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Abstract—Graph learning can characterize the local structure
relation of complex data, which has been extensively used
in multi-view clustering (MVC). Currently, existing multi-view
graph clustering (MVGC) methods learn the similarity of directly
connected samples for clustering. However, these MVGC methods
can not fully consider the indirect relation among samples and
high-order relation across multi-view data. In this paper, a
new multi-view comprehensive graph clustering (MCGC) method
is devised, which can fully learn the similarity based on (1)
first-order proximity (FOP) (i.e., the direct relation of pairwise
samples); (2) second-order proximity (SOP) (i.e., the indirect
relation of pairwise samples); and (3) third-order proximity
(TOP) (i.e., the three-order relation of multiple views). Since the
operations of these three components are iteratively carried out,
the interaction between similarity learning can be encouraged
and the comprehensive graph can be generated effectively for
clustering. In-depth experiments on six commonly benchmark
datasets show the superiority of the MCGC method.

Index Terms—Comprehensive graph learning, multi-view clus-
tering, similarity learning, low-rank tensor representation.

I. INTRODUCTION

ALONG with the diversification of data acquisition tools,
data acquired from multiple sources may contain mul-

tiple heterogeneous attributes. For example, a picture can be
described by color, contour, edge, etc; a news item can be
reported in several characters and languages; a video consists
of audio and images. All these are called multi-view data. As
a typical processing approach for multi-view data, multi-view
clustering (MVC) has become a popular topic. MVC attempts
to divide multi-view data into various clusters to ensure that
samples are highly correlated inside the same cluster [1, 2] and
has been widely used in consumer electronics [3–5], computer
science [6–8], statistics [9, 10], and other fields.

In the real scene, data samples have amounts of relation
graphs as these samples in each view can construct a rela-
tion graph. To effectively learn the data points relation for
clustering, numerous graph-based MVC methods (MVGC)
have been proposed. The MVGC methods generally learn a
fusion affinity graph from multiple input graphs to explore the
essential structure of multi-view data for clustering [11, 12].
However, these methods generally learn the affinity graphs by
the direct similarity learning between pairwise data points, and
the learned affinity graph from each view is isolated or fixed
during fusion. Some improved methods [13, 14] are proposed.
The work [13] is developed to learn each input affinity graph
and fusion affinity graph interactively for clustering. The work
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[14] is proposed to learn a robust latent embedding represen-
tation of multiple views and perform spectral clustering (SPC)
in learned latent embedding space. Despite these MVGC
approaches have obtained better clustering performance, they
usually learn the affinity graph based on first-order proximity
(FOP) and do not consider the indirect relation of pairwise data
points, ignoring that the relation among data points should be
propagative.

In the area of information networks, some scholars have
proposed a network based on second-order proximity (SOP)
to enhance network performance [15]. From the viewpoint of
the graph, it represents the affinity graph based on SOP which
can help excavate the indirect relation among data points,
theoretically, it can promote graph clustering. Moreover, most
current MVGC methods [14, 16] focus on matrix-oriented
operations, which are modeled by matrix theory. They fail
to fully excavate view consistency across multiple views.
Because tensor learning can excavate the high-order relation
across multiple representations, some tensor-based approaches
[17–20] are suggested, in which the similarity based on the
three-order proximity (TOP) is learned. Nevertheless, these
approaches can not comprehensively consider the information
of the graph, resulting in the learned affinity graph not being
optimal.

To learn a comprehensive affinity graph, in our paper, a
new MVGC method is suggested, namely multi-view com-
prehensive graph clustering (MCGC). Figure 1 presents an
overview of MCGC. Specifically, the FOP and SOP simi-
larity are learned to explore the direct and indirect relation
among different samples, and the TOP similarity is learned
to explore the three-order correlation across multi-view data.
Subsequently, a comprehensive graph is obtained through the
collaborative learning based on FOP, SOP, and TOP, and SPC
is used on the learned comprehensive graph to achieve the
final clustering result. The main contributions are highlighted
as follows:

• A new comprehensive graph learning method is proposed.
Unlike the similarity learning of directly connected sam-
ples in existing methods, comprehensive graph learning
can fully learn the similarity based on FOP, SOP and TOP
to obtain an optimal consistency affinity graph.

• The similarity learning based on FOP, SOP and TOP
is devised to excavate the direct and indirect relation
among samples, and the high-order relation across multi-
view data. These three parts can be mutually promoted
to achieve the best clustering result.

• We validate the effectiveness of MCGC experimentally
on six benchmark databases in various applications. The
results notably show its superiority over eight other
related state-of-the-art methods for clustering.
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The rest of our paper is organized as follows. Some closely
related clustering methods are introduced in Section II. Section
III give some notation definitions and preliminaries about
tensor. Section IV proposes our MCGC model, and then gives
the optimization and complexity analysis of our algorithm. The
experimental analysis and results are discussed in Section V.
Finally, some conclusions are derived in Section VI.

II. RELATED WORK

As the fundamental inspiration for the suggested method,
two types of clustering methods are briefly reviewed: (1)
graph-based clustering and (2) tensor-based clustering.

As aforementioned, graph-based clustering [11, 21] exca-
vates the local structure relation by constructing the relation
graph among data points for clustering. Given N data points
set X = [x1,x2, · · · ,xN ] ∈ RD×N , the graph-based cluster-
ing model is defined as

min
Z

N∑
i=1,
j=1

f(xi,xj)zij + αR(Z) s.t. Z> = Z,0 � Z � 1,

(1)
where the function f is usually represented by Euclidean
distance (i.e., ‖xi − xj‖22) [11] between two data points (i.e.,
xi and xj), and a smaller distance represents a larger similarity
zij ; R(Z) is the regularization about Z (such as nuclear
norm [22], sparse norm [12], Schatten-p norm [23], Frobenius
norm [24], and block diagonal constraint [25]), and α is the
regularization parameter; zij is the element in Z, and the
simplex constraint (i.e., Z> = Z, 0 � Z � 1) on Z is to
guarantee the similarity of Z.

Recently, the tensor-based clustering model is adopted to
excavate the high-order correlation across multiple views.
Given the multiple affinity graphs Z(v) from the multiple
views, the tensor Z is obtained by merging all the affinity
graphs and the low-rank constraint is used to explore view
consistency across different views. For the tensor singular
value decomposition (t-SVD) based on tensor nuclear norm
(TNN) ‖Z‖~ minimization can approximate the tensor low-
rank constraint, therefore, the tensor-based clustering model is
written as

min
Z(v)

V∑
v=1

N∑
i=1,
j=1

g(x
(v)
i ,x

(v)
j , z

(v)
ij ) + β‖Z‖~

s.t.
(
Z(v)

)>
= Z(v),0 � Z(v) � 1,

(2)

where z
(v)
ij in affinity graph Z(v) represents the the affinity

among data points (e.g., xi and xj) in the v-th view, the
function g represents the relation among data points and z(v)

ij ,
β is the parameter, Z represents the tensor that is constructed
by stacking all Z(v), and ‖ · ‖~ represents the nuclear norm
constraint. The tensor-based MVGC methods [26–29] mainly
concentrate on the low-rank tensor construction. For example,
the work [30] directly stacks multiple affinity matrices into
a 3-order tensor and the TNN constraint is used to explore
the high-order correlation across multiple representations. The
work [31] firstly use TNN constraint on the rotated tensor

to better excavate the high-order correlation across multiple
representations. Subsequently, some improved methods based
on the rotated tensor are proposed to further improve clustering
performance. One representative method is the essential tensor
learning for SPC (ETLMSC) [32], which concentrats on learn-
ing the transition probability relations among multiple input
graphs. In work [33], multiple low-rank tensors constrained
representation matrices and consensus indicator matrices learn
from each other in a unified framework for MVC. These issues
drive us to seek an efficient and effective MVGC method.

III. NOTATIONS AND PRELIMINARIES

A. Notations

Here, we give a summary of the notations and tensor
preliminaries used in this paper. The bold calligraphy letters
(e.g., Q ∈ RN1×N2×N3 ), capital letters (e.g., Q), and small
letters (e.g., q) denote tensor, matrix, and vector, respectively.
qij and the Greek letters (e.g., α, β, λ) denote the (i, j)-th
entry of matrix Q and the scalars, respectively. For the tensor
Q ∈ RN1×N2×N3 , Q(k) or Q(k) represents the k-th frontal
slice with k = 1, . . . , N3. Specifically, Qf = fft(Q, [ ], 3) and
Q = ifft (Qf , [ ], 3) denote the fast Fourier transformation
(FFT) and inverse FFT along the third direction of tensor
Q, respectively. bvec(Q) =

[
Q(1);Q(2); · · · ;Q(N3)

]
∈

RN1N3×N2 and fold(bvec(Q)) = Q denote the block vector-
ization and the corresponding inverse operation, respectively.
bdiag(Q) ∈ RN1N3×N2N3 and bcirc(Q) ∈ RN1N3×N2N3

represent the block diagonal matrix and the corresponding
block circular matrix, respectively. The f -diagonal tensor
satisfies that all its frontal slices are diagonal. The identity
tensor I ∈ RN1×N1×N3 satisfies that its first frontal slice is a
N1 ×N1 identity matrix, and all subsequent frontal slices are
zero matrices.

B. Preliminaries

To better comprehend the tensor operations, here, we present
some tensor preliminaries used in the paper.
Definition 1 (3-order Tensor). The 3-order tensor Q ∈
RN1×N1×V is obtained by merging all the V matrices Q(v) ∈
RN1×N1 , which is given by

Q = bvfold([Q(1); · · · ;Q(V )]). (3)

Definition 2 (Tensor Rotation). The tensor rotation for Q ∈
RN1×N1×N3 is given by

Q∗ = rotate(Q), (4)

where Q∗ ∈ RN1×N3×N1 . Keep in mind that the shift function
rotate is used here.
Definition 3 (T-Product). The tensor t-product is given as

Q ∗P = fold(bcirc(Q) bvec(P)). (5)

Definition 4 (Orthogonal Tensor). The tensor Q is orthogo-
nal if it satisfies

QT ∗Q = Q ∗QT = I. (6)
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Fig. 1. The overview of our proposed MCGC. (a) For multi-view data, (b) V predefined affinity graphs are given; (c) V learned
affinity graphs corresponding to multiple views are built; (d) the first-order proximity similarity is learned; (e) the second-order
proximity similarity is learned; (f) the third-order proximity similarity is learned; (g) the comprehensive graph Z̄ is achieved
by averaging all learned affinity graphs Z(v); and (h) the SPC is used to achieve the clustering result.

Definition 5 (t-SVD). The t-SVD can be expressed as

Q = U ∗ S ∗ V>, (7)

where S ∈ RN1×N2×N3 is f -diagonal, and U ∈ RN1×N1×N3 ,
V ∈ RN2×N2×N3 are orthogonal.
Definition 6 (TNN). The TNN ‖Q‖~ is defined as

‖Q‖~ =

N3∑
k=1

∥∥∥Q(k)
f

∥∥∥
∗

=

min(N1,N2)∑
i=1

N3∑
k=1

∣∣∣S(k)
f (i, i)

∣∣∣ , (8)

where S
(k)
f is computed by the t-SVD of Q(k)

f =

U (k)
f S(k)

f V(k)>
f .

Definition 7 (Tensor Transpose). The tensor Q ∈
RN1×N2×N3 transpose is achieved by transposing all its frontal
slices, which is represented by Q> ∈ RN2×N1×N3 .

IV. PROPOSED METHOD

Now we present our MCGC method which includes the
similarity learning based on FOP, SOP, and TOP. The main
theories and formulas of each part are presented in this
sections. The optimization and complexity analysis are also
presented later.

A. Similarity Learning Based on First-Order Proximity

The FOP describes the direct affinity among pairwise data
points, which is the first and foremost measures of similarity.
Given X(1), . . . ,X(V ) to represent V views in a multi-view
dataset, in which X(v) =

{
x

(v)
1 , . . . ,x

(v)
N

}
∈ Rdv×N repre-

sents the v-th view with N data points and dimensionality
of dv . For the constructed affinity graph, a smaller distance
between pairwise data points denotes a large similarity, and a
larger distance between pairwise data points denotes a small

(or zero) similarity. Therefore, the similarity learning model
based on FOP is given by

min
Z(v)

N∑
i,j=1

∥∥∥x(v)
i − x

(v)
j

∥∥∥2

2
z

(v)
ij

s.t. Z(v)> = Z(v),0 � Z(v) � 1,

(9)

where z
(v)
ij in affinity graph Z(v) ∈ RN×N represents the

affinity between x
(v)
i and x

(v)
j .

Inspired by [21], we have

min
Z(v)

N∑
i,j=1

∥∥∥x(v)
i − x

(v)
j

∥∥∥2

2
z

(v)
ij = min

Z(v)
Tr(D(v)>Z(v))

s.t. Z(v)> = Z(v),0 � Z(v) � 1,

(10)

where D(v) is called the v-th complete graph with d
(v)
ij =∥∥∥x(v)

i − x
(v)
j

∥∥∥2

2
. A smaller value of d(v)

ij represents a larger

value of similarity z(v)
ij .

To minimize the disagreement among different views, given
the v-th affinity graph Z(v) and the w-th affinity graph
Z(w), we can constrain the error term

∥∥Z(v) − Z(w)
∥∥2

F
. In

comparison with direct similarity discrepancy
∥∥Z− Z(v)

∥∥2

F
,

the penalization on the interactive learning considers the
consistency between pairwise views. Consequently, the learned
affinity graph becomes noise-resistant. Therefore, Eq. (10) can
be transformed into

min
Z(v)

2V∑
v=1

2V∑
w=1,
w 6=v

∥∥∥Z(v) − Z(w)
∥∥∥2

F
. (11)

The affinity graph Z(v) is given as follows: if 1 ≤ v ≤ V ,
the learned affinity graph is defined as Z(v); if (1+V ) ≤ v ≤
2V , the predefined affinity graph is given by −D(v−V ).
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Fig. 2. The example of the SOP. Data points 5 and 6 should
also be similar as they have the common neighbors set
{1, 2, · · · , 4}.

The SOP describes the proximity of the neighborhood
structures of pairwise data points, which aims to excavate
the indirect relation of data points. For the v-th view, given
the neighbors of data point x

(v)
i , denoted as x

(v)
j ∈ X(v),

j = 1, . . . , N , z(v)
ij denotes the affinity between x

(v)
i and

x
(v)
j . Then, the SOP similarity learning between data points

is written as

min
Z(v)

N∑
i=1

∥∥∥∥∥∥x(v)
i −

N∑
j=1

z
(v)
ij x

(v)
j

∥∥∥∥∥∥
2

2

s.t. Z(v)> = Z(v),0 � Z(v) � 1.

(12)

With Eq. (12), we can observe that the data point x
(v)
i

is close to its neighbors. From Fig. 2, data points 5 and 6
have the common neighbors set {1, 2, · · · , 4}, Eq. (12) ensures
that data point 5 and 6 are close to the same data points set
{1, 2, · · · , 4}. As a result, even though data points 5 and 6 are
not directly connected, they will be close. This maintains the
relation of two disconnected data points.

According to [34], Eq. (12) can be rewritten as

min
Z(v)

Tr
(
X(v)(I− Z(v))(I− Z(v))>X(v)>

)
s.t. Z(v)> = Z(v),0 � Z(v) � 1,

(13)

where X(v) = [x
(v)
1 ,x

(v)
2 , · · · ,x(v)

N ] represents the v-th view
with N data points and the matrix’s trace is denoted by Tr(·).

C. Similarity Learning Based on Third-Order Proximity

To well explore the view consistency across multi-view
representations [32]. A third-order tensor Z based model is
proposed. The convex TNN ‖ · ‖~ which is described in
Definition 6 is adopted to approximate the low-rank tensor

representation. Thus, the similarity learning model based on
TOP (i.e., tensor) is written as

min
Z(v)

V∑
v=1

Tr(X(v)(I− Z(v))(I− Z(v))>X(v)>)

+

2V∑
v=1

2V∑
w=1,
w 6=v

α
∥∥∥Z(v) − Z(w)

∥∥∥2

F
+ β‖Z‖~

s.t. Z(v)> = Z(v),0 � Z(v) � 1,

Z = Φ(Z(1), · · · ,Z(V )),

(14)

where tensor Z ∈ RN×V×N represents the rotated tensor,
Φ(·) represents merging all input graphs Z(v) into a tensor
and rotating the tensor, z(v)

ij represents the affinity between
x

(v)
i and x

(v)
j in the v-th view, and α > 0, β > 0 are the

trade-off parameters. The rotation of the tensor is beneficial
for excavating consistent information across multiple views.

Strict block diagonal structure of the affinity graph is good
for clustering [35]. Hence, we wish to obtain a strict block
diagonal affinity graph in our model. From [35], if the matrix
U satisfies U := {U | U ∈ RN×c,U>U = I}, UU>

satisfies strict block diagonal. So we can constrain the affinity
graph Z to remain strict block diagonal according to Theorem
1.
Theorem 1 [35] Z1 :=

{
Z = UU> | U>U = I

}
, U ∈

RN×c, and Z2 :=
{
Z | Z = Z>,Tr(Z) = c,0 ≤ Z ≤ 1

}
, Z2

is the convex hull of Z1, and Z1 is exactly the extreme points
set of Z2.

Therefore, the ideal affinity graph Z is obtained by

min
Z(v)

V∑
v=1

Tr(X(v)(I− Z(v))(I− Z(v))>X(v)>)

+

2V∑
v=1

2V∑
w=1,
w 6=v

α
∥∥∥Z(v) − Z(w)

∥∥∥2

F
+ β‖Z‖~

s.t. Z(v)> = Z(v),0 � Z(v) � 1,

Z = Φ(Z(1), · · · ,Z(V )),Tr(Z(v)) = c,

(15)

where c denotes the number of clusters.
In summary, a comprehensive graph Z can be learned in

Eq. (15), which comprehensively learn the similarity based
on FOP, SOP and TOP among different data points. Thus, the
learned comprehensive graph can well represent the clustering-
friendly structure which is beneficial for improving MVC
performance.

D. Optimization Procedure

The variables in Eq. (15) are all coupled together which is
difficult to solve each variable. Thus, the alternating direction
method of multipliers (ADMM) [35] is employed to solve this



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 00, NO. 0, MONTH 2022 5

problem. We introduce the auxiliary variable B to transform
the optimization problem as

L
({

Z(v)
}V
v=1

,B
)

=

V∑
v=1

Tr(X(v)(I− Z(v))(I− Z(v))>X(v)>)

+

2V∑
v=1

2V∑
w=1,
w 6=v

α
∥∥∥Z(v) − Z(w)

∥∥∥2

F
+ β‖B‖~

+
µ

2

∥∥∥∥Z −B +
Y
µ

∥∥∥∥2

F

s.t. Z(v)> = Z(v),0 � Z(v) � 1,Tr(Z(v)) = c,

Z = Φ(Z(1), · · · ,Z(V )),

(16)

where µ represents a positive penalty parameter and Y denotes
the Lagrangian multiplier. Next, each variable in Eq. (16) is
updated alternately.

(1) Update Z(v): Other variables are fixed, the sub-problem
for updating

{
Z(v)

}V
v=1

is written as

min
Z(v)

V∑
v=1

Tr(X(v)(I− Z(v))(I− Z(v))>X(v)>)

+

2V∑
v=1

2V∑
w=1,
w 6=v

α
∥∥∥Z(v) − Z(w)

∥∥∥2

F

+
µ

2

∥∥∥∥Z(v) −B(v) +
Y(v)

µ

∥∥∥∥2

F

s.t. Z(v)> = Z(v),0 � Z(v) � 1,Tr(Z(v)) = c,

Z = Φ(Z(1), · · · ,Z(V )),

(17)

where Y(v) and B(v) denote the v-th slices in tensor B and
Y , respectively. Accordingly, Eq. (17) can be solved by

min
Z(v)

1

2

∥∥∥Z(v) −P(v)
∥∥∥2

F

s.t. Z(v)> = Z(v),0 � Z(v) � 1,Tr(Z(v)) = c,

(18)

where

P(v) =(2X(v)>X(v) + µI)−1(µB(v) −Y(v)

+ 2X(v)>X(v) + α

2V∑
w=1,
w 6=v

Z(w)).
(19)

Eq. (18) has an optimal solution according to Theorem 2.
Theorem 2 [35] For Z ∈ RN×N , which is a symmetric affinity
matrix, the SVD for Z is given as P = RDiag(ζ)R>.

min
Z

1

2
‖Z−P‖2F s.t. Z> = Z,0 � Z(v) � 1,Tr(Z) = c

(20)
can be solved by Z∗ = RDiag (%∗)R>, where %∗ can be
obtained according to

min
%

1

2
‖%− ζ‖22, s.t. 0 ≤ % ≤ 1,%>1 = c. (21)

In the end, Eq. (21) can be solved according to [36].
(2) Update B: Other variables are fixed, the sub-problem

for updating B is written as

min
B
β‖B‖~ +

µ

2

∥∥∥∥B − (Z +
Y
µ

)∥∥∥∥2

F

. (22)

Given C = Z + Y
µ , Eq. (22) can be effectively solved

according to Theorem 3.
Theorem 3 [31] Suppose B ∈ RN1×N2×N3 , C ∈ RN1×N2×N3

with t-SV D C = U ∗M ∗ V>, and scalar τ > 0,

min
B
τ‖B‖~ +

1

2
‖B − C‖2F (23)

can be derived via the tensor tubal-shrinkage operator

B = U ∗FN3τ (M) ∗ V>, (24)

where FN3τ (M) = M ∗Q. The tensor Q ∈ RN1×N2×N3

satisfies f -diagonal with diagonal element Qf (i, i, j) =(
1− N3τ

M(i,i,j)

)
+

.

(3) Update Y and µ: The Lagrange multiplier Y and the
penalty parameter µ are updated by

Y = Y + µ(B −Z),
µ = min (νµ, µmax) .

(25)

The convergence condition in each iteration is set as

error = ‖B −Z‖∞ < ε, (26)

where ε = 10−7 is the convergence threshold.
Therefore, along with the initialization of all variables,

our algorithm begins to update all variables alternatively
until the convergence condition are satisfied. The optimization
algorithm of MCGC is presented in Algorithm 1.

Algorithm 1 MCGC optimized by ADMM

Input: Multi-view data
{
X(v)

}V
v=1

, parameters α and β.
1: Initialize: B = Z = 0, µ = 10−4, and ν = 1.8.
2: while not converged do
3: Update each affinity graph Z(v) via (17);
4: Update B(v) via (22);
5: Update ADMM involved variables via (25);
6: end while
7: Perform SPC on comprehensive graph Z.

Output: The clustering results.

With the learned affinity graphs
{
Z(v)

}V
v=1

, the compre-
hensive graph Z with clustering-friendly structure is given as

Z =

V∑
v=1

(|Z(v)|+ |Z(v)> |)/V. (27)

Finally, the clustering result is obtained by performing SPC
on the learned comprehensive graph.
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E. Complexity Analysis

For MCGC listed in Algorithm 1, the computation com-
plexity in solving Eq. (16) is as follows: The computation
complexity of updating Z(v) is O

(
V N2

)
. For tensor B, the

updating includes the tensor FFT, inverse FFT, and t-SVD.
Therefore, step 4 has the total computation complexity of
O
(
V N2 log(N) + V 2N2

)
. The computation complexity of

step 5 is O(V ). It is theoretically that the computation com-
plexity of MCGC is O(t(V N2 +V N2 log(N)+V 2N2 +V )),
where t represents the iterations. Considering the computation
complexity of SPC is O(N3) and V � N , t � N , the total
computation complexity of MCGC is O(N3).

F. Convergence Analysis
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Fig. 3. Convergence curves of MCGC on the COIL-20 and
Scene-15 databases.

The convergence of MCGC listed in Algorithm 1 is ana-
lyzed in this part. The optimization with ADMM for Eq. (16)
includes a two-block optimization problem.
Proof. The problem for two-block convex optimization which
is described as follows [37, 38]:

min
W∈ΩC ,Y ∈ΩY

f(C) + g(Y ) s.t. AC +HY = Q (28)

where ΩC and ΩY denote the constraints, f(·) and g(·) denote
the convex functions. A, H , Q denote vectors or matrices. The
optimization for Eq.(28) can be given by

L(C, Y,W ) = f(C) + g(Y ) +
µ

2

∥∥∥∥AC +HY −Q+
W

µ

∥∥∥∥2

F
(29)

Then, the update for each variable is given as

Ct+1 = arg minC∈ΩC
L (Ct, Yt,Wt)

Yt+1 = arg minY ∈ΩY
L (Ct+1, Yt,Wt)

(30)

Wt+1 = Wt + µ (ACt+1 +HYt+1 −Q) . (31)

It is obvious to observe that the optimization for Eq. (16) is
a classical two-block optimization problem with ADMM. In
particular, the update for variable Z(v) in Eq. (16) is equal to
the update for C in Eq. (30). And the update for variable B
is the same with the update for variable Z(v). For the two-
block optimization with ADMM, the convergent proof has
been presented in [38]. Therefore, the optimization for Eq.
(16) is also convergent.

Some experiments are also performed to prove the conver-
gence property of MCGC. The error: error = ‖B − S‖∞ of
MCGC on COIL-20 and Scene-15 dataset in each iteration
is presented in Figure 3. We can observe that along with
the increase of iterations, the error values rapidly tend to 0
and remain stable which verify the convergence of MCGC
experimentally. On the other datasets, the same phenomenon
can also be seen.

TABLE I
STATISTICAL INFORMATION OF THE SIX BENCHMARK

DATASETS.

Dataset Samples Type Clusters View dimensions

BBCSport 544 Text 5 3183/3203
COIL-20 1440 Object 20 1024/3304/6750
Flowers 1360 Flower 17 1360/1360/1360
UCI digits 2000 Digit 10 240/76/6
Scene-15 4485 Scene 15 1800/1180/1240
Caltech-101 8677 Object 101 4800/3540/1240/2048

V. EXPERIMENT RESULTS AND ANALYSES

To evaluate the effectiveness of the suggested MCGC, this
section compares MCGC with other eight relevant clustering
methods on six benchmark databases. All experiments were
performed on Windows 10 (x64) with Intel i5-9400F (2.9
GHz) CPU and 16 GB RAM. All codes are written in Matlab
2019b.

A. Datasets

Six real public datasets are used in our experiments. And a
brief summary of those datasets is presented in Table I, which
include samples, type, clusters, and view dimensions. Next,
we briefly describe the settings of these datasets.

BBCSport.1 Two views with dimensions of 3, 183 and
3, 203 are adopted. COIL-20.2 Similar to [30], three dif-
ferent features including intensity, Gabor, and LBP features
are extracted. Flowers.3 Similar to [27], the color feature,
texture feature, and shape feature are adopted as three views.
UCI digits4 includes 2, 000 digit images belonging to 10
categories. Similar to [39], Fourier coefficients, pixel averaging
and morphology are extracted as input features. Scene-15
[40] includes 4, 485 images referred to 15 categories scenes.
Similar to [32], three features including PHOW, LBP, and
CENTRIST are adopted. Caltech-101. [41] Similar to [32],
in addition to PHOW, LBP, and CENTRIST, the Inception V3
[42] network is also adopted.

B. Baselines and Evaluation Metrics

To comprehensively evaluate our work, our MCGC is
compared with the other eight clustering methods. We per-
form the classic single-view clustering methods (SPCbest

1http://mlg.ucd.ie/datasets/segment.html
2http://www.cs.columbia.edu/CAVE/software/softlib/
3http://www.robots.ox.ac.uk/vgg/data/flowers/
4http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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[43] and LRRbest [44]) on all views and report the best
results [28]. Besides, six state-of-the-art MVC methods are
adopted as competitors, including RMSC [39], DiMSC [45],
MCLES [46], LTMSC [30], t-SVD-MSC [31], and ETLMSC
[32].

We adopt six comprehensive metrics including Normalized
Mutual Information (NMI), Accuracy (ACC), Precision, F-
score, Recall, and adjusted rand index (AR) to evaluate the
clustering quality of these methods, in which the larger score
indicate higher clustering quality. Each experiment was carried
out 20 times to exclude random values, and the average values
and standard deviations in parentheses are provided [28].

C. Experimental Results

The clustering results of our MCGC and all competitors are
shown in Table II in which the best results are in bold, some
interesting observations can be obtained.

From a global perspective, our MCGC consistently out-
performs all other compared methods over all 6 metrics.
For example, on the BBCSport database, MCGC improves
around 7% and 17% in ACC and NMI over the sub-optimal
ETLMSC method, respectively. On the Scene-15 database,
MCGC outperforms the sub-optimal ETLMSC by 11% and
9% in ACC and NMI, respectively. These observations con-
sistently validate the effectiveness and superiority of MCGC.

Next, from a local perspective, we give some fine-grained
assessments of the experimental results.
• The single-view clustering methods, SPCbest [43] and

LRRbest [44], are typically inferior to the multi-view
ones on most databases. The reason may be that the
complementary information and compatible information
contained in multiple views are beneficial for the im-
provement of clustering performance.

• We can observe that the matrix-oriented clustering ap-
proaches (RMSC [39], DiMSC [45], and MCLES [46])
are generally inferior to the low-rank tensor-based ones
(t-SVDMSC, ETLMSC, MCGC), which indicates that
the low-rank property of tensor is better than that of
matrix. The primary reason is that these tensor-based
clustering approaches can excavate both the spatial corre-
lation among multi-view data points as well as the view
consistency information among multiple views.

• Compared with ETLMSC [32] and t-SVD-MSC [31],
MCGC improves 11% and 16% in terms of ACC on
Scene-15 database. Obviously, ETLMSC [32] and t-SVD-
MSC [31] are worse than our MCGC on all databases
over all 6 metrics. For this phenomenon, there are two
main reasons. (1) The performance of MCGC is highly
dependent on the learned comprehensive graph. By fully
learning the similarity based on FOP and SOP among
different data points, a high-quality affinity graph is
achieved, which is benefit for clustering. (2) The proposed
MCGC method realize the interactive learning among
predefined affinity graphs and the input affinity graphs
which contributes to learning the view consistency be-
tween interactive views.

D. Comparison on Affinity Graph

To verify the superiority of the learned affinity graph
visually. In Figure 4, we show the contrasted affinity graphs
from several approaches on the BBCSport database. As you
can see, all the affinity graphs have block diagonal properties
with c = 5 connected blocks since the BBCSport database
includes 5 clusters with each block corresponds to one cluster.
Meanwhile, the affinity graph of MCGC has much more
clear block diagonal structure. Since a high-quality affinity
with exact block diagonal structure has a good clustering
performance, the above visualization results illustrate that
MCGC has excellent clustering quality.

E. Comparison on Complexity

In Table III, we present the computational time and com-
plexity on the affinity graph of the comparison methods
on the Scene-15 dataset. Since all these methods use SPC
on the learned affinity graph to obtain the final clustering
result, which has the same complexity, we only report the
computational time and complexity for learning the affinity
graph. We need to mention that the number of iterations t has
an obvious affect on the computational time. We can see that
although the computational time of our method is longer than
other comparison methods, the performance of our proposed
method is obviously better than other comparison methods.

F. Sensitivity Analysis of Parameters

The sensitivity analysis of MCGC towards the hyper-
parameters α and β is presented in this section. We turn α and
β in the range (i.e., [10−2, · · · , 105]) to seek the best values
on different dataset. We present the NMI and ACC of MCGC
versus α and β on the BBCSport and COIL-20 databases, in
Figure 5 and Figure 6, respectively, it is observed that when α
varies in [10−2, · · · , 103] and β varies in [104, · · · , 105], our
algorithm is slightly affected by α and β. This suggests that
when these hyper-parameters vary across a wide range, our
approach is insensitive.

VI. CONCLUSION

In the paper, we present the multi-view comprehensive
graph clustering model. In our model, the cooperative learning
based on FOP, SOP and TOP is devised to learn a com-
prehensive graph, which contributes to fully exploring the
relation among different data points and across different views.
Next, an efficient optimization scheme for solving MCGC
and the theoretical guarantees are provided. In the end, we
evaluate the performance of MCGC on six public databases
to verify the superiority of MCGC over MVC. For future work,
we wish to investigate incomplete multi-view comprehensive
graph clustering, which make full use of the similarity learning
based on multi-order proximity among different data points to
improve clustering performance.
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TABLE II
COMPARISON RESULTS ON BBCSPORT, COIL-20, FLOWERS, UCI DIGITS, SCENE-15, AND CALTECH-101 DATASET.

Datasets Methods NMI ACC Precision F-score Recall AR

SPCbest [43] 0.344(0.012) 0.036(0.002) 0.369(0.020) 0.249(0.001) 0.297(0.007) 0.381(0.005)
LRRbest [44] 0.698(0.002) 0.836(0.001) 0.768(0.001) 0.776(0.001) 0.784(0.001) 0.705(0.001)
RMSC [39] 0.666(0.001) 0.826(0.001) 0.766(0.001) 0.719(0.001) 0.677(0.001) 0.637(0.001)
DiMSC [45] 0.785(0.000) 0.922(0.000) 0.846(0.000) 0.858(0.000) 0.872(0.000) 0.813(0.000)

BBCSport MCLES [46] 0.802(0.000) 0.921(0.000) 0.827(0.000) 0.845(0.000) 0.865(0.000) 0.795(0.000)
LTMSC [30] 0.230(0.018) 0.476(0.030) 0.335(0.020) 0.432(0.010) 0.335(0.020) 0.178(0.031)

t-SVD-MSC [31] 0.894(0.000) 0.949(0.000) 0.935(0.000) 0.938(0.000) 0.940(0.000) 0.918(0.000)
ETLMSC [32] 0.827(0.000) 0.934(0.000) 0.901(0.000) 0.877(0.000) 0.855(0.000) 0.840(0.000)

MCGC 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)

SPCbest [43] 0.806(0.008) 0.672(0.063) 0.596(0.021) 0.640(0.017) 0.692(0.013) 0.619(0.018)
LRRbest [44] 0.829(0.006) 0.761(0.003) 0.717(0.003) 0.734(0.006) 0.751(0.002) 0.720(0.020)
RMSC [39] 0.800(0.017) 0.685(0.045) 0.620(0.057) 0.656(0.042) 0.698(0.026) 0.637(0.044)
DiMSC [45] 0.846(0.002) 0.778(0.022) 0.739(0.007) 0.745(0.005) 0.751(0.003) 0.732(0.005)

COIL-20 MCLES [46] 0.740(0.019) 0.706(0.026) 0.505(0.036) 0.553(0.029) 0.611(0.021) 0.521(0.032)
LTMSC [30] 0.860(0.002) 0.804(0.011) 0.741(0.009) 0.760(0.007) 0.776(0.006) 0.748(0.004)

t-SVD-MSC [31] 0.884(0.005) 0.830(0.000) 0.785(0.007) 0.800(0.004) 0.808(0.001) 0.786(0.003)
ETLMSC [32] 0.945(0.030) 0.873(0.065) 0.840(0.068) 0.872(0.060) 0.907(0.055) 0.865(0.063)

MCGC 0.997(0.009) 0.992(0.024) 0.990(0.031) 0.992(0.024) 0.995(0.017) 0.992(0.025)

SPCbest [43] 0.027(0.002) 0.070(0.003) 0.932(0.140) 0.110(0.002) 0.058(0.000) 0.001(0.000)
LRRbest [44] 0.419(0.006) 0.396(0.009) 0.279(0.004) 0.284(0.003) 0.290(0.003) 0.239(0.003)
RMSC [39] 0.396(0.001) 0.385(0.016) 0.234(0.012) 0.249(0.011) 0.256(0.010) 0.231(0.019)
DiMSC [45] 0.442(0.011) 0.434(0.014) 0.302(0.007) 0.310(0.008) 0.318(0.010) 0.266(0.009)

Flowers MCLES [46] 0.516(0.000) 0.469(0.000) 0.342(0.000) 0.390(0.000) 0.462(0.000) 0.337(0.000)
LTMSC [46] 0.478(0.008) 0.476(0.012) 0.347(0.009) 0.354(0.008) 0.361(0.008) 0.313(0.009)

t-SVD-MSC [31] 0.852(0.002) 0.836(0.005) 0.772(0.002) 0.780(0.002) 0.789(0.002) 0.766(0.002)
ETLMSC [32] 0.874(0.025) 0.811(0.066) 0.748(0.064) 0.778(0.054) 0.810(0.041) 0.763(0.057)

MCGC 0.952(0.009) 0.951(0.015) 0.914(0.021) 0.919(0.019) 0.924(0.017) 0.914(0.020)

SPCbest [43] 0.642(0.021) 0.731(0.034) 0.582(0.030) 0.591(0.029) 0.601(0.030) 0.545(0.033)
LRRbest [44] 0.743(0.021) 0.720(0.047) 0.734(0.021) 0.690(0.028) 0.652(0.033) 0.654(0.032)
RMSC [39] 0.822(0.026) 0.915(0.036) 0.797(0.065) 0.811(0.049) 0.826(0.031) 0.789(0.055)
DiMSC [45] 0.782(0.002) 0.867(0.001) 0.769(0.002) 0.772(0.002) 0.775(0.002) 0.747(0.002)

UCI digits MCLES [46] 0.891(0.008) 0.941(0.004) 0.885(0.008) 0.889(0.008) 0.894(0.007) 0.877(0.009)
LTMSC [30] 0.762(0.009) 0.792(0.009) 0.724(0.012) 0.737(0.013) 0.749(0.013) 0.707(0.014)

t-SVD-MSC [31] 0.934(0.001) 0.966(0.001) 0.933(0.001) 0.935(0.001) 0.936(0.001) 0.928(0.001)
ETLMSC [32] 0.970(0.013) 0.941(0.023) 0.935(0.031) 0.936(0.027) 0.938(0.024) 0.933(0.029)

MCGC 0.999(0.000) 0.999(0.000) 0.999(0.000) 0.999(0.000) 0.999(0.000) 0.999(0.000)

SPCbest [43] 0.421(0.010) 0.437(0.015) 0.314(0.016) 0.321(0.022) 0.329(0.020) 0.270(0.010)
LRRbest [44] 0.426(0.018) 0.445(0.013) 0.316(0.015) 0.324(0.010) 0.333(0.015) 0.272(0.015)
RMSC [39] 0.564(0.023) 0.507(0.017) 0.425(0.021) 0.437(0.019) 0.450(0.024) 0.394(0.025)

Scene-15 DiMSC [45] 0.269(0.009) 0.300(0.010) 0.173(0.016) 0.181(0.012) 0.190(0.010) 0.117(0.012)
LTMSC [30] 0.571(0.011) 0.574(0.009) 0.452(0.003) 0.465(0.007) 0.479(0.008) 0.424(0.010)

t-SVD-MSC [31] 0.858(0.007) 0.812(0.007) 0.743(0.006) 0.788(0.001) 0.839(0.003) 0.771(0.003)
ETLMSC [32] 0.879(0.006) 0.865(0.030) 0.825(0.020) 0.828(0.018) 0.832(0.016) 0.816(0.019)

MCGC 0.962(0.009) 0.972(0.024) 0.959(0.025) 0.957(0.021) 0.955(0.016) 0.954(0.022)

SPCbest [43] 0.723(0.032) 0.484(0.019) 0.597(0.018) 0.340(0.025) 0.235(0.020) 0.319(0.014)
LRRbest [44] 0.728(0.014) 0.510(0.009) 0.627(0.012) 0.339(0.008) 0.231(0.010) 0.304(0.017)
RMSC [39] 0.573(0.047) 0.346(0.036) 0.457(0.033) 0.258(0.027) 0.182(0.031) 0.246(0.031)

Caltech-101 DiMSC [45] 0.589(0.011) 0.351(0.008) 0.362(0.010) 0.253(0.007) 0.191(0.007) 0.226(0.003)
LTMSC [30] 0.788(0.005) 0.559(0.012) 0.670(0.009) 0.403(0.003) 0.288(0.012) 0.393(0.007)

t-SVD-MSC [31] 0.858(0.003) 0.607(0.005) 0.742(0.007) 0.440(0.010) 0.323(0.009) 0.430(0.005)
ETLMSC [32] 0.898(0.006) 0.593(0.025) 0.779(0.029) 0.452(0.019) 0.319(0.002) 0.443(0.019)

MCGC 0.903(0.003) 0.663(0.011) 0.817(0.014) 0.469(0.011) 0.329(0.009) 0.461(0.011)
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TABLE III
COMPUTATIONAL TIME AND COMPLEXITY ON THE AFFINITY GRAPHS OF THE COMPARISON METHODS ON THE SCENE-15

DATASET.

Method Time(s) Time Complexity

LRRbest [44] 0.62 O
(
t
(
d2N + d3

))
, (d ≤ N)

RMSC [39] 943.97 O
(
tN3

)
DiMSC [45] 1123.25 O

(
tV N3

)
LTMSC [30] 4186.55 O

(
tV N3

)
t-SVD-MSC [31] 1493.36 O

(
t(2N2V log(N) +N2V 2)

)
ETLMSC [32] 229.54 O

(
tV N2 log(N)

)
MCGC 2333.19 O

(
t
(
V N2 + V N2 log(N) + V 2N2 + V

))
Note: All these methods use SPC on the learned graph to obtain the final
clustering results, which have the same computational time in different methods,
therefore, we only report the computational time and complexity on the affinity
graph learning.
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Fig. 4. Visualizations for the learned affinity graphs obtained from the contrast approaches on the BBCSport database. As
presented, the affinity graph learned by MCGC has much more clear structure.

Intelligence 5th International Conference. Springer,
2013, pp. 128–133.

[7] P. Chen, L. Liu, Z. Ma, and Z. Kang, “Smoothed multi-
view subspace clustering,” in Proceedings of the Neural
Computing for Advanced Applications. Springer, 2021,
pp. 128–140.

[8] J. Gong, N. Liao, C. Li, X. Ma, W. He, and B. Guo,
“Superpixel segmentation via contour optimized non-
iterative clustering,” in Proceedings of the Neural Com-
puting for Advanced Applications. Springer, 2021, pp.
645–658.

[9] E. Elhamifar and R. Vidal, “Sparse subspace clustering:
Algorithm, theory, and applications,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35,

no. 11, pp. 2765–2781, 2013.
[10] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning

overview: Recent progress and new challenges,” Informa-
tion Fusion, vol. 38, pp. 43–54, 2017.

[11] F. Nie, X. Wang, and H. Huang, “Clustering and pro-
jected clustering with adaptive neighbors,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2014,
pp. 977–986.

[12] E. Elhamifar and R. Vidal, “Clustering disjoint subspaces
via sparse representation,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, 2010, pp. 1926–1929.

[13] H. Wang, Y. Yang, and B. Liu, “Gmc: Graph-based multi-



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 00, NO. 0, MONTH 2022 10

0

1e-2

1e-1

0.5

A
C

C

1

1e1

1e2

1

1e51e3
1e4

1e4 1e3
1e21e5 1e1

1
1e-1

1e-2

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) The ACC versus α and β

0

1e-2

1e-1

0.5

A
C

C

1

1e1

1e2

1

1e51e3
1e4

1e4 1e3
1e21e5 1e1

1
1e-1

1e-2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The NMI versus α and β

Fig. 5. The ACC and NMI of MCGC on the BBCSport
database with different α and β.
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