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ABSTRACT

We introduce Flat Hilbert Bayesian Inference (FHBI), an algorithm designed
to enhance generalization in Bayesian inference. Our approach involves an
iterative two-step procedure with an adversarial functional perturbation step
and a functional descent step within the reproducing kernel Hilbert spaces.
This methodology is supported by a theoretical analysis that extends previous
findings on generalization ability from finite-dimensional Euclidean spaces to
infinite-dimensional functional spaces. To evaluate the effectiveness of FHBI,
we conduct comprehensive comparisons against nine baseline methods on the
VTAB-1K benchmark, which encompasses 19 diverse datasets across various
domains with diverse semantics. Empirical results demonstrate that FHBI
consistently outperforms the baselines by notable margins, highlighting its practical
efficacy. Our code is available at https://anonymous.4open.science/
r/Flat-Hilbert-Variational-Inference-008F/.

1 INTRODUCTION

Quantifying and tackling uncertainty in deep learning is one of the most challenging problems,
mainly due to the inherent randomness of the real world and the presence of noisy data. Bayesian
inference provides a robust framework for understanding complex data, allowing for probabilistic
interpretation of deep learning models and reasoning under uncertainty. This approach not only
facilitates predictions but also enables the quantification of uncertainty. A primary challenge in this
domain is the computation and sampling from intricate distributions, mainly when dealing with deep
learning models. One effective strategy to tackle this issue is variational inference, which seeks to
approximate the true posterior distribution with simpler forms, known as approximate posteriors
while optimizing a variational lower bound. Several techniques have been developed in this area,
including those by Kingma & Welling (2013); Kingma et al. (2015), and Blundell et al. (2015), who
extended the Gaussian variational posterior approximation for neural networks, as well as Gupta &
Nagar (2018), who enhanced the flexibility of posterior approximations. In addition to variational
methods, various particle sampling techniques have been proposed for Bayesian inference, especially
in scenarios requiring multiple models. Notable particle sampling methods include Hamiltonian
Monte Carlo (HMC) (Neal, 1996), Stochastic Gradient Langevin Dynamics (SGLD) (Welling &
Teh, 2011), Stochastic Gradient HMC (SGHMC) (Chen et al., 2014), and Stein Variational Gradient
Descent (SVGD) (Liu & Wang, 2016b). Each method contributes to a deeper understanding and
more practical application of Bayesian inference in deep learning.

Besides quantifying uncertainty, tackling overfitting is a major challenge in machine learning.
Overfitting often occurs when the training process gets stuck in local minima, leading to a model that
fails to generalize well to unseen data. This problem is mainly due to loss functions’ high-dimensional
and non-convex nature, which often exhibit multiple local minima in the loss landscape. In standard
deep network training, flat minimizers effectively improve model generalization (Keskar et al., 2016;
Kaddour et al., 2022; Li et al., 2022). Among the flat minimizers, Sharpness-Aware Minimization
(SAM) (Foret et al., 2021) has emerged as a practical approach by concurrently minimizing the
empirical loss and reducing the sharpness of the loss function. Recently, SAM has demonstrated
its versatility and effectiveness across a wide range of tasks, including meta-learning (Abbas et al.,
2022), vision models (Chen et al., 2021), and language models (Bahri et al., 2022).

*These authors contributed equally to this work
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Figure 1: Schematic of SAM w. independent particles (green), SVGD (orange), and our FHBI (Algorithm 1)
(black) updates. SAM’s particles are not aware of other’s trajectories. SVGD only seeks the modes and promotes
spatial diversity. FHBI seeks the modes, minimizes sharpness, and promotes spatial and angular diversity.

Contribution. We bridge the gap between the flat minimizers and particle sampling to introduce
a Bayesian inference framework with improved generalization ability. To accomplish this, we
first present Theorem 1, which strengthens prior generalization bounds from finite-dimensional
Euclidean spaces to the reproducing kernel Hilbert spaces (RKHS), which are broader and more
general functional spaces that are typically infinite-dimensional. Notably, this theorem introduces the
notion of functional sharpness that offers an insight to improve the generalization ability of current
particle-sampling methods. Subsequently, Theorem 2 translates these notions of functional sharpness
and generalization in RKHS into the context of Bayesian inference. This analysis establishes a
connection between the general and empirical KL loss, providing a strategy to enhance generalization
by minimizing the general KL loss. Motivated by these two theorems, we derive Flat Hilbert
Bayesian Inference (FBVI), a practical algorithm that employs a dual-step functional sharpness-aware
update procedure in RKHS. This approach improves the generalization of sampled particles, thereby
enhancing the quality of the ensemble. Overall, our contributions are as follows:

1. We present a theoretical analysis that characterizes generalization ability over the functional
space. This analysis generalizes prior works from the Euclidean space to infinite-dimensional
functional space, thereby introducing the notion of functional sharpness i.e., the sharpness
of the functional spaces.

2. Building on this theoretical foundation, we propose a practical particle-sampling algorithm
that enhances the generalization ability over existing methods. We conducted extensive
experiments comparing our Flat Hilbert Bayesian Inference (FHBI) algorithm with nine
baselines on the VTAB-1K benchmark, which includes 19 datasets across various domains
and semantics. Experimental results demonstrated that our algorithm outperforms these
baselines by notable margins.

The paper is structured as follows: Section 2 reviews the related works on Bayesian inference and the
development of flat minimizers. Section 3 provides the necessary background and notations. Section
4 discusses the motivation and theoretical development behind our sharpness-aware particle-sampling
approach. Section 5 presents experimental results, comparing our algorithm against various Bayesian
inference baselines across diverse settings. Section 6 offers a deeper analysis of FHBI’s behavior to
gain further insight into its effectiveness over the baseline methods.

2 RELATED WORKS

Sharpness-aware minimization. Flat minimizers have been shown to be more robust to the
shifts between training and test losses, thereby enhancing the generalization ability of neural
networks (Jiang et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017). The relationship between
generalization and the width of minima has been studied both theoretically and empirically in several
prior works (Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017; Dinh et al., 2017; Fort &
Ganguli, 2019). Consequently, a variety of methods have been developed to search for flat minima
(Pereyra et al., 2017; Chaudhari et al., 2017; Keskar et al., 2017; Izmailov et al., 2018).
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Among the flat minizer, Sharpness-Aware Minimization (SAM), introduced by Foret et al. (2021),
has gained significant attention due to its effectiveness and scalability. SAM’s versatility has been
leveraged across a wide range of tasks and domains, including domain generalization (Cha et al., 2021;
Wang et al., 2023; Zhang et al., 2023), federated learning (Caldarola et al., 2022; Qu et al., 2022),
Bayesian networks (Nguyen et al., 2023a; Möllenhoff & Khan, 2023), and meta-learning (Abbas
et al., 2022). Moreover, SAM has demonstrated its ability to enhance generalization in both vision
models (Chen et al., 2021) and language models (Bahri et al., 2022).

Nevertheless, these studies are constrained to finite-dimensional Euclidean spaces. In this work, we
strengthen these generalization principles to infinite-dimensional functional spaces and propose a
particle-sampling method grounded in this theoretical framework.
Bayesian Inference. Two main strategies were widely employed in the literature of Bayesian
inference. The first paradigm is Variational Inference, which aims to approximate a target distribution
by selecting a distribution from a family of potential approximations and optimizing a variational
lower bound. Graves (2011) introduced the use of a Gaussian variational posterior approximation for
neural network weights, which was later extended in Kingma & Welling (2013); Kingma et al. (2015);
Blundell et al. (2015) with the reparameterization trick to facilitate training deep latent variable models.
Louizos & Welling (2017) proposed using a matrix-variate Gaussian to model entire weight matrices
(Gupta & Nagar, 2018) to increase further the flexibility of posterior approximations, which offers a
novel approach to approximate the posterior. Subsequently, various alternative structured forms of
the variational Gaussian posterior were proposed, including the Kronecker-factored approximations
(Zhang et al., 2018; Ritter et al., 2018; Rossi et al., 2020), or non-centered or rank-1 parameterizations
(Ghosh et al., 2018; Dusenberry et al., 2020).

The second paradigm in the literature of Bayesian inference is Markov Chain Monte Carlo (MCMC),
which involves sampling multiple models from the posterior distribution. MCMC has been applied
to neural network inference, such as Hamiltonian Monte Carlo (HMC) (Neal, 1996). However,
HMC requires the computation of full gradients, which can be computationally expensive. To
address this, Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) integrates
first-order Langevin dynamics within a stochastic gradient framework. Stochastic Gradient HMC
(SGHMC) (Chen et al., 2014) further incorporates stochastic gradients into Bayesian inference,
enabling scalability and efficient exploration of different solutions. Another critical approach, Stein
Variational Gradient Descent (SVGD) (Liu & Wang, 2016a), closely related to our work, uses a set
of particles that converge to the target distribution. It is also theoretically established that SGHMC,
SGLD, and SVGD asymptotically sample from the posterior as the step sizes approach zero.

3 BACKGROUNDS AND NOTATIONS

Bayesian Inference. Consider a family of neural networks fθ(x), where the random variable θ
represents the model parameters and takes values in the model space Θ ⊂ Rd. We are given a training
set S = {(xi, yi)}ni=1 of n i.i.d observations from the data space X ×Y , and the prior distribution of
the parameters p(θ). In the literature on Bayesian inference problems, prior works typically focus on
approximating the empirical posterior Pθ|S , whose density function p(θ|S) is defined as:

p(θ|S) ∝ p(θ)
n∏

i=1

p(yi|xi,S,θ),

where the prior distribution Pθ has the density function p(θ). The likelihood term is proportional to

p(y|x,S,θ) ∝ exp

(
− 1

|S|
ℓ(fθ(x), y)

)
= exp

(
− 1

n
ℓ(fθ(x), y)

)
,

with some loss function ℓ and a sufficiently expressive model fθ. Then, the empirical posterior is:

p(θ|S) ∝ exp

(
− 1

n

n∑
i=1

ℓ(fθ(xi), yi)

)
p(θ). (1)

More formally, the empirical posterior is equal to:

3
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p(θ|S) = exp

(
− 1

n

n∑
i=1

ℓ(fθ(xi), yi)

)
p(θ)/ZS , (2)

where ZS is the normalizing constant. We define the population and empirical losses as follows:

LD(θ) = E(x,y)∼D[ℓ(fθ(x), y)],

LS(θ) = E(x,y)∼S [ℓ(fθ(x), y)] =
1

n

n∑
i=1

ℓ(fθ(xi), yi).

The population loss is defined as the expected loss over the entire data-label distribution. In contrast,
the empirical loss is the average loss computed over a given training set S . Based on these definitions,
the empirical posterior in Eq. 2 can be written as:

p(θ|S) = exp(−LS(θ))p(θ)/ZS .

Intuitively, models with parameters θ that fit well to the training set S lead to lower empirical loss
values, resulting in higher density in the empirical posterior. However, simply fitting to the training
samples can lead to overfitting. To improve generalization, we are more concerned with performance
over the entire data distribution D rather than just the specific sample S . Accordingly, we define the
population posterior as PD whose density is given by:

p(θ|D) = exp(−LD(θ))p(θ)/ZD, (3)

with the normalizing constant ZD. This population posterior is more general than the empirical
posterior, as it captures the true posterior of the parameters under the full data distribution. However,
understanding the population posterior is particularly challenging because we can only access the
empirical loss LS(θ), not the population loss LD(θ). In this paper, we deviate from prior approaches
that primarily focus on approximating the empirical posterior and instead propose a particle-sampling
method to approximate the population posterior.

Reproducing Kernel Hilbert Space (RKHS). Let k(θ,θ′) : Θ × Θ → R be a positive
definite kernel operating on the model space. The reproducing kernel Hilbert space (RKHS) H
of k(θ,θ′) is the closure of the linear span {f : f(·) =

∑
i aik(·,θi), ai ∈ R,θi ∈ Θ}. For

f(θ) =
∑

i aik(θ,θi) and g(θ) =
∑

j bjk(θ,θj), H is equipped with the inner product defined
by ⟨f, g⟩H =

∑
ij aibjk(θi,θj). For all θ ∈ Θ, there exists a unique element Kθ ∈ H with the

reproducing property that f(θ) = ⟨f,Kθ⟩H for any f ∈ H.

Given thatH is a scalar-valued RKHS with kernel k(θ, θ′),Hd = H×H×· · ·×H is a vector-valued
RKHS of functions f = [f1, f2, · · · , fd] corresponding to the kernel K(θ,θ′) = k(θ,θ′)I . Hd is
equipped with the inner product ⟨f , g⟩Hd =

∑d
i=1 ⟨fi, gi⟩H.

Let F [f ] be a functional on f ∈ Hd. Similar to the definition by Liu & Wang (2016b), the (functional)
gradient of F is defined as a function ∇fF [f ] ∈ Hd such that for any g ∈ Hd and ϵ ∈ R

F [f + ϵg] = F [f ] + ϵ ⟨∇fF [f ], g⟩Hd +O(ϵ2). (4)

Stein Variational Gradient Descent (SVGD). Given a general target distribution p(θ), SVGD
(Liu & Wang, 2016b) aims to find a flow of distributions {q(k)}k that minimizes the KL distance to
the target distribution. Motivated by the Stein identity and Kernelized Stein Discrepancy, SVGD
proposes the update q(k+1) = q

(k)
[T ], in which T : Θ→ Θ is a smooth one-to-one push-forward map

of the form T (θ) = θ + ϵϕ∗p,q(θ) in which:

ϕ∗p,q(·) = Eθ∼q[Apk(θ, ·)] and Apϕ(θ) = ϕ(θ)∇θ log p(θ)
⊤ +∇θϕ(θ).

Here, Ap is known as the Stein operator, which acts on ϕ and produces a zero-mean function Apϕ(θ)
when θ ∼ p. Notably, while SVGD is designed for general target distributions p, in the context of
Bayesian inference, it is only applicable to the empirical posterior rather than the population posterior,
which we will discuss in detail in the next section.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 FLAT HILBERT BAYESIAN INFERENCE (FHBI)

Consider the Bayesian inference problem of approximating a posterior distribution. In prior works,
such as SVGD (Liu & Wang, 2016b), when applying to the context of Bayesian inference, the
methods are only applicable to the empirical posterior p(θ|S) because we only have access to the
empirical loss. It is evident that when sampling a set of m particle models θ1:m from p(θ|S), these
particles congregate in the high-density regions of the empirical posterior p(θ|S), corresponding to
the areas with low empirical loss LS(θ). However, to avoid overfitting, it is preferable to sample the
particle models θ1:m from the population posterior p(θ|D) ∝ exp(−LD(θ))p(θ), as this approach
directs the particle models θ1:m towards regions with low values of the population loss LD(θ), thus
improving generalization ability. To better understand this motivation from a theoretical perspective,
consider the following proposition, with the proof provided in Appendix A.1:
Proposition 1. Consider the problem of finding the distribution Q that solves:

Q∗ = min
Q≪Pθ

{
Eθ∼Q[LD(θ)] +DKL(Q∥Pθ)

}
(5)

where we search over Q absolutely continuous w.r.t Pθ, and the second term is the regularization
term. The closed-form solution to this problem is exactly the population posterior defined in Eq. 3.

In this proposition, our aim is to identify the posterior distribution that minimizes the *expected
population loss*, where the expectation is taken over the entire parameter space with θ ∼ Q∗,
while maintaining proximity to the prior to ensure simplicity. With access to this posterior Q∗, we
can sample a set of particles whose average performance optimally minimizes the population loss.
Since the solution to this optimization problem corresponds exactly to the population posterior, the
ensemble of the particles sampled from Q∗ ≡ p(θ|D) effectively minimizes the average value of
the population loss. This is because Q∗ is explicitly chosen to minimize the expected value of the
population loss LD, which means the ensemble fits the whole data distribution instead of overfitting to
the specific dataset S , therefore establishes improved generalizability. Consequently, this proposition
theoretically asserts that sampling from p(θ|D) improves the generalizability of the ensemble.

4.1 THEORETICAL ANALYSIS

Motivated by this observation, we seek to advance prior work by approximating the general posterior.
Specifically, to improve generalizability, our objective is to approximate the target general posterior
distribution p(θ|D) using a simpler distribution q∗(θ) drawn from a predefined set of distributions F .
This is achieved by minimizing the KL divergence:

q∗ = argmin
q∈F

DKL

(
q(θ)∥p(θ|D)

)
. (6)

Ideally, the set F should be simple enough for a simple solution and effective inference while
sufficiently broad to approximate a wide range of target distributions closely. Let q(θ) be the density
of a reference distribution. We define F as the set of distributions for random variables of the form
ϑ = T (θ), where T : Θ→ Θ is a smooth, bijective mapping, and θ is sampled from q. By variable
change, the density of ϑ, denoted as q[T ](·), is expressed as follows:

q[T ](ϑ) = q(T−1(θ))|det(∇ϑT
−1(ϑ))|.

We restrict the set of the smooth transformations T to the set of push-forward maps of the form
T (θ) = θ + f(θ), where f ∈ Hd. When ∥f∥Hd is sufficiently small, the Jacobian of T = I + f is
full-rank where I denotes the identity map, in which case T is guaranteed to be a one-to-one map
according to the inverse function theorem. Under this restriction, the problem is equivalent to solving
an optimization problem over the RKHS:

f∗ = argmin
f∈Hd,∥f∥Hd≤ϵ

DKL

(
q[I+f ](θ)∥p(θ|D)

)
.

The challenge with this optimization problem lies in our lack of access to the general loss function
LD(θ) and the general posterior distribution p(θ|D). We present our first theorem to address this
issue, which characterizes generalization ability in the functional spaceHd. The proof of this theorem
can be found in Appendix A.2.

5
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Theorem 1 (Informal). Let ℓ̃ : Hd × X × Y → R+ be a loss function on the RKHS Hd and
the data space. Define L̃D(f) = E(x,y)∼D[ℓ̃(f , x, y)] and L̃S(f) = 1

n

∑n
i=1 ℓ̃(f , xi, yi) be the

corresponding general and empirical losses. Then for any ρ > 0 and any distribution D, with
probability of 1− δ over the choice of the training set S ∼ Dn, we have:

L̃D(f) ≤ max
f ′∈Hd,∥f ′−f∥Hd≤ρ

L̃S(f
′) +O

√ log(1 + 1
ρ2 ) + log

(
n
δ

)
n− 1

,
This theorem extends prior results, such as the generalization bounds established by Foret et al. (2021)
and Kim et al. (2022), from Euclidean space to a broader, more general reproducing kernel Hilbert
space. It is noteworthy that this is not a straightforward extension, as the previous generalization
bounds rely on the dimensionality of the domain, while the RKHS is typically infinite-dimensional
for many widely used kernels such as the RBF kernels (Aronszajn, 1950). Building on the first
theorem, we present the second theorem, which directly addresses the general posterior and serves as
the primary motivation for our method. The proof of this theorem can be found in Appendix A.3.
Theorem 2 (Informal). Assume that q is any distribution. For any ρ > 0, with probability of 1− δ
over the training set S generated by distribution D, we have:

DKL

(
q[I+f ]||p(θ|D)

)
≤ max

f ′∈Hd,∥f ′−f∥≤ρ
DKL

(
q[I+f ′]||p(θ|S)

)
+O

√ log(1 + 1
ρ2 ) + log

(
n
δ

)
n− 1

.
Our objective is to learn the function f∗ ∈ Hd that minimizes DKL(q[I+f ]∥p(θ|D)). Motivated
by Theorem 2, we propose to implicitly minimize DKL(q[I+f ]||p(θ|D)) by minimizing the

right-hand side term max∥f ′−f∥Hd≤ρDKL

(
q[I+f ′]||p(θ|S)

)
. For any f ∈ Hd, let F [f ] =

DKL

(
q[I+f ]∥p(θ|S)

)
and f ′ = f + ρf̂ , it follows that:

argmax
∥f ′−f∥Hd≤ρ

DKL

(
q[I+f ′]||p(θ|S)

)
= argmax

∥f̂∥Hd≤1

F [f + ρf̂ ] (7)

= argmax
∥f̂∥Hd≤1

F [f ] + ρ
〈
f̂ ,∇fF [f ]

〉
Hd

+O(ρ2) ≈ argmax
∥f̂∥Hd≤1

〈
f̂ ,∇fF [f ]

〉
Hd

. (8)

Let g = ∇fF [f ] ∈ Hd. The Cauchy-Schwarz inequality on Hilbert spaces (Kreyszig, 1978) implies:∣∣∣∣∣ 〈f̂ , g〉Hd

∣∣∣∣∣ ≤ 〈f̂ , g〉Hd
≤ ∥f̂∥Hd∥g∥Hd ≤ ∥g∥Hd .

In turn, the solution f̂∗ that solves the maximization problem in Eq. 8 is given by:

f̂∗ =
g

∥g∥Hd

=
∇fDKL

(
q[I+f ]∥p(·|S)

)
∥∥∥∥∥∇fDKL

(
q[I+f ]∥p(·|S)

)∥∥∥∥∥
Hd

. (9)

Recall that our goal is to find a sequence of functions {fk}k ⊂ Hd that converges toward the optimal
solution f∗. With the sequence {fk}k, we can obtain the flow of distributions {q(k)}k, in which
q(k) = q[I+fk], that gradually approaches the optimal solution of Eq. 6. Motivated by Eq. 9, we
propose the following functional sharpness-aware update procedure:

f̂∗
k = ρ

∇fDKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f=fk∥∥∥∇fDKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f=fk

∥∥∥
Hd

, (Functional Ascend step) (10)

fk+1 = fk − ϵ∇fDKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f=fk+f̂∗

k

, (Functional Descending step) (11)

q(k+1) = q[I+fk+1]. (Distributional Transformation) (12)

6
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Algorithm 1 FLAT HILBERT BAYESIAN INFERENCE (FHBI)

Input: Initial particles {θ(0)
i }mi=1, number of epochs N , step size ρ > 0

Output: A set of particles {θi}mi=1 that approximates the general posterior distribution p(θ|D)
for iteration k do

ε̂
(k)
i ← ρ

ϕ(θ
(k)
i )

∥ϕ(θ(k)
i )∥

where ϕ(θ) = − 1
n

∑m
j=1[k(θ,θ

(k)
j )∇

θ
(k)
j

log p(θ
(k)
j |S)+∇θ

(k)
j
k(θ,θ

(k)
j )]

θ
(k+1)
i ← θ

(k)
i − ϵiψ(θ(k)

i , ε̂
(k)
i )

where ψ(θ, ε) = − 1
n

∑m
j=1[k(θ,θ

(k)
j )∇

θ
(k)
j

log p(θ
(k)
j + ε|S) +∇

θ
(k)
j
k(θ,θ

(k)
j )].

end for

To implement this iterative procedure, we must work with the functional gradient terms. For this, we
rely on the following lemma, with the proof provided in Appendix B of (Liu & Wang, 2016b):

Lemma 1. Let F [f ] = DKL(q[I+f ]∥p(·|S)). When ∥f∥ is sufficiently small,

∇fF [f ] = −Eq[∇θ log p(θ + f(θ)|S)k(θ, ·) + (I +∇θf(θ))
−1∇θk(θ, ·)] (13)

≈ −Eq[∇θ log p(θ + f(θ)|S)k(θ, ·) +∇θk(θ, ·)]
def
= D(f). (14)

Substituting equation (14) into equations (10) and (11), the iterative procedure described from
equations (10)-(11) becomes:

f̂∗
k = ρ

D(fk)

∥D(fk)∥Hd

, (15)

fk+1 = fk − ϵD(fk + f̂∗
k ), (16)

q(k+1) = q[I+fk+1]. (17)

Even though we do not have access to p(θ|S), we can compute ∇θ log p(θ|S) because
∇θ log p(θ|S) = ∇θ log p(θ) − ∇θLS(θ). To implement the procedure above, we first draw a
set of m particles {θ(0)

i }mi=1 on the model space from the initial density, and then iteratively update
the particles with an empirical version of D(f). Consequently, we obtain the practical procedure
summarized in Algorithm 1, which deterministically transports the set of particles to match the
empirical posterior distribution p(θ|S), therefore match the general posterior p(θ|D) as supported by
Theorem 2. In Algorithm 1, at each iteration k, we have m particles {θ(k)

j }mj=1. Eq. 15 computes

the m ascend steps ε̂(k)i ; then, Eq. 16 and Eq. 17 use these ascend steps to transport the m model
particles to {θ(k+1)

j }mj=1. It is noteworthy that FHBI is a generalization of both SVGD and SAM. In
particular, if we set ρ = 0, we get SVGD; when m = #PARTICLES = 1, we obtain SAM.

Interactive gradient directions and Connections to SAM. To gain further insight into the
mechanism of FHBI and its underlying connections to SAM, consider the term ∇θj

log(θj + ε̂i) in
the descending step, which is related to∇θj

LS(θj + ε̂i).

The perturbed loss can be approximated as:

LS(θj + ε̂i) ≈ LS(θj) + ε̂i∇θj
LS(θj),

where ε̂i involves the average
∑m

k=1 k(θk,θj)∇θk
LS(θk). Consequently, the gradient of this

perturbed loss indicates a direction that simultaneously minimizes ∥∇θjLS(θj)∥2 - which
approximates the sharpness of the j−th particle, as discussed by Foret et al. (2021) - and
∇θj
LS(θj) · ∇θk

LS(θk) for all j, k, which reflects the angular similarity in the directions of
the two particles. Thus, in addition to minimizing the sharpness of each particle, the first term of the
descent step acts as an angular repulsive force, promoting more diverse traveling directions for the
particles. Besides, as discussed by Liu & Wang (2016b), the second term acts as a spatial repulsive
force, driving the particles apart to prevent them from collapsing into a single mode. Consequently,
FHBI is not merely an extension of SAM to multiple independent particles; it enables the sharpness
and gradient directions of the particles to interact with one another. This insight about the mechanism
underlying our algorithm is summarized in Figure 1. In Section 6, we empirically demonstrate that,
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AVG
FFT 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.6

AdamW 67.1 90.7 68.9 98.1 90.1 84.5 54.2 84.1 94.9 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 72.0
SAM 72.7 90.3 71.4 99.0 90.2 84.4 52.4 82.0 92.6 84.1 74.0 76.7 68.3 47.9 74.3 71.6 43.4 26.9 39.1 70.5

DeepEns 69.1 88.9 67.7 98.9 90.7 85.1 54.5 82.6 94.8 82.7 75.3 46.6 47.1 47.4 68.2 71.1 36.6 30.1 35.6 67.0
BayesTune 67.2 91.7 69.5 99.0 90.7 86.4 54.7 84.9 95.3 84.1 75.1 82.8 68.9 49.7 79.3 74.3 46.6 30.3 42.8 72.2

SGLD 68.7 91.0 67.0 98.6 89.3 83.0 51.6 81.2 93.7 83.2 76.4 80.0 70.1 48.2 76.2 71.1 39.3 31.2 38.4 70.4
SADA-JEM 70.3 91.9 70.2 98.2 91.2 85.6 54.7 84.3 94.1 83.4 77.0 79.9 72.1 51.6 79.4 70.7 45.3 29.6 40.1 72.1

SA-BNN 65.1 91.5 71.0 98.9 89.4 89.3 55.2 83.2 94.5 86.4 75.2 61.4 63.2 40.0 71.3 64.5 34.5 27.2 31.2 68.1
SVGD 71.3 90.2 71.0 98.7 90.2 84.3 52.7 83.4 93.2 86.7 75.1 75.8 70.7 49.6 79.9 69.1 41.2 30.6 33.1 70.9

74.1 93.0 74.3 99.1 92.4 87.3 56.5 85.3 95.0 87.2 79.6 80.1 72.3 52.2 80.4 72.8 51.2 31.9 41.3 73.7FHBI (.17) (.42) (.15) (0.20) (0.21) (.52) (.12) (.31) (.57) (.21) (.20) (.16) (.27) (.47) (.31) (.50) (.32) (.36) (.59)

Table 1: VTAB-1K classification accuracy results. All the methods are applied to finetune the same set of LoRA
parameters on ViT-B/16 pre-trained with ImageNet-21K dataset.

compared to SVGD, FHBI not only effectively minimizes particle-wise sharpness and loss values but
also fosters greater diversity in the travel directions of the particles during training. This increased
directional diversity, combined with the kernel gradient term, further mitigates the risk of particles
collapsing into a single mode and improve the final performance as presented in Section 5.

5 EXPERIMENTS

Applications to Model Fine-tuning. Bayesian inference methods have promising applications
in model finetuning. In standard finetuning scenarios, we are given a pre-trained model Φ. The
objective is to find the optimal parameters θ = Φ + β, where β represents an additional module,
often lightweight and small relative to the full model. Several parameter-efficient finetuning strategies
have been developed, including LoRA (Hu et al., 2021), Adapter (Houlsby et al., 2019), and others.
Our experiments focus on finetuning the ViT-B/16 architecture (Dosovitskiy et al., 2021), pre-trained
with the ImageNet-21K dataset (Deng et al., 2009), where β is defined by the LoRA framework.
For the Bayesian approaches, we aim to learn m LoRA particles β(i) to obtain m model instances
θ(i). The final output is then computed as the average of the outputs from all these model instances.
Experimental Details. To assess the effectiveness of FHBI, we conduct experiments on the
VTAB-1K benchmark (Zhai et al., 2020), a challenging image classification/prediction suite
consisting of 19 datasets from various domains. VTAB-1K covers various tasks across different
semantics and object categories. The datasets are organized into Natural, Specialized, and Structured
domains. Each dataset includes 1,000 training examples, with an official 80/20 train-validation split.
We compared FHBI against nine baselines with three deterministic finetuning strategies including
full finetuning, AdamW, and SAM, and four Bayesian inference techniques including Bayesian Deep
Ensembles (Lakshminarayanan et al., 2017), BayesTune (Kim & Hospedales, 2023), Sharpness-Aware
Bayesian Neural Network (SA-BNN) (Nguyen et al., 2023a), Sharpness-aware Joint Energy-based
Model (SADA-JEM) (Yang et al., 2023), Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh, 2011), and Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016b).

We used ten warm-up epochs, batch size 64, the Gaussian kernel, and the cosine annealing learning
rate scheduler for all settings. The experiments were run with PyTorch on a Tesla V100 GPU
with 40GB of RAM. FHBI involves three hyperparameters: the learning rate ϵ, ascent step size
ρ, and kernel width σ. We tuned these hyperparameters using the provided validation set, where
the candidate sets are formed as ϵ ∈ {0.15, 1, 1.5, 2.5}, ρ ∈ {0.01, 0.03, 0.05}, σ ∈ {0.7, 1, 1.2}.
Detailed chosen hyperparameters and data augmentations for each dataset are reported in Appendix C.
For each experiment, we conducted five runs of FHBI and reported the mean and standard deviation.
All Bayesian methods were trained with four particles on the same set of LoRA parameters.
Experimental Results. We first present the classification accuracy results in Table 1. FHBI notably
improves compared to the baselines, outperforming them in most settings. Compared to other particle
sampling methods, including SGLD and SVGD, FHBI consistently performs better across all settings.
Moreover, FHBI improves upon SAM by a margin of 3.2%, highlighting the advantages of using
multiple particles with the underlying interactive gradient directions as previously discussed in
Section 4.1. Additionally, as illustrated in Figure 2, FHBI shows the highest performance across all
three domains, further solidifying its advantage over the Bayesian inference baselines.
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Figure 2: Domain-wise average scores on Natural (left), Specialized (middle), and Structured (right) datasets.
FHBI performs best in all three domains compared to the Bayesian inference baselines.

To further assess the robustness of FHBI, we evaluate the Expected Calibration Error (ECE) of each
setting. This score measures the maximum discrepancy between the model’s accuracy and confidence.
As indicated in Table 2, even though there is typically a trade-off between accuracy and ECE, our
approach achieves a good balance between the ECE and the classification accuracy.
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FFT 0.29 0.23 0.20 0.13 0.27 0.19 0.45 0.21 0.13 0.18 0.17 0.41 0.44 0.42 0.22 0.14 0.23 0.24 0.40 0.26

AdamW 0.38 0.19 0.18 0.05 0.09 0.10 0.14 0.11 0.09 0.12 0.11 0.12 0.19 0.34 0.18 0.14 0.21 0.18 0.31 0.17
SAM 0.21 0.25 0.20 0.11 0.12 0.15 0.14 0.17 0.16 0.14 0.09 0.12 0.17 0.24 0.16 0.21 0.19 0.13 0.16 0.16

DeepEns 0.24 0.12 0.22 0.04 0.10 0.13 0.23 0.16 0.07 0.15 0.21 0.31 0.32 0.36 0.13 0.32 0.31 0.16 0.29 0.20
BayesTune 0.32 0.08 0.20 0.03 0.85 0.12 0.22 0.13 0.07 0.13 0.22 0.12 0.23 0.30 0.24 0.28 0.28 0.31 0.26 0.23

SGLD 0.26 0.20 0.17 0.05 0.18 0.14 0.23 0.18 0.09 0.12 0.32 0.26 0.29 0.21 0.26 0.42 0.39 0.11 0.24 0.22
SADA-JEM 0.22 0.11 0.20 0.05 0.13 0.16 0.18 0.15 0.21 0.23 0.26 0.19 0.20 0.25 0.27 0.35 0.20 0.14 0.13 0.19

SA-BNN 0.22 0.08 0.19 0.15 0.12 0.12 0.24 0.13 0.06 0.12 0.18 0.14 0.21 0.22 0.24 0.25 0.41 0.46 0.34 0.20
SVGD 0.20 0.13 0.19 0.04 0.16 0.09 0.20 0.15 0.11 0.13 0.12 0.17 0.21 0.30 0.18 0.21 0.25 0.14 0.26 0.18
FHBI 0.19 0.10 0.16 0.06 0.06 0.09 0.16 0.09 0.05 0.12 0.08 0.14 0.15 0.21 0.15 0.16 0.18 0.11 0.07 0.12

Table 2: VTAB-1K results evaluated on the Expected Calibration Error (ECE) metric. All methods are applied
to finetune the same set of LoRA parameters on ViT-B/16 pre-trained with ImageNet-21K dataset.

6 ABLATION STUDIES

6.1 EFFECT OF #PARTICLES
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Figure 3: Runtime by #PARTICLES.

To understand the impact of varying the number of
particles, we conducted experiments on the seven
Natural datasets, reporting both accuracy and per-
epoch runtime. We compared FHBI with SVGD
and SAM. Figure 3 and Table 3 indicate that
multiple particles result in significant performance
improvements compared to a single particle. However,
while increasing the number of particles enhances
performance, it introduces a tradeoff regarding runtime
and memory required to store the models. Based on
these observations, we found that using #PARTICLES =
4 provides an optimal balance between performance
gains and computational overhead.

#PARTICLES CIFAR100 Caltech101 DTD Flower102 Pets SVHN Sun397
1p (SAM) 72.7 90.3 71.4 99.0 90.2 84.4 52.4
4p 74.8 93.0 74.3 99.4 92.4 87.5 56.5
10p 75.0 93.2 75.0 99.1 92.4 87.9 58.3

Table 3: Accuracy by #PARTICLES.
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6.2 PARTICLES SHARPNESS AND GRADIENT DIVERSITY

Figure 4: Gradients angular similarities with m =
4. Lower values indicates greater angular diversity.

As discussed in Section 4.1 and Section 5, FHBI
shares implicit connections with SAM by minimizing
particle-wise sharpness and diversifying particle
travel directions, improving the final performance.
To empirically verify this hypothesis about the
behavior of our algorithm, we contrast FHBI with
SVGD on the KITTI dataset. Four particles are
initialized at the same location. We measured: 1)
the evolution of sharpness of each particle, defined
as max∥ε∥≤ρ LS(θ+ ε)−LS(θ) according to Foret
et al. (2021), and 2) the evolution of gradients angular
diversity, quantified as the Frobenius norm of the
covariance matrix formed by the particle gradients.
As shown in Figure 5, FHBI not only results
in significantly lower and more stable sharpness
evolution but also encourages less congruent gradient directions, promoting particles to explore
diverse trajectories. Hence, FHBI effectively reduces particle sharpness while promoting angular
diversity, improves generalization ability and avoids overfitting by collapsing into a single mode.
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Figure 5: Evolution of sharpness of particles over 100 epochs with SVGD (blue) or FHBI (red)

7 CONCLUSION

We introduce Flat Hilbert Bayesian Inference (FHBI), a particle-sampling method designed to
enhance generalization ability beyond previous Bayesian inference approaches. This algorithm is
based on a theoretical framework that extends generalization principles from Euclidean spaces to
the infinite-dimensional RKHS. In our experiments on the VTAB-1K benchmark, FHBI consistently
demonstrated performance improvements over six baseline methods by notable margins.

Limitations and Future Directions. Similar to other particle-sampling methods, FHBI needs to
store multiple models. Although it remains well-suited for fine-tuning since the additional modules
are typically lightweight, this requirement is a memory bottleneck for larger models. Given that
the variational inference (VI) approaches can alleviate this issue, an avenue for future research is
to extend the concept of sharpness over functional spaces introduced by our theorems to the VI
techniques to improve the generalization ability of these methods without storing multiple models.
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REPRODUCIBILITY STATEMENT

We open-source our implementation and provide the configs and log files at https://anonymous.
4open.science/r/Flat-Hilbert-Variational-Inference-008F/
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SUPPLEMENT TO “IMPROVING GENERALIZATION WITH FLAT HILBERT
VARIATIONAL INFERENCE”

A MISSING PROOFS

We introduce a few additional notations for the sake of the missing proofs of the main theoretical
results. Given a RKHSH equipped with the inner product ⟨·, ·⟩H and the norm operator ∥ · ∥H. We
define the single-sample loss function on the functional spaceH to be a map:

ℓ̃ : Hd ×X × Y → R
(f , x, y) 7→ ℓ̃(f , (x, y)).

Define the general functional loss L̃D(f) = E(x,y)∼D[ℓ̃(f , (x, y))] and the empirical functional loss
L̃S(f) =

∑n
i=1 ℓ̃(f , (xi, yi)). Throughout the proof, we assume that the parameter space is bounded

by ∥θ∥ ≤ H , and the data is al bounded that ∥x∥ ≤ R, y ≤ R for some R,H ∈ R.

We introduce the following lemmas that will be used throughout the proof of our main theorems.
Lemma 2 (Approximation of RKHS functionals). Let d ∈ N,X = [−R,R]K for some K ∈ R.
Consider K = {f ∈ H : ∥f∥H ≤ 1} with H induced by some Mercer kernel which is α-Holder
continuous for α ∈ (0, 1) with constant CK ≥ 0. Suppose F is s−Holder continuous for s ∈ (0, 1]
with constant Cf ≥ 0. There exists some M0 ∈ N such that for every M ∈ N with M > M0, by
taking some fixed t = {ti} with N ∈ N, we have a tanh neural network Ĝ with two hidden layers of
widths at most N(M − 1) and 3N+1

2 (5M)N parameters satisfying

sup
f∈K
|F (f)− Ĝ(f(t))| ≤ RCF (ϵK(t))s +

7N2RCG

M
, (18)

with
CG = CF (1 + ∥K[t]−1∥op

√
NCK(ht)

α)s,

where K[t] is the Gram matrix of t.

Proof. The proof can be found in Zhou et al. (2024)

Lemma 3 (Product of RKHSs). Given n RKHSsH1,H2, · · · ,Hn, each defined on corresponding
sets X1, X2, · · · , Xn with kernels k1(x1, y1), · · · kn(xn, yn) respectively. Then, H =

⊗n
i=1 =

H1 ×H2 × · · · × Hn is also an RKHS, with kernel K that is the product of the individual kernels.

Proof. The product spaceH =
⊗n

i=1Hi consists of tuples of functions (f1, f2, · · · , fn). Firstly, we
define the inner product inH as:

⟨(f1, f2, · · · , fn), (g1, g2, · · · , gn)⟩H =

n∑
i=1

⟨fi, gi⟩Hi
.

This definition naturally defines a Hilbert space structure onH since eachHi is a Hilbert space, and
the sum of inner products is linear and positive definite. Now we define the kernel for the product
space:

k((x1, x2, · · · , xn), (y1, y2, · · · , yn)) =
n∏

i=1

k(xi, yi).

Notice that the pointwise product of positive definite kernels is a positive definite kernel, hence this
kernel is valid.

We now verify the reproducing property ofH. Consider a function f = (f1, f2, · · · , fn) ∈ H, and
evaluate the function at a point (x1, x2, · · · , xn) ∈

⊗n
i=1Xi.

The reproducing property in each individual RKHSHi implies that:

fi(xi) = ⟨fi, ki(xi, ·)⟩Hi
.
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Hence, for the function f = (f1, · · · , fn), we get:

f((x1, x2, · · · , xn)) = (f1(x1), f2(x2), · · · , fn(xn))
= (⟨f1, k1(x1, ·)⟩H1

, ⟨f2, k2(x2, ·)⟩H2
, · · · , ⟨fn, kn(xn, ·)⟩Hn

)

= ⟨(f1, f2, · · · , fn), (k1(x1, ·), k2(x2, ·), · · · kn(xn, ·))⟩H .

Thus, the reproducing property holds for the product space H. Since H is a Hilbert space and the
kernel k satisfies the reproducing property, we conclude thatH =

⊗n
i=1Hi is another RKHS.

A.1 PROOF OF PROPOSITION 1

Proposition 1. Consider the problem of finding the distribution Q that solves:

Q∗ = min
Q≪Pθ

{
Eθ∼Q[LD(θ)] +DKL(Q∥Pθ)

}
(19)

where we search over Q absolutely continuos w.r.t Pθ , and the second term is the regularization term.
The closed-form solution to this problem is the population posterior whose density has the form:

q∗(θ) ∝ exp(−LD(θ))p(θ).

Proof. This proposition is the general case of Theorem 3.1 by Nguyen et al. (2023b). Denote q(·) as
the density function of Q. We have:

Eθ∼Q[LD(θ)] +DKL(Q∥Pθ) =

∫
Θ

LD(θ)q(θ)dθ +

∫
Θ

q(θ) log
q(θ)

p(θ)
dθ.

The Lagrangian is given by:

L(q, α) =

∫
Θ

LD(θ)q(θ)dθ +

∫
Θ

q(θ) log
q(θ)

p(θ)
dθ + α(

∫
q(θ)dθ − 1).

Taking derivative with respect to q(θ), it follows

LD + log q(θ) + 1− log p(θ) + α = 0,

q(θ) = exp(−LD(θ))p(θ) exp(−α− 1),

which implies that
q(θ) ∝ exp(−LD(θ))p(θ).

Then, the optimal solution is the population posterior p(θ|S), which concludes the proof.

A.2 PROOF OF THEOREM 1

Theorem 1. For any ρ > 0 and any distribution D, with probability 1 − δ over the choice of the
training set S ∼ Dn,

L̃D(f) ≤ max
∥f ′−f∥Hd≤ρ

L̃S(f
′)+

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
.

Proof. ℓ̃ is a functional that maps fromHd ×X × Y to R. Notice thatHd is a RKHS, X = Ra and
Y = Rb for some a, b ∈ Z are Euclidean spaces, which are also instances of RKHS. Moreover, the
product of RKHS’s is also a RKHS according to Lemma 3. Hence, Hd × X × Y is also a RKHS.
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According to Lemma 2, there exists N points θ = {θi}Ni=1 ⊂ Θ, and a two-layer neural network
GW parameterized by W so that

|ℓ̃(f , x, y)−GW (f(θ), x, y)| ≤ RCF (ϵK(t))s +
7N2RCG

M
,

for every (f , x, y) ∈ Hd × X × Y . Consider f ′ ∈ Hd so that ∥f ′ − f∥ ≤ ρ, it implies |f(θ) −
f ′(θ)| ≤ P∥f − f ′∥Hd ≤ Pρ. Denote θ̃ = f(θ) ∈ RN ′

for some N ′ ∈ Z, by invoking the
inequality from Foret et al. (2021), let ρ′ = ρP , it follows that:

L̃D(f) = E(x,y)∼D[ℓ̃(f , x, y)] ≤ E(x,y)∼D[GW (f(θ), x, y)] +RCF (ϵK(t))s +
7N2RCG

M

= E(x,y)∼D[GW (θ̃, x, y)] +RCF (ϵK(t))s +
7N2RCG

M

≤ max
∥θ̃′−θ̃∥2

2≤ρ′

1

n

n∑
i=1

GW (θ̃′, x, y) + h(M,N)

+

√√√√√√N ′ log

(
1 + C

ρ′2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
.

By definition, a RKHS is a closed Hilbert space. Then, there exists a sequence {f ′
n} so that f ′

n(θ)

that gets arbitrarily close to θ̃′. Then, for any ϵ > 0, it follows:

L̃D(f) ≤ max
∥θ̃′−θ̃∥2

2≤ρ′

1

n

n∑
i=1

GW (θ̃′, x, y) + h(M,N)

+

√√√√√√N ′ log

(
1 + C

ρ′2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1

≤ max
∥f ′(θ)−f(θ)∥2

2≤ρP

1

n

n∑
i=1

GW (f ′(θ), x, y) + h(M,N) + ϵO(1)

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1

≤ max
∥f ′−f∥2

2≤ρ

1

n

n∑
i=1

GW (f ′(θ), x, y) + h(M,N) + ϵO(1)

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1

≤ max
∥f ′−f∥2

2≤ρ
L̃S(f

′) + h(M,N) + ϵO(1)

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
.
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This is true for any ϵ > 0. Moreover, we can choose ϵK and M to be arbitrarily small so that
h(M,N)→ 0. Hence, it implies

L̃D(f) ≤ max
∥f ′−f∥2

2≤ρ
L̃S(f

′)+

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
,

which concludes our proof.

A.3 PROOF OF THEOREM 2

Now we can prove the Theorem 2. We restate the theorem
Theorem 2. For any target distribution p, reference distribution q, and any ρ > 0, we have the
following bound between the general KL loss and the empirical KL loss

DKL

(
q[f ]||p

(
θ|D

))
≤ max

f ′∈Bρ(f)
DKL

(
q[f ′]||p

(
θ|S
))

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
.

Proof. Consider the left-hand side, we have:

DKL(q[f ]∥p(θ|D)) =
∫
q[f ](θ)

(
LD(θ) + log

q[f ](θ)

p(θ)
+ logZD

)
dθ

=

∫
q[f ](θ)

(
E(x,y)∼Dℓ(θ, x, y) + log

q[f ](θ)

p(θ)
+ logZD

)
dθ

= E(x,y)∼D

[∫
q[f ](θ)

(
ℓ(θ;x, y) + log

q[f ](θ)

p(θ)

)
dθ

]
+

∫
q[f ](θ) logZDdθ.

On the other hand, we also have:

DKL(q[f ]∥p(θ|S)) =
∫
q[f ]

(
(θ)LS(θ) + log

q[f ](θ)

p(θ)
+ logZS

)
dθ

=

∫
q[f ](θ)

(
1

n

n∑
i=1

ℓ(θ, xi, yi) + log
q[f ](θ)

p(θ)
+ logZS

)
dθ

=
1

n

n∑
i=1

[∫
q[f ](θ)

(
ℓ(θ;xi, yi) + log

q[f ](θ)

p(θ)
+ logZS

)
dθ

]
+

∫
q[f ](θ) logZSdθ.

We define L̃ to be the functional such that:

L̃ : Hd ×X × Y → R

(f , x, y) 7→ L̃(f , x, y) =

∫
q[f ](θ)

(
ℓ(θ;x, y) + log

q[f ](θ)

p(θ)

)
dθ.
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According to Theorem 1, we have:

L̃D(f) ≤ max
∥f ′−f∥Hd≤ρ

L̃S(f
′) (20)

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
. (21)

Moreover, the model and data spaces are bounded, so LD(θ) and LS(θ) are bounded. Then, there
exists constants d,D such that d ≤ logZS , logZD ≤ D, which also implies d ≤

∫
q[f ] logZSdθ ≤

D and d ≤
∫
q[f ] logZDdθ ≤ D. It follows that for all f ,f ′ ∈ Hd:∫

q[f ](θ) logZDdθ ≤
∫
q[f ′](θ) logZSdθ +D − d. (22)

Combining the Inequalities 21 and 22, it follows that:

DKL

(
q[f ]||p

(
θ|D

))
≤ max

∥f ′−f∥Hd≤ρ
DKL

(
q[f ′]||p

(
θ|S
))

+

√√√√√√N ′ log

(
1 + C

ρ2P 2

(
1 +

√
log(N)
N ′

)2)
+ 4 log n

δ + 8 log(6n+ 3k)

n− 1
.

which concludes our proof.

B ADDITIONAL EXPERIMENT: EFFECT OF KERNEL CHOICE

The implementation of FHBI relies on the choice of the kernel k. In our experiments, we selected
the RBF kernel due to its widespread use in the kernel methods literature, known for its strong
representational capabilities and its ability to balance underfitting and overfitting through the kernel
width parameter σ. To evaluate the impact of different kernel choices, we tested our method on the
four Specialized datasets using the polynomial kernel of degree 10 as a comparison. The results,
summarized in Table 4, indicate that while the polynomial kernel slightly underperforms relative to
the RBF kernel, the difference is minimal, with a performance gap of less than 0.3%.

Kernel Camelyon EuroSAT Resisc45 Retinopathy AVG
RBF 85.3 95.0 87.2 79.6 86.8
Polynomial (d=10) 85.0 94.9 86.8 79.2 86.5

Table 4: Classification accuracy on the Specialized datasets with different kernel choices

C EXPERIMENTAL DETAILS

C.1 CHOSEN HYPERPARAMETERS

We grid-search hyperparameters on the validation set, where the key hyperparameters are: the
kernel width σ, the initial learning rate ϵ, and the ascend step size ρ. The candidate sets
are formed as ϵ ∈ {0.15, 1, 1.5, 2.1, 2.5}, ρ ∈ {0.01, 0.03, 0.05}, σ ∈ {0.7, 1, 1.2}. The
chosen hyperparameters are as follows (ϵ, ρ, σ): CIFAR100 = (0.15, 0.03, 1.2), Caltech101 =
(2.1, 0.05, 1.2), DTD = (0.15, 0.03, 1.2), Flowers102 = (0.15, 0.03, 1), Pets = (0.15, 0.03, 1.2),
SVHN = (2.5, 0.01, 1), Sun397 = (0.15, 0.03, 1.2), Patch-Camelyon = (2.1, 0.05, 1), DMLab
= (2.1, 0.03, 1), EuroSAT = (2.5, 0.01, 1.2), Resisc45 = (1.5, 0.03, 1.2), Diabetic-
Retinopathy = (2.1, 0.03, 1), Clevr-Count = (2.5, 0.01, 1), Clevr-Dist = (1, 0.01, 1.2),
KITTI = (2.1, 0.05, 1), dSprites-loc = (2.1, 0.05, 1), dSprites-ori = (2.1, 0.03, 1.2),
smallNorb-azi = (1, 0.05, 1), smallNorb-ele = (1, 0.03, 0.7).
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C.2 DATA AUGMENTATIONS

Our implementation is based on the repository V-PETL. Similar to this repository, we use a different
data augmentation among the following three augmentations for each dataset. In particular, the data
augmentations that we used for each setting are:

• For CIFAR100, DTD, Flower102, Pets, Sun397

self.transforms_train = transforms.Compose(
[

transforms.RandomResizedCrop(
(self.size, self.size),
scale=(self.min_scale, self.max_scale),

),
transforms.RandomHorizontalFlip(self.flip_prob),
transforms.TrivialAugmentWide()
if self.use_trivial_aug
else transforms.RandAugment(self.rand_aug_n,

self.rand_aug_m),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])]),
transforms.RandomErasing(p=self.erase_prob),

]
)
self.transforms_test = transforms.Compose(

[
transforms.Resize(

(self.size, self.size),
),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])]),
]

)

• For Caltech101, Clevr-Dist, Dsprites-Loc, Dsprites-Ori,
SmallNorb-Azi, SmallNorb-Ele:

self.transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])
self.transform_test = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])

• For Clevr-Count, DMLab, EuroSAT, KITTI, Patch Camelyon,
Resisc45, SVHN, Diabetic Retinopathy:

from timm.data import create_transform
self.transform_train = create_transform(

input_size=(224, 224),
is_training=True,
color_jitter=0.4,
auto_augment=’rand-m9-mstd0.5-inc1’,
re_prob=0.0,
re_mode=’pixel’,
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re_count=1,
interpolation=’bicubic’,

)
aug_transform.transforms[0] = transforms.Resize((224, 224),

interpolation=3)
self.transform_test = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])
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