS>, τ1, . . . , τt,<BOS>q, where new to-
kens are predicted auto-regressively until the <EOS> token
is generated. Additionally, visual strokes can be incorpo-
rated into the input sequence to condition the generation
process.

4. Experimental Setting
When training on FIGR-8, we utilize a contour-finding al-
gorithm (Lorensen & Cline, 1987) to extract outlines from
raster images, which are then divided into several shorter
segments. Additional details regarding this extraction pro-
cess can be found in subsection A.3. In contrast, the Fonts
dataset is natively available in vector format, making it
easier to manipulate, similar to icons, before undergoing
rasterization.

We propose two variants of Φpoints described in subsec-
tion 3.1, a fully-connected neural network Φstroke

points : Z ÞÑ

Rp2ˆpνˆ3`1qq, which predicts connected strokes, and a 1-D
CNN Φshape

points : Z ÞÑ Rp2ˆpνˆ3qq, which outputs a closed
shape.

We use Lgeom only for the experiments with Φstroke
points and set

α “ 0.4. We opt to train the ResNet encoder from scratch
during this stage, since the target images belong to a very
specific domain. The amount of trainable parameters is
15.36M for the encoder and 0.8M for the decoder. The final
inference pipeline discards the encoder and only requires
the lightweight trained decoder DVSQ, hence resulting in
faster inference.

5. Results
In this section we report the results for all our experiments
and discuss our findings. First, in subsection 5.1 and sub-
section 5.2, we examine the quality of the reconstructions
and generations produced by GRIMOIRE in comparison to
existing methods. Then, in subsection 5.3 we highlight
the flexibility of our approach, demonstrating how GRI-
MOIRE can be easily extended to incorporate additional
SVG features and more complex targets. Furthermore, in
subsection 5.4 we compare GRIMOIRE with some popular
SDS-based method

5.1. Reconstructions

Closed Paths. We begin by presenting the reconstruction
results of our VSQ module on the MNIST dataset. In our
experiments, we model each patch shape using a total of 15
segments. Increasing the number of segments beyond this
point did not yield any significant improvement in recon-
struction quality. Given the simplicity of the target shapes,
we adopted a single code per shape.

We also conducted a comparative analysis of the reconstruc-
tion capabilities of our VSQ module against Im2Vec. To
assess the generative quality of our samples, we employed
the Fréchet Inception Distance (FID) (Heusel et al., 2017)
and CLIPScore (Radford et al., 2021), both of which are
computed using the image features of a pre-trained CLIP
encoder. Additionally, to validate our VSQ module, we con-
sidered the reconstruction loss Lrecons, as it directly reflects
the maximum achievable performance of the network and
provides a more reliable metric.

As shown in Table 1, our VSQ module consistently achieves
lower reconstruction errors than Im2Vec across all MNIST
digits. In Table 2, we also evaluate a subset with only digits
zero, chosen for its challenging topology, where our method
again outperforms Im2Vec. For MNIST, we fill Im2Vec’s
predicted shapes to match the raster ground truth, while for
other scenarios, we report both filled and unfilled versions.

Our reconstructions achieve higher CLIPScores in all cases.

5

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Table 1. Results for reconstructions of GRIMOIRE and Im2Vec on the test-set including all classes. The last row includes post-processing.

MNIST Fonts FIGR-8

Model MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò

Im2Vec (filled) 0.140 1.33 25.02 0.140 2.04 26.82 0.330 16.10 26.17
Im2Vec n/a n/a n/a 0.050 5.64 26.72 0.050 13.90 26.17

VSQ 0.090 7.09 25.24 0.014 4.45 28.61 0.004 1.42 31.09
VSQ + PI n/a n/a n/a 0.011 0.29 28.96 0.002 0.05 32.03

Table 2. Results for reconstructions of GRIMOIRE and Im2Vec on the test-set, using the class reported next to the dataset name. The last
row includes post-processing.

MNIST (0) Fonts (A) Icons (Star)

Model MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò

Im2Vec (filled) 0.218 2.20 24.61 0.087 1.64 26.27 0.120 2.40 30.90
Im2Vec n/a n/a n/a 0.060 6.33 25.78 0.110 11.17 30.40

VSQ 0.130 11.2 26.68 0.020 4.50 29.13 0.002 1.26 31.64
VSQ + PI n/a n/a n/a 0.012 0.61 29.46 0.001 0.07 32.94

The only exception is FID, where Im2Vec occasionally per-
forms better. We attribute this to the lower resolution of the
ground truth images, which affects FID stability. CLIPScore
mitigates this by directly measuring similarity to the textual
description.

Strokes. We analyze VSQ reconstruction errors on Fonts
and FIGR-8 under varying segment counts, codes per shape,
and input stroke lengths. For Fonts, using more than one seg-
ment per shape consistently degrades reconstruction, likely
because the dataset’s strokes require fewer Bézier curves.
Shorter stroke length thresholds improve reconstruction,
with MSE decreasing as the threshold moves from 11% to
7% to 4% of the image size. While shorter strokes are easier
to model, overly short settings may cause worse predictions.

The best reconstructions are achieved by using multiple
codes per centered stroke. The two-codes configuration
has an average decrease in MSE of 18.28%, 41.46%, and
26.09% for the respective stroke lengths. However, the best-
performing configuration with two codes per shape is just
11.36% better than the best single code representative, which
we believe does not justify twice the number of required
visual tokens for the second stage training. Throughout our
experiments, the configurations with multiple segments do
consistently benefit from our geometric constraint. Ulti-
mately, for our final experiments we choose pν “ 2, ξ “ 1q

for Fonts, and pν “ 4, ξ “ 2q for FIGR-8.

Regarding the comparison with Im2Vec, Table 2 shows that
the text-conditioned GRIMOIRE on a single glyph or icon

has superior reconstruction performance even if Im2Vec
is specifically trained on such subset. In Table 1, we also
report the values after training on the full datasets. In this
case, GRIMOIRE substantially outperforms Im2Vec, which
is unable to cope with the complexity of the data.

Finally, as GRIMOIRE quickly learns to map basic strokes
or shapes onto its finite codebook and due to the similarities
between those primitive traits among various samples in
the dataset, we find GRIMOIRE to converge even before
completing a full epoch on any dataset. Despite the recon-
struction error being considerably higher, we also notice
reasonable domain transfer capabilities between FIGR-8 im-
ages and Fonts when training the VSQ module only on one
dataset and keeping the maximum stroke length consistent.
Qualitative examples of the re-usability of the VSQ module
are reported in the Appendix.

5.2. Generations

Text Conditioning. We compare GRIMOIRE with Im2Vec
by generating glyphs and icons and handwritten digits, and
report the results in Table 3. Despite Im2Vec being tailored
for single classes only, our general model shows superior
performance in CLIPScore for all datasets. Im2Vec shows
a generally lower FID score in the experiments with filled
shapes, which we attribute again to the lower resolution of
the ground truth images (MNIST) and a bias in the met-
ric itself as CLIP struggles to produces meaningful visual
embeddings for sparse images (Chowdhury et al., 2022) as

6

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

for Fonts, FIGR-8. In contrast, in the generative results on
unfilled shapes, GRIMOIRE almost consistently outperforms
Im2Vec by a large margin for glyphs and icons.

Note that we establish new baseline results for the complete
datasets, as Im2Vec does not support text or class condition-
ing.

Looking at qualitative samples in Figure 1, one can see that
contrary to the claim that surplus shapes collapse to a point
(Reddy et al., 2021), there are multiple redundant shapes
present in the generations of Im2Vec. A single star might
then be represented by ten overlapping almost identical
paths.

Overall, GRIMOIRE produces much cleaner samples with
less redundancy, which makes them easier to edit and visu-
ally more pleasing. The text conditioning also allows for
more flexibility. The generations are also diverse, as can be
seen in Figure 4 where we showcase multiple generations
for the same classes from FIGR-8. Additional generations
on all datasets are provided in the Appendix.

Phone Heart Light bulb Arrow User Home Settings

Figure 4. Examples of text-conditioned icon generation from GRI-
MOIRE.

Vector Conditioning. We also evaluate GRIMOIRE on an-
other task previously unavailable for image-supervised vec-
tor graphic generative models, which is text-guided icon
completion. Figure 5 shows the capability of our model
to complete an unseen icon, based on a set of given con-
text strokes that start at random positions. GRIMOIRE can
meaningfully complete various amounts of contexts, even
when the strokes of the context stem from disconnected
parts of the icon. We provide a quantitative analysis in sub-
section A.13. The results in this section are all obtained
with the default pipeline that post-processes the generation
of our model. A detailed analysis of our post-processing is
provided in subsection A.4 and subsection A.5.

5.3. Flexibility

We demonstrate the flexibility of GRIMOIRE with qualitative
results on new SVG attributes. A key advantage of our two-
stage generative pipeline is that the ART module remains
independent of visual attributes, allowing the VSQ vector
prediction head to be extended to any attribute supported by
the differentiable rasterizer. Specifically, we enable stroke

νc “ 0 νc “ 1 νc “ 3 νc “ 10 νc “ 15

M
ap

Pi
n

C
lo

ud
D

oc
um

en
t

Figure 5. Different completions with varying number of context
segments νc (marked in red). GRIMOIRE can meaningfully com-
plete irregular starting positions of the context strokes.

Figure 6. Inputs (top) and corresponding reconstructions (bottom)
generated by a VSQ model trained to predict additional visual
attributes of the input strokes, such as color and stroke width.
Input from the test-set.

width and color prediction (Φwidth and Φcolor), training the
VSQ module on input patches with varying attributes. Fig-
ure 6 shows the results, where strokes are randomly colored
using an eight-color palette and variable widths. The VSQ
accurately learns these features without expanding the code-
book or modifying the network architecture.

A similar evaluation on closed shapes (Figure 7) confirms
that VSQ jointly encodes shape and color within a single
code. In contrast, other vector generative models often rely
on rigid tokenization schemes, making extension to new
attributes more complex.

Finally, we report preliminary results of GRIMOIRE on more
complex colorful targets based on a segmentation-based
extraction approach. We validate this by reconstructing
images of Emoji, following the MNIST setup but with a
crucial difference: each closed shape represents an entire
layer of the canvas rather than a tile. This allows for SVGs
structured as editable layers, similarly to real-world use
cases. Figure 8 illustrates per-layer reconstructions, while
Figure 9 presents the final composited outputs. Further
details on these experiments are reported in subsection A.2.

7

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Table 3. Results generations of GRIMOIRE and Im2Vec. GRIMOIRE is trained with all the classes of the dataset and conditioned to the
respective class using the text description. FID uses test-data as a target.

MNIST (0) MNIST (Full) Fonts (A) Fonts (Full) FIGR-8(Star) FIGR-8(Full)

Model FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò

Im2Vec (filled) 2.22 24.69 n/a n/a 1.20 25.81 n/a n/a 2.97 31.72 n/a n/a
Im2Vec n/a 25.21 n/a n/a 5.36 25.39 n/a n/a 11.59 31.88 n/a n/a
GRIMOIRE (ours) 12.25 26.60 9.25 25.25 5.61 30.60 1.67 28.64 6.25 32.24 0.64 29.00

In
pu

t
V

SQ

Figure 7. Reconstruction of MNIST digits when the VSQ module
also predicts the filling color. Input from the test-set.

Input VSQ Input VSQ

Figure 8. Reconstructions of individual layers of emojis from the
our VSQ. Input from the test-set.

5.4. Differences with SDS-based Methods

In this section, we clarify how our model differs from popu-
lar Score Distillation Sampling (SDS) architectures.

Lack of target. SDS methods do not involve training, and
rely on pretrained backbones, which produce more artis-
tic and visually-appealing results, but also unbound to any
specific target data. SDS methods lack any control on the
target domain. To highlight this aspect, Figure 10 reports an
example of class images adopted in this work, and shows
the different generations obtained with GRIMOIRE and pop-
ular SDS methods such as VectorFusion, CLIPDraw, and
SVGdreamer. GRIMOIRE produces simple yet diverse gen-
erations that are coherent with its reference dataset. In con-
trast, in all cases, the generations from SDS based methods
appear distant from the target distribution, often partially
ignoring the “black and white” suffix in the prompt.

Target VSQ Target VSQ

Figure 9. Reconstructions of emojis from the our VSQ, all the SVG
layers are rendered together. Input from the test-set.

Making this analysis quantitative is not straightforward. FID
score between image distribution is reliable on thousands of
samples, but the computational cost of SDS-based models
requires up to hours for a few samples (e.g. SVGDreamer)
or uses costly proprietary models (e.g. Chat2SVG). We
have hence used the PSNR on 20 generated samples from
all models. The results in Table 4 highlight how all models
fall short on our dataset distribution.

Model PSNR (dB)
GRIMOIRE (ART) 45.19

CLIPDraw 28.68
VectorFusion 36.62
SVGDreamer 34.53

Table 4. Average PSNR of 20 generated samples for the class
”User” with GRIMOIRE and existing SDS-based methods.

Speed. SDS methods are also iterative by design; this means
that generating results is extremely slow. One of the motiva-
tions behind training a generative pipeline like GRIMOIRE
is that at inference time, producing a new sample merely
takes the time of a forward pass. Indeed, GRIMOIRE results

8

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

in two orders of magnitude faster than popular SDS based
methods. In Table 5, we report the generation time (time
for inference and file saving) for an image with Grimoire,
VectorFusion, and CLIPdraw. Those values were obtained
across 20 generations on one NVIDIA H100.

Model Generation Time (s)
GRIMOIRE (ART) 2.34

CLIPDraw 100.19
VectorFusion 379.74
SVGDreamer 250.22

Table 5. Average generation times of an icons given only the text
prompt measured on five samples using one NVIDIA H100 GPU.
SDS-based methods are extremely slow due to their iterative opti-
mization strategy and result impractical for real-life applications.

Datasets
Samples GRIMOIRE CLIPDraw Vector

Fusion SVGDreamer

Figure 10. Text-conditioned generations from GRIMOIRE and
SDS-based methods for the ”Heart” class. The first row shows
samples from FIGR-8. For CLIPDraw, VectorFusion and SVG-
Dreamer, we used the prompt: ”The icon of a heart, black and
white.

6. Conclusion
This work introduces GRIMOIRE, a novel framework for
generating and completing complex SVGs using only raster
image supervision. GRIMOIRE enhances output quality
over existing raster-supervised SVG models while enabling
flexible, text-conditioned generation. We validate it on filled
shapes using a tile-patching or segmentation-based strategy
and on strokes with fonts and icons datasets. Our results
show superior performance compared to existing models,
even when adapted to specific image classes. We show that
GRIMOIRE can be seamlessly extended to support new SVG
attributes when included in training data.

Impact Statement
This work aims to advance the field of text-to-SVG gen-
eration by introducing a new framework that learns using

only raster image supervision. GRIMOIRE enables broader
accessibility to training data. While the method may bene-
fit applications in education, design, and accessibility, we
do not foresee any immediate ethical concerns or adverse
societal impacts stemming from this research.

References
Aoki, H. and Aizawa, K. Svg vector font generation for

chinese characters with transformer. In 2022 IEEE In-
ternational Conference on Image Processing (ICIP), pp.
646–650. IEEE, 2022.

Carlier, A., Danelljan, M., Alahi, A., and Timofte, R.
Deepsvg: A hierarchical generative network for vector
graphics animation. Advances in Neural Information
Processing Systems, 33:16351–16361, 2020.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adver-
sarial nets. Advances in neural information processing
systems, 29, 2016.

Chowdhury, P. N., Sain, A., Bhunia, A. K., Xiang, T., Grya-
ditskaya, Y., and Song, Y.-Z. Fs-coco: Towards under-
standing of freehand sketches of common objects in con-
text. In European Conference on Computer Vision, pp.
253–270. Springer, 2022.

Clouâtre, L. and Demers, M. Figr: Few-shot image gen-
eration with reptile. arXiv preprint arXiv:1901.02199,
2019.

Courville, A., Bergstra, J., and Bengio, Y. A spike and
slab restricted boltzmann machine. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pp. 233–241. JMLR Workshop and
Conference Proceedings, 2011.

Denton, E., Gross, S., and Fergus, R. Semi-supervised
learning with context-conditional generative adversarial
networks. arXiv preprint arXiv:1611.06430, 2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

emoji dataset. emoji-dataset. https://huggingface.
co/datasets/valhalla/emoji-dataset,
2022.

Frans, K., Soros, L., and Witkowski, O. Clipdraw: Explor-
ing text-to-drawing synthesis through language-image
encoders. Advances in Neural Information Processing
Systems, 35:5207–5218, 2022.

9

https://huggingface.co/datasets/valhalla/emoji-dataset
https://huggingface.co/datasets/valhalla/emoji-dataset

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. A., and
Vinyals, O. Synthesizing programs for images using rein-
forced adversarial learning. In International Conference
on Machine Learning, pp. 1666–1675. PMLR, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Ha, D. and Eck, D. A neural representation of sketch draw-
ings. arXiv preprint arXiv:1704.03477, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504–507, 2006.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1125–1134, 2017.

Jain, A., Xie, A., and Abbeel, P. Vectorfusion: Text-to-svg
by abstracting pixel-based diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1911–1920, 2023.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4015–4026, 2023.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, T.-M., Lukáč, M., Gharbi, M., and Ragan-Kelley, J.
Differentiable vector graphics rasterization for editing
and learning. ACM Transactions on Graphics (TOG), 39
(6):1–15, 2020.

Lopes, R. G., Ha, D., Eck, D., and Shlens, J. A learned rep-
resentation for scalable vector graphics. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 7930–7939, 2019.

Lorensen, W. E. and Cline, H. E. Marching cubes: A high
resolution 3d surface construction algorithm. In Pro-
ceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’87,
pp. 163–169, New York, NY, USA, 1987. Association
for Computing Machinery. ISBN 0897912276. doi:
10.1145/37401.37422. URL https://doi.org/10.
1145/37401.37422.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Mentzer, F., Minnen, D., Agustsson, E., and Tschannen, M.
Finite scalar quantization: Vq-vae made simple. arXiv
preprint arXiv:2309.15505, 2023.

Mnih, A. and Gregor, K. Neural variational inference and
learning in belief networks. In International Conference
on Machine Learning, pp. 1791–1799. PMLR, 2014.

Nakano, R. Neural painters: A learned differentiable
constraint for generating brushstroke paintings. arXiv
preprint arXiv:1904.08410, 2019.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Polaczek, S., Alaluf, Y., Richardson, E., Vinker, Y.,
and Cohen-Or, D. Neuralsvg: An implicit represen-
tation for text-to-vector generation. arXiv preprint
arXiv:2501.03992, 2025.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Reddy, P., Gharbi, M., Lukac, M., and Mitra, N. J. Im2vec:
Synthesizing vector graphics without vector supervision.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7342–7351,
2021.

10

https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Rodriguez, J. A., Puri, A., Agarwal, S., Laradji, I. H.,
Rodriguez, P., Rajeswar, S., Vazquez, D., Pal, C., and
Pedersoli, M. Starvector: Generating scalable vec-
tor graphics code from images and text, 2024. URL
https://arxiv.org/abs/2312.11556.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022.

Tang, Z., Wu, C., Zhang, Z., Ni, M., Yin, S., Liu, Y., Yang,
Z., Wang, L., Liu, Z., Li, J., et al. Strokenuwa: Tokeniz-
ing strokes for vector graphic synthesis. arXiv preprint
arXiv:2401.17093, 2024.

Thamizharasan, V., Liu, D., Fisher, M., Zhao, N., Kaloger-
akis, E., and Lukac, M. Nivel: Neural implicit vector
layers for text-to-vector generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4589–4597, 2024.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol,
P.-A., and Bottou, L. Stacked denoising autoencoders:
Learning useful representations in a deep network with
a local denoising criterion. Journal of machine learning
research, 11(12), 2010.

Wang, Y. and Lian, Z. Deepvecfont: Synthesizing high-
quality vector fonts via dual-modality learning. ACM
Transactions on Graphics, 40(6), December 2021. doi:
10.1145/3478513.3480488.

Wu, R., Su, W., Ma, K., and Liao, J. Iconshop: Text-guided
vector icon synthesis with autoregressive transformers.
ACM Transactions on Graphics (TOG), 42(6):1–14, 2023.

Wu, R., Su, W., and Liao, J. Chat2svg: Vector graphics gen-
eration with large language models and image diffusion
models. arXiv preprint arXiv:2411.16602, 2024.

Xing, X., Zhou, H., Wang, C., Zhang, J., Xu, D., and Yu, Q.
Svgdreamer: Text guided svg generation with diffusion
model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
4546–4555, June 2024.

Zhang, P., Zhao, N., and Liao, J. Text-to-vector generation
with neural path representation. ACM Transactions on
Graphics (TOG), 43(4):1–13, 2024.

11

https://arxiv.org/abs/2312.11556

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

A. Appendix
The appendix is organized as follows. In A.1 we provide information about the data used in our work; in A.2, we report
additional details on the segmentation-based extraction method; in A.3 and A.4 we describe the pre-processing and post-
processing applied in our experiments; in A.5 we show results with different post-processing methods; in A.6 we provide
a comparison with vector-supervised methods; in A.7, A.8 and A.9 we report ablations on patch size, stroke length, and
codebook size, respectively; in A.10 we report results of Im2Vec on other classes; in A.11 we show additional qualitative
results on the effects of our geometric loss; in A.12 we share some implementation details; in A.13 we show more results on
GRIMOIRE conditioned strokes; in A.14 we explore domain transfer capabilities; in A.15 we analyze the codebook usage of
our model; finally in A.17 and A.18 we report more qualitative results and comparison on the reconstruction and generative
of GRIMOIRE. We also report a glossary of all the notation in A.19.

A.1. Dataset

MNIST. We conduct our initial experiments on the MNIST dataset (LeCun et al., 1998). We upscale each digit to 128ˆ 128
pixels and generate the textual description using the prompt “x in black color”, where x is the class of each digit. We adopt
the original train and test split.

Fonts. For our experiments on fonts, we use a subset of the SVG-Fonts dataset (Lopes et al., 2019). We remove fonts where
capital and lowercase glyphs are identical, and consider only 0–9, a–z, and A–Z glyphs, which leads to 32,961 unique
fonts for a corpus of „2M samples. The font features – such as type of character or style – are extracted from the .TTF
file metadata. The final textual description for a sample glyph g in font style s is built using the prompt: “[capital] g in s
font”, where “capital ” is included only for the glyphs A-Z. We use 80%, 10%, and 10% for training, testing, and validation
respectively.

FIGR-8. We validate our method on more complex data and further use a subset of FIGR-8 (Clouâtre & Demers, 2019),
where we select the 75 majority classes (excluding “arrow”) and any class that contains those, e.g., the selection of “house”
further entails the inclusion of “dog house”. This procedure yields 427K samples, of which we select 90% for training, 5%
for validation, and 5% for testing. We use the class names as textual descriptions without further processing besides minor
spelling correction. Since the black strokes of FIGR-8 mark the background rather than the actual icon, we invert the full
dataset before applying our additional pre-processing described in subsection A.3.

Emoji. For our preliminary experiments with segmentation-guided patch extraction, we use a subset of standard emoji
images (emoji dataset, 2022). Specifically, we focus on images that primarily depict faces, selecting 107 for training and 20
for the test.

A.2. Segmentation-Guided Patch Extraction

In this section, we provide more information and example results on emoji generation. The model setup is similar to the
experiments presented for the MNIST dataset with one fundamental difference: each predicted closed shape targets one
layer of the entire image canvas instead of a tile. This setting enables the prediction of a final SVG that resembles real-world
use cases where vector data is a set of editable layers, ultimately composited altogether. Our training data is created using
the Segment Anything (SAM) model from Meta, which provides a series of masks for the entire image. In our extraction
pipeline, each mask produces one layer. We quantize the original image into 4,096 possible colors and create a raster layer
for each mask by using the median color in the original image for its respective mask. A qualitative example of the results
from the extraction pipeline is shown in Figure 11. The image also depicts a three-dimensional visualization of the final
extracted layers sorted by their area.

Each layer is center-cropped based on the bounding boxes of the SAM mask. A 10-pixel white padding is added on all
sides similarly to what was done for the MNIST. However, in this scenario, padding does not create any artifact and merely
becomes an additional scaling factor, since the reconstructed shapes fit the whole image size. During VSQ training, the
ground truth cropping bounding boxes are used to scale and shift back the points predicted by the VSQ into the original
position. These shifting values and the hierarchy of the layers become the new target of the ART module. We introduced
minor additional changes to cope with the increasing complexity of the data, especially the color imbalance due to the small
number of samples: The VSQ module outputs RGB colors per shape, but the raster and ground truth layers are converted
into the CIE-LAB color space before computing the loss. The color channels (AB) of each layer are weighted inversely to
the frequency of the target color in the dataset. No weights are needed for the luminance channel. Figure 12 reports some

12

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Figure 10. Original Image Figure 10. SAM masks

Figure 10. Original Image Figure 10. SAM masks

Figure 11. Layer extraction with SAM.

examples of VSQ reconstructions by layer.

Notably, this reconstruction was achieved after training on only 110 emojis, and the results come from the test set. Common
shapes (such as circles) and colors (such as yellow) are quickly learned, whereas more complicated shapes remain challenging
(e.g., shapes of the hair). Overall, this is already a large improvement to other raster-supervised SVG generative models.
Im2Vec does not learn the colors. As stated in the original paper and found in the repository, the colors are hard-coded to
reflect the target image (e.g., one yellow and three black shapes when the target is a simple emoji).

A.3. Pre-Processing

This section provides additional information regarding the pre-processing and extraction techniques on the employed
datasets.

Shapes. No pre-processing is conducted for the MNIST dataset. Images are simply tiled using a 6 ˆ 6 grid and the central
position of each tile in the original image is saved. For the Emoji, each image is first processed with the SAM model to
generate masks covering every pixel. We filter out masks with very small areas or multiple connected components. Finally,
we convert the remaining masks into layer patches, assigning the foreground the median pixel value from the original image.

Strokes. For the FIGR-8 dataset, the pixels outlining the icons are isolated using a contour finding algorithm (Lorensen &
Cline, 1987) and the coordinates are then used to convert them into vector paths. This simple procedure available in our
code repository allows us to efficiently apply a standard pre-processing pipeline defined in Carlier et al. (2020) and already
adopted by other studies (Wu et al., 2023; Tang et al., 2024). The process involves normalizing all strokes and breaking
them into shorter units if their length exceeds a certain maximum percentage of the image size. Finally, each resulting path
fragment is scaled, translated to the center of a new canvas s by placing the center of its bounding box onto the center of s,

13

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Figure 11. Input layers. Figure 11. VSQ Reconstructions.

Figure 12. Inputs (left) input layers for the VSQ, (right) reconstructions of the model.

and rasterized to become part of the training data. Since strokes in S are all translated around the image center, the original
center position θ of the bounding box in I is recorded for each s and saved. These coordinates are discretized in a range
of 256 ˆ 256 values. This approach is also used for Fonts, but since the data comes in vector format, there is no need for
contour finding.

A.4. Post-Processing

Our approach introduces small discrepancies with the ground truth data during tokenization. The VSQ introduces small
inaccuracies in the reconstruction of the stroke, and the discretization of the global center positions may slightly displace
said strokes. The latter serve as the training data for the auto-regressive Transformer and therefore represent an upper limit
to the final generation quality. Similarly for MNIST, the use of white padding on each patch to facilitate faster convergence
results in small background gaps when rendering all shapes together. These small errors compound for the full final image
and may become fairly visible in the reconstructions.

Figure 13. Different SVG post-processing methods visualized. From left to right: raw generation, results of applying PC and PI, results of
applying PC and PI by only considering nearest neighbors of consecutive strokes.

While we opted not to modify the global reconstructions of MNIST generation, for FIGR-8 and Fonts, we make use of
SVG post-processing similar to prior work (Tang et al., 2024), which introduced Path Clipping (PC) and Path Interpolations
(PI). In PC, the beginning of a stroke is set to the position of the end of the previous stroke. In PI, a new stroke is added
that connects them instead. As we operate on visual supervision, the ordering of the start and end point of a stroke is not
consistent. Hence, we adapt these two methods to not consider the start and end point, but rather consider the nearest
neighbors of consecutive strokes. We also add a maximum distance parameter to the post-processing in order to avoid
intentionally disconnected strokes to get connected. See Figure 13, Figure 14 for a qualitative depiction of this process and
subsection A.5 for a quantitative comparison.

A.5. Results with Different Post-Processing

In GRIMOIRE, the resulting full vector graphic generation is characterized by fragmented segments. This is because the
output strokes of the VSQ decoder are each locally centered onto a separate canvas, and the auto-regressive Transformer,
which is responsible for the absolute position of each shape, returns only the center coordinates of the predicted shape
without controlling the state of connection between different strokes. To cope with this, in subsection A.4, we introduced
several post-processing algorithms. In this section, we report additional information about the performance of each of
them for the VSQ module (reconstruction) and the overall GRIMOIRE (generation). Table 6 shows that the PC technique

14

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

consistently outperforms the alternatives across both datasets in terms of both FID and CLIPScore.

Model Fonts FIGR-8
MSE FID CLIP MSE FID CLIP

VSQ 0.0144 4.45 28.61 0.0045 1.29 31.17
VSQ (+PC) 0.0135 0.23 29.24 0.0023 0.10 31.97
VSQ (+PI) 0.0106 0.29 28.96 0.0028 0.07 32.0

GRIMOIRE n/a 4.44 28.45 n/a 4.20 26.96
GRIMOIRE (+PC) n/a 1.67 28.64 n/a 3.58 27.45
GRIMOIRE (+PI) n/a 1.86 28.43 n/a 4.57 26.73

Table 6. Reconstruction capabilities of our VSQ module and generative performance of GRIMOIRE with different post-processing
techniques after training on Fonts and FIGR-8.

A.6. Comparison with Vector-supervised Methods

We have extended our analysis to two vector-supervised methods – DeepSVG and IconShop – training them on the same
FIGR-8 data used for GRIMOIRE. Unlike GRIMOIRE, DeepSVG supports conditioning only on class identifiers, therefore
we assigned a unique identifier to each class in FIGR-8.

We have also finetuned Llama 3.2 on FIGR-8 with minimal data pre-processing. We believe this to be an insightful analysis
that shows how tailored tokenization pipelines and extensive data pre-processing are necessary for other vector-supervised
models to perform effectively. We wish to highlight how raster and vector data provide very different supervising signals.

Llama. We fine-tuned Llama (instruction tuning) for three days on eight H100 GPUs. Minimal pre-processing includes
rounding up the path coordinates to integer values. Upon inspection, this did not affect the quality of the image. We use the
original chat template and included special tokens to delimit the SVG code. The performance at inference appears very
poor. The model predicts the most recurrent patterns in the dataset, resulting mainly in circular artifacts. The SVG syntax is,
however, correct most of the time, allowing rendering.

DeepSVG. We train DeepSVG using the official training script. The model converges within a few hours, but the results are
also not good, yielding the lowest CLIPScore and FID among all models.

IconShop. We also re-trained the original IconShop model on the subset of FIGR-8 used in Grimoire. In this case, the
performance of the model is comparable to Grimoire, resulting in slightly better CLIPscore and FID.

All results are reported in Table 7.

Model CLIPScore FID Conditioning Supervision

DeepSVG 22.10 58.03 Class Vector
Llama 3.2 25.45 38.93 Prompt Vector
Grimoire 29.00 0.64 Prompt Raster
IconShop 31.18 0.40 Prompt Vector

Table 7. Comparison of GRIMOIRE with vector-supervised methods. Llama was trained with almost minimal pre-processing.

A.7. Ablation on Patch and Grid Sizes

In this section we report results after training the VSQ module on MNIST using various grid sizes (default: 5) and patch
sizes (default: 128ˆ128). Patch size had limited effect on performance, while increasing the number of tiles (i.e., smaller
patches) improved results, likely due to the simpler topology. In all configurations, reconstruction error remained below that
of Im2Vec. Table 8 reports MSE on the test set.

A.8. Ablation on Stroke Length

To assess the impact of stroke properties on VSQ performance, we conducted two additional ablations:

15

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Patch Size Tiles = 3 Tiles = 5 Tiles = 8

32 0.093 0.092 0.078
64 0.092 0.090 0.071
128 0.090 0.094 0.078

Table 8. Effect of patch and grid size on performance.

Stroke length variations: We created patches with smaller or larger strokes. Results show that shorter strokes yield lower
reconstruction errors, similarly to the grid size variations.

Multiple stroke predictions per patch: We extended the prediction head of the VSQ to output two strokes per patch instead
of one (as in the paper). Results show that more than one segment per shape consistently degrades the reconstruction quality.
This suggests that the complexity of strokes in our dataset does not require multiple Bézier curves per patch.

Results for both experiments are reported in Table 9.

Stroke Length Segments Stroke Width MSE

3.0 1 0.4 0.0049
5.0 1 0.66 0.011
8.0 1 1.06 0.023
3.0 2 0.4 0.0052
5.0 2 0.66 0.017
8.0 2 1.06 0.023

Table 9. Impact of stroke length, number of segments per patch, and width.

A.9. Ablation on Codebook Size

To better understand the influence of codebook size |V | on reconstruction quality, we trained the VSQ module on the FIGR8
dataset using all the codebook sizes originally proposed in the Finite Scalar Quantization paper—namely 240, 1000, 4375
(used in our work), 15,360, and 64,000.

The results, presented in Table 10, reveal two key insights. First, increasing the codebook size leads to a substantial
reduction in reconstruction error up to |V | “ 4375, indicating that a richer set of quantization centers significantly improves
representation capacity in this range. However, beyond this threshold, further enlarging the codebook yields only marginal
gains. This suggests that the added complexity and computational cost associated with very large codebooks may not be
justified by the modest improvements in performance.

These findings support our choice of |V | “ 4375 as a balanced setting, offering strong performance with efficient resource
usage.

V MSE

240 0.0205
1000 0.0175
4375 0.0145
15360 0.0130
64000 0.0128

Table 10. MSE across varying codebook sizes.

A.10. Im2Vec on Other Classes

We conducted a more in-depth analysis of the generative capabilities in Im2Vec after training on single subsets of FIGR-8,
and compare the results with GRIMOIRE. We trained Im2Vec on the top-10 classes of FIGR-8: Camera (8,818 samples),

16

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Home (7,837), User (7,480), Book (7,163), Clock (6,823), Flower (6,698), Star (6,681), Calendar (misspelt as caledar in the
dataset, 6,230), and Document (6,221). Table 11 compares the FID and CLIPScore with GRIMOIRE. Note that we train our
model only once on the full FIGR-8 dataset and validate the generative performance using text-conditioning on the target
class, whereas Im2Vec is unable to handle training on such diverse data. Despite Im2Vec appearing to obtain higher scores
on several classes such as User or Document, a qualitative inspection reveals how the majority of the generated samples
come in the form of meaningless filled blobs or rectangles. The traditional metrics employed in this particular generative
field, based on the pre-trained CLIP model, react very strongly to such shapes in contrast to more defined stroke images. We
refer reviewers to the qualitative samples in Table 19. We further observe a low variance in the generations when Im2Vec
learns the representations of certain classes, such as star icons.

Model camera home user book clock cloud flower calendar document
FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP

Im2Vec (filled) 9.21 27.86 3.48 26.85 2.12 28.92 7.18 27.26 6.12 26.38 17.43 24.38 6.61 25.42 4.5 27.26 12.19 28.65
Im2Vec 9.05 27.18 9.19 25.95 6.33 27.01 8.63 25.84 5.09 25.69 25.58 24.38 6.8 23.34 6.61 26.22 16.62 26.71

GRIMOIRE 6.74 29.81 7.16 27.16 5.45 26.81 6.65 27.1 7.22 26.32 6.78 24.96 10.27 22.00 5.57 26.23 4.08 27.96
GRIMOIRE (+PC) 5.77 30.22 7.6 27.41 4.38 27.18 5.8 27.24 6.79 26.45 6.05 25.51 9.37 22.46 5.09 26.41 3.81 28.21
GRIMOIRE (+PI) 7.5 29.46 7.44 27.01 5.95 26.85 6.79 27.08 7.63 26.12 7.09 24.73 9.97 22.04 5.87 25.98 4.21 27.89

Table 11. Quality of generations for GRIMOIRE and Im2Vec for the top-10 classes in FIGR-8.

A.11. Qualitative Results of the Geometric Loss

The adoption of our geometric constraint improves the overall reconstruction error, which we attribute to the network being
encouraged to elongate the stroke as much as possible. The results in Figure 15 show the effects on the control points of the
reconstructed strokes from the VSQ. With the geometric constraint, the incentive to stretch the stroke works against the
MSE objective, which results in an overall longer stroke and therefore in greater connectedness in a full reconstruction and
an overall lower reconstruction error. We also present an example with an excessively high geometric constraint weight
(α “ 5) demonstrating that beyond a certain threshold, the positive effect diminishes, resulting in degenerated strokes.

A.12. Implementation Details

We use AdamW optimization and train the VSQ module for 1 epoch for Fonts and FIGR-8 and five epochs for MNIST. We
use a learning rate of λ “ 2 ˆ 10´5, while the auto-regressive Transformer is trained for „30 epochs with λ “ 6 ˆ 10´4.
The Transformer has a context length of 512. Before proceeding to the second stage, we filter out icons represented by fewer
than ten or more than 512 VSQ tokens, which affects 12.16% of samples. We use p-sampling for our generations with
GRIMOIRE. Training the VSQ module on six NVIDIA H100 takes approximately 48, 15, and 12 hours for MNIST, FIGR-8,
and Fonts, respectively; the ART module takes considerably fewer resources, requiring around 8 hours depending on the
configuration. Regarding Im2Vec, we replace the Ranger scheduler with AdamW (Loshchilov & Hutter, 2017) and enable
the weighting factor for the Kullback–Leibler (KL) divergence in the loss function to 0.1, as it was disabled by default
in the code repository, preventing any sampling. We train Im2Vec with six paths for 105 epochs with a learning rate of
λ “ 2 ˆ 10´4 with early stopping if the validation loss does not decrease after seven epochs. Regarding the generative
metrics, we utilized CLIP with a ViT-16 backend for FID and CLIPScore.

A.13. Generative Scores with Completion

To evaluate if GRIMOIRE generalizes and learns to meaningfully complete previously unseen objects, we compare the
CLIPScore and FID of completions with varying lengths of context. The context and text prompts are extracted from 1,000
samples of the test set of the FIGR-8 dataset. The results are shown in Table 12.

While GRIMOIRE can meaningfully complete unseen objects, the quality of these completions is generally lower than the
generations under text-only conditioning. This is expected, as prompts in the test set are also encountered during training (the
class names). The CLIPScore generally drops to its lowest point with the least amount of context and then recovers when
more context is given to the model, which coincides with our qualitative observations that with only a few context strokes,
GRIMOIRE occasionally ignores them completely or completes them in an illogical way, reducing the visual appearance.

17

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Model Fonts FIGR-8
FID CLIP FID CLIP

GRIMOIRE (w/o context) 1.67 28.64 3.58 27.45
GRIMOIRE (+ 3 stroke context) 2.78 27.25 4.65 25.31
GRIMOIRE (+ 6 stroke context) 3.16 27.25 5.46 25.54

GRIMOIRE (+ 12 stroke context) 2.95 27.57 6.04 25.85
GRIMOIRE (+ 24 stroke context) 2.25 28.12 6.05 26.39

Table 12. Generation quality of GRIMOIRE with different lengths of provided context on Fonts and FIGR-8. Post-processing is conducted
for all setups. GRIMOIRE uses textual input for all generations.

A.14. Domain Transfer Capabilities for Reconstruction

To validate how the strokes learned during the first training stage adapt to different domains, we use our VSQ module to
reconstruct Fonts after training on FIGR-8, and vice versa. Figure 16 provides a qualitative example for each setting. Despite
the loss value for each image being around one order of magnitude higher than the in-domain test-set (MSE« 0.05), the
VSQ module uses reasonable codes to reconstruct the shapes and picks curves in the correct directions. Straight lines end up
being the easiest to decode in both cases.

A.15. Codebook Usage for Strokes

As described in subsection 3.1, for FSQ, we fixed the number of dimensions of the hypercube to 5 and set the individual
number of values for each dimension as L “ r7, 5, 5, 5, 5s for a total codebook size of |B| “ 4,375. In this section, we
want to share some interesting findings about the learnt codebook. For this, we shall use the VSQ trained on FIGR-8 with
ncode “ 1, nseg “ 2, a maximum stroke length of 3.0, and the geometric constraint with α “ 0.2.

After training the VSQ on FIGR-8, we tokenize the full dataset. The resulting VQ tokens stem from 60.09% of the codebook,
while 39.91% of the available codes remained unused. The ten most used strokes make up 41.24% of the dataset, while the
top 24 and 102 strokes make up roughly 50% and 75%, respectively. These findings indicate that for these particular VSQ
settings, one could experiment with smaller codebook sizes.

To balance out the stroke distribution, one could use a different subset of FIGR-8. Currently, the classes “menu”, “credit
card”, “laptop”, and “monitor” are contributing the most to the stroke imbalance, with 26%, 24.3%, 24.05%, and 23.8% of
their respective strokes being the most frequent horizontal one in Table 13.

18.76% 12.26% 2.56% 1.73% 1.16% 1.12% 0.99% 0.94% 0.92% 0.80%

Table 13. Top ten most used strokes of the VSQ module trained on icons and their relative occurrences in our subset of FIGR-8.

A.16. Average Strokes in Codebook

In subsection A.15, we show the ten most used strokes of our trained VSQ, but after inspecting the full codebook we notice
how neighboring codes often express very similar strokes. Therefore, to visualize the codebook more effectively, we plot
mean and minimum reductions of the full codebook in Figure 17. Additionally, we tokenize the full FIGR-8 dataset and plot
the same reductions in Figure 18 to show the composition of the dataset.

A.17. Qualitative Results – Reconstruction

In Table 14 and Table 15, we provide several qualitative examples of vector reconstructions using Im2Vec and our VSQ
module on the Fonts and FIGR-8 datasets, respectively. We fill the shapes of the images when using Im2Vec, since the
model creates SVGs as series of filled circles and would not be able to learn from strokes with a small width. Im2Vec does
not converge when trained on the full datasets, whereas it returns some approximate reconstruction of the input when only a

18

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

single class is adopted. In contrast, the VSQ module generalizes over the full dataset.

A.18. Qualitative Results – Generation

In this section, we provide qualitative examples of our reconstruction and generative pipeline, and compared those with
Im2Vec. Table 16 reports a few examples of icons generated with GRIMOIRE using only text-conditioning on classes.
In Table 17 we report some generations for MNIST. In Table 18, we report generative results for Fonts. Thanks to the
conditioning, we can generate upper-case and lower-case glyphs in bold, italic, light styles, and more. As can be seen in the
table, GRIMOIRE also learns to properly mix those styles only based on text. Finally, in Table 19, we report some generative
results on icons and Fonts for Im2Vec on a single class dataset. The results show how the pipeline typically fails to produce
meaningful or sufficiently diverse samples.

A.19. Glossary of notation

Table 20 reports a description of all the important notations used in this work.

19

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

c in
regular font

capital i in
regular font

Capital l in
regular font

capital r in
bolditalic font

4 in
normal font

2 in
italic font

U
nfi

xe
d

Pr
ed

.

PI Fi
xi

ng

PC Fi
xi

ng

Figure 14. Some examples of text-conditioned glyph generation from GRIMOIRE. The first row shows the unfixed model predictions, the
second and third rows depict the final outputs with two different post-processing techniques.

Figure 14. Ground Truth Figure 14. α “ 0 Figure 14. α “ 0.1 Figure 14. α “ 5

Figure 15. Samples from the test set when training the VSQ module with and without our geometric constraint. Each stroke consists of
two cubic Bézier segments. Embedded within each stroke, the red dots mark the start and end points, while the green and blue dot pairs
are the control points of each segment.

Figure 15. Icons on Fonts. Figure 15. Fonts on icons.

Figure 16. Qualitative zero-shot reconstructions from the test-set of FIGR-8 and Fonts after training the VSQ module solely on the
respective other dataset.

20

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Figure 16. codebook mean strokes Figure 16. all codebook strokes

Figure 17. Different reductions of all 4,375 strokes from the VSQ codebook. The model seems to have learned an expressive codebook-
decoder mapping as the figure on the left shows a smooth and evenly distributed stroke profile and the figure on the right displays strokes
in almost every direction.

Figure 17. FIGR-8 mean strokes
Figure 17. FIGR-8 mean strokes exclud-
ing top ten strokes Figure 17. all FIGR-8 strokes

Figure 18. Different reductions of all strokes from the tokenized FIGR-8 dataset. The visualization on left shows the dominance of the
two most occurring strokes, the middle shows that the distribution of strokes is skewed. The missing 39.91% of strokes are also visible in
the right figure, where certain diagonal strokes that are available in the codebook are never used.

21

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

G
T

Im
2V

ec
G

T
V

SQ
G

T
Im

2V
ec

G
T

V
SQ

Table 14. Examples of various reconstructions of our VSQ module after training on Fonts compared to reconstructions of Im2Vec trained
on the letter ”A” (first row) and Im2Vec trained on the full Fonts dataset (third row).

22

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

G
T

Im
2V

ec
G

T
V

SQ
G

T
Im

2V
ec

G
T

V
SQ

Table 15. Examples of various reconstructions of our VSQ module after training on icons compared to reconstructions of Im2Vec trained
on one class (first row) and Im2Vec trained on the full dataset (third row).

23

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Clock Luggage Shopping Bag Camera Like

Home Mail Share Target Arrow

Microphone Gift Clock Eye Cube

Sun Bell Bell Smile Clip

Smile Share Bin Book Home

Table 16. Examples of various samples generated with GRIMOIRE after training on icons, using only text conditioning.

24

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Table 17. Examples of a samples generated with GRIMOIRE for each digit of the MNIST dataset.

25

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

A
St

ar
U

se
r

D
oc

um
en

t
C

am
er

a
B

oo
k

Table 18. Examples of filled samples generated with Im2Vec after training the model on specific classes of the dataset. For most classes,
Im2Vec could not capture the diversity of the data and failed to meaningfully converge.

26

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision
C

ap
ita

l
C

ap
ita

l
M

in
us

cu
le

M
in

us
cu

le

Regular Regular Italic Bold Bold-italic Light

Table 19. Examples of various samples generated with GRIMOIRE after training on Fonts, using only text conditioning.

27

Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision

Table 20. Glossary of all notations.
E Network encoder
D Network decoder
I Image from the dataset
V Codebook
v Codes from the codebook
L Set of values per dimension of our codebook
l Single dimensional value
q Number of dimensions of the codebook
S Series of patches
s Single patch
C Color channels
n Number of patches
Θ Set of discrete coordinates
θ Single coordinate pair
Z Latent space
d Dimension of latent
z Latent embedding
ŝ Predicted patch
ν Number of segments
P Set of points
p Point pair
ρ Euclidian distance
Φ Neural network
ξ Number of codes
T Text description
T Tokenized description
τ Text tokens
t Number of text tokens

28

