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Abstract
Quantizing the weights of large language models (LLMs) from 16-bit to lower bitwidth is
the de facto approach to deploy massive transformers onto more affordable accelerators.
GPTQ emerged as one of the standard methods for one-shot post-training quantization
at LLM scale. Yet, its inner workings are described as a sequence of ad-hoc algebraic
updates that obscure any geometric meaning or worst-case guarantees. In this work, we
show that, when executed back-to-front (from the last to first dimension) for a linear layer,
GPTQ is mathematically identical to Babai’s nearest plane algorithm for the classical
closest vector problem (CVP) on a lattice defined by the Hessian matrix of the layer’s
inputs. This equivalence is based on a sophisticated mathematical argument, and has two
analytical consequences: (i) the GPTQ error propagation step gains an intuitive geometric
interpretation; (ii) GPTQ inherits the error upper bound of Babai’s algorithm under the
no-clipping condition. Taken together, these results place GPTQ on a firm theoretical
footing and open the door to importing decades of progress in lattice algorithms towards
the design of future quantization algorithms for billion-parameter models.
Keywords: LLM, Quantization, Lattice Algorithm, Closest Vector Problem

1. Introduction

Post-training quantization has emerged as the default practical solution for reducing the
footprint of GPT-scale models, without retraining. Among a growing family of methods,
GPTQ (Frantar et al., 2023) was the first to push one-shot quantization down to the 4-bit
regime, while retaining near-baseline accuracies. Despite its (relative) age, the method is still
very popular, and still yields state-of-the-art results in some regimes (Kurtic et al., 2024).

The GPTQ algorithm was originally presented as a sequence of algebraic operations,
applied greedily. This paper is the first1 to provide a geometric interpretation for GPTQ,
which implies new error bounds. Our main results are (i) the GPTQ optimization problem,
i.e. linear-layer quantization with the L2 objective on the output, is equivalent to the closest
vector problem (CVP) w.r.t. L2 distance; (ii) GPTQ executed from the last to first dimension
is the same as Babai’s nearest plane algorithm on the basis of the factorized Hessian matrix,
without LLL basis reduction, and this finding holds independently of whether weight clipping
is used; and (iii) the worst-case layer-wise error in thr no-clipping setting is bound tightly
by the trace of the diagonal matrix of the LDL decomposition of the Hessian matrix.

This lattice perspective explains GPTQ’s advantage: viewing activations as a lattice basis,
each GPTQ step is the orthogonal projection onto the nearest hyperplane. Conceptually,
the work sits squarely within the workshop scope by tying representational geometry and
symmetry-structured (lattice) algorithms to practical quantization of neural networks.

1. The concurrent work of Birnick (2025) appeared on arXiv later than our preprint.
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2. Related Work

Second-order compression (pruning and quantization). The idea of using Hessian
information to guide parameter removal dates back to Optimal Brain Damage (LeCun et al.,
1989) and Optimal Brain Surgeon (OBS) (Hassibi et al., 1993). Optimal Brain Compression
(OBC) (Frantar and Alistarh, 2022) generalizes OBS to the post-training setting and unifies
structured pruning and quantization (also called Optimal Brain Quantizer, OBQ) under a
single exact solver. GPTQ (Frantar et al., 2023) inherits OBQ’s error propagation method
but applies it in a fixed order, so that the inverse Hessian can be shared and only needs
to be computed once. GPTQ only has cubic computational complexity in the column/row
dimension, making it suitable for LLMs. QuIP (Chee et al., 2023) proves an error guarantee
for GPTQ and proposes the LDLQ method as an equivalent variant of GPTQ.

Lattices, CVP algorithms, and hardness. The closest vector problem (CVP) is
NP-complete to approximate within any constant factor under polynomial-time reductions
(van Emde Boas, 1981; Micciancio and Goldwasser, 2002; Dinur et al., 2003), motivating
decades of approximation algorithms. Babai’s nearest plane heuristic (Babai, 1986) delivers
a solution in polynomial time and, when preceded by LLL basis reduction (Lenstra et al.,
1982), enjoys a 2O(n) approximation.

3. Preliminaries and Notations

3.1. Linear-Layer Quantization Problem

Problem. Let X = [x1, . . . ,xn]
⊤ ∈ Rn×c be the sampled calibration input data of batch size

n and input dimension c with xi ∈ Rc and n ≥ c = rank (X). Let W = [w1, . . . ,wr] ∈ Rc×r

be the linear layer weights of input dimension c and output dimension r with wi ∈ Rc. Let
S = [s1, . . . , sr] ∈ Rc×r be the non-zero quantization scales with si ∈ Rc

̸=0. Here we consider
a general case that applies to any grouping pattern: each weight element2 wi[j] has its own
scaling factor si[j]. Assume S is statically computed using methods like AbsMax or MSE be-
fore any weight updates. Let Z† ⊆ Z be the quantization grid (representable integers). In the
clipping cases, e.g., for INT4 format, Z† = {−8, . . . ,−1, 0, 1, . . . , 7}. In the no-clipping cases,
Z† = Z, which allows any integers as the quantization results. Let Z = [z1, . . . ,zr] ∈ Z†c×r

be the (unknown) quantized integers with zi ∈ Z†c. Denote Q = [q1, . . . , qr] ∈ Rc×r as the
dequantized weights with qi = diag (si) zi ∈ Rc. The goal is to minimize the L2 error on the
layer output XW ∈ Rn×r: ∥XQ−XW ∥2F =

∑r
i=1 ∥X diag (si) zi −Xwi∥2 , i.e, finding

argminzi∈Z†c ∥X diag (si) zi −Xwi∥2 for all 1 ≤ i ≤ r.
GPTQ algorithm. For each weight vector wi, the algorithm sequentially picks one

weight wi[j] at a time, quantizes it via round-to-nearest as qi[j], and then optimally updates
the remaining unquantized weights via an OBQ update step wi[j

′]← wi[j
′] + ∆wi[j

′] for

all j′ in the unquantized indices set J with ∆wi[j
′] ← (X[:,J ]⊤X[:,J ])

−1
[j′,j]

(X[:,J ]⊤X[:,J ])
−1

[j,j]
(qi[j]−wi[j]).

Algorithm 1 in Section C.1 is the pseudocode of GPTQ.

2. We use Python-style indexing inside square brackets to select elements and sub-matrices.
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3.2. The Closest Vector Problem (CVP)

Problem. Let B = [b1, . . . , bc] ∈ Rn×c be a set of c basis vectors of dimension n with
bj ∈ Rn and n ≥ c = rank (B). Let y ∈ Rn be an external target vector to approximate.
Let z ∈ Zc be the (unknown) integer vector representing the basis combinations of the
lattice vector. The goal is to find the vector on the lattice defined by the basis B that is
the closest to the external vector y, i.e., finding argminz∈Zc ∥Bz − y∥2. A visualization of
a two-dimensional CVP is shown in Figure 1 (a).
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Figure 1: Upper row: (a) CVP in a two-dimensional lattice; (b-c) The projection steps in
Babai’s nearest plane algorithm without basis reduction; (d) Basis reduction can
find a shorter, more orthogonal basis that can potentially improve the results.
Lower row: rounding boundaries of (e) optimal rounding or Voronoi cells; (f)
round-to-nearest (RTN); (g) Babai’s nearest plane algorithm without basis reduc-
tion; (h) Babai’s algorithm without basis reduction under reversed basis ordering.

Babai’s nearest plane algorithm. Algorithm 2 in Section C.1 is the pseudocode of
Babai’s nearest plane algorithm to solve CVP, which iteratively projects a target vector onto
the nearest hyperplane and rounds the coefficient. Figure 1 (b-c) visualize the projection
steps, and Figure 1 (d) visualizes the basis reduction step that can be executed before the
projections. Figure 1 also shows the rounding boundaries of the optimal (e), round-to-nearest
(RTN) (f), and Babai’s algorithm without basis reduction (g-h). Compared to RTN, Babai’s
algorithm generates rectangular partitions and thus has a smaller worst-case error. Babai’s
algorithm has been proven to have an error bound.

4. Main Results

4.1. Equivalence of Quantization and CVP

The L2 objective quantization problem argminzi∈Z†c ∥X diag (si) zi −Xwi∥2 and a CVP
with the L2 distance argminz∈Zc ∥Bz − y∥2 share the same solution (z = zi) whenever the
structural conditions B = X diag (si) and y = Xwi hold and the solution domain matches.
To ensure the solution domain matches, we can either disable the clipping in the quantization
setup (setting Z† = Z) or enable the clipping in the CVP setup (making z ∈ Z†c).
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4.2. GPTQ and Babai’s Algorithm

Section C.2 describes the quantization procedures using Babai’s algorithm. By default,
GPTQ (Algorithm 1) runs from the first to the last dimension (j ← 1 to c) while Babai’s
algorithm (Algorithm 3) runs from the last to the first dimension (j ← c to 1).

Geometric interpretation. Section B shows that each intermediate weight vector
produced by GPTQ can be viewed as Babai’s residual in activation space: if we regard
the floating-point weight vector as a target point and the activations as the lattice basis,
GPTQ performs an orthogonal walk through a nested sequence of affine subspaces. At step j
it projects the current residual onto the hyperplane orthogonal to the j-th Gram-Schmidt
vector, while the familiar error propagation update is exactly this orthogonal projection.

Theorem 1 GPTQ and Babai’s algorithm have the same results if we align the dimensional
order of these two algorithms, e.g., running GPTQ from the last to the first dimension.

This is our main technical contribution. The full proof is presented in Section F.

4.3. Quantization Error Bound

Having established the correspondence between GPTQ and Babai’s nearest plane algorithm,
we can now import Babai’s approximation guarantee to obtain an upper bound on the
layer-wise quantization error in the no-clipping cases.

Theorem 2 Assume there is no clipping (Z† = Z). Let D be the diagonal matrix in the
LDL decomposition of the Hessian matrix X⊤X. For every output channel i (1 ≤ i ≤ r)
produced by Babai’s algorithm, or equivalently GPTQ executed back-to-front, the quantization
error has a tight error upper bound: ∥X diag (si) zi −Xwi∥2 ≤ 1

4s
⊤
i Dsi.

The full proof is presented in Section D. We also empirically evaluated GPTQ in the
no-clipping scenarios. The results and analysis are presented in Section A.

The quadratic form on the right-hand side of the error bound in Theorem 2 is sensitive to
the pivot order of the LDL decomposition of the Hessian matrix, aka the quantization order.
GPTQ introduces the so-called “act-order”, the descending order of the Hessian diagonal.
This translates to the ascending order of the Hessian diagonal when applied to Babai’s
algorithm. Section E further discusses on this topic.

5. Conclusion

We have shown that GPTQ, when executed back-to-front, is mathematically identical to
Babai’s nearest plane algorithm applied to the lattice defined by a layer’s Hessian without
basis reduction. Looking ahead, extending the analysis to clipped grids and exploring scale-
aware basis reductions are the immediate next steps. More broadly, the lattice perspective
opens a two-way channel: decades of CVP heuristics can refine practical quantizers, while
the behavior of massive neural networks may, in turn, inspire new questions for lattice theory.
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Appendix A. Experimental Results

A.1. Setup

In this section, we provide a detailed description of our experimental setup and procedures
for comparing the quantization accuracy of different methods.

We work with the Qwen3 family of models, which come in a range of sizes. We focus
on the Qwen3-8B model for detailed head-to-head comparisons, while the other variants,
Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B, and Qwen3-14B, help us assess how our method
performs across different model scales.

We construct the calibration dataset for the GPTQ algorithm using the FineWeb-Edu
dataset (HuggingFaceFW/fineweb-edu, subset sample-10BT). The dataset is streamed and
shuffled with a fixed seed for reproducibility. After tokenizing the text samples, our 256
sequences are accumulated into non-overlapping sequences of length 2048.

We use WikiText-2 and C4 for perplexity evaluations. For WikiText-2, the entire test
split is first concatenated using two line breaks as separators and then tokenized with the
default HuggingFace tokenizer for each model. For C4, we sample individual documents from
the selected shard, tokenize them, and randomly extract sequences of the desired length.
In both cases, sequences shorter than the target length (2048 tokens) are discarded, and
sequences longer than the target length are cropped to the specified window.

A.2. Results

We compare the round-to-nearest (RTN) and GPTQ quantization methods under two settings:
even-bitwidth MSE clipped integers (RTN-MSE, GPTQ-MSE), and Huffman-encoded uneven-
bitwidth unclipped integers (RTN-Huffman, GPTQ-Huffman).

In GPTQ-MSE, we use the standard GPTQ method, which quantizes with group size
128 and uses the mean squared error (MSE) for scale selection. RTN-MSE is just a round-
to-nearest quantization method without Hessian guidance, which also uses group size 128
and MSE scale selection. In GPTQ-Huffman and RTN-Huffman, we find a unique scalar
scale for a whole weight matrix via an entropy-based binary search. We start with a range
proportional to the weight standard deviation and iteratively test candidate scales. At each
step, the weights are quantized (using GPTQ or RTN) to integers without clipping, and the
Huffman coding cost (which is close to the entropy) of the quantized values is measured.
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The scale is adjusted until the resulting Huffman encoding bits match the target bitwidth.
This allows optimizing compression efficiency while maintaining accuracy.

As shown in Figure 2, the left subplot compares different quantization methods on
Qwen3-8B, highlighting that GPTQ-Huffman maintains low perplexity even at reduced
bitwidths. The right subplot demonstrates the scaling behavior of GPTQ-Huffman across
multiple model sizes, illustrating how effective model size in gigabytes impacts perplexity for
different quantization bitwidths, and showing 3.125-bit as the Pareto optimal bitwidth.
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Figure 2: Perplexity compression trade-offs for Qwen3 models under different quantization
schemes. Left: Comparison of quantization methods (RTN-MSE, GPTQ-MSE,
RTN-Huffman, and GPTQ-Huffman) on Qwen3-8B evaluated on WikiText-2.
Perplexity is plotted against the average effective bitwidth per weight, with the
BF16 baseline shown as a dashed line. GPTQ-Huffman has the best (lowest)
perplexity. Right: Scaling behavior of GPTQ-Huffman across multiple model
sizes (0.6B, 1.7B, 4B, 8B, 14B) and bitwidths (4.125, 3.125, 2.125). The x-axis
denotes the effective model size after quantization, and the y-axis shows perplexity
on WikiText-2. Each curve corresponds to a fixed bitwidth, while points along
a curve represent different model scales. Using our GPTQ-Huffman method,
3.125-bit stands out as the Pareto optimal bitwidth.

We now compare the benchmark results between RTN-MSE, GPTQ-MSE, RTN-Huffman,
and GPTQ-Huffman using the Qwen3-8B model (Table 1). In addition, the results for other
variants of Qwen3 with GPTQ-Huffman are shown in Table 2.

Table 3 shows additional results for the zero-shot and five-shot tasks. We use TruthfulQA
for the zero-shot and WinoGrande for the five-shot section. Also, the additional results for
GPTQ-Huffman of other Qwen3 models are in the Tables 4 and 5.
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Table 1: Perplexity of Qwen3-8B model under GPTQ-Huffman, GPTQ-MSE, RTN-Huffman,
and RTN-MSE with different bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

RTN-MSE
4.125 10.3 15.2
3.125 16.3 21.08
2.125 2e10 2e10

GPTQ-MSE
4.125 10.1 13.92
3.125 12.77 15.61
2.125 57.51 36.14

RTN-Huffman
4.125 9.9 13.8
3.125 10.75 14.63
2.125 593.05 503

GPTQ-Huffman
4.125 9.88 13.14
3.125 10.4 13.6
2.125 13.97 16.89
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Table 2: Perplexity of Qwen3 models under GPTQ-Huffman for different bitwidths.
Model Avg Bitwidth Perplexity

WikiText-2 C4

0.6B

16 20.96 26.37
4.125 22.72 28.35
3.125 31.43 37.92
2.125 156.45 171.38

1.7B

16 21.03 25.11
4.125 18.18 20.99
3.125 19.72 23.15
2.125 46.94 51.96

4B

16 13.66 17.07
4.125 14.26 17.39
3.125 14.55 18.17
2.125 24.4 26.46

8B

16 9.73 13.55
4.125 9.88 13.14
3.125 10.4 13.6
2.125 13.97 16.89

14B

16 8.65 12.23
4.125 8.76 12.12
3.125 9.06 13.97
2.125 11.36 15.5
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Table 3: Zero-shot and five-shot results for Qwen3-8B model.
Method Avg Bitwidth WinoGrande (%) TruthfulQA (%)

mc-1 mc-2

BF16 Baseline 16 70.56 36.35 54.50

GPTQ-Huffman
4.125 70.09 35.01 53.36
3.125 69.46 36.11 54.73
2.125 62.43 31.09 49.01

GPTQ-MSE
4.125 70.8 36.35 54.55
3.125 68.51 36.11 55.21
2.125 55.64 28.4 46.91

RTN-Huffman
4.125 68.9 36.47 56.46
3.125 67.96 35.13 53.68
2.125 52.64 30.48 51.78

RTN-MSE
4.125 69.46 36.84 55.77
3.125 57.62 34.03 52.76
2.125 55.64 24.11 47.33

Table 4: TruthfullQA (%) zero-shot mc-1/mc-2 results for Qwen3 models quantized with
GPTQ-Huffman.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 27.17/42.80 29.5/45.88 37.33/54.83 36.35/54.50 40.76/58.62

4.125 26.19/41.56 28.76/45.17 36.72/54.46 35.01/53.36 40.51/58.28

3.125 25.34/41.95 29.62/46.13 35.25/53.83 36.11/54.73 39.90/58.33

2.125 23.99/46.39 28.15/48.25 31.70/50.67 31.09/49.01 36.84/54.93

Table 5: WinoGrande (%) five-shot results for Qwen3 models quantized with GPTQ-
Huffman.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 55.8 61.25 66.14 70.56 74.59

4.125 56.43 61.01 67.09 70.09 74.43

3.125 53.75 58.25 65.51 69.46 73.72

2.125 49.57 51.3 59.35 62.43 67.72
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Appendix B. OBQ and Babai’s Algorithm

(a) [3D] Babai's Projection (b) [3D] Babai & OBQ Equivalence

(c) [2D] Nearest Hyperplane (d) [2D] Orthogonal Projection Plane

Auxiliary Line
Basis Vector bj1

Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Hyperline  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j1, j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj1bj1

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j1, j2Δζjbj

Inverse Basis Vector nj1 : ⟨nj1,bj1⟩=1;nj1 ⟂bj, ∀j≠ j1
Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Orthogonal Projection Plane  : = Span{nj | j= j1, j2}
Projected Basis Vector Proj(bj1)
Projected Basis Vector Proj(bj2)
Projected Error Vector Proj(Δy) = Δy=Σj= j1, j2ΔζjProj(bj)
Projected Error Component Vector Δζj1Proj(bj1)
Projected Error Component Vector Δζj2Proj(bj2)
Angle θ=∠(nj1,nj2) = π−∠(Proj(bj1), Proj(bj2))

Figure 3: Equivalence of OBQ’s error propagation and Babai’s projection. (a) 3D plot
showing the target point being projected onto the nearest plane. (b) 3D plot
showing how the projection error is propagated. (c) 2D plot showing the vectors on
the nearest hyperplane in (b). (d) 2D plot showing the vectors on the orthogonal
projection plane in (b).

Theorem 3 Babai’s nearest plane algorithm iteratively projects the target vector onto the
nearest hyperplane and rounds the coefficient. The OBQ update step in GPTQ is exactly this
projection.

Proof Let B = [b1, . . . , bc] be the basis with bj being a basis vector. Let y =
∑

j∈J ζjbj
be the current residual target point where J is the set of unprojected indices, and ζj ∈
R is an unquantized floating-point number to be quantized to integers. Let NHP :=
⌊ζj2⌉bj2 + Span {bj | j ̸= j2} be the nearest hyperplane that is orthogonal to the Gram-
Schmidt vector of basis bj2 . Figure 3 (a) is a 3D plot showing the projection error vector
∆y = ProjNHP (y) − y. We focus on analyzing the error propagation in the direction of
basis bj1 induced by the projection of basis bj2 and collapse the span of other basis vectors
to a single dimension as illustrated by the hyperline HL := ⌊ζj2⌉bj2 + Span {bj |j ̸= j1, j2}.
Figure 3 (b) is a 3D plot showing the decomposition of the error ∆y =

∑
j∈J ∆ζjbj as the

error component vectors in the basis directions. Figure 3 (c) is a 2D plot showing the vectors
on plane NHP. The number ζj will be updated to ζj + ∆ζj such that ProjNHP (y) =∑

j∈J (ζj +∆ζj) bj . Next, let N = B−⊤ = [n1, . . . ,nc] be the inverse basis. Then, we

11
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have ⟨nj , bj⟩ = 1 and nj ⊥ bj′ , ∀j ̸= j′. We project all the vectors in Figure 3 (b) onto
the orthogonal projection plane OPP := Span {nj |j = j1, j2} that is orthogonal to the
hyperline HL, and continue the proof in the 2D geometry in Figure 3 (d). Denote the angle

θ = ∠ (nj1 ,nj2) = π−∠ (ProjOPP (bj1) ,ProjOPP (bj2)). Then, ∆ζj1∥ProjOPP(bj1)∥
∆ζj2∥ProjOPP(bj2)∥

= cos θ =

⟨nj1
,nj2⟩

∥nj1∥∥nj2∥
=
∥nj2∥
∥nj1∥

⟨nj1
,nj2⟩

⟨nj2
,nj2⟩

. For j = j1, j2, ∥ProjOPP (bj)∥ ∥nj∥ =
⟨ProjOPP (bj),nj⟩

cos(π
2
−θ)

=

⟨bj ,nj⟩
cos(π

2
−θ)

= 1
cos(π

2
−θ)

. For j, j′ ∈ {j1, j2},
〈
nj ,nj′

〉
=
(
N⊤N

)
[j, j′] =

(
B⊤B

)−1
[j, j′].

Combining the above equations, ∆ζj1 =
∥ProjOPP(bj2)∥∥nj2∥
∥ProjOPP(bj1)∥∥nj1∥

⟨nj1
,nj2⟩

⟨nj1
,nj2⟩

∆ζj2 =
⟨nj1

,nj2⟩
⟨nj2

,nj2⟩
∆ζj2 =

(B⊤B)
−1

[j1,j2]

(B⊤B)
−1

[j2,j2]
∆ζj2 . Finally, substituting B = (X diag (si)) [:, J ] and ζj =

wi[j]
si[j]

completes

the proof.

Auxiliary Line
Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane (Hyperline)  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j2Δζjbj

Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Projected Basis Vector Projnj2(bj2)

Figure 4: Geometric interpretation of OBQ’s quantization order. This 2D plot shows the
target point being projected onto the nearest plane.

Corollary 4 At each step, OBQ quantizes the unquantized dimension j such that the nearest
hyperplane of dimension j is the closest to the target residual vector.

Proof We use the same symbols defined in Theorem 3. Figure 4 is a 2D plot showing
the distance (projection/quantization error) between the target residual vector y and the
nearest hyperplane NHP orthogonal to the Gram-Schmidt vector of basis bj2 . For better
illustration, we collapse NHP to a single dimension. The distance ∥∆y∥ can be written as

∥∆y∥ =
∥∥∥Projnj2

(∆y)
∥∥∥ = |∆ζj2 |

∥∥∥Projnj2
(bj2)

∥∥∥ =
|∆ζj2 |
∥nj2∥

. For each wi, OBQ independently

selects j = argminj∈J
(qi[j]−wi[j])

2

(X[:,J ]⊤X[:,J ])
−1

[j,j]
= argminj∈J

(∆ζj)
2

⟨nj ,nj⟩ = argminj∈J
|∆ζj |
∥nj∥ as the next

dimension to quantize, which is exactly minimizing this distance.

Appendix C. Algorithms

C.1. Pseudocodes of GPTQ and Babai’s Algorithm

GPTQ algorithm. Algorithm 1 is the GPTQ algorithm for linear-layer quantization. The
algorithm is identical to the original GPTQ paper (Frantar et al., 2023) except for missing

12
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the blocking mechanism that only affects the memory access pattern and computational
speed, but not the numerical results.

Additional notations are as follows. T ∈ [0, 1]c×c is a permutation matrix that modifies
the dimensional order of GPTQ quantization. The default order is front-to-back (from the
first to last dimension), i.e., T = I. λ ∈ R+ is a small damping factor for computing the
Hessian matrix. Function LDL returns the lower triangular matrix in LDL decomposition.
Function Round

(
·,Z†) = min

(
max

(
⌊·⌉ ,Z†

min

)
,Z†

max

)
returns the element-wise closest

values in Z†. We use Python-style indexing inside square brackets to select sub-matrices,
e.g., [j, :] selects the j-th row vector, [:, j] selects the j-th column vector, and [j :, j] selects
the sub-column consisting of rows after j-th (included) row in j-th column, etc.

Babai’s nearest plane algorithm. Algorithm 2 is Babai’s nearest plane algorithm (Babai,
1986) to solve CVP, which iteratively projects a target vector onto the nearest hyperplane
and rounds the coefficient.

Additional notations are as follows. Function LLL returns the transformation matrix of
the LLL reduction with parameter delta defaulting to 3

4 . Function QR returns the orthogonal
matrix in QR decomposition, the same as the normalized Gram-Schmidt orthogonalization
process. Function Round and the indexing inside square brackets are defined as in the
GPTQ algorithm.

Algorithm 1: GPTQ
Input: W ,S,X,T , λ,Z†

Output: Z,Q
1 H ← T⊤ (X⊤X + λI

)
T

2 L← LDL
(
H−1

)
3 W ,S ← T−1W ,T−1S
4 Q,Z ←W ,0
5 for j ← 1 to c do
6 ζ ←W [j, :]/S[j, :]

7 Z[j, :]← Round
(
ζ,Z†)

8 Q[j, :]← Z[j, :] ∗ S[j, :]
9 ε← Q[j, :]−W [j, :]

10 W [j :, :]←W [j :, :] +L[j :, j]ε

11 end
12 Z,Q← TZ,TQ

Algorithm 2: Babai’s Nearest Plane
Input: B,y
Output: z

1 T ← LLL (B) // transformation
2 A← BT // basis reduction
3 Φ← QR (A) // orthogonalize
4 y′, z ← y,0
5 for j ← c to 1 do
6 ζ ← ⟨Φ[:, j],y′⟩ / ⟨Φ[:, j],A[:, j]⟩
7 z[j]← Round (ζ,Z)
8 y′ ← y′ −A[:, j]z[j]

9 end
10 z ← Tz

C.2. Applying Babai’s Algorithm to Batched Quantization

We can introduce a factor of the Hessian matrix, X = [χ1, . . . ,χc] with X⊤X = X⊤X .
The loss can then be reformulated as ∥X diag (si) zi −Xwi∥2.

Theorem 5 The CVPs using any possible factors X of the Hessian matrix X⊤X are
equivalent under an orthogonal transformation (rotation and sign changes) of the lattice and
external target vectors.

13
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Proof Let X and X ′ be two possible factors of the Hessian matrix with X⊤X = X ′⊤X ′.
The inner products χ⊤

j1
χj2 and χ′⊤

j1
χ′
j2

must be equal for all 1 ≤ j1, j2 ≤ c. In other words,
the lengths of χj1 and χ′

j1
must be the same, and the angle between χj1 and χj2 and the

angle between χ′
j1

and χ′
j2

must be the same, for all 1 ≤ j1, j2 ≤ c.

According to Theorem 5, any decomposition factor X of the Hessian matrix X⊤X can be
used instead of X without changing the geometric properties of the CVP and its associated
quantization problem. This is useful to reduce the computational cost, e.g., we can use a
square matrix X ∈ Rc×c instead of the rectangular matrix X ∈ Rn×c.

Given the equivalence we have shown in Section 4.1, the quantization problem can be
converted to CVP, allowing us to apply Babai’s nearest plane algorithm in the context of
quantization. A naive way is to compute B(i) = X diag (si) and y(i) = Xwi and run Babai’s
algorithm independently for all 1 ≤ i ≤ r. However, this is computationally inefficient, as
we will need to compute the expensive (O

(
c4
)
) LLL basis reduction transformation T(i) for

the basis B(i) and the expensive (O
(
c3
)
) QR decomposition of A(i) = B(i)T(i) for r times.

However, a few adjustments can be made to simplify the computation and enable batched
processing.

Disabling basis reduction. The LLL basis reduction is unfortunately scale-sensitive,
generating different transformations T(i) for different scales si (unless all the si vectors are
parallel), which prohibits the reuse of QR decomposition results. Furthermore, LLL basis
reduction is incompatible with clipping, as the roundings are performed in another basis,
and there is no easy way to do the clipping for the original basis.

Changing quantization order. Quantization order is a feature in GPTQ that controls the
rounding and clipping order of the dimensions. This order influences the quantization error,
as we will discuss later in Section 4.3. In the context of Babai’s algorithm, this corresponds to
the order of the basis in the Gram-Schmidt orthogonalization and the hyperplane projections,
as shown in Figure 1 (g-h). To do so, we can replace the LLL basis reduction in Babai’s
algorithm with a permutation by setting the transformation matrix T to a permutation
matrix that is independent of i.

Theorem 6 If T is a permutation matrix that does not depend on i, the orthogonal matrix
Φ can be reused without recomputing the QR decomposition for each i.

Proof The permutation matrix T ∈ [0, 1]c×c has exactly one non-zero element in each row
and column. Scaling the rows of T can also be interpreted as scaling the columns of T , there-
fore its multiplication with a diagonal matrix has property: diag (si)T = T diag

(
T−1si

)
.

Let A = XT , A(i) = X diag (si)T . Denote the QR decomposition of A as A = ΦR with
Φ being an orthogonal matrix and R being an upper triangular matrix. Then, the QR de-
composition of A(i) becomes A(i) = X diag (si)T = XT diag

(
T−1si

)
= A diag

(
T−1si

)
=

Φ
(
R diag

(
T−1si

))
. Therefore, the QR decompositions of A(i) share the same orthogonal

matrix Φ for all 1 ≤ i ≤ r.

As shown in Theorem 6, changing quantization order does not require repeated computation
of the QR decomposition. Note that, we also need to permute the scale S accordingly to
T−1S.
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Selecting basis. Putting things together, we are interested in A = XT and its QR
decomposition Φ. Theorem 5 allows us to choose any Hessian factor X while keeping the
result intact. Without loss of generality, we can choose a X such that A is an upper triangular
matrix and the QR decomposition becomes trivial: Φ = I, which simplifies the computation.
The upper triangular matrix A can be directly computed from the Cholesky decomposition
of the permuted Hessian matrix A⊤A = T⊤X⊤XT .

Applying all the considerations in this subsection, we construct Algorithm 3 for batched
quantization using Babai’s algorithm.

Algorithm 3: Babai’s Quantize
Input: W ,S,X,T , λ,Z†

Output: Z,Q
1 H ← T⊤ (X⊤X + λI

)
T

2 A← Cholesky (H)⊤

3 W ,S ← T−1W ,T−1S
4 Y ,Q,Z ← AW ,W ,0
5 for j ← c to 1 do
6 ω ← Y [j, :]/A[j, j]
7 ζ ← ω/S[j, :]

8 Z[j, :]← Round
(
ζ,Z†)

9 Q[j, :]← Z[j, :] ∗ S[j, :]
10 Y ← Y −A[:, j]Q[j, :]

11 end
12 Z,Q← TZ,TQ

Ineffectiveness of additional GPTQ refinement on Babai’s algorithm. A seemingly
appealing idea is to take the solution returned by each Babai’s iteration and then perform
one further GPTQ-style error propagation step on the weights in the space projected by A,
as a further update on Y , hoping to push the approximation even closer to the optimum.
However, as proved in Section F.4, such an extra update vanishes: the intermediate quantity
ω and therefore the final results of Z and Q remain unchanged. In other words, once
Babai’s projection has been executed, any subsequent GPTQ-style correction is algebraically
redundant. This result confirms that the equivalence established in Theorem 1 is already
tight and that neither algorithm can be strengthened by naively composing it with the other.

Appendix D. Error Bound

D.1. Babai’s Error Bound

Formally, let Φ = [ϕ1, . . . ,ϕc] be the set of normalized Gram-Schmidt vectors of the basis
A = [a1, . . . ,ac]. Let Ã = [ã1, . . . , ãc] denote the unnormalized Gram-Schmidt vectors with
ãj = ⟨ϕj ,aj⟩ϕj . At iteration j, the algorithm replaces the exact coefficient ζ by the closest
integer, so the deviation satisfies |ζ − z[j]| ≤ 1

2 . Hence the error component along b̃j has
norm at most 1

2 ∥ãj∥. Because the Ã is orthogonal, these error components add in Euclidean
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norm, giving a bound on the residual vector y′: ∥y′∥2 ≤ 1
4

∑c
j=1 ∥ãj∥2 = 1

4

∑c
j=1 ⟨ϕj ,aj⟩2.

Babai’s algorithm guarantees to return the center vector of the hyper-cuboid (Figure 1 (g))
constructed by the unnormalized Gram-Schmidt vectors Ã where the target y is located.
Equality is attained when the target y lies at the corner of the hyper-cuboid, so the bound
is tight.

Babai (1986) additionally proved the relative error bound for γ with ∥Bz − y∥ ≤

γ · minz′∈Zc ∥Bz′ − y∥. The bound is 1 ≤ γ ≤
√
1 + max1≤j≤c

∑j

j′=1
∥ãj′∥2

∥ãj∥2
≤
√
c+ 1 ·

max1≤j′≤j≤c
∥ãj′∥
∥ãj∥ .

D.2. Quantization Error Bound

Theorem 7 (Theorem 2 with permutation matrix T ) Assume there is no clipping
(Z† = Z). Let D be the diagonal matrix in the LDL decomposition of the permuted Hessian
matrix T⊤X⊤XT . For every output channel i (1 ≤ i ≤ r) produced by Babai’s algorithm
(Algorithm 3), or equivalently GPTQ executed back-to-front, the quantization error has a
tight error upper bound: ∥X diag (si) zi −Xwi∥2 ≤ 1

4s
⊤
i T

−⊤DT−1si.

Proof Denote B(i) = X diag (si), y(i) = Xwi as in Section 4.1 so that the quantization
problem is the CVP minimizing

∥∥B(i)zi − y(i)

∥∥2. Applying Babai’s algorithm with the
permutation T gives the permuted basis A(i) = B(i)T = X diag (si)T = XT diag

(
T−1si

)
.

Write the unnormalized Gram-Schmidt vectors of A(i) as Ã(i) =
[
ã(i)1, . . . , ã(i)c

]
. Babai’s

guarantee therefore yields the tight bound
∥∥B(i)zi − y(i)

∥∥2 =
∥∥A(i)

(
T−1zi

)
− y(i)

∥∥2 ≤
1
4

∑c
j=1

∥∥ã(i)j

∥∥2.
We may, without loss of generality, use Theorem 5 to rotate X so that A(i) is upper triangu-

lar. In that case, the norm
∥∥ã(i)j

∥∥ simplifies to
∣∣A(i)[j, j]

∣∣. The summation on the right-hand
side can then be expressed as tr

(
D(i)

)
with D(i) denoting the diagonal matrix of the LDL

decomposition of A⊤
(i)A(i). Let L be the lower triangular matrix in the LDL decomposition

of T⊤X⊤XT , so that A⊤
(i)A(i) = diag

(
T−1si

)
T⊤X⊤XT diag

(
T−1si

)
= L(i),D(i),L⊤

(i)

with D(i) = diag
(
T−1si

)
D diag

(
T−1si

)
and L(i) = diag

(
T−1si

)
L diag

(
T−1si

)−1. The
trace tr

(
D(i)

)
= s⊤i T

−⊤DT−1si. Dividing by 4 completes the bound.

For no-clipping GPTQ with the default front-to-back order (Algorithm 1) and the permutation
T , the error bound is ∥X diag (si) zi −Xwi∥2 ≤ 1

4s
⊤
i T

−⊤PDPPT−1si with DP being the
diagonal matrix in the LDL decomposition of PT⊤X⊤XTP.

For the relative no-clipping quantization error bound, we have 1 ≤ γ ≤
√

1 + max1≤j≤c

∑j

j′=1
d2
j′

d2j
≤

√
c+ 1 ·max1≤j′≤j≤c

∥dj′∥
∥dj∥ where dj =

√
(diag (si)T−⊤DT−1diag (si)) [j, j] for Babai’s al-

gorithm and dj =
√

(diag (si)T−⊤PDPPT−1diag (si)) [j, j] for the GPTQ algorithm.
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D.3. Expected Quantization Error over a Uniform Hyper-Cuboid

We have shown that, when clipping is disabled, Babai’s nearest-plane (hence back-to-front
GPTQ) ensures the tight worst-case bound

∥X diag (si) zi −Xwi∥2 ≤
1

4

c∑
j=1

∥ãj∥2 , Ã = [ã1, . . . , ãc] (1)

where ãj are the unnormalized Gram-Schmidt vectors of the permuted lattice basis A.
Introduce the half-edge lengths

aj =
1

2
∥ãj∥ , j = 1, . . . , c, (2)

so that the Babai residual always lies in the axis-aligned hyper-cuboid
∏c

j=1 [−aj , aj ] and
Eq. 1 is rewritten as

ϵworst =

c∑
j=1

a2j . (3)

Uniform prior on the unknown weight vector. Assume now that the continuous
unquantized weight offset u = X (wi − diag(si)zi) is uniformly distributed inside this hyper-
cuboid, i.e., each coordinate uj ∼ Uniform (−aj , aj) and the coordinates are independent.
The squared error becomes the random variable

ϵ =
c∑

j=1

u2j . (4)

Lemma 8 For a scalar u ∼ Uniform (−a, a) one has E[u2] = a2

3 .

Proof

E[u2] =
1

2a

∫ a

−a
u2du =

1

2a

[
1

3
x3
]a
−a

=
a2

3
. (5)

Expected residual norm. Using independence,

E[ϵ] =
c∑

j=1

E
[
u2j
]
=

1

3

c∑
j=1

a2j . (6)

Ratio to the worst-case bound. Comparing Eq. 6 with Eq. 3 gives

E[ϵ] =
1

3
ϵworst =⇒ E

[
∥X diag (si) zi −Xwi∥2

]
=

1

12

c∑
j=1

∥ãj∥2. (7)

Hence, under a uniform prior on the weights inside Babai’s orthogonal hyper-cuboid, the
average layer-wise quantization error is exactly 1

3 of the worst-case guarantee stated in
Theorem 2.
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Appendix E. Discussion on Quantization Order

The quadratic form on the right-hand side of the error bound in Theorem 2 depends on
the permutation matrix T . Re-ordering the dimensions changes the entries of the diagonal
matrix D before the scale si is “weighted” by them. A poor order may place large D entries
against large si entries and hence inflate the bound.

For a batched quantization algorithm like GPTQ or our proposed Babai’s algorithm, T
should be independent of i. To develop a good heuristic order, a reasonable approximation
to make, especially for large quantization group sizes, is that the elements of si[j] are equal
for all 1 ≤ j ≤ c. Then we can focus on finding the optimal pivot order for the LDL
decomposition of the Hessian matrix X⊤X to minimize the trace of D.

Finding the optimal order is NP-hard, e.g. Rose et al. (1976). However, heuristics often
effectively reduce the trace term in practice. Even in the clipping cases, the heuristics still
can often reduce the error. GPTQ introduces the so-called “act-order”, the descending order
of the Hessian diagonal. This translates to the ascending order of the Hessian diagonal when
applied to Babai’s algorithm. This “act-order” is a good heuristic, but it only considers the
information from the Hessian diagonal instead of the full matrix.

To improve the “act-order”, we propose the “min-pivot” order, which is essentially taking
the minimum diagonal entry at each LDL (or Cholesky) decomposition step. This order can
be calculated by Algorithm 4, which has cubic time complexity and does not increase the
overall time complexity of the whole quantization process. This order also has a geometric
interpretation as the order of the Gram-Schmidt orthogonalization process of the basis:
always taking the shortest residual vector as the next one to orthogonalize, agreeing with
Babai’s relative error bound.

Algorithm 4: Min-Pivot
Input: H
Output: T

1 J ← {1, . . . , c}
2 T ← 0
3 for j ← 1 to c do
4 j′ ← argminj′∈JH[j′, j′]

5 H ←H −H [:, j′]H [j′, :]/H [j′, j′]
6 T [j′, j]← 1
7 J ← J \ {j′}
8 end

Appendix F. Equivalence Proof of GPTQ and Babai’s Algorithm

In this section, we prove Theorem 1 that GPTQ (Algorithm 1) and Babai’s algorithm
(Algorithm 3) are equivalent if the dimensional orders are opposite.

Because a permutation matrix T acts only as re-ordering coordinates, we may apply T
once at the beginning (to W , S, and X) and once at the end (to Z and Q) without affecting
any intermediate arithmetic. Hence, all algebra performed inside the two algorithms can be
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analyzed in the permuted basis where T is the identity. On that basis, the sole distinction
between GPTQ and Babai’s algorithm lies in the direction of the iterations. Proving that
GPTQ running back-to-front (j ← c to 1) reproduces Babai’s updates in Babai’s default
iteration direction would complete the equivalence proof.

We follow a three-step proof scheme.

• Step 1. Proving that the original GPTQ algorithm (Algorithm 5) that uses relative
quantization error row vector ε ∈ R1×r is equivalent to a new algorithm (Algorithm 6)
using the absolute quantization error matrix ∆ ∈ Rc×r.

• Step 2. Reversing the iteration in Algorithm 6 and writing the reversed-iteration
algorithm as Algorithm 7.

• Step 3. Proving that the reversed-iteration algorithm Algorithm 7 is equivalent to
Babai’s algorithm Algorithm 8.

Algorithms 5 to 8 are intentionally written in the linear algebra form. ej ∈ Rc is the
standard basis vector whose elements are 0 except the j-th element being 1, which is used as
the row or column selector of a matrix. The superscripts in parentheses denote the versions
of the variables during the iterations. ω, ζ ∈ R1×r are intermediate row vectors. Additionally,
L is the LDL decomposition of the Hessian inverse H−1 = LD

1
2
LD

1
2
LL

⊤ where L is a lower

triangular matrix with all diagonal elements being 1, and D
1
2
L is a non-negative diagonal

matrix. Similarly, U is the “UDU” decomposition of the Hessian inverse H−1 = UD
1
2
UD

1
2
UU

⊤

where U is an upper triangular matrix with all diagonal elements being 1, and D
1
2
U is a

non-negative diagonal matrix.
Note: the symbols are overloaded in Algorithms 5 to 8, and the variables using the same

symbols may carry different values, even if the inputs to the algorithms are the same.

F.1. Step 1

To distinguish the variables using the same symbol in Algorithms 5 and 6, we use symbols
without ˆ to denote the symbols in Algorithm 5, and use the symbols with ˆ for Algorithm 6.

Claim

ωj = ω̂j , 1 ≤ j ≤ c, (8)

and consequently,
Z(j) = Ẑ(j), 0 ≤ j ≤ c, (9)

and
Q(j) = Q̂(j), 0 ≤ j ≤ c. (10)

Proof Eq. 8 by Induction
The following equalities are held by the design of Algorithms 5 and 6:

Q(0) = Q̂(0) = W (0) = Ŵ (0). (11)

ω(j) = e⊤j W
(j−1), 1 ≤ j ≤ c. (12)
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Algorithm 5: GPTQ Original (Front-to-Back)
Input: W ,S,X, λ,Z†

Output: Z,Q
1 H ←X⊤X + λI
2 L← LDL

(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej

(
Round

(
ζ(j),Z†)− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ε(j) ← e⊤j Q
(j) − ω(j)

11 W (j) ←W (j−1) +Lejε
(j)

12 end
13 Z,Q← Z(c),Q(c)

Algorithm 6: GPTQ Type-2 (Front-to-Back)
Input: W ,S,X, λ,Z†

Output: Z,Q
1 H ←X⊤X + λI
2 L← LDL

(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej

(
Round

(
ζ(j),Z†)− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ∆(j) ← Q(j) −W (0) // new
11 W (j) ←W (0) −L−1∆(j) // new
12 end
13 Z,Q← Z(c),Q(c)
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Algorithm 7: GPTQ Type-2 (Back-to-Front)
Input: W ,S,X, λ,Z†

Output: Z,Q
1 H ←X⊤X + λI
2 U ← UDU

(
H−1

)
// new

3 W (c+1) ←W

4 Q(c+1),Z(c+1) ←W (c+1),0
5 for j ← c to 1 do
6 ω(j) ← e⊤j W

(j+1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j+1) + ej

(
Round

(
ζ(j),Z†)− e⊤j Z

(j+1)
)

9 Q(j) ← Q(j+1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

10 ∆(j) ← Q(j) −W (c+1)

11 W (j) ←W (c+1) −U−1∆(j) // new
12 end
13 Z,Q← Z(1),Q(1)

Algorithm 8: Babai-Quantize (Default Order)
Input: W ,S,X, λ,Z†

Output: Z,Q
1 H ←X⊤X + λI

2 A← Cholesky (H)⊤

3 Y (c+1),Q(c+1),Z(c+1) ← AW ,W ,0
4 for j ← c to 1 do

5 ω(j) ← e⊤j Y (j+1)

e⊤j Aej

6 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

7 Z(j) ← Z(j+1) + ej

(
Round

(
ζ(j),Z†)− e⊤j Z

(j+1)
)

8 Q(j) ← Q(j+1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

9 Y (j) ← Y (j+1) −Aeje
⊤
j Q

(j)

10 end
11 Z,Q← Z(1),Q(1)
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ω̂(j) = e⊤j Ŵ
(j−1), 1 ≤ j ≤ c. (13)

Q(j) = Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)
, 1 ≤ j ≤ c. (14)

Q̂(j) = Q̂(j−1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j−1)
)
, 1 ≤ j ≤ c. (15)

ε(j) = e⊤j Q
(j) − ω(j), 1 ≤ j ≤ c. (16)

∆(j) = Q̂(j) − Ŵ (0), 1 ≤ j ≤ c. (17)

W (j) = W (j−1) +Lejε
(j), 1 ≤ j ≤ c. (18)

Ŵ (j) = Ŵ (0) −L−1∆(j), 1 ≤ j ≤ c. (19)

Extend the definition of ∆(j) (Eq. 17) for j = 0,

∆(j) = Q̂(j) − Ŵ (0), 0 ≤ j ≤ c. (20)

Then we have ∆(0) = Q̂(0) − Ŵ (0) = Ŵ (0) − Ŵ (0) = 0 , so that Eq. 19 can also be
extended for j = 0,

Ŵ (j) = Ŵ (0) −L−1∆(j), 0 ≤ j ≤ c. (21)

(1) Eq. 8 holds for j = 1:
Using Eqs. 11, 12, 13,

ω(1) = e⊤1 W
(0) = e⊤1 Ŵ

(0) = ω̂(1). (22)

(2) Assume Eq. 8 holds for all j ≤ j∗, 1 ≤ j∗ < c.
Because L is a lower triangular matrix with all diagonal elements being 1, L−1 is also a

lower triangular matrix with all diagonal elements being 1.
For 1 ≤ j < k ≤ c,

e⊤j Lek = e⊤j L
−1ek = 0. (23)

For 1 ≤ j ≤ c,

e⊤j Lej = e⊤j L
−1ej = 1. (24)
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For 1 ≤ j < c,

e⊤j+1L

(
j∑

k=1

eke
⊤
k

)

=e⊤j+1L

( c∑
k=1

eke
⊤
k

)
− ej+1e

⊤
j+1 −

 c∑
k=j+2

eke
⊤
k


=e⊤j+1L

(
j+1∑
k=1

eke
⊤
k

)
− e⊤c Lej+1e

⊤
j+1 − e⊤j+1L

 c∑
k=j+2

eke
⊤
k


=e⊤j+1LI− e⊤j+1 −

 c∑
k=j+2

e⊤j+1Leke
⊤
k

 (Eq. 24)

=e⊤j+1L− e⊤j+1 −

 c∑
k=j+2

0e⊤k

 (Eq. 23)

=e⊤j+1 (L− I) .

(25)

With Eq. 14, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q
(j) =e⊤k

(
Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
))

=e⊤k Q
(j−1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1).

(26)

Recursively applying Eq. 26, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q
(j) =

{
e⊤k Q

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q
(0) = e⊤k W

(0) if 1 ≤ j < k ≤ c.
(27)

Similar to Eq. 27, with Eq. 15, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q̂
(0) = e⊤k Ŵ

(0) if 1 ≤ j < k ≤ c.
(28)

With Eq. 28, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k ∆
(j) =e⊤k

(
Q̂(j) − Ŵ (0)

)
(Eq. 20)

=e⊤k Q̂
(j) − e⊤k Ŵ

(0)

=

{
e⊤k Q̂

(k) − e⊤k Ŵ
(0) = e⊤k ∆

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Ŵ
(0) − e⊤k Ŵ

(0) = e⊤k ∆
(0) = 0 if 1 ≤ j < k ≤ c.

(29)
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For 1 ≤ k ≤ j ≤ c,

e⊤k L∆(j)

=e⊤k LI∆(j)

=e⊤k L

(
c∑

k′=1

ek′e
⊤
k′

)
∆(j)

=
c∑

k′=1

e⊤k Lek′e
⊤
k′∆

(j)

=

(
k∑

k′=1

e⊤k Lek′e
⊤
k′∆

(j)

)
+

(
c∑

k′=k+1

e⊤k Lek′e
⊤
k′∆

(j)

)

=

(
k∑

k′=1

e⊤k Lek′e
⊤
k′∆

(k′)

)
+

(
c∑

k′=k+1

0e⊤k′∆
(j)

)
(Eqs. 23, 29)

=

(
k∑

k′=1

e⊤k Lek′e
⊤
k′∆

(k)

)
+

(
c∑

k′=k+1

0e⊤k′∆
(k)

)
(Eq. 29)

=

(
k∑

k′=1

e⊤k Lek′e
⊤
k′∆

(k)

)
+

(
c∑

k′=k+1

e⊤k Lek′e
⊤
k′∆

(k)

)
(Eq. 23)

=
c∑

k′=1

e⊤k Lek′e
⊤
k′∆

(k)

=e⊤k L

(
c∑

k′=1

ek′e
⊤
k′

)
∆(k)

=e⊤k LI∆(k)

=e⊤k L∆(k).

(30)
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For 1 ≤ j ≤ c,

e⊤j L
−1∆(j−1)

=e⊤j L
−1I∆(j−1)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j−1)

=
c∑

k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1eje
⊤
j ∆

(j−1) +

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j−1)


=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1ej0+

 c∑
k=j+1

0e⊤k ∆
(j−1)

 (Eqs. 23, 29)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+

 c∑
k=j+1

0e⊤k ∆
(j−1)

+ e⊤j ∆
(j) − e⊤j ∆

(j)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
+

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j)

+ e⊤j L
−1eje

⊤
j ∆

(j) − e⊤j ∆
(j) (Eqs. 24, 29)

=

(
c∑

k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
− e⊤j ∆

(j)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j) − e⊤j ∆

(j)

=e⊤j L
−1I∆(j) − e⊤j ∆

(j)

=e⊤j
(
L−1 − I

)
∆(j).

(31)

According to the assumption, for 1 ≤ k ≤ j∗ < c, we have

e⊤k W
(k−1) = ω(k) = ω̂(k) = e⊤k Ŵ

(k−1) (32)

and

Q(k) = Q̂(k). (33)

25



Chen Shabanzadeh Hoefler Alistarh

For 1 ≤ k ≤ j∗,

ε(k) =e⊤k Q
(k) − ω(k) (Eq. 16)

=e⊤k Q
(k) − e⊤k W

(k−1)

=e⊤k

(
Q(k) −W (k−1)

)
=e⊤k

(
Q̂(k) − Ŵ (k−1)

)
(Eqs. 32, 33)

=e⊤k

(
Q̂(k) −

(
Ŵ (0) −L−1∆(k−1)

))
(Eq. 21)

=e⊤k

((
Q̂(k) − Ŵ (0)

)
+L−1∆(k−1)

)
=e⊤k

(
∆(k) +L−1∆(k−1)

)
(Eq. 20)

=e⊤k

(
∆(k) +

(
L−1 − I

)
∆(k)

)
(Eq. 31)

=e⊤k L
−1∆(k)

=e⊤k L
−1∆(j∗) (Eq. 30).

(34)

ω(j∗+1) =e⊤j∗+1W
(j∗) (Eq. 12)

=e⊤j∗+1

(
W (j∗−1) +Lej∗ε

(j∗)
)

(Eq. 18)

=e⊤j∗+1

(
W (0) +

(
j∗∑
k=1

Lekε
(k)

))
(Eq. 18)

=e⊤j∗+1

(
Ŵ (0) +

(
j∗∑
k=1

Leke
⊤
k L

−1∆(j∗)

))
(Eq. 34)

=e⊤j∗+1

(
Ŵ (0) +L

(
j∗∑
k=1

eke
⊤
k

)
L−1∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) + (L− I)L−1∆(j∗)

)
(Eq. 25)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) +∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) + 0

)
(Eq. 29)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗)

)
=e⊤j∗+1Ŵ

(j∗) (Eq. 21)

=ω̂(j∗+1) (Eq. 13).

(35)

Eq. 8 holds for j = j∗ + 1. ■

F.2. Step 2

Algorithm 7 (back-to-front order) is generated by reversing the iteration direction of Algo-
rithm 6. Besides changing the direction of the index j, we also need to change the LDL
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decomposition to a so-called “UDU” decomposition so that the error propagation is correctly
applied to the not-yet-quantized weights in the front dimensions.

Justification
Let P be the anti-diagonal permutation matrix with P = P⊤ = P−1. Let L̂ be the LDL

decomposition of the permuted Hessian inverse PH−1P = L̂D̂
1
2
L D̂

1
2
L L̂

⊤ where L̂ is a lower

triangular matrix with all diagonal elements being 1, and D̂
1
2
L is a non-negative diagonal

matrix.
Since we are changing the iteration direction instead of applying the permutation, we

permute the matrix L̂ back, yielding U = PL̂P. Alternatively, U can be calculated using
the decomposition H−1 = PL̂PPD̂

1
2
LPPD̂

1
2
LPPL̂⊤P = UD

1
2
UD

1
2
UU

⊤ where U is an upper

triangular matrix with all diagonal elements being 1, and D
1
2
U = PD̂

1
2
LP is a non-negative

diagonal matrix.
The decomposition to calculate U from H−1 is what we call “UDU” decomposition,

which can be considered as a variant of the LDL decomposition.

F.3. Step 3

To distinguish the variables using the same symbol in Algorithms 7 and 8, we use symbols
with ˆ to denote the symbols in Algorithm 7, and use the symbols with ˜ for Algorithm 8.

We have the Cholesky decomposition of H: H =
(
H−1

)−1
=

(
UD

1
2
UD

1
2
UU

⊤
)−1

=(
D

− 1
2

U U−1

)⊤
D

− 1
2

U U−1, so that A = D
− 1

2
U U−1.

Claim

ω̂j = ω̃j , 1 ≤ j ≤ c, (36)

and consequently,
Ẑ(j) = Z̃(j), 1 ≤ j ≤ c+ 1, (37)

and
Q̂(j) = Q̃(j), 1 ≤ j ≤ c+ 1. (38)

Proof Eq. 36 by Induction
For 1 ≤ j ≤ c,

ω̃(j) =
e⊤j Y

(j+1)

e⊤j Aej

=
e⊤j Y

(j+1)

e⊤j D
− 1

2
U U−1ej

=
e⊤j Y

(j+1)

D
− 1

2
U [j, j]

=D
1
2
U[j, j]e

⊤
j Y

(j+1)

=e⊤j D
1
2
UY

(j+1).

(39)
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The following equalities are held by the design of Algorithms 6 and 8:

Q̂(c+1) = Q̃(c+1) = Ŵ (c+1) = W̃ . (40)

Y (c+1) = AW̃ = D
− 1

2
U U−1W̃ . (41)

ω̂(j) = e⊤j Ŵ
(j+1), 1 ≤ j ≤ c. (42)

Q̂(j) = Q̂(j+1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)
, 1 ≤ j ≤ c. (43)

Q̃(j) = Q̃(j+1) + ej

(
e⊤j Z̃

(j) diag
(
S⊤ej

)
− e⊤j Q̃

(j+1)
)
, 1 ≤ j ≤ c. (44)

∆(j) = Q̂(j) − Ŵ (c+1), 1 ≤ j ≤ c. (45)

Ŵ (j) = Ŵ (c+1) −U−1∆(j), 1 ≤ j ≤ c. (46)

Y (j) = Y (j+1) −Aeje
⊤
j Q̃

(j) = Y (j+1) −D
− 1

2
U U−1eje

⊤
j Q̃

(j), 1 ≤ j ≤ c. (47)

Because U is an upper triangular matrix with all diagonal elements being 1, U−1 is also
an upper triangular matrix with all diagonal elements being 1.

For 1 ≤ k < j ≤ c,
e⊤j Uek = e⊤j U

−1ek = 0. (48)

e⊤c U = e⊤c . (49)

For 1 ≤ j ≤ c,
e⊤j Uej = e⊤j U

−1ej = 1. (50)

(1) Eq. 36 holds for j = c:
Using Eqs. 39, 40, 41, 42, 49,

ω̃(c) = e⊤c D
1
2
UY

(c+1) = e⊤c D
1
2
UD

− 1
2

U U−1W̃ = e⊤c U
−1W̃ = e⊤c W̃ = e⊤c Ŵ

(c+1) = ω̂(c). (51)

(2) Assume Eq. 36 holds for all j ≥ j∗, 1 < j∗ ≤ c.
With Eq. 43, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q̂
(j) =e⊤k

(
Q̂(j+1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
))

=e⊤k Q̂
(j+1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1).

(52)

Recursively applying Eq. 52, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̂
(c+1) = e⊤k Ŵ

(c+1) if 1 ≤ k < j ≤ c.
(53)
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Similar to Eq. 53, with Eq. 44, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̃
(j) =

{
e⊤k Q̃

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̃
(c+1) = e⊤k W̃ if 1 ≤ k < j ≤ c.

(54)

For 1 ≤ j ≤ c,

Y (j) =Y (j+1) −D
− 1

2
U U−1eje

⊤
j Q̃

(j) (Eq. 47)

=Y (c+1) −

 c∑
k=j

D
− 1

2
U U−1eke

⊤
k Q̃

(k)

 (Eq. 47)

=D
− 1

2
U U−1W̃ −

 c∑
k=j

D
− 1

2
U U−1eke

⊤
k Q̃

(j)

 (Eq. 41)

=D
− 1

2
U U−1

W̃ −

 c∑
k=j

eke
⊤
k

 Q̃(j)



(55)
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For 1 ≤ j < c,

ω̃(j) =e⊤j D
1
2
UY

(j+1) (Eq. 39)

=e⊤j D
1
2
UD

− 1
2

U U−1

W̃ −

 c∑
k=j+1

eke
⊤
k

 Q̃(j+1)

 (Eq. 55)
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(56)

Because e⊤c

(
W̃ −U−1

(
Q̃(c+1) − W̃

))
= e⊤c W̃ = ω̃(c), Eq. 56 can be extended for

j = c,

ω̃(j) = e⊤j

(
W̃ −U−1

(
Q̃(j+1) − W̃

))
, 1 ≤ j ≤ c. (57)

According to the assumption, for 1 < j∗ ≤ k ≤ c, we have

Q̂(k) = Q̃(k). (58)
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ω̃(j∗−1) =e⊤j∗−1
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(Eq. 57)
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(59)

Eq. 36 holds for j = j∗ − 1. ■

F.4. Proof of ineffectiveness of additional GPTQ refinement on Babai’s
algorithm

We may try to apply further GPTQ updates in Babai’s algorithm by changing Line 9 in
Algorithm 8 to

Y ′(j) ← Y (j) +AUejε
(j) = Y (j+1) −Aeje

⊤
j Q̃

(j) +AUejε
(j) (60)

However, as A = D
− 1

2
U U−1, the ω̃(j−1) remains the same:
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(61)

■
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