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ABSTRACT

The emergence of large-scale pretrained language models has posed unprecedented
challenges in deriving explanations of why the model has made some predictions.
Stemmed from the compositional nature of languages, spurious correlations have
further undermined the trustworthiness of NLP systems. Thus, there exists an urgent
demand for causal explanations to encourage fairness and transparency. To derive
more causal, usable, and faithful explanations, we propose a complete framework
for interpreting language models by deriving causal concepts. Specifically, we
propose a post-hoc method that derives both high-level explanations in terms of
concepts and surface-level local explanations from the pretrained model’s hidden
layer activations. To ensure causality, we optimize for a causal loss that maximizes
the Average Treatment Effect (ATE), where we intervene on the concept-level as an
innovative substitute to the traditional counterfactual interventions on the surface
words. Moreover, we devise several causality evaluation metrics for explanations
that can be universally applied. Extensive experiments on real and synthetic tasks
demonstrate that our method achieves superior results on causality, usability and
faithfulness compared to the baselines. Our codebase is available at https:
//anonymous.4open.science/r/CausalConcept.

1 INTRODUCTION

Over the past few years, NLP models have grown to be more large-scale, more complex, and
more expensive to train. Despite their impressive performance in numerous tasks, understanding
their decision processes remains difficult, which has become the need of the hour for high-stakes
applications. One main challenge is that these models contain a large number of spurious correlations
– features that are useful for training but not causal, which have become a serious threat (Feder et al.,
2021; McCoy et al., 2019; Eisenstein, 2022). Thus, there is a growing and urgent need to interpret
the black-box language models in a causal and faithful way.

Most of the currently popular NLP explainability methods only discover correlational information,
such as induction-based methods in (Ling et al., 2017), explainability-aware architectures in (Rajani
et al., 2019), or feature importance scores in (Croce et al., 2019). Outside the NLP domain, there are
concept-based methods such as (Kim et al., 2018) that derives high-level concepts as explanations.
However, one critical drawback is that these methods do not differentiate between correlational and
causal information. As shown later in our experiments, the derived concept-level explanations have
little effect on the final model outputs, which undermines the validity of the explanations.

To derive more causal explanations in NLP, there have been recent attempts utilizing counterfactu-
als, probing, and Causal Mediation Analysis (CMA). For example, many methods generate input
counterfactuals (Wachter et al., 2017; Alvarez-Melis & Jaakkola, 2017). These methods derive local
explanations to a specific input instance or word, while it is also desirable to have a global explanation,
as it mimics the human reasoning process: humans typically reason globally at the concept level,
drawing connections from similar examples and grouping them systematically (Tenenbaum, 1998).
The probing methods train an external model to predict some desired properties from the latent
representations of the pretrained model (Belinkov, 2022a; Conneau et al., 2018). However, a main
limitation is that the probing model and original model are disconnected. Thus, it does not necessarily
tell us whether the probed property is indeed involved in the original prediction tasks.
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In this work, we propose a complete framework for explaining language models based on high-level
concepts that are more causal by construction. We first propose CausalConcept, a method to derive
both global concepts and its corresponding local explanations that result in high output changes.
Thus, our method generates both forms of explanations that complement each other while conforming
to the ‘mindset’ of the model. As a post-hoc approach, our method discovers latent features from
the hidden activations as global concepts, providing a flexible representation of attributes within the
data. To train the explanation model, we enforce a reconstruction loss such that explanations are
faithful and informative. Crucially, to ensure that the generated explanations have a high impact
on the output predictions, we propose a causal loss to maximize the corresponding output changes
with respect to the concepts. Instead of generating input counterfactuals, we perturb on high-level
concepts in the hidden activations, which correspond to features in the input distribution as ensured
by an auto-encoding loss. Thus, our intervention can be seen as generation of latent counterfactuals.
To get the corresponding instance-level explanations, we map the concepts back to the input via
visualization strategies and token importance scores. We then propose causality metrics that stem
from theoretical definitions of treatment effects in literature (Pearl, 2009). Finally, we construct
reliable and extensive experiments that prove the causality, usability, and faithfulness of our method.

2 RELATED WORK

As denoted by Feder et al. (2021), causality shows a promising path forward for NLP researchers,
which can offer insights into the inner workings of the model. Most current methods attempt to
causally explain an NLP model by generating counterfactual inputs. For example, Alvarez-Melis &
Jaakkola (2017) use a Variational autoencoder (VAE) to generate counterfactuals and conduct causal
analysis. Veitch et al. (2021) conduct stress tests by perturbing input words. Wu et al. (2021) construct
a low-cost counterfactual generator for downstream applications. Apart from NLP, there have been
attempts to generate counterfactual inputs using disentangled VAEs, such as (O’Shaughnessy et al.,
2020), which has a similar motivation to our work, but is still confined on the input space. Such
counterfactual explanations, however, require extra caution to hold rigorously in causality, as causal
and correlational relationship exist among input features and we cannot explicitly obtain such
casual graphs or correlations in practice. To overcome this challenge, we propose to perturb on the
intermediate hidden layer, thus assuming the independence between latent concepts.

Another line of work uses probing and Causal Mediation Analysis (CMA) to explain black-box
models. Probing (Conneau et al., 2018; Belinkov et al., 2020) methods train an external model - a
probe - to predict some properties of interest from the latent representations. To further investigate
causal effects of the features learned from probing, Elazar et al. (2021) assess the influence of a
causal intervention by removing a feature. However, subsequent work Barrett et al. (2019) shows
that such methods generalize poorly to unseen samples. Moreover, as Belinkov (2022b) points out,
the disconnect between the probing model and the original model may result in the properties not
being utilized in the original model’s prediction task. CMA Pearl (2022) measures the change in an
output following a counterfactual intervention in an intermediate variable, or mediator. The work
of Vig et al. (2020) is an application of CMA in NLP, where gender bias is examined by changing
pronouns in the input. We argue that both probing and CMA require human-constructed features
(e.g., linguistic, gender features), which require expertise on the datasets and tasks. Thus, it might be
beneficial for inexperienced users to develop unsupervised explanation features.

Outside the NLP domain, Harradon et al. (2018) attempt to intervene in an unsupervised way on the
hidden space by constructing several even-spaced VAEs throughout a CNN, but it only trains with a
reconstruction loss instead of explicitly optimizing for causality. Similarly utilizing unsupervised
features, concept-based methods such as (Kim et al., 2018) have been a popular interpretability method
as it derives user-friendly explanation units. Yeh et al. (2020) discover concepts in the intermediate
layer with a classic bottleneck-shaped network. They further propose an adapted Shapley value metric
to evaluate concept importance by quantifying how much each individual concept contributes to the
final completeness score. Koh et al. (2020) learn high-level concepts and experiment with how the
user could interact to edit concepts during test time. However, as we will see in our experiments (§5),
because the existing concept-based methods do not differentiate between correlational and causal
information, their performance on NLP tasks is problematic: the discovered concepts often have little
impact on the final prediction of the model. Especially, on complex transformer models with stronger
confounding effects brought by pretraining, their performances may further decrease.
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3 METHODOLOGY

Setup and Symbols: We can view a pretrained neural model as a composite of two functions,
divided at an intermediate layer: the first part ϕ(·) maps the input text x to a hidden representation
ϕ(x), and the second part ψ(·) maps ϕ(x) to classification probabilities ψ(ϕ(x)). Without loss
of generality, we assume that, for an input data point x, which consists of T tokens [x1, . . . , xT ],
ϕ(x) can be represented as a concatenation of [ϕ(x1), . . . , ϕ(xT )], where each ϕ(xt) ∈ Rd denotes
a representation of an input token xt. Depending on the model architecture, ϕ(xt) can be encoded
from a local receptive field as in convolutional nets or a global one as in Transformers (Vaswani
et al., 2017). As the model being interpreted has been trained with seed initialization, ϕ(x) can be
seen as a transformed version of input x. Thus, we could extract n concepts C = {c1, . . . , cn} as
directions on the hidden space that represent different linguistic or semantic features of the textual
input distribution. For a visualization of the model architecture, we refer readers to Appendix A.

3.1 INTRODUCING CAUSALITY

We argue that current unsupervised concept extraction approaches such as (Yeh et al., 2020) only
finds hidden directions based on correlational information, instead of causal. This issue becomes
crucial when interpreting large pretrained models which have become the norm in NLP as such
they are also called the foundation models (Bommasani et al., 2021). This is because pretraining can
bring in more task-irrelevant information, such as orthographic and grammatical information that
is not informative, and may create biases and spurious correlations (McCoy et al., 2019; Tu et al.,
2020; Gardner et al., 2021). Thus, in the experiment section (§5), we will observe that the discovered
concepts based on current methods often have little to no impact on output predictions, especially
when interpreting pretrained models like BERT (Devlin et al., 2018) and T5 (Raffel et al., 2020).
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Movie Review
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Prediction:
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Extra Information:

Ice Cream Sales

Task-Irrelevant
Confounding Association

Figure 1: Causal graph illustration.

The failure cases can be explained with the
causal graph in Fig. 1. A real-life analogy is that,
while the hot weather (X) creates high demand
for ice cream (E), it also produces intense UV
light exposure (Z), thus causing more sunburns
(Y ). However, it is obvious that high ice cream
sales (E) do not cause sunburns (Y ). In the
case for IMDB movie sentiment prediction, an
input X (e.g., a movie review) may contain both
causal information Z to the model predictions,
which is mostly task-relevant (e.g., adjectives
like ‘awesome’), and extra information E (e.g.,
movie name) which does not affect the model
prediction Y (sentiment). In pretrained language models, the hidden activation space consists of both
E and Z. Although only Z truly affects prediction Y , E and Z may also be correlated due to the con-
founding effects brought by X . However, a traditional concept mining model does not differentiate
between them and considers both as valid, which is problematic as E is only correlational.

As a post-hoc explainability method, we are enforcing explanations to be more causal with respect to
the model predictions, instead of to real-life scenarios. Thus, if a discovered feature is task-irrelevant
in real life but misused by the model for predictions, it is deemed as a causal explanation because
it captures why the model made predictions. Another important assumption is that, as the concept
vectors exist on the space of E ∪Z, there is no causal relationships among the concepts {c1, . . . , cn}.

In causal analysis, Individual Treatment Effect (ITE) and Average Treatment Effect (ATE) are defined
to measure the effect of interventions in randomized experiments. Given a binary treatment variable T
that indicates whether an intervention is performed, ATE and ITE are defined with the do-operation:

ITE(x) := E[y|X = x, do(T = 1)]− E[y|X = x, do(T = 0)]; ATE := E[ITE(x)] (1)
It is, however, difficult to calculate ITE and ATE in real life, as randomized controlled interventions
(a requirement for the do-operation) are either expensive or impractical. Currently, most NLP explain-
ability models intervene by producing input counterfactuals, such as changing the gender pronouns
(Vig et al., 2020). Such word-level counterfactuals only cover a limited set of interventional space
(such as synonyms and antonyms). To tackle this problem, we propose to generate counterfactuals in
the latent representation (i.e., concept) space.
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In our case, a concept ci is discovered as a direction in the latent space, corresponding to a feature in
the input distribution. If ci is used by the model for prediction, the removal of ci should negatively
influence the model’s prediction accuracy. Thus, we could define the treatment to be the removal
of a specific feature by setting ci = 0. While another possible strategy is to add noise to a specific
feature ci, such as ci := ci + ϵ, with ϵ ∼ N(µ, σ), we omit such interventions for two reasons.
First, factors such as the noise type and its distribution would introduce bias into the distribution of
concepts. Second, such interventions may not mimic real-life scenarios, as they introduce artificial
noise which may not correspond to a plausible text. In contrast, simply omitting a concept closely
resembles the real-life intervention of omitting a factor in the input, such as removing words related
to a plot in the movie review. Similar ATE approximations are proposed in prior work (Goyal et al.,
2019). Thus, we customize definitions of ITE for a concept ci and ATE for a concept set C as follows.

ITE(x)i =E[y|X = x, ci = 0]− E[y|X = x, ci = ci]; ATE = E
ci∈C

[ITE(x)i] (2)

3.2 GENERATION OF CONCEPT VECTORS

To encode hidden activations ϕ(xt) ∈ Rd into n concepts C = {c1, . . . , cn}, we first initialize the
concepts uniformly as ci ∼ U(−0.5, 0.5) ∈ Rd. Then, similar to concept extraction models (Kim
et al., 2018), we approximate the distribution over the concepts by encoding activations into concept
probabilities as pC(xt) = [p1c(xt), . . . , p

n
c (xt)]. For each concept ci, the similarity is calculated as

pic(xt) = TH((ϕ(xt)
⊤ci), β), where TH is a threshold function that forces all inputs smaller than β

to be 0.1 To get the concept distribution for the entire sequence x, we concatenate the token-level
distributions: pC(x) = [pC(x1), . . . , pC(xT )] ∈ RT×n. In the special case of the last layer in BERT,
ϕ(x) consists of only the [CLS] representation, which is used to construct pC(x). For T5, ϕ(x)
represents the decoder state at the final layer which is used to predict the first token of the sequence.

Next, we attempt to reconstruct the original hidden activations ϕ(x) from pC(x) with a 2-layer
perceptron gθ such that gθ(pC(x)) ≈ ϕ(x). The simple 2-layer perceptron gives enough parameters
for reconstruction, while not involving too much complexity that may introduce further confounding.
To train the bottleneck-shaped perceptron in an end-to-end way, we optimize the following losses:

• Reconstruction loss: To faithfully recover the original DNN model’s predictions, we optimize a
surrogate loss with cross-entropy (CE) defined as:

Lrec(θ, C) = CE
(
ψ
(
ϕ(x)

)
, ψ

(
gθ(pC(x))

))
= −

∑
b∈B

ψ
(
ϕ(x)

)
b
log

(
ψ(gθ(pC(x)))b

)
(3)

where B is the set of class labels and ψ(.)b denotes the prediction score corresponding to label b.
While we allow for general loss of information through concept distributions, we aim to ensure that
the information crucial for prediction is preserved by reconstructing the same label distributions.

• Regularization loss: To ensure that the concepts derived are more user-friendly, we regularize
them such that each concept vector corresponds to actual examples and the concepts are distinct from
each other. This can be achieved by maximizing the similarity of a concept ci to the actual tokens in
its top-N neighborhood Ri (measured in the activation space) and also minimizing the similarity
between the concepts themselves (Yeh et al., 2020). Formally,

Lreg(C) = −λ1

∑n
i=1

∑
xt∈Ri

c⊤i ϕ(xt)

nN
+ λ2

∑
i1 ̸=i2

c⊤i1ci2

n(n− 1)
(4)

The assumptions are: (i) if the concepts are sufficient, we will be able to maximize the information
overlap between concept vectors and hidden activations; (ii) as they exist in the same activation space,
the concepts are independent factors by assumption (as they do not influence each other).

• Auto-Encoding loss: To learn the distribution of ϕ(x) ∈ Rd by using our surrogate model, in
which the discovered concepts pC(x) could faithfully reconstruct ϕ(x) by serving as latent features,
we force the reconstructed embeddings to be close to the input embeddings. For this, we define the
following mean-squared error (MSE) loss:

Lenc(θ, C) = MSE
(
ϕ(x), gθ(pC(x))

)
=

1

d
||ϕ(x)− gθ(pC(x)||22 (5)

1We perform normalization to ensure that ϕ(xt) and ci are unit vectors, and use softmax such that pic(xt)
are probabilities.
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• Causality loss: To disentangle concept directions that are more causal, we design a loss that forces
the discovered concepts to have a greater influence on the final prediction. Following Eq. 2, our
intuition is that a less causal concept should have a treatment effect close to 0. Therefore, we optimize
an approximation of the ATE through the following causality loss.

Lcau(θ, C) = −
∑
xj∈D

∑
ci∈S

∣∣∣ψ(gθ(pC(xj)|ci = 0)
)
− ψ

(
gθ(pC(xj)|ci = ci)

)∣∣∣ ≈ −|ATE| (6)

Here, S denotes a set of concepts to remove, S ⊆ C, which can be selected in several ways: perturbing
on all concepts (S = C), selecting randomly from C, or selecting the most similar concept with the
input S = {ci : i = argmaxi p

i
c(xj)}. Through experiments, we have found that selecting randomly

yields the best performance. As we perturb on all inputs xj ∈ D, the dataset D will serve both
as the treatment group and the nontreatment group, ensuring that no divergence is present. As the
|ψ(·|ci = 0)−ψ(·|ci = ci)| term in Eq. 6 approximates the effect that the a random ci has on a data
point xj , averaging over S then serves as an approximate of the ITE over C. Therefore, the sum over
D will approximate its expectation, which resembles the ATE. Therefore, minimizing the designed
causality loss is a close approximation to maximizing the expected ATE of concepts on the final
predictions. Intuitively, this loss encourages the concepts to incorporate directions that result in more
significant changes in the output predictions.

Total loss: Finally, the overall loss function that we minimize becomes:

L(θ, C) = Lrec(θ, C) + Lreg(C) + λeLenc(θ, C) + λcLcau(θ, C) (7)

where λe, λc are the weights for the auto-encoding loss and the causal loss respectively. In practice,
we only turn on the causal loss after a certain number of epochs (usually half of the overall number
of epochs) to make sure that the surrogate model first learns to faithfully reconstruct from the set of
concepts before optimizing for the causal ones. This is because learning the two conflicting objectives
at once will usually result in low accuracy. We also note that some contextual information is still
needed to maximize the accurate reconstruction of hidden activations ϕ(x). Thus, the causality loss
is enforced on all concepts except the last one cn, which is used as a ‘context concept’. During model
inference, the last (noncausal) concept is unused.

• Post-processing: While the number of concepts n is user-selected, as in many topic models, it is
an inherent flaw as it requires a certain level of domain expertise. For example, in a movie review
dataset with only 2 output classes, if an unfamiliar user sets n to 200, the model will naturally
discover many noisy concepts and only a few useful ones. To ensure that the noisy concepts are
eliminated, we post-process the concepts and filter out the unused ones (with a change in ATE close
to 0). Thus, a more desirable number of concepts is returned even if the user provides an overestimate
of n. In our experiments, we see that, after filtering, the model always achieves a better or same
prediction-reconstruction performance as before. However, even with this post-processing, specifying
too large a number of concepts can still be dangerous as it harms the concept model’s training process.

3.3 MAPPING CONCEPTS BACK TO WORD TOKENS

As language model explanations require mapping concepts to the discrete input tokens, when the
receptive field of a concept is larger than token-level, we employ several techniques to interpret them.
For explaining BERT, when we use the last layer (for which [CLS] representation is used), we employ
the transformer visualization method proposed in (Chefer et al., 2021) to map back from the [CLS]
activation concepts to input tokens. Specifically, Chefer et al. (2021) visualizes classifications with
a combination of layer-wise propogration (LRP), gradient backpropagation, and layer aggregation
with rollout. As a result, for each sample x and concept ci, we will go from having only one
concept similarity score pic(x) to having a list of token importance scores s1(ci), . . . , sT (ci). For
the intermediate layers of BERT, we simply use the corresponding tokens as the representations
(i.e., ϕ(xt) and its corresponding pic(xt)) are already at the token level. For CNNs, we employ the
GradCam (Selvaraju et al., 2017), which rolls out the gradients to produce scores for each token.
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4 EXPERIMENT SETTINGS

4.1 DATASETS AND CLASSIFICATION MODELS

We mainly test the effectiveness of our method with two standard text classification datasets: IMDB
(Maas et al., 2011) and AG-news (Zhang et al., 2015). The IMDB dataset consists of movie reviews
labeled with positive or negative sentiment. The AG-news dataset consists of news articles categorized
with 4 topics. Table 6 in Appendix C gives a summary of the datasets. We explain three classification
models: (i) a 6-layer transformer encoder trained from scratch, (ii) a pre-trained BERT with finetuning,
(iii) a pre-trained T5 (Raffel et al., 2020) with finetuning.

4.2 EVALUATION MEASURES

We evaluate the explanation methods based on three important aspects as described below.

• Causality: Causality is an important consideration to evaluate explainability methods, especially
where spurious correlations are strong. Doshi-Velez & Kim (2017) state: “Causality implies that the
predicted change in output due to a perturbation will occur in the real system”. Thus, we propose
measures to quantitatively assess whether a high-level concept directly affects the final predictions.
Following the definitions introduced in §3.1, we define the individual causal effect (ICEi) for a
concept ci and the average causal effect (ACE) for a concept set C as:

ICEi :=
∑

xj∈Dtest

|ψ
(
gθ(pC(xj))

)
− ψ

(
gθ(pC\{i}(xj))

)
|; ACE =

1

|C|
∑
ci∈C

ICEi (8)

Similarly, we include the accuracy change with and without a specific concept ci to measure causality.
The intuition is that, if a concept ci is a cruicial factor used by the model to make predictions, omitting
it will result in high accuracy changes. Denoting Acc(C) = Accuracy(ψ

(
gθ(pC(x))

)
, ϕ(ψ(x)):

∆Acci = |Acc(C)− Acc(C \ {i})|; ∆Acc =
1

|C|
∑
ci∈C

∆Acci (9)

Such evaluation measures can be globally applied to other explainability methods with feasible
do-interventions. A higher ACE and ∆Acc represent a higher change in model prediction, thus
a more impactful set of concepts. To measure causal effects for an individual token xt, we also
devise a “causal score” metric. We take the top-3 most similar concepts Ctop to the input x using the
normalized similarity score pC(x). For each concept ci ∈ Ctop, the transformer visualization method
(§3.3) produces normalized token importance scores {s1(ci), . . . , sT(ci)}. The causal importance
score for a token xt is defined as: CI(xt) =

∑
ci∈Ctop

pic(x)st(ci).

• Usability: Proposed in (Doshi-Velez & Kim, 2017), an important desiderata of explainability is
to make sure that it provides usable information that assists users to accomplish a task. With the
causal concepts being more reliable, we expect that end-users can better understand the model’s
reasoning process, which can be useful for debugging and fairness. We include visualizations and
human studies to test it qualitatively.

• Faithfulness: Faithfulness evaluates whether our surrogate model can accurately mimic the
original model’s prediction process. In other words, we want to make sure that our captured concept
probabilities pC(x) can recover the original model’s predictions ψ

(
ϕ(x)

)
. We report the recovering

accuracy for the set of concepts C:

RAcc =
1

|Dtest|
∑

xj∈Dtest

1

(
ψ
(
ϕ(xj)

)
= ψ

(
gθ(pC(xj))

))
As we view the original deep network as a composite function: f = ϕ ◦ ψ, we can derive a
concept-based explanation method in two corresponding steps: (i) generate high-level concepts
(low-dimensional subspaces) that correspond to vectors in the hidden space ϕ(x), and (ii) from the
hidden activations, map the concepts back to input tokens by propagating relevance scores to facilitate
instance-level explanation. See Appendix A for a visualization of the method.
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Table 1: Faithfulness (RAcc↑) and causality (ACE↑, ∆Acc ↑) evaluation of different text classification methods.
Dataset Model Cls.Acc Metric β-TCVAE K-means PCA ConceptSHAP CausalConcept

IMDB

Transformer 81.74%
ACE 0.037 0.047 0.001 0.031 0.150
∆Acc 1.24% 2.59% 0.01% 1.30% 11.06%
RAcc 52.08% 83.64% 85.18% 84.36% 88.78%

BERT 89.14%
ACE 0.057 0.038 0.002 0.050 0.104
∆Acc 4.10% 1.56% 0.02% 0.06% 9.47%
RAcc 93.86% 98.69% 96.68% 95.84% 94.53%

T5 72.98%
ACE 0.000 0.025 0.000 0.000 0.094
∆Acc 0.00% 1.06% 0.02% 20.21% 38.34%
RAcc 0.00% 75.85% 98.86% 60.20% 99.50%

AG

Transformer 88.33%
ACE 0.049 0.044 0.000 0.000 0.045
∆Acc 6.62% 0.07% 0.03% 0.00% 7.12%
RAcc 98.90% 98.16% 99.99% 73.01% 99.50%

BERT 93.75%
ACE 0.044 0.028 0.001 0.025 0.058
∆Acc 5.32% 7.15% 0.01% 4.44% 10.54%
RAcc 92.30% 86.83% 99.79% 93.46% 99.90%

T5 94.30%
ACE 0.000 0.011 0.000 0.000 0.054
∆Acc 0.00% 1.49% 0.01% 0.00% 52.20%
RAcc 0.00% 24.87% 97.38% 0.00% 99.46%

Table 2: Generated concept keywords with ACE from AG-News dataset, BERT model.
Method ACE Keywords

ConceptSHAP 0.000 one, two, gt, new, cl, lt, first, world, mo, last, b, san, tuesday, soccer, time,nhl, Australia, red, bryant
ConceptSHAP 0.000 first, new, red, world, Yankees, Australia, giants, nl, as, two, one, ga, last, b, u, tuesday, quo, men

CausalConcept 0.108 update, us, fed, wal, op, u, stocks, oil, dollar, delta, hr, ex, Wednesday, world, percent, crude
CausalConcept 0.151 red, NBA, football, Yankees, sports, NFL, team, baseball, olympic, league, game, season, coach

4.3 BASELINES AND HYPERPARAMETERS

As fair comparisons to our method, we can only consider unsupervised feature discovery algorithms.
Thus, we use conceptSHAP (Yeh et al., 2020) as a baseline. To compare to VAE methods, we include
the disentanglement VAE (β-TCVAE) by Chen et al. (2018). Moreover, we also include comparisons
to popular non-parametric clustering techniques, including PCA and k-means to discover directions
on the hidden space.

The full list of hyperparameters used for training the CausalConcept model can be found in Appendix
C. Briefly, we recommend using loss coefficients: regularizer similarity loss λ1 = 0.1, regularizer
orthogonality loss λ2 = 0.5, auto-encoding loss λe = 1, and causal loss λc ∈ [1, 3], where λc (causal
coefficient) depends on the level of confounding within the dataset. Perturbation is performed on the
most similar concept to the input. All experiments are conducted on the penultimate layer with 10
concepts. The hyperparameters are chosen as an optimal default through grid search. To make the
comparison fair, PCA, K-means, and β-TCVAE also use 10 dimensions to encode.

5 RESULTS AND ANALYSIS

To first provide a sanity check for our method, we conduct a toy experiment with a synthetic graphic
dataset where the level of confounding can be controlled with ground truth concepts. Appendix B
gives details of the experiment. The results show that our method discovers concepts that align with
human understanding and consistently outperforms the baseline by deriving more causal features. As
confounding levels in the dataset increase, the performance gap also widens.

5.1 RESULTS ON TEXT CLASSIFICATION DATASETS

The experiment results on text classification datasets are presented in Table 1. Concepts discovered by
the baseline methods lead to tiny changes in prediction outputs, which undermine their reliability. On
the contrary, our method is able to derive concepts that induce a much higher change in predictions
(ACE, ∆Acc), while maintaining high accuracy (RAcc). On all models, especially pretrained
BERT and T5, CausalConcept induces a larger prediction change than all the baseline methods,
while maintaining faithfulness. This observation consolidates our intuition that pretrained complex
language models with more confounding correlations can benefit more from causality. As a seq2seq
text generation model, the pretrained T5 is especially hard to learn for the surrogate models, as the
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Method Visualization

ConceptSHAP dream team leads spain 44 - 42 at halftime athens, greece - as expected, the u.s. men’s basketball team had its hands full in
a quarterfinal game against spain on thursday...

CausalConcept dream team leads spain 44 - 42 at halftime athens, greece - as expected, the u.s. men’s basketball team had its hands full in
a quarterfinal game against spain on thursday ...

Figure 2: Qualitative comparison from AG-News dataset: “World” news misclassified as “Sports” by BERT.

output vocabulary has a class size of 32,128. For better calculation of ACE, we simplify outputs
by filtering to only the classification classes (e.g., words “Positive”, “Negative” for IMDB) and
summing all other vocab probabilities as “Other”. Some models collapse completely in this case.
CausalConcept, however, excels in maintaining both faithfulness and a large effect on final predictions.

To qualitatively examine the discovered concepts by our method, we take an example of BERT on
AG-News. In Table 2, 2 out of 10 concepts from both CausalConcept and the baseline are shown as
examples. For ConceptSHAP, both concepts picked had low ACE, corresponding to less changes in
output predictions. Although vaguely hinting at the category “Sports”, they consist of words that are
less indicative, such as “one”, “two”, and “new”. When looking at CausalConcept discovered topics,
the first talks about “World”, especially in the global finance topic. The second clearly points to the
American sports leagues, indicating category “Sports”. Thus, instead of merely pointing to class
information, the concepts discovered contain more information that aligns with human understandable
concepts. The ACE score shown here is also consistent with what humans perceive as important and
causal words to the classification, thus indicating the metric’s validity. Moreover, in Appendix F.1,
we show more concepts discovered in former layers of BERT, which shows that the concepts are not
only separable in semantic meanings, but also syntactical information (such as nouns and adjectives).

The usability of our method could be visualized with the examples in Fig. 2, which shows the same
failure case (labeled as “World” news but misclassified as “Sports”) highlighted with the top concept
discovered. ConceptSHAP discovers a top concept related to the keywords “leads”, “as expected”, or
“on thursday”, which are not informative as to why the model classified this input as Sports news. On
the contrary, CausalConcept could precisely point out why it wrongly predicted “Sports”: BERT is
looking at keywords such as “dream team”, “game”, and country names. Such examples show the
potential of our CausalConcept being used in understanding the model’s failure processes, which we
further investigate in §5.3 with a carefully designed human study.

5.2 ABLATION STUDY

Table 3: Ablation on BERT for IMDB with faithful-
ness (RAcc) and causality (ACE, ∆Acc) evaluation.

Method RAcc ↑ ACE ↑ ∆Acc ↑
No Auto-Encoding Loss 93.46% 0.028 6.11%
No Prediction Loss 68.00% 0.035 17.41%
No Regularizer Loss 95.76% 0.041 6.23%
No Causality Loss 99.92% 0.029 2.95%

CausalConcept 99.90% 0.058 10.54%

To ensure that the designated 4 objectives behave as
expected, we conduct ablation studies for BERT on
AG-News and report the results in Table 3. As ob-
served, eliminating prediction loss leads to a large
decrease in RAcc, resulting in an unfaithful model.
Thus, even though the model leads to large accu-
racy changes, the results cannot be trusted. Without
auto-encoding loss or regularizer loss, the model
has lower performances both in faithfulness and
causality. Without causality loss, RAcc is the high-
est, indicating an accurate reconstruction of the original predictions. However, the discovered set
of concepts results in low output changes. Finally, our CausalConcept method discovers a set of
concepts that both generate high output changes and maintain a good level of faithfulness.

5.3 HUMAN STUDY

To validate that CausalConcept can identify words that are more causal than the baseline Concept-
SHAP, we design the following human study setup: 100 randomly selected examples from AG’s
testset are shown, where each example consists of the text input and the model’s prediction. The an-
notator is asked to select up to three most causal words for the predicted label. We collect annotations
from 4 different annotators proficient in English in order to obtain a diverse set of causal keywords.
We consider the keywords selected by the annotators to be the ground-truth, and calculate the average
Causal Importance score (CI) (§4.2) for all unique words (superset) selected by the annotators, with

8



Under review as a conference paper at ICLR 2023

CausalConcept google shares, once devalued, just may be winners after all wall street, which forced google, the internet search engine, to
sharply lower the price of its shares in its initial public offering in august, has decided that the company is worth a lot more
today than it was then.

Human 1 devalued, shares, price; Human 2 devalued, shares, google

Figure 3: Example sentence in the human study: “Business” news correctly classified.

the baseline and our method trained on the penultimate layer of BERT. Details about how the human
study is conducted can be found in Appendix E.

Table 4: Human study for causality/usability evaluation.

# Examples Cohen κ ConceptSHAP Our
(CI) (CI)

Total 100 0.41 0.41 0.83

Table 4 shows the results. The CI produced by
our model for the superset of causal keywords
selected by both the annotators is 2 times higher
than the baseline, demonstrating that our model
is looking at the right (causal) tokens. We find
that the annotators have a Cohen’s Kappa agreement of 0.41, which is considered as moderate
agreement (Landis & Koch, 1977). This shows that even though the annotators prefer slightly
different keywords as causal, our model assigns a higher score to keywords that the annotators find
causal compared to the baseline. Such ability to identify causal tokens gives CausalConcept the
potential to be used for debugging applications. For example, Fig. 3 shows a correctly classified
“Business” news article. The human annotators, with a small disagreement, provide 4 unique keywords,
which are all highlighted by the CausalConcept method. This indicates that the method can cover the
causal keywords preferred by all annotators.

5.4 HYPER-PARAMETER COMPARISONS

We perform further studies on the two most important hyperparameters: the layer(s) to interpret and
number of concepts. We conduct text experiments and evaluate in terms of both causal effect and
concept quality. In this section, we summarize our main findings and refer the readers to Appendix F
for details about the experiments and results (charts and wordcloud visuals).

For layer-wise comparisons, we experiment on the 3rd, 6th, 9th, and 12th layer respectively, all
with 10 concepts. In terms of causal effects, the intermediate layers (3, 6 and 9) have a higher ACE
(around 0.150), while the penultimate layer (12) has a lower ACE (around 0.058). This is because the
concepts discovered at the penultimate layer are sentence-level (using the [CLS] token), while the
intermediate layer concepts are token-level. Thus, the sentence-level concepts have less fine-grained
control. In terms of topic quality, the later layers tend to discover more coherent concepts, where
each concept mostly corresponds to one class label. The beginning layers, on the contrary, tend to
discover concepts that are more abstract with mixed class labels. The earlier layers can also discover
lexical concepts, such as concepts with only nouns or adjectives. Similarly, Dalvi et al. (2021) find
that BERT finds more lexical information in the earlier layers. This interesting observation could
lead to future studies in investigating how information flows through different layers in BERT.

For number of concepts, we experiment with 3, 5, 10, 50, and 100 concepts on the penultimate layer.
We find that a concept number close to the number of output classes usually gives higher prediction
changes, while increasing the number results in higher recovering accuracy. When the number of
concepts becomes larger, concepts usually become more coherent, although the performance will
decrease, as too large a number of concepts introduces more noise into the training process.

6 CONCLUSIONS

We have proposed a complete framework to derive impactful concepts that explain a black-box
language model’s decisions. Our framework addresses 3 important challenges in NLP explainability:
(i) Causality: it derives concepts that generate high output changes and minimize confounding
explanations through a causal loss objective. (ii) Counterfactuals: it proposes an innovative
substitute to the traditional input counterfactual. By producing latent counterfactuals that are designed
to remove features within input texts, we avoid the input space search. The concern of interpreting
the hidden activations is also addressed by incorporating visualization methods (iii) User-friendly:
as demonstrated with visualizations and human studies, CausalConcept leads to human-friendly
explanations in NLP tasks that contain high-level text attributes and semantically meaningful concepts.
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7 ETHICAL CONSIDERATIONS AND BROADER IMPACTS

CausalConcept demonstrates the potential to play an important role in practical scenarios such as
debugging and transparency. As AI ethics have become a major concern in real-life applications,
such explanations can help users better identify bias and promote fairness. As a future venue to
our work, we believe that our framework will set a good foundation for future research on causal
NLP explainability methods, especially those that hope to derive human-friendly explanations. As
for potential concerns, CausalConcept only encourages causality in post-hoc model explanations
and should serve as an assistive tool instead of being accepted as ground-truth. Thus, to improve it
further, a similar causal objective could be used to address spurious correlations during training. It
also has the potential of being carried over to other domains, such as vision or tabular tasks. The
high-level attributes in the hidden space can also be used in downstream applications to provide better
controllability for the users.
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Appendix for “Explaining Language Models with Causal Concepts”

A OVERALL METHOD VISUALIZATION

Figure 4 shows the overall visualization of the concept generation process. The neural network
f is divided at the intermediate layer into two parts: ϕ and ψ. The black-arrow path shows the
original neural network prediction process: y = f(x) = ψ(ϕ(x)), where x is the input and y is the
classification output.

To generate concepts at the intermediate layer, instead of feeding ϕ(x) directly into ψ, we first
pass it through a concept network: Firstly, ϕ(x) is condensed into concept probabilities pC(x) by
multiplying the normalized activations ϕ(x) with normalized concept vectors C = {c1, . . . , cn} and
going through the threshold (TH) function. Then, a 2-layer perceptron gθ is used to reconstruct the
original activation: ϕ(x) ≈ gθ(pC(x)). The reconstruction is then passed into ψ to get the prediction
y′ = ψ(gθ(pC(x))). To train the network, we use reconstruction loss, regularizer loss, and causality
loss.

The green path indicates the mapping back process from concept probabilities pC(x) to input
tokens in x = [x1, . . . , xt]. We use the transformer visualization approach (Chefer et al., 2021) and
Grad-CAM (Selvaraju et al., 2017), which rely on the gradients generated from the red path.

x φ ψ

pC(x) gθ(pC(x))

y =ψ(φ(x))

original path

y' =ψ(gθ(pC(x)))

mapping back

new path

Figure 4: The overall concept generation process.

B TOY EXAMPLE

We conduct experiments on a synthetic (toy) image dataset with ground truth concepts in order to
test the validity of our method and confirm the claim that higher confounding effects within the
dataset lead to more correlational explanations, thus calling for a more causal explainability approach.
Specifically, We extend the toy dataset design of Yeh et al. (2020) to make it more realistic by
inserting spurious correlations.

B.1 DATA GENERATION

As a synthetic setup, at most 15 shapes are randomly scattered on a blank canvas at random locations
with random color selections (as noise). For each image sample xj , zj

{1:15} are binary variables of
whether or not a shape is present in xj with each zj

s sampling from a Bernoulli distribution with
probability 0.5. Then, a 15-class target yj is constructed with respect to whether the first 5 shapes
(zj

{1:5}) are present or not with human-designed rules. For example, y1 =∼ (z1 · z3) + z4. A total
of 60, 000 examples are generated as the toy dataset using a seed of 0.
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Figure 5: Convolutional Neural Network used for classifying the toy dataset.

The setup mentioned above is, in fact, far away from realistic scenarios, as it doesn’t consider possible
confounding. Thus, to make it more realistic, we insert spurious correlations between the pairs
(zj

{1:5}, z
j
{6:10}), (z

j
{6:10}, z

j
{11:15}) with a correlation factor pcor. For example, when z1 = 1,

z6 = Bernoulli(pcor); when z1 = 0, z6 = Bernoulli(1− pcor).

B.2 CNN CLASSIFICATION MODEL USED FOR THE TOY EXAMPLE

The CNN classification model used for the toy dataset is shown in Figure 5. Specifically, 3 convo-
lutional layers with a kernel size of 5 and 64 output channels were used, each followed by a ReLU
activation and max pooling layer. Then, the result is flattened into a linear vector, followed by 2
linear layers and a sigmoid activation function. The output is a 15-dimensional binary classification
probability. The model is trained for 100 epochs with an Adam optimizer with learning rate 3e− 4.
For reproducibility purposes, the model is initialized and trained with a seed of 0.

B.3 VISUALIZATIONS
A PREPRINT - FEBRUARY 9, 2022

(a) Two random images and corresponding ground truth con-
cepts (with their legend on the left) – each object corresponds
to a ground truth concept solely via the shape information.

(b) Top nearest neighbors (each neighbor corresponds to a part
of the full image) of each discovered concepts. The ground
truth concepts, determined by their shape (with random colors),
are on the left.

Figure 1: Examples (left) and nearest neighbors of our method (right) on Synthetic data.

each sample, where the target of sample i, yi is a function that depends only on zi
1:5, which represents whether the

first 5 shape exists in xi. For example, y1 “„ pz1 ¨ z3q ` z4, y2 “ z2 ` z3 ` z4, y3 “ z2 ¨ z3 ` z4 ¨ z5, where „
denotes logical Not (details are in Appendix). We construct 48k training samples and 12k evaluation samples and use a
convolutional neural network with 5 layers, obtaining 0.999 accuracy. We take the last convolution layer as the feature
layer �pxq.
Evaluations: We conduct a user-study with 20 users to evaluate the nearest neighbor samples of a few concept
discovery methods. At each question, a user sees 10 nearest neighbor images of each discovered concept vector (as
shown on the right of Fig. 1b), and is asked to choose the most common and coherent shape out of the 15 shapes based
on the 10 nearest neighbors. We evaluate the results for our method, k-means clustering, PCA, ACE, and ACE-SP when
m “ 5 concepts are retrieved. Each user is tested on two randomly chosen methods in random order, and thus each
method is tested on 8 users. We report the average number of correct concepts and the number of agreed concepts
(where the mode of each question is chosen as the correct answer) for each method answered by users in Table 1.
The average number of correct concepts measures how many of the correct concepts are retrieved by user via nearest
neighbors. The average number of agreed concepts measures how consistent are the shapes retrieved by different
users, which is related to the coherency and conciseness of the nearest neighbors for each method. We also provide an
automated alignment score based on how the discovered concept direction classifies different concepts – see Appendix
for details.

Results: We compare our methods to ACE, k-means clustering, and PCA. For k-means and PCA, we take the
embedding of the patch as input to be consistent to our method. For ACE, we implement a version which replaces
the superpixels with patches and another version that takes superpixels as input, which we refer as ACE and ACE-SP
respectively. We report the correct concepts and agreed concepts from the user study, and an automated alignment
score which does not require humans. We do not calculate the alignment score of ACE-SP since it does not operate on
patches and thus is unfair to compare with others (which would lead to much lower scores.) Our method outperforms
others on corrected concepts and alignment score, is superior in retrieving the accurate concepts beyond the limitations
of others. The number of agreed concepts is also the highest for our method, showing how highly-interpretability it is to

Figure 2: Completeness scores on synthetic dataset (left) and completeness scores on AwA (right) versus different
number of discovered concepts m for all concept discovery methods in the synthetic dataset. Ours-noc refers to our
method without the completeness score objective as an ablation study.

6

concept     :

concept     :

concept     :

Figure 6: Examples from the toy dataset and concepts discovered.

As an example visualization, in Figure 6, two random images from the toy dataset are displayed on
the left, while three example concepts discovered by CausalConcept are plotted on the right. We
could observe that CausalConcept is able to derive meaningful clusters as concepts, which provide a
sanity check for usability of the latent concepts.

B.4 RESULTS ON TOY DATASET

From the results shown in Table 5, we could observe that, as we increase pcor to mimic an increase
in confounding levels in real life, our CausalConcept consistently outperforms the baseline by a
bigger margin. CausalConcept achieves higher causal effects (ACE) and higher causal accuracy
change (∆Acc), while maintaining the best RAcc, indicating faithfulness to the original predictions.
Moreover, we note that the improvement is even stronger in real data experiments, as the added
artificial confounding is more complicated in real-life scenarios.

14



Under review as a conference paper at ICLR 2023

Table 5: Faithfulness (RAcc) and causality (ACE, ∆Acc) evaluation on the toy dataset. Cls.Acc denotes model’s
classification accuracy.

pcor Cls.Acc Method RAcc ↑ ACE ↑ ∆Acc ↑

0.50 95.4% ConceptSHAP 97.6% 0.070 6.1%
CausalConcept 98.4% 0.102 9.4% (+3.3%)

0.65 99.0% ConceptSHAP 99.7% 0.038 3.5%
CausalConcept 99.3% 0.084 6.8% (+3.4%))

0.75 96.1% ConceptSHAP 98.3% 0.069 6.0%
CausalConcept 98.9% 0.123 12.16% (+6.16%)

Table 6: A summary of the datasets.
Dataset Train Test Label dim. Avg. size

Toy (image) 48k 12k 15 (240, 240)
IMDB (text) 37.5k 2.5k 2 215
AG (text) 120k 7.6k 4 43

C HYPERPARAMETERS USED

For all concept experiments, the following parameters are universally applied as a selected default,
which demonstrated better performances during experiments: For regularizer losses, λ1 = 0.1 and
λ2 = 0.5. In TH(·, β) function, threshold is set to be β = 0.1 = 1

n , where n is the number of
concepts selected. For the top-N neighborhood, N = 1

4BS, where BS is the effective batch size,
which we have set as 128 during the experiments. For the masking strategy, we always recommend
masking random concepts with a probability of 0.2 as the optimal strategy, as masking maximum
concepts may lead to a highly uneven distribution of ACE among discovered concepts.

As all dataset class sizes are small (2 in IMDB/toy or 4 in AG-News), the number of concepts is
chosen to be 10 for all experiments. When the number of classes is larger, we recommend choosing a
larger number of concepts to ensure a faithful reconstruction of the original input.

For training the concept model, we always use an Adam optimizer with a learning rate of 3e − 4.
All models are all trained using 100 epochs. In the CausalConcept models, causal loss is always
turned on at half of the overall number of epochs. After turning on causal loss, all parameters are
set to untrainable except for the concept vectors, which ensures that the reconstruction ability is not
forgotten.

The same hyperparameters are set for the conceptSHAP models, which are also found to generate the
optimal performances. The threshold is set to be β = 0.3, as recommended by the original paper on
NLP datasets.

For the causal loss regularizer, λc = 1 is set for all experiments, except for λc = 3 in the case
of IMDB with BERT. A higher λc will usually lead to a higher output change (ACE and ∆Acc),
accompanied by a decrease in faithfulness (RAcc).

To reproduce, all experiments were run with a random seed of 0.

D RUN-TIME

As our model optimizes for causality loss, the run-time is slightly longer than the baseline method
ConceptSHAP (Yeh et al., 2020), but is still short. A summary of runtime is shown in table 7. All
models shown are run on the GTX 1080Ti graphic card with 12 GB memory. Generally, as post-hoc

Table 7: A summary of runtime (in seconds) on datasets for BERT.
Dataset β-TCVAE kmeans PCA conceptSHAP CausalConcept

IMDB 475.9 37.7 0.8 199.3 227.2
AG 1525.6 15.51 2.5 1749.65 2242.1

15



Under review as a conference paper at ICLR 2023

Figure 7: Human study instructions with a demonstration.

Figure 8: Human study question and answer.

explainability methods, the runtimes are very light and, therefore, a concern that is less important
than the model quality. For example, on a dataset of size 50k such as IMDB, it only takes 227.2
seconds (3.8) minutes to train our CausalConcept model.

E HUMAN STUDY SETUP

For the human study, 100 examples are randomly selected from the test set Dtest. The questionnaire
takes the format of a google form, where the instructions in Figure 7 are shown to the participants. An
example question looks like the one in Figure 8. For the 100 questions repeated twice, 4 volunteers
(Ph.D. students) have answered them. The volunteers are all proficient in English. The volunteers
report an average time of 30 minutes for answering 50 questions. As the volunteers are working
also in AI-related areas and are briefed about the purpose and usage of survey data beforehand, they
understand fully the data collection and usage. Thus, implicit consent is granted by participation.

F HYPERPARAMETER COMPARISONS

The proposed method of CausalConcept includes many tunable hyperparameters, including the top-N
neighborhood, threshold, etc. While these parameters are set at the default mentioned in Appendix C,
there are two hyperparameters that users can customize the most: the layer to interpret at and number
of concepts . To better understand how these two parameters may affect the generated concepts, we
conduct comparisons on both. We evaluate in terms of causal effects and topic quality. For causal
effects, we have reported the number of effective concepts left after post-processing, the recovering
accuracy (RAcc), the Average Causal Effect (ACE), and the induced change in accuracy (∆Acc). For
topic quality, we have reported coherence scores, including averaged Pointwise Mutual Information
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(PMI) (c_uci score), normalized PMI (c_npmi score), c_v score which measures how often the topic
words appear together in the corpus, and word2vec similarity (Röder et al., 2015).

The following comparisons are all conducted on the AG-news dataset with BERT, where the other
hyperparameters mentioned in Appendix C stay the same.

F.1 LAYER-WISE COMPARISON
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Figure 9: Layer-wise effective number of concepts, RAcc ↑, ACE ↑, and ∆ Acc ↑.

To compare what each layer discovered, as BERT has 12 layers, we experimented on the 3rd, 6th,
9th, and penultimate layer respectively, all with 10 concepts.

Quantitatively, we plotted out the effective number of concepts, recovering accuracy, causal effect
and accuracy change in Figure 9. All layers demonstrate similar performances in recovering accuracy,
which is close to 100%. The intermediate layers, especially the 6th layer, produce a higher causal
effect and recovering accuracy. This is because the intermediate layers discover concepts on the
token-level, while the penultimate layer concepts are sentence-level (on the [CLS] token). Thus, the
token-level concepts will have more fine-grained control.

Figure 10: Wordclouds of concepts generated on the 12th layer, including a sports concept, a
technology concept, and a political concept.

Figure 11: Wordclouds of concepts generated on the 9th layer, including a government concept, a
China concept, and an Adjective (mostly) concept.

Qualitatively, we plotted some wordclouds of the keywords in discovered concepts in Figure 10
and Figure 11. From the Figure 10, we could see that, in the penultimate layer, concepts are more
concentrated on each class. For example, the first concept would correspond to the class “Sports”,
the second to “Sci/Tech”, and the third to “World” news. The emphasis on events is also clearer,
such as the third one talking about the Iraq War. However, When we move to earlier layers, the
concepts’ class labels are more mixed together. In Figure 11, the first concept concerns government,
which includes terms such as “government”, “internet”, “security”, “bomb”, “baseball”, etc. It
could, however, correspond to many class labels, such as “Sci/Tech”, “World”, or even “Sports”.
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Similarity, the second concept talks about China, including “china”, “billion”, “people”, “activitists”,
“announcement”, etc. The third concept is interesting as it covers mostly adjective words which
do not seem to correlate too much in semantic meanings, such as “low”, “big”, “closer”, and
“third”. Similar observations are also confirmed in papers such as (Dalvi et al., 2021), which derives
concepts using agglomerative hierarchical clustering combined with human annotations in BERT
latent representations. They observe that BERT finds more lexical information in the earlier layers.
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Figure 12: Layer-wise Topic Coherence Comparison.

In terms of topic quality, we evaluated the concept keywords using coherence metrics. As shown in
Figure 12, all coherence scores showed a general trend of concepts becoming more coherent as the
layer number increases. The conclusion is consistent with the wordcloud visualizations.

Thus, in real-life debugging scenarios, we recommend using the penultimate layer, which will find
more coherent topics. However, there could be continued work to discover information learned in the
prior layers and to investigate how information flows through layers in a hierarchical way.

F.2 NUMBER OF CONCEPTS

In the penultimate layer of BERT, we experiment with 3, 5, 10, 50, and 100 concepts.
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Figure 13: Concept-wise effective number of concepts, RAcc ↑, ACE ↑, and ∆ Acc ↑.
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Figure 14: Concept-wise Topic Coherence Comparison.

From Figure 13, we could see that the performance is very dependent on the number of concepts. The
effective number of concepts, recovering accuracy, causal effect, and accuracy change all appear to be
elbow-shaped. In this case, 5 concepts provided the highest impact on output predictions, as it is close
to the number of classes (4) in the AG-News dataset. Increasing the number of concepts to 10 would
yield a better recovering accuracy. As the number of concepts increases to 50 and 100, we observe
that the model fails to learn completely. In practice, we have often observed the best number to be
positively correlated with the number of dataset classes. In other words, a dataset with more classes
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will require a higher number of concepts for faithful reconstruction. In terms of topic coherence, we
could observe from Figure 14 that the topic coherence scores usually oscillate, but mostly display a
generally upward trend of becoming more coherent as the number of concepts increases.

G CLASSIFICATION MODELS USED FOR TEXT EXPERIMENTS

G.1 TRANSFORMER CLASSIFICATION MODEL TRAINED FROM SCRATCH

The self-trained transformer model used during text experiments follows a simple structure: the input
text is truncated to max length 512 and passed to an embedding layer of dimension 200. Then, the
embeddings are passed through a positional encoding layer with dropout rate 0.2. Then, 6 transformer
layers follow with a hidden dimension of 200 and 2 heads. Finally, we mean pool the transformed
embeddings and pass through a linear classifier head. The linear outputs are activated with a Sigmoid
function to produce class probabilities.

To train the transformer model, we use either the IMDB or AG-News dataset. We train for 10 epochs
with a batch size of 128 and an Adam optimizer with learning rate 3e− 4. We also use a learning
rate step scheduler with step size 1 and gamma of 0.95.

Table 8: Hyperparameters for finetuning BERT model.
Dataset AG-News IMDB
LR 5e− 5 3e− 4
train BS 8 8
eval. BS 16 16
seed 42 42
optimizer Adam Adam

betas = (0.9, 0.999) betas = (0.9, 0.999)
epsilon = 1e− 8 epsilon = 1e− 8

LR scheduler linear linear
warmup steps 7425 1546
training steps 74250 15468

G.2 PRETRAINED AND FINETUNED BERT MODEL

For AG-News, we take the finetuned version of bert-base-uncased model on huggingface:
“fabriceyhc/bert-base-uncased-ag_news”. For IMDB, we finetuned by ourselves on the bert-base-
uncased model. The hyperparameters used for both finetuning are reported in 8, where LR stands for
learning rate and BS stands for batch size.

The huggingface code and models are all licensed under Apache 2.0, which allows for redistribution
and modification. Similarly, the codebase used for replicating the visualization method (Chefer et al.,
2021) and the baseline method (Chen et al., 2018) are licensed under the MIT license, which allows
for redistribution of the code.
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