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ABSTRACT

Under the data manifold hypothesis, high-dimensional data are concentrated near
a low-dimensional manifold. We study the problem of Riemannian optimization
over such manifolds when they are given only implicitly through the data distri-
bution, and the standard manifold operations required by classical algorithms are
unavailable. This formulation captures a broad class of data-driven design prob-
lems that are central to modern generative AI. Our key idea is to introduce a link
function that connects the data distribution to the geometric operations needed for
optimization. We show that this function enables the recovery of essential mani-
fold operations, such as retraction and Riemannian gradient computation. More-
over, we establish a direct connection between our construction and the score
function in diffusion models of the data distribution. This connection allows us
to leverage well-studied parameterizations, efficient training procedures, and even
pretrained score networks from the diffusion model literature to perform opti-
mization. Building on this foundation, we propose two efficient inference-time
algorithms—Denoising Landing Flow (DLF) and Denoising Riemannian Gradi-
ent Descent (DRGD)—and provide theoretical guarantees for both feasibility (ap-
proximate manifold adherence) and optimality (small Riemannian gradient norm).
Finally, we demonstrate the effectiveness of our approach on finite-horizon refer-
ence tracking tasks in data-driven control, highlighting its potential for practical
generative and design applications.

1 INTRODUCTION

Riemannian optimization Boumal (2023); Absil et al. (2008); Hu et al. (2020) considers minimizing
an objective function f : Rd → R over an explicitly known embedded submanifold M ⊆ Rd,

min
x∈M

f(x). (1)

Problem (1) is ubiquitous in fields of machine learning and control and encompasses problems such
as independent component analysis Nishimori (1999), low-rank matrix completion Vandereycken
(2013), training of orthogonally normalized neural networks Bansal et al. (2018), the control of
rigid bodies Duong et al. (2024), as well as sensor network localization Patwari & Hero (2004) and
many others. Compared to general constrained optimization, Riemannian optimization promises
the advantage of exploiting the natural geometry of the problem, producing feasible iterates and
increased numerical robustness Boumal (2023).

In contrast to the above classical setup, in this work we focus on the setting where the manifold
M is given implicitly through a measure µ = µdata supported on M. This perspective is espe-
cially relevant in view of the manifold hypothesis (Loaiza-Ganem et al., 2024), which posits that
many real-world data sets lie (approximately) on a manifold with dimension much smaller than
that of the ambient space Fefferman et al. (2016). Importantly, such data manifolds are not just low-
dimensional geometric structures—they also capture rich semantic meaning. For instance, the image
manifold corresponds to photo-realistic images Pope et al., the system behavior manifold to dynam-
ically feasible input-output trajectories Willems & Polderman (1997), while the manifold of airfoils
represents aerodynamically viable shapes Zheng et al. (2025). The optimization problem (1) in this
setting thus encompasses a broad class of modern tasks, including airfoil design (Chen et al., 2025),
reinforcement learning (Lee & Choi, 2025), and Bayesian inverse problems (Chung et al., 2022b).
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Driven by the growing demand in generative AI and data-driven design, this calls for a paradigm
shift: moving from optimization over explicitly known manifolds, where classical Riemannian op-
timization applies, to optimization over data manifolds that are accessible only implicitly through
samples. In this data-driven regime, methods from classical Riemannian optimization cannot be
applied directly, since they rely on explicit manifold operations such as tangent-space projection,
retraction, or exponential maps (Boumal et al., 2019; Boumal, 2023).

While there has been extensive research on manifold learning Meilă & Zhang (2024); Lin & Zha
(2008); Cayton et al. (2005); Belkin & Niyogi (2005) in the past, none of these works addressed (1)
from an optimization point of view and focused instead on learning the manifold geometry. More-
over, the non-parametric nature of these methods limits their applicability to very low-dimensional
manifolds and cannot exploit the successful inductive bias and the exceptional representation power
of modern neural networks.

In this work, we propose a data-driven approach to recover the fundamental operations needed for
optimization on manifolds. Starting from the data distribution µdata, we smooth it with a Gaussian
kernel to obtain

pσ = N (0, σ2I) ∗ µdata, (2)

and define the associated link function

ℓσ(x) =
1

2
∥x∥2 − σ2 log pσ(x). (3)

We show that, as the smoothing parameter σ decreases, the gradient ∇ℓσ recovers the projection
back to the manifold, while the Hessian ∇2ℓσ recovers the projection onto its tangent space. These
results reveal that core ingredients of Riemannian optimization—such as retraction and gradient
computation—can be implemented directly from the derivative information of ℓσ , even when the
manifold itself is only given implicitly through data.

Given the above novel theoretical findings, a key practical challenge is how to access (even ap-
proximately) the gradient ∇ℓσ and Hessian ∇2ℓσ when only samples from µdata are available. A
crucial observation is that pσ coincides with the marginal distribution of the Variance-Exploding
SDE (VE-SDE), with analogous arguments for VP-SDE and DDPM formulations (Ho et al., 2020;
Song et al., 2020). In this setting, the gradient of log pσ – commonly referred to as the score func-
tion – plays a central role. In diffusion models, this score is parameterized by a neural network
and learned directly from samples of µdata, typically via denoising score matching (Vincent, 2011;
Song et al., 2020). It is therefore natural to adopt the same methodology here: a neural network can
be trained to represent ∇ℓσ , while the Hessian ∇2ℓσ can be recovered by computing its Jacobian.
This approach offers two key advantages: (i) strong inductive biases can be incorporated through
the neural network parameterization, and (ii) efficient, well-established training techniques from the
diffusion model literature can be directly leveraged. Taken together, the theoretical link between
ℓσ and manifold geometry, and the practical machinery for learning the score, form the foundation
of the paradigm shift: from classical Riemannian optimization with explicit manifold knowledge
to a data-driven framework where geometry is recovered from samples—thus enabling principled
manifold optimization in generative and design-driven applications.

Building on these insights, we propose two algorithms for optimization over data manifolds – de-
noising landing flow (DLF) and denoising Riemannian gradient descent (DRGD) – to the best of our
knowledge, the first such framework in the literature. The prerequisite is access to an approximate
function sσθ ≃ ∇ℓσ , which can be learned from data using standard diffusion model parameteriza-
tion and training given samples from µdata.

• Our first method directly employs sσθ and its Jacobian (with σ fixed as a small constant) to substi-
tute the corresponding manifold operations in Riemannian gradient descent: each iteration com-
putes a Riemannian gradient step and then applies retraction to (approximately) return to the
manifold.

• Since learning the score is inevitably imperfect when σ is small, we also design a complementary
landing-type algorithm that avoids staying close to the feasible set at every step. Instead, it aug-
ments the target function f with the regularization term ℓσ and performs gradient descent on this
regularized objective.
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Figure 1: Optimized trajectory (orange) on the system trajectory manifold for the unicycle car model
that is desired to track the reference trajectory (black, thin). The closest tracking trajectory in the set
of available manifold samples is given in (green, dotted). See Section 6 for more details.

For both algorithms, we establish non-asymptotic convergence guarantees to approximate stationary
points, measured by small Riemannian gradient norm, as σ → 0. Importantly, our methods require
only inference of the neural network and gradients with respect to its inputs—not with respect to
the network parameters. Thus, if a pretrained score network is already available for a given task,
no additional training is required to enable Riemannian optimization on the corresponding data
manifold. Viewed from this perspective, our approach can also be interpreted as an inference-time
algorithm, aligning with a growing trend in modern machine learning research.

1.1 OUR CONTRIBUTIONS

We summarize our contributions and give the outline of the paper as follows.

• Data-driven recovery of manifold operations. By introducing the link function ℓσ , we
develop strategies to recover core manifold operations directly from data. In Section 3,
by leveraging the score function from diffusion models to train and parameterize ∇ℓσ and
∇2ℓσ , we bridge the gap between the requirements of classical Riemannian optimization
(which assumes explicit manifold knowledge) and the emerging need to optimize over data
manifolds that are only implicitly available.

• First algorithms for optimization over data manifolds. We propose two algorithms – de-
noising landing flow (DLF) via (8) in Section 4 and denoising Riemannian gradient descent
(DRGD) via (12) in Section 5 – to the best of our knowledge, the first in the literature – that
exploit operations enabled by a pretrained score function. Our methods require only inex-
pensive inference-time queries and back-propagation with respect to the input of the neural
network, making them computationally efficient and readily applicable when pretrained
scores are available.

• Rigorous non-asymptotic guarantees. We provide the first non-asymptotic convergence
analysis for optimization over data manifolds. Our main results (Theorem 3 and Theorem
5) ensure both approximate feasibility (output is close to the manifold) and approximate
optimality (small Riemannian gradient norm). A key technical contribution is a novel non-
asymptotic analysis of how ∇ℓσ and ∇2ℓσ approximate the true manifold operations when
σ is small but non-zero (Theorem 1).

Finally in Section 6 we validate our findings by numerically simulating the proposed flow on well-
known manifolds from Riemannian optimization literature and data-driven optimal control for ref-
erence trajectory tracking. Our finding are that we can generate feasible points on the manifold with
objective values far lower than the ones available in the training set – see Figure 1 – and shows the
effectiveness of exploiting the strong inductive biases of modern deep learning for the classical field
of constrained optimization.
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1.2 RELATED WORK

Riemannian Optimization. Riemannian optimization (RO) was originally developed under the
assumption that the constraint manifold is explicitly known, either through closed-form descriptions
such as matrix manifolds or via nonlinear equality constraints (Sato, 2021; Boumal, 2023). A proto-
typical algorithm in this setting is Riemannian gradient descent, which updates by taking a gradient
step along the tangent space and then retracting back to the manifold (Boumal et al., 2019). Such al-
gorithms guarantee that the iterates remain on the manifold at every iteration and are thus referred to
as feasible methods. In contrast, infeasible methods, where the iterates are not constrained to stay on
M, have also been studied—for example, augmented Lagrangian approaches (Xie & Wright, 2021).
However, these typically involve solving complicated optimization subproblems in each inner loop,
making them computationally expensive in practice. More recently, a new class of landing-type
algorithms has emerged: instead of enforcing feasibility at every step, they regularize the objec-
tive function with the distance to the manifold and then perform gradient flow or descent on this
regularized objective. Such methods have demonstrated strong empirical performance, offering a
promising alternative to classical approaches (Ablin & Peyré, 2022; Schechtman et al., 2023).

Manifold Learning. High-dimensional data in modern machine learning often exhibit an intrin-
sic lower-dimensional structure. Such structure is of central importance: it enables more efficient
representation and compression of data, facilitates interpretability by revealing meaningful semantic
organization, and provides a foundation for designing algorithms that exploit geometry rather than
ambient dimensionality. The task of uncovering this structure is commonly referred to as manifold
estimation or manifold learning, with a large body of work devoted to this goal. Classical ap-
proaches include Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2003),
and Locally Linear Embedding (LLE) (Roweis & Saul, 2000), Diffusion Map (Coifman & Lafon,
2006), among many subsequent developments, e.g. (Zhou et al., 2020). We defer the discussion on
diffusion-model-related manifold learning literature to the next paragraph.

Diffusion models. Diffusion models have achieved remarkable success in generative modeling,
where the goal is to generate new samples consistent with an underlying data distribution µdata. A
central ingredient of these methods is the learning of the score function—the gradient of the log-
density of the diffused distribution pσ Tang & Zhao (2025); Song et al. (2020). In practice, the score
is parameterized by a neural network whose architectural design has been extensively studied, and
its training is carried out using well-established techniques such as denoising score matching (Song
et al., 2020). This combination of principled theory and mature practice has made diffusion models
one of the most effective tools for data-driven generative modeling.

When the data distribution resides on a manifold, a recent observation in the diffusion model com-
munity is that the score is asymptotically orthogonal to the manifold surface Stanczuk et al. (2024).
This observation has been exploited for the estimation of the manifold dimension. See (Kamkari
et al., 2024) for the same task. Furthermore, Ventura et al. (2024) has shown that in the case of
linear manifolds (i.e. affine subspaces), the Jacobian of the score scaled by the diffusion tempera-
ture asymptotically approximates the projection of the manifold onto the normal space and used it
to study the geometric phases of diffusion models.

Recent work on the statistical complexity of diffusion models under the manifold hypothesis pro-
vides indirect evidence that these models capture geometric information about the underlying data
manifold (Oko et al., 2023; Tang & Yang, 2024). In particular, the sample complexity required to
learn the data distribution µdata depends only on the intrinsic dimension of the manifold, rather than
on the ambient dimension.

Two Formulations: Optimization and Posterior Sampling. To avoid possible confusion, we
stress the distinction between our optimization formulation and the posterior sampling literature. In
short, our optimization formulation in eq. (1) enforces the manifold constraint directly. This en-
sures (approximate) feasibility at the final step and guarantees that the optimization process remains
semantically meaningful, which is not guaranteed by the sampling formulation, as discussed below.

Across the literatures Classifier(-Free) Guidance in Diffusion Models (Dhariwal & Nichol, 2021; Ho
& Salimans, 2022) and the Plug-and-Play Framework in Bayesian Inverse Problems (Venkatakrish-
nan et al., 2013; Laumont et al., 2022; Pesme et al., 2025; Graikos et al., 2022; Chung et al., 2022a),
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a unifying perspective is the task of sampling from a posterior distribution of the form

ppost ∝ ppre exp
(
− r
α

)
,

where r denotes a cost function to be minimized—corresponding to our objective f—and α > 0 is a
temperature-like parameter (Domingo-Enrich et al., 2024). In Classifier(-Free) Guidance, r encodes
a classifier signal (e.g., specified by a prompt) and in Bayesian inverse problems, r is the negative
log-likelihood of observations. Meanwhile, ppre serves as a prior distribution, typically derived from
a large-scale pretrained generative model, which is expected to capture the semantic structure of the
data manifold. Sampling from ppost thus aims to balance semantic plausibility with low cost.

If ppre were exactly supported on the data manifold M and α → 0, this formulation would reduce
to the constrained optimization problem eq. (1). In practice, however, the situation is very different:
the distribution induced by a pretrained diffusion model is not concentrated on a low-dimensional
manifold but rather has support of non-zero Lebesgue measure in the ambient space—indeed, in
many cases, essentially the full space (due to the noisy generation process of ppre). As a result, when
α is set too small, the posterior ppost becomes dominated by the exponential tilt exp(−r/α), pushing
samples into regions far from the true data manifold M and thereby losing semantic meaning.
Consequently, these sampling-based frameworks must carefully tune α to trade off semantic fidelity
(staying close to M) against optimization quality (achieving low r).

2 PRELIMINARIES

Here we introduce some preliminary notation and concepts to state our results. We refer the reader
to the Appendices A and C for more details.

2.1 MANIFOLDS AND DISTANCE FUNCTIONS

Let M ⊆ Rd be a k-dimensional embedded compact C2-submanifold without boundary. For any
point p ∈ M we denote by TpM ⊆ Rd and NpM ⊆ Rd the tangent and normal spaces of M at p,
respectively, and their orthogonal projections by PTp M and PNp M. The squared distance function
is defined by d(x) = infp∈M

1
2∥x− p∥2. For a C2-submanifold, then there exists a radius τM > 0

such that every point in x ∈ T (τ) =
⋃
p∈MBτ (p) has a unique projection π(x) ∈ M such that

1
2∥x − π(x)∥2 = d(x) and x − π(x) ∈ Nπ(x) M. Sets of the form T (τ) will be called tubular
neighborhoods of M with closure denoted by T (τ). One can prove that d and π are differentiable
on T (τM) with d′(x) = x−π(x) and π′(x) given explicitly in Appendix A. The maximal principal
curvature of a manifold will be denoted by κM. It always holds that τM ≤ 1/κM. Finally, for
a function f : M → R we denote the Riemannian gradient by gradM f(p), which in the case of
f : Rd → R is given by gradM f(p) = PTp M ∇f(p). We write

2.2 THE STEIN SCORE FUNCTION AND SCORE-BASED DIFFUSION MODELS

For a Borel probability measure we denote its Gaussian blurring by pσ = N (0, σ2I) ∗ µ for σ > 0
with p0 = µ. The score function ∇ log pσ of pσ and its Jacobian allow for the following interpreta-
tion (see Jaffer & Gupta (1972), also Appendix B):

x+ σ2∇ log pσ(x) = ∇ℓσ(x) = Eνx,σ , I + σ2∇2 log pσ(x) = ∇2ℓσ(x) =
1

σ2
Cov(νx,σ) , (4)

where ℓσ is the link function (3) and νx,σ is the posterior distribution observing x under the noise
model pσ and prior µ. The representation for Eνx,σ has also been known under the name of
Tweedie’s formula Robbins (1992); Efron (2011). The score function has gained recent attention
due to its use in score-based diffusion models in the field of generative modelling. Specifically
in the so-called variance exploding (VE) diffusion scheme one seeks to learn ∇ log pσ for differ-
ent noise scales σ via a neural network s(·, σ) by minimizing the conditional score matching loss
LCSM(s(·, σ)), which attains its unique minimum in s(·, σ) = ∇ log pσ . Then s(·, σ) is used for
sampling from µ by following a particular reverse-time SDE or ODE flow in the noise scale σ (see
Appendix C for more details).
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3 SCORE AS RETRACTION AND TANGENT SPACE PROJECTION

In this section we give another interpretation to the score function ∇ log pσ(x) and its Jacobian
∇2 log pσ(x). Namely, it has been already observed in Stanczuk et al. (2024) that the score function
is for σ → 0 asymptotically orthogonal to the tangent space of the data manifold. Our first contri-
bution is showing that when the support of the distribution µ is a manifold M and µ is absolutely
continuous w.r.t. its volume measure, then both quantities (4) approximate the projection operator
π(x) and its Jacobian π′(x) uniformly on tubular neighborhoods of M. Formally we establish the
following

Theorem 1 (Main). Let M ⊆ Rd be a compact, embedded C3-submanifold and µ ∈ P(Rd) a
Borel probability measure with suppµ = M and µ ≪ VolM such that dµ

dVolM
∈ C3(M). Then

for any τ ∈ (0, τM) there exist some constants K = K(τ,M, µ) > 0 and σ = σ(τ,M, µ) > 0
depending on τ , M and µ such that

∥Eνx,σ − π(x)∥ ≤ Kσ|log(σ)|3 and
∥∥∥∥ 1

σ2
Cov(νx,σ)− π′(x)

∥∥∥∥ ≤ Kσ|log(σ)|3 (5)

for all σ ∈ (0, σ) and x ∈ T (τ).

The proof is deferred to Appendix D and is based on a careful non-asymptotic estimate of the
Laplace integral method. As a consequence and together with fact that π′(x) coincides with PTx M
for x ∈ M (see Appendix A) we obtain the following result.

Corollary 2. Let M and µ be as in Theorem 1 and suppose that x ∈ M. Then

lim
σ→0

I + σ2∇2 log pσ(x) = PTx M .

In view of Theorem 1 let us abbreviate (4) into

dσ(x) = −σ2 log pσ(x) , πσ(x) = x+ σ2∇ log pσ(x) , Pσ(x) = I + σ2∇2 log pσ(x) , (6)

with the limiting cases d0 = d, π0 = π and P0(x) = π′(x). We stress that the expressions in (6) are
defined for all x ∈ Rd, whereas d, π and π′ in are only sensible in a tubular neighborhood T of M.
Thus, in theory, a well-trained diffusion model score s(·, σ) and its Jacobian s′(·, σ) allow us to
approximate the closest-point projection π(x) and the tangent space projection PTx M as σ → 0
arbitrarily well via its Tweedie score x+ σ2s(x, σ) and its Jacobian, respectively.

4 DENOISING RIEMANNIAN GRADIENT FLOW WITH LANDING

In this section we show how to use the score function from Section 3 for Riemannian optimization of
(1) for some smooth f ∈ C1(Rd). Assuming that we have access to a sufficiently accurate estimate
of the Tweedie score in form of a vector function s ∈ C1(Rd;Rd) such that s(x) = x+ σ2s(x, σ)
and

∥s(x)− πσ(x)∥ ≤ ϵ and ∥s′(x)− Pσ(x)∥ ≤ ϵ for x ∈ T (τ) (7)

for some τ ∈ (0, τM), we propose for η ≥ 0 the denoising landing flow (DLF)

ẋ = −s′(x)∇f(s(x)) + η(s(x)− x) . (8)

In the exact case s(x) = πσ(x) and s′(x) = Pσ(x) (i.e. ϵ = 0 in (7)), flow (8) is the gradient flow

ẋ = −∇F ησ (x) = −Pσ(x)∇f(πσ(x)) + η(πσ(x)− x) with F ησ (x) = f(πσ(x)) + η dσ(x) (9)

and the dynamics in (9) consists of two parts: An approximate projection Pσ(x)∇f(πσ(x)) of the
gradient ∇f(πσ(x)) and an approximate landing term η(πσ(x) − x) corresponding to the penalty
function η dσ(x). In the further case of σ = 0 and x(0) ∈ M the flow (9) reduces to the ordinary
Riemannian gradient flow, which has been extensively studied Helmke & Moore (2012); Ambrosio
et al. (2005). Interestingly, when σ = 0, but only x(0) ∈ T (τ), then (9) reduces to

ẋ = −H−1
x gradM f(π(x)) + η(π(x)− x) , (10)

6
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with H−1
x a linear operator on Tπ(x) M given in Appendix A. In particular the two terms in (10)

belong to Tπ(x) M and Nπ(x) M, respectively, and are orthogonal to each other, implying that the
distance between x and M is non-increasing, which allows for perfect landing on the manifold
via similar arguments as in Ablin & Peyré (2022); Schechtman et al. (2023), see Theorem 20 in
Appendix E.3. For σ > 0 or ϵ > 0, the two summands in (9) and (8) in general not perpendicular to
each other and the landing is not exact. However, using Theorem 1 we show the following.
Theorem 3. Consider the flow (8) and τ ∈ (0, τM). SetC = ∥∇f |T (τ)∥∞ andL = Lip(∇f). Sup-
pose that for some ϵ > 0 and σ ∈ (0, σ(τ,M, µ)) with ϵ+K(τ,M, µ)σ|log(σ)|3 ≤ min{τ, 2τ

1+C/η}
the function s satisfies (7). Then for any x(0) ∈ T (τ) the solution x(t) to (8) exists for all t ≥ 0
and is contained in T (τ). Moreover, every accumulation point x∗ of this flow satisfies

distM(x∗) ≤ τ0 :=
1

2

(
C

η
+ 1

)
(ϵ+K(τ,M, µ)σ|log(σ)|3) ,

and for the projection p∗ = π(x∗) it holds that

∥gradM f(p∗)∥ ≤
(
2(L+ C + 2η) +

(1 + C/η)/τM
1− τ/τM

C

)
(ϵ+K(τ,M, µ)σ|log(σ)|3) . (11)

Thus, Theorem 3 shows that one can still use the flow (8) for a fixed σ > 0 to converge to approxi-
mate critical points of the objective f , at which the approximation error and norm of the Riemannian
gradient are both Õ(σ) plus the score error ϵ.
Remark 4. We can evaluate the right hand side of the flow (8) in a single forward-backward pass
of the network s. Namely, given an input x, we compute and store p = s(x) by a forward pass
of s, while keeping the computational graph of s(x). Then we evaluate v = ∇f(p) and build the
computational graph of y = ⟨s(x), v⟩, while detaching v. Finally we backpropagate on x in y to
obtain s′(x)v = s′(x)∇f(s(x)).

5 DENOISING RIEMANNIAN GRADIENT DESCENT

In a practical implementation one has to consider a discretized version of the flow (8). A natural
alternative is to study the following approximate version of the Riemannian gradient descent Absil
et al. (2008); Boumal (2023)

xk+1 = s(xk − γks
′(xk)∇f(xk)) , (12)

which we term the denoising Riemannian gradient descent (DRGD). Here s acts as an approximate
retraction and s as an approximate projection onto the tangent space. We obtain the following
convergence result for this algorithm.
Theorem 5. Let τ ∈ (0, τM/2) and set C = ∥∇f |T (τ)∥∞ and L = Lip(∇f), D = ∥f |T (τ)∥∞
and

L0 = 8C

(
2(

3

τM
+ τM) +

1

τM

)
+ 2L .

Suppose that for some σ ∈ (0, σ(τ,M, µ)) and ϵ > 0 with ϵ′ := ϵ+K(τ,M, µ)σ|log(σ)|3 ≤ τ/2
the function s satisfies (7) and that the step-size γk is constrained by γk ∈ [γmin, γmax] with

0 < γmin < γmax < min

{
2

L0
,

τ

C(4 + τ)

}
.

Then for any x0 ∈ T (τ/2) the iterates xk of (12) satisfy {xk}∞k=1 ⊆ T (ϵ′) ⊆ T (τ/2) and for the
projection pk = π(xk) the following average-of-gradient-norm condition holds:

1

N

N∑
k=0

∥gradM f(pk)∥2 ≤ 4D/N + (8C2ϵ′/τ2M + 2(2C + L0γmax(C + L)))ϵ′

γmin(1− L0

2 γmax)
.

In particular there exists at least one accumulation point x∗ ∈ T (ϵ) of {xk}∞k=0 such that its
projection p∗ = π(x∗) satisfies

∥gradM f(p∗)∥2 ≤ (8C2ϵ′/τ2M + 2(2C + L0γk(C + L)))ϵ′

γmin(1− L0

2 γmax)
.

Remark 6. Note that both Theorem 3 and Theorem 5 require the rather strong L∞-approximation
assumption (7) on the Tweedie score s and its Jacobian. The analysis under a weaker L2-bound is
out of score for this paper and left for future work.
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6 NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section we provide some numerical results for our proposed algorithms, namely the denoising
landing flow (8) (more precisely, the discretized version (48)) and the denoising Riemannian gradient
descent (12).

6.1 OPTIMIZATION ON ORTHOGONAL GROUP O(n)

In this section we evaluate flow (8) on a synthetic example. In order to compare the error of our
method to classical Riemannian optimization techniques, we consider distributions supported on
manifolds that are the focus of study in Absil et al. (2008); Boumal (2023). Specifically we consider
the orthogonal group manifold M = O(n) ⊆ Rn×n with µ = VolM being the uniform volume
measure and Brockett’s cost function Helmke & Moore (2012) defined by

min
X∈O(n)

f(X) := tr(AXQX⊤) ,

where A,Q ∈ Sn×n are given. We consider the cases n ∈ {10, 20} and assume that we are given a
set Dtrain ⊆ M of Ndata = 20000 data points from µ and train the score function s with denois-
ing score matching (see Appendix C for diffusion models and Appendix G.1.1 for implementation
details). In Figure 3 (left) (in Appendix G.1.2 for space reasons) we compare the evolution of the
objective value of our approximation of (8) to the exact landing flow (10) for different noise levels
σ > 0 and dimension n. We observe that we can obtain objective values with cost lower than the
best possible point in the training set and that the accuracy improves as σ → 0.

6.2 REFERENCE TRACKING VIA DATA-DRIVEN CONTROL

Problem definition: In this example we consider applying our method to the control of discrete-
time dynamical systems on a finite horizon. Specifically we assume that we are given a discrete-time
state-space system

xk+1 = f(xk, uk) , yk+1 = g(xk, uk) , k = 0, . . . , Nh − 1 , (13)

on a finite time horizonNh with state xk ∈ Rnx , input uk ∈ Rnu , output yk ∈ Rny and a fixed initial
state x0 = 0 ∈ Rnx . The task is to find inputs u = (u0, . . . , uNh−1) such that the corresponding
outputs y = (y0, . . . , yNh

) closely track a prespecified reference trajectory r = (r0, . . . , rNh
) by

solving the optimal control problem

min
(u,y)∈MIO

f(u,y) (14)

with tracking objective

f(u,y) =

Nh−1∑
k=0

u⊤k Ruk + (yk − rk)
⊤Q(yk − rk) + (yNh

− rNh
)⊤Q(yNh

− rNh
) (15)

for positive-definite weight matrices R ∈ Snu×nu and Q ∈ Sny×ny and feasible input-output set

MIO =

{
(u,y) ∈ (Rnu)Nh × (Rny )Nh+1 | exists x = (x0, . . . , xNh

) ∈ (Rnx)Nh+1

with (u,x,y) satisfying (13)

}
.

Under certain smoothness assumptions on the dynamics f and g the set MIO is a (non-compact) em-
bedded smooth submanifold of (Rnu)Nh × (Rny )Nh+1. The problem (14) is ubiquitous in receding
horizon control applications such as model predictive control (MPC) and used for e.g. autonomous
driving Vu et al. (2021), motion planning Cohen et al. (2020), optimizing HVAC system energy ef-
ficiency Serale et al. (2018) and inventory control Kostić (2009). In many of these applications the
dynamics (13) governing the system are not known explicitly. Instead, in data-driven control Dörfler
(2023a;b); Markovsky et al. (2023) one assumes that (13) is given implicitly by a finite number of
measured input-output trajectories

Dtrain = {(ui,yi) | i = 1, . . . , Ndata} ⊆ MIO ,

where the input u is persistently exciting Willems et al. (2005), e.g. given by (white) noise Ljung
(1999). In particular the so-called system behavior manifold MIO Willems & Polderman (1997) is

8
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Figure 2: Denoising Riemannian gradient descent: Angle of the first pendulum (left) and unicycle
car position (right) with the optimized output trajectory y∗ (blue, dashed), the true system trajectory
ytrue (orange), the initial trajectory y0 (green, dotted) and the reference trajectory r (red)

given by samples from a distribution µ on its in- and outputs and fits precisely into our framework
of data-driven Riemannian optimization (1). We test our proposed denoising Riemannian gradient
descent on two classical systems from the control domain: The discretized double pendulum
system and the unicycle car model LaValle (2006) (see Appendix G.2.1 detailed information on
the systems and the particular choice of r, R and Q in (15)), each on a horizon of Nh = 100. To
apply our proposed methods, we train a diffusion model (see Appendix G.2.2 for implementation
details) on the measured trajectories Dtrain and solve (14) via the denoising Riemannian gradient
descent to obtain a solution (u∗,y∗). As initial values we take the trajectories from the training
set that minimize the objective cost f , i.e. (u0,y0) = argmin(u,y)∈Dtrain

f(u,y). Note that, as
seen in Section 5, in general the final iterate will not exactly lie on the input-output manifold, i.e.
(u∗,y∗) /∈ MIO. To account for this deviation we back-test our generated input trajectory u∗ by
implementing it on the true underlying system (13) to obtain the real output ytrue.

Results and discussion: In Figure 4 (in Appendix G.2.3) we depict the evolution of the ob-
jective value w.r.t. iteration count and in Figure 2 we depict the final optimizing trajectories y∗ and
ytrue. We can observe that the error ∥y∗−ytrue∥ is small, which shows that (u∗,y∗) is close to the
true system behavior MIO. Moreover, we can see that the trajectory ytrue tracks the corresponding
reference r much better than the train set minimum y0, which shows a generalization capability
of our diffusion model. We from Figure 4 (left) that the current objective can depart from the
true objective significantly. This is due to the iterates deviating from MIO. In this example the
algorithm (DRGD) recovers and we have found it to be robust w.r.t. moderate deviations from the
manifold. Note that we have set a iteration budget of Niter = 3000 and Niter = 2500, respectively,
while the objective is still decreasing. Accelerating the convergence of DRGD is left for future
work.

7 CONCLUSION AND FUTURE WORK

In this paper, we show that the denoising score and its Jacobian allow to perform manifold opera-
tions such as the closest-point and tangent space projection without the explicit knowledge of the
manifold. We then propose a landing flow for the corresponding manifold-constrained Rieman-
nian optimization problem and show that its limit points approximate critical points of the original
problem. Moreover, we investigate the approximate version of the Riemannian gradient descent
and provide a bound on the average-gradient-norm of its iterates, which converges to zero as the
manifold operations become more exact. We apply both algorithms on known manifolds and to
finite-horizon reference tracking in the domain of data-driven control. Future work will consist of
deriving error bounds for this flow when the denoising score is trained with a non-zero L2-error as
well as the study of more sophisticated classical Riemannian optimization algorithms such as New-
ton and trust region methods when using the approximate manifold operations with the trained score
to accelerate convergence.

9
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Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold without
retraction. In International Conference on Artificial Intelligence and Statistics, pp. 5636–5657.
PMLR, 2022.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

Felipe Alvarez, Jerome Bolte, and Olivier Brahic. Hessian riemannian gradient flows in convex
programming. SIAM journal on control and optimization, 43(2):477–501, 2004.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
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Monthly, 123(8):825–830, 2016.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728,
2022.

Enkelejd Hashorva, Dmitry Korshunov, and Vladimir I Piterbarg. On laplace asymptotic method,
with application to random chaos. 2015.

Uwe Helmke and John B Moore. Optimization and dynamical systems. Springer Science & Business
Media, 2012.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimiza-
tion. Journal of the Operations Research Society of China, 8(2):199–248, 2020.

Chii-Ruey Hwang. Laplace’s method revisited: weak convergence of probability measures. The
Annals of Probability, pp. 1177–1182, 1980.

Tadeusz Inglot and Piotr Majerski. Simple upper and lower bounds for the multivariate laplace
approximation. Journal of Approximation Theory, 186:1–11, 2014.

Amin G Jaffer and Someshwar C Gupta. On relations between detection and estimation of discrete
time processes. Information and Control, 20(1):46–54, 1972.

Hamid Kamkari, Brendan Ross, Rasa Hosseinzadeh, Jesse Cresswell, and Gabriel Loaiza-Ganem. A
geometric view of data complexity: Efficient local intrinsic dimension estimation with diffusion
models. Advances in Neural Information Processing Systems, 37:38307–38354, 2024.

Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle
River, NJ, 2002.
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A MORE ON MANIFOLDS AND DISTANCE FUNCTIONS

In addition to the notation introducted in Section 2.1, we note that τM is also the largest τ ≥ 0 such
that the map {(p, v) ∈ NM | ∥v∥ < τ} → Rd : (p, v) 7→ p+ v is a diffeomorphism. By a tubular
neighborhood of radius τ ∈ (0, τM] we mean a set of the form T (τ) = {p + v | p ∈ M , v ∈
NpM , ∥v∥ < τ}. Moreover, for x ∈ Rd let distM(x) = infp∈M∥x − p∥ denote the distance
function so that d(x) = 1

2 distM(x)2. The second fundamental form of M at a point p ∈ M
will be denoted by IIp and is a symmetric bilinear map IIp : TpM × TpM → NpM intrinsic
to the manifold M. Fixing some u ∈ NpM we also define the directed second fundamental form
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IIup : TpM×TpM → R : (v, w) 7→ ⟨IIp(v, w), u⟩Np M. The Weingarten map Sup at a point p ∈ M
in the direction u ∈ NpM is defined as the unique self-adjoint linear operator Sup : TpM → TpM
such that

〈
w, Sup (v)

〉
Tp M = IIup(v, w) for all v, w ∈ TpM. A useful operator that has been studied

in Abatzoglou (1978); Breiding & Vannieuwenhoven (2021); Alvarez et al. (2004) is

Hx = ITπ(x)M + S
π(x)−x
π(x) : Tπ(x) M → Tπ(x) M . (16)

In Breiding & Vannieuwenhoven (2021) it has been shown (see Lemma 8) that Hx is invertible on
T . Now we have the following useful identities that hold for x ∈ T

π′(x) = ITπ(x) MH−1
x PTπ(x) M

∇ d(x) = x− π(x)

∇2 d(x) = I − π′(x) = I − ITπ(x) MH−1
x PTπ(x) M .

For any p ∈ M the map prp : M → TpM : q 7→ PTp M(q − p) is a local diffeomorphism at p
with inverse ψp defined on BTp M

τM/4 (0) := BτM/4(0) ∩ TpM. Following Divol (2022) we define
Mk(τ,M) as the set of allCk-manifolds M as above such that τM > τ and supp∈M∥ψp∥Ck ≤M .
For the class Mk(τ,M), a manifold M ∈ Mk(τ,M) and p ∈ M, we denote by ψp always
the inverse of the orthogonal projection prp (also called Monge or graph chart) restricted to the
particular neighborhood BTp M

min{τM,M}/4(0), which will be (isometrically) identified with the ball
Bmin{τM,M}/4(0) ⊆ Rk. We make frequent use of the following useful result from Divol (2022).

Lemma 7 (Lemma A.1 in Divol (2022)). Suppose M ∈ Mk(τ,M) and p ∈ M. Then ψp :

B
Tp M
min{τM,M}/4(0) → M is well-defined, Ck-smooth and the following holds:

(i) For all r ≤ min{τM,M}/4 it holds that Br(p)∩M ⊆ ψp(B
Tp M
r (0)) ⊆ B8r/7(p)∩M.

For z ∈ B
Tp M
min{τM,M}/4(0) it holds that ∥z∥ ≤ ∥ψp(z)− p∥ ≤ 8∥z∥/7.

(ii) There exists a map Wp : B
Tp M
min{τM,M}/4(0) → NpM with W ′

p(0) = 0 and such that

ψp(z) = p+ z +Wp(z) and ∥Wp(z)∥ ≤M∥z∥2 for all z ∈ B
Tp M
min{τM,M}/4(0).

(iii) For Gψp
: B

Tp M
min{τM,M}/4(0) → R : z 7→

√
detψ′

p(z)
⊤ψ′

p(z) it holds that Gψp
(0) = 1

and ∇Gψp(0) = 0.

Note that for the graph chart ψp we always have

ψ′
p(0) = ITp M , ψ′′

p (0)[·, ·] =W ′′
p (0)[·, ·] = IIp(·, ·) , (17)

and hence ∥ψ′
p(0)∥ ≤ 1 and ∥ψ′′

p (0)∥ = ∥IIp∥ ≤ 1/τM.

A.1 PROPERTIES OF (16)

We study the invertibility and boundedness of the operator (16). For this purpose, let us recall first
the definition of the (normalized) curvature radius of M at p in the direction of u ∈ NpM:

1

ρ(p, u)
= max

v∈Tp M
IIup (v,v)≥0

IIu/∥u∥p (v, v)

∥v∥2
= max(eig(Su/∥u∥p ) ∪ {0}) .

If Sup has only non-positive eigenvalues, then M is curved away from the unit vector u and thus the
curvature radius is infinite. Moreover, we define the (normalized) curvature of M to be

κMp (u) = max
∣∣∣eig(Su/∥u∥p )

∣∣∣ for u ∈ NpM ,

and the maximal curvature by

κM = max
(p,u)∈NM

κMp (u) . (18)

We have the following
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Lemma 8. The operator (16) is invertible on T (τM). Moreover, (16) satisfies1

∥P0(x)∥ = ∥H−1
x ∥ =

(
1− ∥π(x)− x∥

ρ(π(x), x− π(x))

)−1

≤ 1

1− ∥x− π(x)∥κM
≤ 1

1− ∥x− π(x)∥/τM
,

and if ψ is a local parametrization of M with ψ(0) = p, then

P0(x) = ψ′(0)

(
ψ′(0)⊤ψ′(0) +

d∑
i=1

(p− x)i∇2ψi(0)

)−1

ψ′(0)⊤ .

In particular, for any τ ∈ (0, τM), it holds

sup
x∈T (τ)

∥H−1
x ∥ <∞ .

Proof. In (Breiding & Vannieuwenhoven, 2021, Lemma A.2) the following condition has been es-
tablished: Let S = {(a, p) ∈ Rn × M | a − p ∈ NpM}. Then S is diffeomorphic to the
normal bundle NM via the diffeomorphism Φ : NM → S : (v, p) 7→ (p + INp M(v), p). Con-
sider the operator Π : S → Rn : (a, p) 7→ a and the domain where its differential is invertible
W = {(a, p) ∈ S | Π′(a, p) : T(a,p) S → Rn invertible}. Then Hx is invertible iff (x, π(x)) ∈ W .
But Π ◦ Φ : NM 7→ Rn : (v, p) 7→ p + INp M(v) being a diffeomorphism (and thus having an
inveritble differential) is precisely the condition in the definition of the tubular neighborhood T . The
formulas for P0(x) in local coordinates as well as ∥P0(x)∥ are given in (Abatzoglou, 1978, Theorem
4.1, Corollary 4.1). To see that P0(x) is bounded on T (τ) for any τ ∈ (0, τM) it sufficies to note
that in the tubular neighborhood T = T (τM) we always have ∥π(x)−x∥ < ρ(π(x), x−π(x)) and
that T (τ) is a compact subset thereof. The second inequality follows from 1/ρ(p, u) ≤ κM.

Now let us derive bounds for the quantity ∥P0(π(x))− P0(x)∥ when x ∈ T (τM).
Lemma 9. If x ∈ T (τM), then

∥P0(π(x))− P0(x)∥ ≤ κMπ(x)(x− π(x))

(
1− ∥π(x)− x∥

ρ(π(x), x− π(x))

)−1

∥x− π(x)∥ ,

≤ ∥x− π(x)∥κM
1− ∥x− π(x)∥κM

≤ ∥x− π(x)∥/τM
1− ∥x− π(x)∥/τM

.

Proof. We clearly have for x ∈ T

P0(π(x))− P0(x) = ITπ(x) M(I −H−1
x ) PTπ(x) M .

Moreover, (I −H−1
x ) : Tπ(x) M → Tπ(x) M is symmetric with eigenvalues

eig(I −H−1
x ) =

{
ζ

1 + ζ
| ζ ∈ eig(S

π(x)−x
π(x) )

}
=

{
−∥π(x)− x∥ζ
1− ∥π(x)− x∥ζ

| ζ ∈ eig(Suπ(x))

}
,

where u = x−π(x)
∥x−π(x)∥ . Thus

∥P0(π(x))− P0(x)∥ ≤ max
ζ∈eig(Su

π(x)
)

∣∣∣∣ ζ

1− ∥x− π(x)∥ζ

∣∣∣∣∥x− π(x)∥

≤ ∥Suπ(x)∥
(
1− ∥π(x)− x∥

ρ(π(x), x− π(x))

)−1

∥x− π(x)∥ ,

which shows the first inequality. The second and third inequalities follow from 1/ρ(p, u) ≤ κM ≤
1/τM .

The next lemma establishes a bound on the Lipschitz-constant of P0 of some M ∈ Mk(τ,M) in
terms of M and τM.

1In (Breiding & Vannieuwenhoven, 2021, Theorem 4.3) the quantity ∥H−1
x ∥ has been shown to equal the

condition number of a certain critical point problem associated with M.
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Lemma 10. If M ∈ Mk(τ,M), then

sup
x∈T (τ)

∥P ′
0(x)∥ ≤ (

1

1− τ/τM
)2
(
(
3

τM
+ τM)(

1

1− τ/τM
)2 +

2

τM

)

Proof. Let x ∈ T (τ) where τ ∈ (0, τM). First let us relate the quantity π(x) and a fixed chart
ψ : V → U with π(x) ∈ U for all x ∈ W for some (small enough) open set W ⊆ Rd. The map
hψ(z) = 1

2∥x − ψ(z)∥2 attains its minimum in some zψ(x) ∈ V and if Fψ(z, x) = h′ψ(z) =

ψ′(z)(ψ(z) − x), then Fψ(zψ(x), x) = 0. Moreover, we have π(x) = ψ(zψ(x)) and hence for
w ∈ Rd

P ′
0(x)[w,w] = π′′(x)[w,w] = ψ′′(zψ(x))[z

′
ψ(x)[w], z

′
ψ(x)[w]] + ψ′(zψ(x))[z

′′
ψ(x)[w,w]] ,

and hence

∥P ′
0(x)∥ ≤ ∥ψ′′(zψ(x))∥∥z′ψ(x)∥2 + ∥ψ′(zψ(x))∥∥z′′ψ(x)∥

By the implicit function theorem we can bound the derivatives of zψ in terms of derivatives of Fψ .
Indeed, we have (here againw ∈ Rd and v ∈ Rk are place-holder vectors to express the differentials)

0 = Fψz (zψ(x), x)[v, z
′
ψ(x)[w]] + Fψx (zψ(x), x)[v, w] ,

0 = Fψz (zψ(x), x)[v, z
′′
ψ(x)[w,w]] + Fψzz(zψ(x), x)[v, z

′
ψ(x)[w], z

′
ψ(x)[w]]

+ 2Fψxz(zψ(x), x)[v, zψ(x)[w], w] + Fψxx(zψ(x), x)[v, w,w] ,

(19)

with

Fψz (z, x)[v, v] = ⟨ψ′(z)[v], ψ′(z)[v]⟩+ ⟨ψ(z)− x, ψ′′(z)[v, v]⟩ ,
Fψx (z, x)[w, v] = ⟨ψ′(z)[v], w⟩ ,

Fψzz(z, x)[v, v, v] = 3 ⟨ψ′′(z)[v, v], ψ′(z)[v]⟩+ ⟨ψ(z)− x, ψ′′′(z)[v, v, v]⟩ ,
Fψxz(z, x)[w, v, v] = ⟨ψ′′(z)[v, v], w⟩ ,
Fψxx(z, x)[w, v, v] = 0 .

Now we set ψ = ψp for the graph chart defined on V = B
Tp M
min{τ,M}/4(0), where p = π(x). In this

case z = zψ(x) = 0 and ∥Fψz (0, x)−1∥ = ∥P0(x)∥ ≤ (1 − τ/τM)−1 by Lemma 8. Solving for
z′ψ(x) and z′′ψ(x) in (19), using (17) with ∥IIp∥ ≤ 1/τM and taking norms yields then

∥z′ψ(x)∥ ≤ 1

1− τ/τM
,

∥z′′ψ(x)∥ ≤ 1

1− τ/τM

(
(
3

τM
+ τM)∥z′ψ(x)∥3 +

1

τM
∥z′ψ(x)∥

)
.

Plugging this back into the upper bound of ∥P ′
0(x)∥ and using once again (17)finishes the proof

The next lemma establishes a lower bound on the distance between a point x in a tubular neighbor-
hood and any other point that is sufficiently away from p = π(x) uniformly in x.
Lemma 11. Let τ ∈ (0, τM) and let η > 0. Then

inf
x∈T (τ)

1

2
distM\Bη(π(x))(x)

2 − 1

2
distM(x)2 ≥ 1

2

τM − τ

τM + τ
η2 > 0 .

Proof. Let τ ′ = τ+τM
2 ∈ (0, τM). Take x ∈ T (τ) and set p = π(x) and y = p + τ ′n̂ with

n̂ = x−p
∥x−p∥ . Then y ∈ T (τM) with distM(y) = τ ′ and thus Bτ ′(y) ∩ M = {p}. Then, since

M\Bη(p) ⊆ Rd \ (Bτ ′(y) ∪Bη(p)), it is sufficient to show

inf
q∈Rd\(Bτ′ (y)∪Bη(p))

∥x− q∥2 − ∥x− p∥2 ≥ τM − τ

τM + τ
η2 .
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To see this, note that q ∈ Rd \ (Bτ ′(y)∪Bη(p)) implies ∥y− q∥ ≥ τ ′ = ∥y− p∥ and ∥q− p∥ ≥ η,
as well as 2 ⟨p− q, y − q⟩ ≥ ∥p − q∥2. Then, abbreviating t = ∥x−p∥

∥y−p∥ ∈ (0, 1), we have x =

ty + (1− t)p = p+ t(y − p) and

∥x− q∥2 − ∥x− p∥2 = ∥ty + (1− t)p− q∥2 − t2∥y − p∥2

≥ ∥t(y − q) + (1− t)(p− q)∥2 − t2∥y − q∥2

= (1− t)2∥p− q∥2 + 2t(1− t) ⟨p− q, y − q⟩
≥ (1− t)∥p− q∥2

≥ τM − τ

τM + τ
η2 .

A.2 DENSITIES ON MANIFOLDS

Given a manifold M as in Section A and any chart ψ : V → U ⊆ M, the volume measure VolM is
uniquely defined by

VolM(E) =

∫
ψ−1(E)

Gψ(z) dz for E ⊆ U Borel measurable.

Here Gψ(z) =
√
detψ′(z)⊤ψ′(z) and VolM is independent of the chart ψ. If µ ∈ P(Rd) is

absolutely continuous w.r.t. VolM, then for the density µ(y) := dµ
dVolM

(y) on M we have the local
representations

µ(ψ(z)) =
dλ

d(ψ−1#VolM)
(z) , λ(z) = Gψ(z)µ(ψ(z))

with λ = ψ−1#µ the pullback under the chart ψ with density λ(z) = dλ
dmV

(z) w.r.t. the Lebesgue
measure mV on V . In particular when M ∈ Mk(τ,M) with graph chart ψp, we have

λ(0) = µ(p) , ∇λ(0) = gradM µ(p) ∈ TpM ∼= Rk . (20)

B MORE ON THE STEIN SCORE FUNCTION

In this section we derive the representations (4). For σ ≥ 0 let N (0, σ2Id) denote the Gaussian
distribution with mean zero and variance σ2 and for σ > 0 the Gaussian (heat) kernel in the ambient
space Rd by

φσ(x) =
1

Zσ
e−∥x∥2/2σ2

, Zσ =
1

(2πσ2)d/2
.

Then pσ = N (0, σ2I)∗µ has for σ > 0 a fully supported C∞-density, denoted by pσ as well, given
by

pσ(x) =

∫
M
φσ(x− y) dµ(y) , x ∈ Rd .

Let νx,σ be the posterior of observing x under pσ with prior µ, i.e.

νx,σ(E) =
1

pσ(x)

∫
E

φσ(x− y) dµ(y) , E ⊆ Rd Borel .

We have the following representation
Lemma 12. For each σ > 0 representations (4) hold.

Proof. Clearly

∇pσ(x) = − 1

σ2

∫
M
(x− y)φσ(x− y) dµ(y) , x ∈ Rd ,

∇2pσ(x) = − 1

σ2

(
pσ(x)I −

1

σ2

∫
M
(x− y)(x− y)⊤φσ(x− y) dµ(y)

)
, x ∈ Rd .

17
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and hence

∇ log pσ(x) =
∇pσ(x)
pσ(x)

= − 1

σ2
(x− Eνx,σ) ,

which yields the first representation in (4). Further

∇2pσ(x)

pσ(x)
= − 1

σ2

(
I − 1

σ2

∫
M
(x− y)(x− y)⊤ dνx,σ(y)

)
and hence

∇2 log pσ(x) =
∇2pσ(x)

pσ(x)
− ∇pσ(x)∇pσ(x)⊤

pσ(x)2

= − 1

σ2

(
I − 1

σ2

∫
M
(x− y)(x− y)⊤ dνx,σ(y)

)
− 1

σ4
(x− Eνx,σ)(x− Eνx,σ)⊤

= − 1

σ2
I +

1

σ4

(∫
M
yy⊤ dνx,σ(y)− (Eνx,σ)(Eνx,σ)⊤

)
= − 1

σ2
I +

1

σ4
Cov(νx,σ) ,

which yields the second representation in (4).

C VARIANCE-EXPLODING DIFFUSION MODELS

In the variance-exploding scheme of score-based diffusion models Song et al. (2020); Tang & Zhao
(2025), one considers the following stochastic differential equation on the finite interval [0, T ]:

dXt =
√
2tdWt , t ∈ [0, T ] , X0 ∼ µ . (21)

The solution Xt of this SDE is distributed according to Xt ∼ pσ(t), where σ2(t) = t2. To sample
from µ one exploits the fact that the reverse SDE

dXt = 2(T − t)∇ log pσ(T−t)(Xt) d t+
√
2(T − t) dWt , t ∈ [0, T ] , X0 ∼ pσ(T ) , (22)

satisfies Xt ∼ pσ(T−t) and in particular X0 ∼ p0 = µ. Here the initial distribution is approxi-
mated by pσ(T ) ≈ N (0, σ(T )2I) and unknown score ∇ log pσ(T−t) is learned by minimizing the
conditional score matching loss defined as

LCSM(s) = Et∼Unif[0,T ]Ex0∼µEx∼pσ(t)(·|x0)σ(t)
2∥sσ(t)(x)−∇ log pσ(t)(x | x0)∥2 , (23)

and which admits the unique minimizer sσ(x) = ∇ log pσ(x). The loss LCSM can be evaluated
because ∇ log pσ(x | x0) = − 1

σ2 (x− x0) is known explicitly.

D PROOF OF THEOREM 1

D.1 NONASYMPTOTIC LAPLACE METHOD

In this section we derive some non-asymptotic error estimates for the Laplace method Hashorva
et al. (2015); Hwang (1980), which concerns itself with the asymptotic of integrals of the form∫

V
f(z)e−

1
σ2 h(z) dz (σ → 0)

for some functions f, h : V → R from an open set V ⊆ Rk, where h is non-negative and attains
a unique minimum in, say, z = 0 ∈ V . While there have been results providing such an error
estimation to the first order expansion Inglot & Majerski (2014); Majerski (2015); Lapinski (2019),
we need an error estimate up to the second order expansion, as provided in Theorem 14. For the sake
of completeness we also include the statement and proof for the first order expansion in Theorem 13.
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Before we state the results, we need to introduce some notation and conventions. For any f ∈ C0(V)
and h ∈ C2(V), respectively we write

ζf (z) = f(z)− f(0)
z→0
= o(1)

χh(z) = h(z)− h(0)−∇h(0)⊤z − 1

2
z⊤∇2h(0)z

z→0
= o(∥z∥2)

for its first and second order remainder terms and abbreviate

ζσf (w) = ζf (σw) and χσh(w) =
1

σ2
χh(σw) for σ > 0 .

Let us note the following: If additionally f ∈ C1(V) and g ∈ C3(V), then ζf (z) = O(∥z∥) and
χg(z) = O(∥z∥3) for z → 0, i.e. there exist some η > 0 and C > 0 such that Bη(0) ⊆ V and

|ζf (z)| ≤ C∥z∥ and |χh(z)| ≤ C∥z∥3 for all z ∈ Bη(0) . (24)

In particular for σ > 0 and β : [0,∞) → [0,∞) it holds

sup
∥w∥≤min{η/σ,β(σ)}

|ζσf (w)| ≤ Cσβ(σ) and sup
∥w∥≤min{η/σ,β(σ)}

|χσg (w)| ≤ Cσβ(σ)3 . (25)

For a non-negative function h with a global minimum at z = 0 we define

γh(δ) = inf
z∈V

∥z∥≥δ

h(z)− h(0) .

We say that h satisfies a local quadratic growth condition in Bη(0) ⊆ V if there exists a c > 0 with

h(z)− h(0) ≥ c∥z∥2 for all z ∈ Bη(0) , (26)

and that h admits minimum separation outside of Bη(0) in V if there exists a ∆ > 0 with

h(z)− h(0) ≥ ∆ > 0 for all z ∈ V \Bη(0) . (27)

Clearly, if h satisfies (24), then h also satisfies (26) (for a potentially smaller η). On the other hand,
the global assumption (27) cannot be inferred from properties of h around z = 0 alone. Together,
(26) and (27) imply that γh can be bounded below by

γh(δ) ≥ min{cδ2,∆} , (28)

which is crucial to obtain a quantitative bound on the convergence of the Laplace method. While
we state the following results in this full generality, in our application we have Bη(0) = V and thus
(27) is not needed, with (24) and (26) holding globally on V and implying that

γh(δ) ≥ cδ2 . (29)

Theorem 13 (First Order Laplace method). Let h ∈ C3(V) with ∇h(0) = 0 and f ∈ C1(V) for
some open Br(0) ⊆ V ⊆ Rk. Let η ∈ (0, r] and C, c,∆ > 0 be such that (24), (26) and (27) hold.
Then for all σ ∈ (0, σ) with σ = min{η2, (log(2)/(2C))2} with it holds∣∣∣∣∣e 1

σ2 h(0)

√
detΣ

Zσ

∫
V
f(z)e−

1
σ2 h(z) dz − f(0)

∣∣∣∣∣ ≤ E1(σ; f, h, r) (30)

with Σ = ∇2h(0) and E1(σ; f, h, r) = O(σ|log σ|3) for σ → 0 given in (31).

Proof. Without loss of generality we can assume h(0) = 0. For brevity we also write ZΣ
σ =

Zσ√
detΣ

for the normalizing constant. Let α : [0,∞) → [0,∞) be any function and denote B(σ) =

Bα(σ)(0). We can split

1

ZΣ
σ

∫
V
f(z)e−

1
σ2 h(z) dz =

1

ZΣ
σ

∫
V\B(σ)

f(z)e−
1
σ2 h(z) dz +

1

ZΣ
σ

∫
B(σ)

f(z)e−
1
σ2 h(z) dz .

We will craft α : [0,∞) → [0,∞) in such a way that the first integral vanishes and the second
converges to f(0) for σ → 0. For the first integral we have∣∣∣∣∣ 1

ZΣ
σ

∫
V\B(σ)

f(z)e−
1
σ2 h(z) dz

∣∣∣∣∣ ≤ 1

ZΣ
σ

e−
1
σ2 γh(α(σ))∥f∥L1(V) .
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For the second integral let us write f(z) = f(0) + ζf (z) and split

1

ZΣ
σ

∫
B(σ)

f(z)e−
1
σ2 h(z) dz =

f(0)

ZΣ
σ

∫
B(σ)

e−
1
σ2 h(z) dz +

1

ZΣ
σ

∫
B(σ)

ζf (z)e
− 1

σ2 h(z) dz

=: I(σ) + J(σ) .

First let us estimate the difference between I(σ) and f(0). We have, using the substitution z = σw
and abbreviation BV(σ) = (V ∩B(σ))/σ,

|I(σ)− f(0)|

≤ f(0)

∣∣∣∣∣ 1

ZΣ
1

∫
BV(σ)

e−
1
σ2 h(σw) dw − 1

∣∣∣∣∣
≤ f(0)

ZΣ
1

(∣∣∣∣∣
∫
BV(σ)

e−
1
2w

⊤Σw(e−χ
σ
h(w) − 1) dw

∣∣∣∣∣+
∣∣∣∣∣
∫
Rk\BV(σ)

e−
1
2w

⊤Σw dw

∣∣∣∣∣
)

=:
f(0)

ZΣ
1

(|I1(σ)|+ |I2(σ)|) .

Estimating I1(σ) we obtain

|I1(σ)| ≤ ZΣ
1 sup
w∈BV(σ)

∣∣∣e−χσ
h(w) − 1

∣∣∣ .
To estimate I2(σ), let us note that Σ1/2(Rk\BR(0)) ⊆ Rk\Bλmin(Σ)R(0). Then, via the substitution
u = Σ1/2w, we obtain

|I2(σ)| ≤

∣∣∣∣∣
∫
Rk\BV(σ)

e−
1
2w

⊤Σw dw

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Rk\Bmin{r,α(σ)}/σ(0)

e−
1
2w

⊤Σw dw

∣∣∣∣∣
≤ ZΣ

1

1

(2π)k/2

∣∣∣∣∣
∫
Σ1/2(Rk\Bmin{r,α(σ)}/σ(0))

e−
1
2∥u∥

2

du

∣∣∣∣∣ ≤ ZΣ
1 G0

(
λmin(Σ)

min{r, α(σ)}
σ

)
,

with the Gaussian tail

G0(R) =
1

(2π)n/2

∫
Rn\BR(0)

e−
1
2∥u∥

2

du .

Next we estimate J(σ) via

|J(σ)| ≤ 1

ZΣ
1

∫
BV(σ)

ζf (σw)e
− 1

2w
⊤Σwe−χ

σ
h(w) dw

≤

(
sup

w∈BV(σ)

|ζf (σw)|

)(
sup

w∈BV(σ)

|e−χ
σ
h(w) − 1|+ 1

)
.

In all, we obtain the following error estimate∣∣∣∣e 1
σ2 h(0)

1

ZΣ
σ

∫
V
f(z)e−

1
σ2 h(z) dz − f(0)

∣∣∣∣
≤ 1

ZΣ
σ

e−
1
σ2 γ(α(σ))∥f∥L1(V) +

f(0)

ZΣ
1

(|I1(σ)|+ |I2(σ)|) + |J(σ)|

≤ 1

ZΣ
σ

e−
1
σ2 γ(α(σ))∥f∥L1(V)

+ f(0)

(
sup

w∈BV(σ)

∣∣∣e−χσ
h(w) − 1

∣∣∣+G0

(
λmin(Σ)

min{r, α(σ)}
σ

))

+

(
sup

w∈BV(σ)

|ζf (σw)|

)(
sup

w∈BV(σ)

|e−χ
σ
h(w) − 1|+ 1

)
.

Thus we observe that we need to select α in such a way that for σ → 0
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(i) (ZΣ
σ )

−1 exp(−γh(α(σ))/σ2) → 0

(ii) G0

(
λmin(Σ)

min{r,α(σ)}
σ

)
→ 0

(iii) supw∈BV(σ)|χσh(w)| → 0

(iv) supw∈BV(σ)|ζf (σw)| → 0

Let us make the Ansatz α(σ) = σβ(σ) for some β : (0,∞) → (0,∞) with β(σ) → ∞ for σ → 0.
Taking β(σ) = |log(σ)|, noting that |e−x − 1| ≤ 2|x| for |x| ≤ log 2 as well as using (28), (25) and
the fact that σ|log(σ)|, σ|log(σ)|3 ≤ σ1/2 when σ ∈ (0, 1), yields the following estimates

exp(− 1

σ2
γ(α(σ))) ≤ exp(−min{c log(σ)2,∆σ−2}) ,

G0

(
λmin(Σ)

min{r, α(σ)}
σ

)
≤ G0

(
λmin(Σ)min{rσ−1, |log(σ)|}

)
,

sup
w∈BV(σ)

∣∣∣e−χσ
h(w) − 1

∣∣∣ ≤ 2 sup
w∈BV(σ)

|χσh(w)| ≤ 2Cσβ(σ)3 = 2Cσ|log(σ)|3 ,

sup
w∈BV(σ)

|ζf (σw)| ≤ Cσβ(σ) = Cσ|log(σ)| ,

when 0 < σ ≤ σ := min{η2, (log 2/(2C))2}. Plugging all these estimates back yields (30) with

E(σ) =
1

ZΣ
σ

exp(−min{c log(σ)2,∆σ−2})∥f∥L1(V)

+ f(0)
(
2Cσ|log(σ)|3 +G0(λmin(Σ)min{rσ−1, |log(σ)|})

)
+ Cσ|log(σ)|(1 + 2Cσ|log(σ)|3)

σ→0
= O(σ log(σ)3) = Õ(σ) .

(31)

The next result provides an nonasymptotic estimate of the Laplace method for the second order
expansion. We will need a version that allows for a non-zero gradient of f , as long as it is contained
in the subspace {(q,−q) | q ∈ Rn} ⊆ Rn × Rn.
Theorem 14 (Second Order). Let f, h ∈ C3(V × V) be such that f(0) = 0 and ∇h(0) = 0 for
some open Br(0) ⊆ V ⊆ Rn for some r > 0. Further, suppose that h is additively separable as
h(z) = h(z1) + h(z2) and ∇f(0) =

( q
−q
)

for some q ∈ Rn. Additionally, let η ∈ (0, r] and
C, c,∆ > 0 be such that (24), (26) and (27) hold, where this time (24) applies also for h = f . Then
for σ ∈ (0, σ) with σ = min{η2, (log(2)/(2C))2} it holds∣∣∣∣∣e 1

σ2 h(0)

√
detΣ

Zσ

∫
V×V

f(z)e−
1
σ2 h(z) dz − σ2A(f, h)

∣∣∣∣∣ ≤ E2(σ; f, h, r) , (32)

where Σ = ∇2h(0) with E2(σ; f, h, r) = O(σ3|log(σ)|3) for σ → 0. Here the second order
coefficient A2(f, h) is given by

A2(f, h) =
1

2
tr(Σ−1∇2f(0)) . (33)

and E2(σ; f, h, r) is given in (34).

Proof. The proof is similar to the proof of Theorem 13 with the modification for the product space
Rk = Rn × Rn. Again we can assume h(0) = 0. Let α : [0,∞) → [0,∞) be any function and
denote B̂(σ) = Bα(σ)(0)×Bα(σ)(0) ⊆ Rn × Rn and V̂ = V × V . Write

1

σ2

1

ZΣ
σ

∫
V̂
f(z)e−

1
σ2 h(z) dz

=
1

σ2

1

ZΣ
σ

∫
V̂\B̂(σ)

f(z)e−
1
σ2 h(z) dz +

1

σ2

1

ZΣ
σ

∫
V̂∩B̂(σ)

f(z)e−
1
σ2 h(z) dz .

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We will carefully craft α such that limσ→0 α(σ) = 0 and the first and second integral converge to 0
and 1

2 tr(Σ
−1∇2f(0)), respectively, with explicit error bounds. For the first one we have∣∣∣∣∣ 1σ2

1

ZΣ
σ

∫
V̂\B̂(σ)

f(z)e−
1
σ2 h(z) dz

∣∣∣∣∣ ≤ e−
1
σ2 γh(α(σ))

ZΣ
σ σ

2
∥f∥L1(V×V) .

Now consider the second integral. By a substitution z = σw and abbreviating B̃V̂(σ) = (V̂ ∩
B̂(σ))/σ = B̃V(σ)× B̃V(σ) with B̃V(σ) = (V ∩Bα(σ)(0))/σ as well as χσg (w) =

1
σ2χg(σw) for

g ∈ {f, h}, we have

1

σ2

1

ZΣ
σ

∫
V̂∩B̂(σ)

f(z)e−
1
σ2 h(z) dz

=
1

ZΣ
1

∫
B̃V̂(σ)

(
1

σ
∇f(0)⊤w +

1

2
w⊤∇2f(0)w + χσf (w)

)
e−

1
σ2 h(σw) dw

=: H(σ) + I(σ) + J(σ) .

Note that H(σ) vanishes due to separability of h and the particular form of ∇f(0):

σZΣ
1 H(σ) =

∫
B̃V̂(σ)

∇f(0)⊤w · e−
1
σ2 h(σw) dw

=

∫
B̃V(σ)

∫
B̃V(σ)

(q⊤w1 − q⊤w2)e
− 1

σ2 h(σw1)e−
1
σ2 h(σw2) dw1 dw2

= 0 .

Next, let us consider the difference between I(σ) and 1
2 tr(Σ

−1∇2f(0)) given by∣∣∣∣∣ 1

ZΣ
1

∫
B̃V̂(σ)

1

2
w⊤∇2f(0)w · e− 1

2w
⊤Σwe−χ

σ
h(w) dw − 1

2
tr(Σ−1∇2f(0))

∣∣∣∣∣
≤

∣∣∣∣∣ 1

ZΣ
1

∫
B̃V̂(σ)

1

2
w⊤∇2f(0)w · e− 1

2w
⊤Σw(e−χ

σ
h(w) − 1) dw

∣∣∣∣∣
+

∣∣∣∣∣ 1

ZΣ
1

∫
R2n\B̃V̂(σ)

1

2
w⊤∇2f(0)w · e− 1

2w
⊤Σw dw

∣∣∣∣∣
=: |I1(σ)|+ |I2(σ)| .

Then

|I1(σ)| ≤

(
sup

w∈B̃V̂(σ)

|e−χ
σ
h(w) − 1|

)
1

ZΣ
1

∫
R2n

1

2

∣∣w⊤∇2f(0)w
∣∣ · e− 1

2w
⊤Σw dw

≤ n

2
∥Σ−1/2∇2f(0)Σ−1/2∥

(
sup

w∈B̃V̂(σ)

|e−χ
σ
h(w) − 1|

)

Furthermore, by a variable substitution u = Σ1/2w we obtain

|I2(σ)| ≤

∣∣∣∣∣ 1Z1

∫
R2n\Σ1/2B̃V̂(σ)

1

2
u⊤Σ−1/2∇2f(0)Σ−1/2u · e− 1

2∥u∥
2

du

∣∣∣∣∣
≤ 1

2
L(σ)∥Σ−1/2∇2f(0)Σ−1/2∥ ,

where

L(σ) =
1

Z1

∫
Rk\Σ1/2

B̃V(σ)

∥u∥2e− 1
2∥u∥

2

du .
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Noting that for Σ = ∇2h(0) it holds Σ1/2B̃V̂(σ) = Σ
1/2
B̃V(σ)× Σ

1/2
B̃V(σ) and

Σ
1/2
B̃V(σ) = Σ

1/2
(V ∩Bα(σ)(0))/σ ⊇ Bλmin(Σ)min{r,α(σ)}/σ(0)

and hence

L(σ) ≤ 2G2

(
λmin(Σ)

min{r, α(σ)}
σ

)
,

with the Gaussian second moment tail

G2(R) :=
1

(2π)n/2

∫
Rn\BR(0)

∥u∥2e− 1
2∥u∥

2

du .

Now consider the final expression

|J(σ)| =

∣∣∣∣∣ 1

ZΣ
1

∫
B̃V̂(σ)

χσf (w)e
−hσ(w) dw

∣∣∣∣∣
≤

(
sup

w∈B̃V̂(σ)

|χσf (w)|

)
1

ZΣ
1

∫
B̃V̂(σ)

e−h
σ(w) dw

Let us further estimate
1

ZΣ
1

∫
B̃V̂(σ)

e−h
σ(w) dw =

1

ZΣ
1

∫
B̃V̂(σ)

e−
1
2w

⊤Σwe−χ
σ
h(w) dw

≤

(
sup

w∈B̃V̂(σ)

|e−χ
σ
h(w) − 1|

)
+ 1 .

Hence we see that we need to pick α in such a way that for σ → 0

(i) (ZΣ
σ )

−1σ−2 exp(−γh(α(σ))/σ2) → 0.

(ii) G2

(
λmin(Σ)

min{r,α(σ)}
σ

)
→ 0

(iii) supw∈B̃V̂(σ)|χ
σ
h(w)| → 0

(iv) supw∈B̃V̂(σ)|χ
σ
f (w)| → 0

Again take α(σ) = σβ(σ) for β(σ) = |log(σ)|. This yields

exp(− 1

σ2
γh(α(σ))) ≤ exp(−min{c log(σ)2,∆σ−2}) ,

G2

(
λmin(Σ)

min{r, α(σ)}
σ

)
≤ G2

(
λmin(Σ)min{rσ−1, |log(σ)|}

)
,

sup
w∈BV(σ)

∣∣∣e−χσ
h(w) − 1

∣∣∣ ≤ 2 sup
w∈BV(σ)

|χσh(w)| ≤ 2Cσβ(σ)3 = 2C|log(σ)|3 ,

sup
w∈BV(σ)

∣∣χσf (w)∣∣ ≤ Cσβ(σ)3 = C|log(σ)|3 ,

when 0 < σ ≤ σ := min{η2, (log(2)/(2C))2}. Combining all these estimates one obtains, as in
the proof of Theorem 13, that (32) holds with

1

σ2
E(σ) =

√
detΣ

Zσσ2
exp(−min{c log(σ)2,∆σ−2})∥f∥L1(V×V)

+ ∥Σ−1/2∇2f(0)Σ−1/2∥
(
nCσ|log(σ)|3 +G2

(
λmin(Σ)min{rσ−1, |log(σ)|}

))
+ Cσ|log(σ)|3(1 + 2Cσ|log(σ)|3)

σ→0
= O(σ|log(σ)|3) = Õ(σ) .

(34)
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D.2 LOCAL VERSION OF THEOREM 1

First we prove a local version of Theorem 1.
Theorem 15. Assume that there exists an subset U ⊆ M that isC3-diffeomorphic to an open subset
of V ⊆ Rk with Br(0) ⊆ V via ψ : V → U for some 0 ≤ k ≤ d and that µ≪ VolU , where VolU is
the volume measure on U . Moreover, assume that µ(·) = dµ

dVolU
∈ C3(U). Let x ∈ Rd be any point

with ψ(0) =: p = argminp∈M∥x− p∥ and δ = infy∈M\U∥x− y∥2 −∥x− p∥2 > 0, and such that

Σ = ψ′(0)⊤ψ′(0) +

d∑
i=1

(p− x)i∇2ψi(0) > 0 . (35)

Then there exists some σ > 0 such that for all σ ∈ (0, σ)

(i) it holds that

∥Eνx,σ − p∥ ≤
2
(
E1(σ; f0, h, r)∥p− x∥+

√
dE1(σ; f1, h, r) + (∥p− x∥+ ∥µ∥1)Υ(σ; Σ)

)
µ(p)

(ii) it holds for P0 = ψ′(0)Σ−1ψ′(0)⊤ that∥∥∥∥ 1

σ2
Cov(νx,σ)− P0

∥∥∥∥
≤ 4d

µ(p)2
E2(σ; f, h, r)

σ2

+

(
4(∥µ∥2 + ∥µ∥21)

µ(p)2
Υ(σ; Σ)2

σ2
+ 12

E1(σ; f0, h, r) + Υ(σ; Σ)

µ(p)

)
∥P0∥

with h, f0 and f1 given in (36), f2 and h in (37), ∥µ∥i = Ey∼µ∥y − x∥i, Υ(σ; Σ) =√
detΣ
Zσ

exp(− 1
2σ2 δ),

E1(σ; f1, h, r) = max
l=1,...,d

E1(σ; f
l
1, h, r) ,

E2(σ; f2, h, r) = max
l,j=1,...,d

E2(σ; f
jl

2 , h, r) ,

with E1(σ; f
l
1, h, r) given in (31) and E2(σ; f

jl

2 , h, r) in (34), respectively.
Remark 16. This theorem only requires M to be locally a manifold, namely at U .

Proof. We denote by λ = ψ−1#µ be corresponding pullback measure on V and denote its positive
density again by λ ∈ C3(V). Note that λ(0) = µ(p) by (20). Moreover, let v = x − p and
P0 = ψ′(0)Σ−1ψ′(0)⊤ for the rest of the proof. First we need to investigate the non-asymptotic
convergence of following two integrals:

pσ(x) =

∫
M
φσ(x− y) dµ(y)

=

∫
V
λ(z)

1

Zσ
e−

1
2σ2 ∥x−ψ(z)∥2

dz︸ ︷︷ ︸
S0

+

∫
M\U

φσ(x− y) dµ(y)︸ ︷︷ ︸
R0

and

pσ(x)(Eνx,σ − x) =

∫
M
(y − x)φσ(x− y) dµ(y)

=

∫
V
λ(z)(ψ(z)− x)

1

Zσ
e−

1
2σ2 ∥x−ψ(z)∥2

dz︸ ︷︷ ︸
S1

+

∫
M\U

(y − x)φσ(x− y) dµ(y)︸ ︷︷ ︸
R1
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We can write each Si and Ri as

Si =
1

Zσ

∫
V
fi(z)e

− 1
σ2 h(z) dz , Ri =

∫
M\U

gi(y)φσ(x− y) dµ(y) ,

where

h(z) =
1

2
∥x− ψ(z)∥2 , f0(z) = λ(z) , f1(z) = λ(z)(ψ(z)− x) , (36)

as well as g0(y) = 1 and g1(y) = y − x. Then f0, f1 ∈ C3(V) and

h(0) =
1

2
∥v∥2 , ∇h(0) = 0 , ∇2h(0) = Σ ,

where the second equality is due to p = ψ(0) being the closest point from U to x. Also obviously
f0(0) = λ(0) and f1(0) = λ(0)(p − x). Applying Theorem 13 component-wise, we obtain for
σ ∈ (0, σi), with σi = σi(η, C) given as in Theorem 13 with η, C > 0 dependent on fi and h, the
estimate ∥∥∥e 1

2σ2 ∥v∥2√
detΣSi − fi(0)

∥∥∥︸ ︷︷ ︸
=:∥Fi∥

≤ Di(σ) ,

with

D0(σ) = E1(σ; f0, h, r) , D1(σ) =
√
dE1(σ; f1, h, r) :=

√
d max
l=1,...,d

E1(σ; f
l
1, h, r) ,

and where E1 is given in Theorem 13 and f l1 is the l-th component of f1. Furthermore, we can
estimate for i = 0, 1

∥Ri∥ =

∥∥∥∥∥
∫
M\U

gi(y)φσ(x− y) dµ(y)

∥∥∥∥∥
=

1

Zσ

∥∥∥∥∥
∫
M\U

gi(y)e
1

2σ2 ∥x−y∥2

dµ(y)

∥∥∥∥∥
≤ e−

1
2σ2 ∥v∥2 e−

1
2σ2 δ

Zσ

∫
M\U

∥gi(y)∥ dµ(y) ,

where we have used that ∥x− y∥2 ≥ δ + ∥v∥2 for all y ∈ M \ U . Thus we get the estimate∥∥∥e 1
2σ2 ∥v∥2

Ri

∥∥∥ ≤ e−
1

2σ2 δ

Zσ
∥µ∥i ,

where the quantity ∥µ∥i =
∫
M∥y−x∥i dµ(y) denotes the i-th centered moment of µ. Let us denote

J = e
1

2σ2 ∥v∥2√
detΣ and express

Si = fi(0)/J + Fi/J

Now we can estimate the distance to p by

Eνx,σ − p =
S1 +R1

S0 +R0
− (p− x) =

f1(0)/J + F1/J +R1

f0(0)/J + F0/J +R0
− (p− x)

=
f1(0) + F1 + JR1

f0(0) + F0 + JR0
− (p− x) =

(p− x) + T1
1 + T0

− (p− x) =
T1 − T0(p− x)

1 + T0
.

where Ti = (Fi + JRi)/λ(0). Let us bound

∥Ti∥ ≤ 1

λ(0)

(
Di(σ) +

√
detΣ

e−
1

2σ2 δ

Zσ

)
∥µ∥i

σ→0−→ 0 .
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Then |T0| < 1/2 if σ < σ(f0, h, r) := min{σ0, σ̃} with σ̃ depending on D0, Σ and δ. For this
σ ∈ (0, σ) we obtain

∥Eνx,σ − p∥
≤ 2|T0|∥p− x∥+ 2∥T1∥

≤ 2

λ(0)

(
E1(σ; f0, h, r)∥p− x∥+

√
dE1(σ; f1, h, r) + (∥p− x∥+ ∥µ∥1)

√
detΣ

e−
1

2σ2 δ

Zσ

)
.

This proves (i). The proof of (ii) is analogous. For (z, z̃) ∈ V × V define

f2(z, z̃) = λ(z)λ(z̃)((ψ(z)− x)(ψ(z)− x)⊤ − (ψ(z)− x)(ψ(z̃)− x)⊤) ,

h(z, z̃) =
1

2
∥x− ψ(z)∥2 + 1

2
∥x− ψ(z̃)∥2 .

(37)

Then f, h ∈ C3(V × V), f2(0, 0) = 0 and

h(0, 0) = ∥v∥2 , ∇h(0, 0) = 0 , ∇2h(0, 0) = Σ := diag(Σ,Σ) .

Let f
jl

2 be the (j, l)-th entry of f2. Then it is an elementary, but very tedious exercise to show that f
and h satisfy the conditions of Theorem 14 and that moreover the second order coefficient is given
by

A2(f
jl

2 , h) = λ(0)2(ψ′(0)Σ−1ψ′(0)⊤)lj = λ(0)2(P0)lj ,

i.e. A2 := (A2(f
jl

2 , h))
d
l,j=1 = λ(0)2P0. Now split

pσ(x)
2 Cov(νx,σ)

= pσ(x)
2(Cov(νx,σ)− Eνx,σ(Eνx,σ)⊤)

=

∫
M×M

((y − x)(y − x)⊤ − (y − x)(ỹ − x)⊤)φσ(x− y)φσ(x− ỹ) d(µ⊗ µ)(y, ỹ)

=

∫
V×V

f2(z, z̃)
1

Z2
σ

e−
1

2σ2 (∥x−ψ(z)∥2+∥x−ψ(z̃)∥2) d(z, z̃)︸ ︷︷ ︸
S2

+

∫
M×M\U×U

((y − x)(y − x)⊤ − (y − x)(ỹ − x)⊤)φσ(x− y)φσ(x− ỹ) d(µ⊗ µ)(y, ỹ)︸ ︷︷ ︸
R2

.

Applying Theorem 14 component-wise to f2 we obtain for σ ∈ (0, σ2), with σ2 = σ2(η, C) and
η, C > 0 dependent on f2 and h, that∥∥∥(e 1

2σ2 ∥v∥2√
detΣ)2S2 − σ2A2

∥∥∥︸ ︷︷ ︸
∥G2∥

≤ dE2(σ; f2, h, r) := d max
l,j=1,...,d

E2(σ; f
jl

2 , h, r) ,

with E2(σ; f
jl

2 , h, r) given in Theorem 34. The term R2 on the other hand can be estimated again
by

∥R2∥ ≤ e−
1
σ2 ∥v∥2 e−

1
σ2 δ

Z2
σ

∫
M×M\U×U

∥(y − x)(y − x)⊤ − (y − x)(ỹ − x)⊤∥ d(µ⊗ µ)(y, ỹ)

≤ e−
1
σ2 ∥v∥2 e−

1
σ2 δ

Z2
σ

(∥µ∥2 + ∥µ∥21) .

For S2 it holds

S2 = σ2λ(0)2P0(x)/J
2 +G2/J

2
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and thus

1

σ2
Cov(νx,σ)− P0 =

S2/σ
2 +R2/σ

2

(S0 +R0)2
− P0

=
λ(0)2P0/J

2 +G2/(σ
2J2) +R2/σ

2

(λ(0)/J + F0/J +R0)2
− P0

=
P0(x) + T 2

(1 + T0)2
− P0

=
T 2 − T0(2 + T0)P0

(1 + T0)2

with T 2 = (G2 + J2R2)/(λ(0)
2σ2). Again we have the estimate

∥T 2∥ ≤ d

λ(0)2
E2(σ)

σ2
+

(detΣ)(∥µ∥2 + ∥µ∥21)
λ(0)2

e−
1
σ2 δ

Z2
σσ

2
,

and for σ ∈ (0, σ) (with σ as before, guaranteeing |T0| < 1/2)∥∥∥∥ 1

σ2
Cov(νx,σ)− P0

∥∥∥∥
≤ 4∥T 2∥+ 12|T0|∥P0∥

≤ 4d

λ(0)2
E2(σ)

σ2
+

4(detΣ)(∥µ∥2 + ∥µ∥21)
λ(0)2

e−
1
σ2 δ

Z2
σσ

2
+ 12

D0(σ) +
√
detΣ e

− 1
2σ2 δ

Zσ

λ(0)

 ∥P0∥

D.3 BOUNDS IN TERMS OF DISTRIBUTION AND MANIFOLD PARAMETERS

In this section we bound the constants appearing in Theorem 15 in terms of parameters of the
distribution µ and the manifold M ∈ Mk(τ,M), when the chart is given by the graph chart
ψ = ψp : V → M with V := B

Tp M
min{τM,M}/4(0), x ∈ T (τ), τ ∈ (0, τM) and p = π(x). Ac-

cording to the proof of Theorem 15 need to consider the following maps

h : V → R : z 7→ 1

2
∥x− ψp(z)∥2 , (38)

as well as

f0 : V → R : z 7→ λ(z) , (39)

f1 : V → Rd : z 7→ λ(z)(ψp(z)− x) , (40)

f2 : V × V → Rd×d : (z, z̃) 7→ λ(z)λ(z̃)((ψp(z)− x)((ψp(z)− x)⊤ − (ψp(z̃)− x)⊤)) , (41)

where λ = ψ−1
p #µ = prp#µ.

D.3.1 CONDITIONS (24) AND (26) FOR h

First we show how to express conditions (24) and (26) in terms of the manifold parameters for h
given in (38). To see (24), note that for z ∈ V we have by the chain and product rule as well as
Lemma 7 (i) that

∥∇3h(z)∥ ≤ 3∥ψ′′
p (z)∥∥ψ′

p(z)∥+ ∥x− ψp(z)∥∥ψ′′′
p (z)∥

≤ 3M2 + (∥x− p∥+ ∥p− ψp(z)∥)M

≤ 3M2 + (τM +
8

7
∥z∥)M

≤ (3M +
9

7
τM)M .
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Thus (24) holds with, say C(1)
τM,M = 1

2 (M + τM)M , and η = min{τM,M}/4. Next, for (26) and

η = min{τM,M}/4 we compute for z ∈ B
Tp M
η (0)

h(z)− h(0) ≥ inf
z̃∈V\BTp M

∥z∥ (0)

h(z̃)− h(0) = inf
q∈ψp(V\BTp M

∥z∥ (0))

1

2
∥x− q∥2 − 1

2
∥x− p∥2

≥ inf
q∈M\B∥z∥(p)

1

2
∥x− q∥2 − 1

2
∥x− p∥2

≥ 1

2

τM − τ

τM + τ
∥z∥2 .

In the first inequality we have used ψp(V \BTp M
∥z∥ (0)) ⊆ M\B∥z∥(p), which follows from Lemma

7 (i), whereas in the last inequality we have used Lemma 11 and x ∈ T (τ). Thus (26) holds on V
with c = 1

2
τM−τ
τM+τ and implies (29).

D.3.2 LOWER BOUND ON λmin(Σ) AND UPPER BOUND ON
√
detΣ

We first consider λmin(Σ) for Σ = ∇2h(0) with h given in (38) and when x ∈ T (τ). By Lemma 8
and (17) we directly obtain

λmin(Σ) = ∥Σ−1∥−1 ≥ 1− ∥x− p∥κM ≥ 1− τ

τM
.

Due to (17) and the definition of the shape operator Sp, an upper bound on
√
detΣ is given by

√
detΣ =

√
det(ITp M + Sp−xp ) ≤

(
1 +

∥p− x∥
ρ(p, p− x)

)k/2
≤
(
1 +

τ

τM

)k/2
≤ 2k/2 .

D.3.3 CONDITION (24) FOR f
jl

2

An upper bound for ∥∇3f
jl

2 (z, z̃)∥ in terms of M and the third derivatives of dµ
dVolM

, where

f
jl

2 (z, z̃) = λ(z)λ(z̃)((ψjp(z)− x)(ψlp(z)− x)− (ψjp(z)− x)(ψlp(z̃)− x)) ,

can be obtained by direct differentiation. We don’t pursue the complete derivation here and instead
say that (24) holds with, say, C(2)

τM,M,µ.

D.3.4 UPPER BOUND ON ∥f0∥L1(V) , ∥f j1∥L1(V) AND ∥f jl2 ∥L1(V×V) AND ∥∇2f
jl

2 (0)∥

We clearly have ∥f0∥L1(V) = λ(V) ≤ 1. Next, due to ∥y − x∥ ≤ diam(M) + ∥p − x∥ ≤
diam(M) + τ for y ∈ M, we have

∥f j1∥L1(V) ≤ ∥f1∥L1(V;Rd) =

∫
U
∥y − x∥ dµ(y) = ∥µ∥1 ≤ diam(M) + τ ,

and

∥f jl2 ∥L1(V×V) ≤ ∥f2∥L1(V×V;Rd×d)

=

∫
U×U

∥(y − x)(y − x)⊤ − (y − x)(ỹ − x)⊤∥ d(µ⊗ µ)(y, ỹ)

≤ ∥µ∥2 + ∥µ∥21
≤ 2(diam(M) + τ)2 .

Furthermore for v = ( v1v2 ) ∈ Rk × Rk we have

f
′′
2(0, 0)[v, v] = λ(0)2 · (2v1v⊤1 − 2v1v

⊤
2 + (p− x)(IIp(v1, v2)− IIp(v2, v2))

⊤)

+ 2λ(0)∇λ(0)⊤(v1 + v2) · (p− x)(v1 − v2)
⊤ .

Hence, using (20) and the fact that ∥p − x∥∥IIp(v1, v2)∥ ≤ τ
τM

≤ 1 for any unit vectors v1, v2 ∈
TpM we obtain

∥∇2f
jl

2 (0)∥ ≤ ∥f ′′2(0, 0)∥ ≤ 6µ(p)2 + 8τµ(p)∥gradM µ(p)∥ .
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D.4 PROOF OF THEOREM 1

We apply Theorem 15 to every point x ∈ T (τ) and p = π(x) with the graph chart ψ = ψp. It
remains to provide universal constants for the bounds in Theorem 15 (i) and (ii). First we bound
E1(σ; f0, h, r, θ) withE1 given in (31). By Section D.3 we can take rτM,M = η = min{τM,M}/4,
cτM,M = 1

2
τM−τ
τM+τ and CτM,M,µ = max{C(1)

τM,M , C
(2)
τM,M,µ} and hence, due to ∥f0∥L1(V) ≤ 1,

E1(σ; f0) ≤
2k/2

Zσ
exp

(
−cτM,M log(σ)2

)
+ µ(p)

(
2CτM,M,µσ|log(σ)|3 +G0((1−

τ

τM
)min{rτM,Mσ

−1, |log(σ)|})
)

+ CτM,M,µσ|log(σ)|(1 + 2CτM,M,µσ|log(σ)|3) .

Similarly, due to ∥f j1∥L1(V) ≤ ∥µ∥1, we have the bound

E1(σ; f1) ≤
2k/2

Zσ
exp

(
−cτM,M log(σ)2

)
(diam(M) + τ)

+ µ(p)

(
2CτM,M,µσ|log(σ)|3 +G0((1−

τ

τM
)min{rτM,Mσ

−1, |log(σ)|})
)

+ CτM,M,µσ|log(σ)|(1 + 2CτM,M,µσ|log(σ)|3) .

Further, due to ∥f jl2 ∥L1(V×V) ≤ ∥µ∥2 + ∥µ∥21 and the bound on ∥∇2f
jl

2 (0)∥ we have

E2(σ; f2) ≤ 2
2k/2

Zσ
exp(−cτM,M log(σ)2)(diam(M) + τ)2

+ µ(p)
6µ(p) + 8τ∥gradM µ(p)∥

1− τ/τM

(
kCτM,M,µσ|log(σ)|3

+G2

(
(1− τ

τM
)min{rτM,Mσ

−1, |log(σ)|
))

+ CτM,M,µσ|log(σ)|3(1 + 2CτM,M,µσ|log(σ)|3)

Now by Lemma 11 we can pick δ = τM−τ
τM+τ η

2 = 2cτM,Mr
2
τM,M and thus

Υ(σ; Σ) ≤ 2k/2

Zσ
exp

(
−
cτM,Mr

2
τM,M

σ2

)
.

Finally, ∥P0∥ ≤ (1 − τ/τM)−1. Note that since µ(·) ∈ C3(M) and suppµ = M, there exist
positive lower and upper bounds on µ(·) and its derivatives on M. This shows that there K and σ
depending only on τ , M and diam(M) (as k) and µ such that (5) hold and finishes the proof.

D.5 A USEFUL COROLLARY TO THEOREM 1

The following elementary consequence of Theorem 1 will be useful in the proofs of the results from
Section 5.
Corollary 17. Suppose that for some s : Rd → Rd and τ ∈ (0, τM) and ϵ ≤ τ we have

∥s(x)− π(x)∥ < ϵ for all x ∈ T (τ) . (42)

Then s(T (τ)) ⊆ T (ϵ). Moreover, for x ∈ T (ϵ) we have ∥s(x) − x∥ ≤ 2ϵ and for x ∈ T (τ) we
have ∥s(x)− x∥ ≤ 2τ .

Proof. From (42) and the fact that π(x) ∈ M we clearly have s(x) ∈ T (ϵ) for any x ∈ T (τ),
i.e. s(T (τ)) ⊆ T (ϵ). The last claims follows then from the triangle inequality ∥s(x) − x∥ ≤
∥s(x)− π(x)∥+ ∥π(x)− x∥.
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E APPROXIMATE RIEMANNIAN GRADIENT FLOW WITH LANDING

In this section C = ∥∇f |T (τM)∥∞ and L = Lip(∇f |T (τM)) denote the supremum of ∇f and the
Lipschitz constant of ∇f on T (τM) for some manifold M. We will often assume the following
approximation condition on a function s ∈ C1(Rd;Rd):

∥s(x)− π(x)∥ < ϵ , ∥s′(x)− P0(x)∥ < ϵ for all x ∈ T (τ) . (43)

We will also abbreviate the (negative) right hand side of the dynamics (8) by

Gηs(x) = s′(x)∇f(x) + η(x− s(x)) (44)

E.1 STATIONARY POINTS OF (8) AND OPTIMALITY CRITERIA

We need to analyze the meaning of approximate stationary points of (8) for the optimization problem
(1).
Lemma 18. Suppose that τ ∈ (0, τM) and σ > 0 are such that (43) is satisfied. Moreover, suppose
that s(T (τ)) ⊆ T (τ). Suppose that τ̃ ∈ (0, τ ], δ > 0 and that x∗ ∈ T (τ̃) is a δ-approximate
stationary point of (8), i.e.

∥Gηs(x∗)∥ ≤ δ . (45)

Then for p∗ = π(x∗) it holds that

∥gradM f(p∗)∥ ≤ 2(L+ C + η)ϵ+ 2
τ̃ /τM

1− τ̃ /τM
C + δ . (46)

Proof. We have the estimates

∥η(s(x∗)− x∗)− η(π(x∗)− x∗)∥ ≤ ηϵ ,

and

∥P0(π(x∗))∇f(π(x∗))− s′(x∗)∇f(s′(x∗))∥
≤ ∥P0(π(x∗))∇f(π(x∗))− P0(π(x∗))∇f(s(x∗))∥
+ ∥P0(π(x∗))∇f(s(x∗))− P0(x∗)∇f(s(x∗))∥
+ ∥P0(x∗)∇f(s(x∗))− s′(x∗)∇f(s(x∗))∥

≤ (Lip(∇f) + ∥∇f |T (τ)∥∞)ϵ+ ∥P0(π(x∗))− P0(x∗)∥∥∇f |T (τ)∥∞ ,

where we have used that P0(π(x∗)) is an orthogonal projection and hence has unit norm. By
Lemma 23 applied to z1 = s′(x∗)∇f(s(x∗)) and z2 = η(s(x∗) − x∗), Lemma 9 and the fact
that P0(π(x∗))∇f(π(x∗)) = gradM f(π(x∗)), the inequality (46) follows.

E.2 LIE DERIVATIVE OF MANIFOLD DISTANCE

Lemma 19. Suppose that τ ∈ (0, τM) and σ > 0 is such that (43) is satisfied. Then it holds

−⟨∇d(x), Gηs(x)⟩ ≤ −2η d(x) + ϵ(C + η)
√
2 d(x) for all x ∈ T (τ) .

Proof. We have for x ∈ T (τ)

⟨x− π(x),−Gηs(x)⟩
= −2η d(x) + ⟨π(x)− x, (s′(x)− P0(x))∇f(s(x))⟩

+ η ⟨x− π(x), s(x)− π(x)⟩
≤ −2η d(x) + ∥π(x)− x∥∥s′(x)− P0(x)∥∥∇f(s(x))∥

+ η∥π(x)− x∥∥s(x)− π(x)∥

≤ −2η d(x) + (∥∇f |T (τ)∥∞ϵ+ ηϵ)
√
2 d(x) .
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E.3 EXACT LANDING WITH σ = 0

Here we establish the following noiseless version of Theorem 3.
Theorem 20. Consider the flow (8) for σ = 0 and η ≥ 0 with x(0) ∈ T (τ) for some τ ∈ (0, τM).
Then the solution x(t) exists for all times t ≥ 0 and is contained in T (τ). Moreover every ac-
cumulation point x∗ of this flow satisfies gradM f(x∗) = 0 and is at most τ away from the point
p∗ = π(x∗) ∈ M with ∥gradM f(p∗)∥ ≤ Lτ . Moreover, if η > 0, then x∗ = p∗ ∈ M and
gradM f(p∗) = 0, i.e. every accumulation point is critical.

Proof. Note first that

d

d t
d(x) = ⟨x− π(x), ẋ⟩ = −η∥x− π(x)∥2 = −2η d(x) ,

i.e. d(x(t)) = e−2ηt d(x(0)) and hence x(t) ∈ T for all t ≥ 0. Moreover, if η > 0 then d(x(t)) →
0 for t→ ∞. Let us now consider f ◦π as a Lyapunov function for (9) with σ = 0. We observe that

d

d t
f(π(x)) = −∇f(π(x))⊤P0(x)

⊤P0(x)∇f(π(x))

= −
〈
PTπ(x) M ∇f(x), H−2

x PTπ(x) M ∇f(x)
〉

= −∥grad f(x)∥2Hx
,

with ∥v∥2Hx
= ∥H−1

x v∥2Tπ(x) M. This shows that f(x(t)) is non-increasing for t → ∞. Since T is
bounded, f∗ = limt→∞ f(x(t)) is finite. Moreover, we have∫ ∞

0

∥grad f(x(t))∥2Hx(t)
dt = f(x(0))− f∗ <∞ . (47)

Notice that {x(t) | t ≥ 0} ⊆ T (distM(x(0))) being compact. Since T → R : z 7→ ∥grad f(z)∥2Hz

is continuous, it is uniformly continuous on T (distM(x(0))). This, together with (47) implies, by
Barbalat’s lemma Farkas & Wegner (2016), that limt→∞∥grad f(x(t))∥2Hx(t)

= 0. Clearly any
accumulation point x∗ of {x(t) | t ≥ 0} satisfies H−1

x∗
grad f(x∗) = 0, i.e. grad f(x∗) = 0. Then

π(x∗) ∈ M is an accumulation point of {π(x(t)) | t ≥ 0} ⊆ M and

∥grad f(π(x∗))∥ = ∥grad f(π(x∗))− grad f(x∗)∥ ≤ L∥π(x∗)− x∗∥ = Lτ .

E.4 PROOF OF THEOREM 3

Note first that, by Theorem 1, if (7) hold with ϵ→ ϵ′, then 43 are satisfied with ϵ = ϵ′+Kσ|log(σ)|3
for σ ∈ (0, σ(τ,M, µ)). In the following we will write ϵ > 0 for the latter quantity. First let us
analyze the manifold distance of (8). We have by Lemma 19 whenever x(t) ∈ T (τ) that

d

d t
d(x) = −⟨∇d(x), Gηs(x)⟩ ≤ −2η d(x) + ϵ(C + η)

√
2 d(x) ,

where the right hand side is non-positive iff

distM(x) ≥ ϵ

2

(
C

η
+ 1

)
=: τ0 .

Note that τ0 < τ if ϵ < 2τ/(1+C/η). In particular if distM(x(0)) ∈ [τ0, τ), then T (distM(x(0)))
is invariant w.r.t. the flow (8) and x(t) exists for all t ≥ 0. Moreover, by a similar argument as in
the standard proof of Lyapunov’s direct method Khalil & Grizzle (2002), for each δ > 0 there exists
some T > 0 such that for all t ≥ T it holds that x(t) ∈ T (τ0 + δ). If s is a gradient field, i.e.
s = ∇g for some function g ∈ C1(Rd), then V (x) := f(s(x)) + η(∥x∥2/2 − g(x)) satisfies
∇V (x) = Gηs(x). Similar as in the proof of Theorem 20 we can take Gs as a Lyapunov function to
obtain

d

d t
V (x) = −∥Gηs(x)∥2
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along the dynamics (8). By a similar argument V (x) is non-increasing and every accumulation
point x∗ of {x(t) | t ≥ 0} satisfies Gηs(x)(x∗) = 0 and belongs to T (τ0). Note that the condition
s(T (τ)) ⊆ T (τ) in Lemma 18 is satisfied when ϵ ≤ τ . Applying Lemma 18 with δ = 0 and τ̃ = τ0
yields (11) and proves Theorem 3 for the case when s is a gradient field. Now consider the more
general case when s is not necessarily a gradient field. In this case consider V (x) = f(s(x))+η d(x)
to obtain

d

d t
V (x) = −⟨s′(x)∇f(s(x)) + η(x− π(x)), Gηs(x)⟩

≤ −∥Gηs(x)∥2 + η∥s(x)− π(x)∥∥Gηs(x)∥
≤ −∥Gηs(x)∥2 + ηϵ∥Gηs(x)∥ .

Thus, if ∥Gηs(x)∥ ≥ ηϵ we have d
d tV (x) ≤ 0. By a barrier function argument Khalil & Grizzle

(2002) this implies that every accumulation point x∗ of {x(t) | t ≥ 0} satisfies ∥Gηs(x∗)∥ ≤ ηϵ and
belongs to T (τ0). Again applying Lemma 18 with δ = ηϵ and τ̃ = τ0 yields (11) and finishes the
proof.

F DISCRETIZED RIEMANNIAN GRADIENT FLOW AND DESCENT

In this section we provide proof of Theorem 5 as well as analysis of the approximate Rieman-
nian gradient descent and the discretized landing flow. As before C = ∥∇f |T (τM)∥∞ and
L = Lip(∇f |T (τM)) denote the supremum of ∇f and the Lipschitz constant of ∇f on T (τM)
for some manifold M. Moreover, the following bounds will be useful:
Lemma 21. If τ ∈ (0, τM) and (43) holds for some ϵ > 0, then

sup
x∈T (τ)

∥s′(x)∥∞ ≤ ϵ+
1

1− τ/τM
.

Additionally, if ϵ ∈ (0, τ ], then

∥Gηs(x)∥ ≤ C∥s′(x)∥+ η∥s(x)− x∥ ≤ C(ϵ+
1

1− τ/τM
) + 2ητ for x ∈ T (τ)

Proof. Via triangle inequality, Lemma 8 and the definition of C.

F.1 DISCRETIZED APPROXIMATE RIEMANNIAN GRADIENT FLOW

In this section we analyze the discretized version of (9), specifically the corresponding gradient
descent

xk+1 = xk − γk∇F ησ (xk) , (48)

for some sequence of step sizes {γk}∞k=1. The selection of γk can be inferred from any standard
analysis of gradient descent for F ησ to guarantee that all accumulation points of the resulting se-
quence {xk}∞k=0 are stationary points of F ησ . Since we can only interpret stationary points of F ησ in
terms of our original problem (1) when they are contained in a tubular neighborhood T (τ) for some
τ ∈ (0, τM) (see Lemma 18), we drive conditions on the step-size to ensure {xk}∞k=0 ⊆ T (τ).
Theorem 22. Let τ ∈ (0, τM/2) and σ > 0 be such that (43) holds for some ϵ ∈ (0, ητ

2(C+η) ]. Then
if γk ∈ [0, γtubular] with

γtubular(ϵ, τ, η) = τ ·min

{
1

2(C(ϵ+ 2) + 2ητ)
,

1
4ητ −

1
2 (C + η)ϵ

4(C(ϵ+ 4) + 3ητ)2

}
and x0 ∈ T (τ), the iterates xk of the discretized flow (48) belong to T (τ).

Proof. First we show that xk ∈ T (τ) implies xk+1 ∈ T (τ). If xk ∈ T (τ/3), then, since
γk∥∇F ησ (xk)∥ ≤ τ/2 by Lemma 21, it follows xk+1 ∈ T (τ). Hence assume xk ∈ T (τ) \ T (τ/3),
i.e.
√
2 d(xk) ≥ τ/2. Let us write

d(xk+1) = d(xk)− γk ⟨∇ d(xk),∇F ησ (xk)⟩+
1

2
γ2k∥(I − P0) |T (3τ/2)∥∞∥∇F ησ (xk)∥2 ,
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where we have used ∇2 d = I −P0 and xk+1 ∈ T (3τ/2), since again γk∥∇F ησ (xk)∥ ≤ τ/2. Then
by Lemma 19

−⟨∇d(x),∇F ησ (x)⟩ ≤ −2η d(x) + ϵ(C + η)
√

2 d(x) .

Now, Lemma 21 and the fact that (1− 3τ/(2τM))−1 ≤ 4 imply

δ =
1

2
∥(I − P0)|T (3τ/2)∥∞∥∇F ησ |T (τ)∥2∞ ≤ 4(C(ϵ+ 4) + 3ητ)2

Therefore we have
d(xk+1)− d(xk) ≤ γk(−2η d(xk) + ϵ(C + η)

√
2 d(xk) + γkδ) ,

where right hand side is non-positive for all
√
2 d(xk) ≥ τ/2 if

−1

4
ητ2 +

1

2
(C + η)τϵ+ γkδ ≤ 0 .

or, equivalently,

γk ≤ 1

δ

(
1

4
ητ2 − 1

2
(C + η)τϵ

)
.

If these are satisfied, then d(xk+1) ≤ d(xk) ≤ τ2/8 and therefore xk+1 ∈ T (τ). In all, {xk}∞k=0 ⊆
T (τ) provided that x0 ∈ T (τ).

F.2 PROOF OF THEOREM 5

Let us write ϵ′ = ϵ+K(τ,M, µ)σ|log(σ)|3 ≤ τ/2. First we note that {xk}∞k=0 ⊆ T (ϵ′) as soon as
x0 ∈ T (τ/2), because s(T (τ)) ⊆ T (ϵ′) and xk − γks

′(xk)∇f(xk) ∈ T (τ), since

γk ≤ τ

2C(ϵ′ + (1− τ/τM)−1)
≤ τ

2∥s′(xk)∇f(xk)∥
,

where first inequality is due to (1− τ/τM)−1 ≤ 2 and the second inequality due to Lemma 21. For
brevity let us denote yk = xk − γks

′(xk)∇f(xk) and zk = xk − γkP0(xk)∇f(π(xk)). Also let
L0 = Lip(∇(f ◦ π)|T (τ)). By Lemma 10 and (1− τ/τM)−1 ≤ 2 it follows that

L0 ≤ C∥P ′
0|T (τ)∥+ (1− τ/τM)−1L ≤ 8C

(
2(

3

τM
+ τM) +

1

τM

)
+ 2L .

Then, since ∥xk − π(xk)∥ ≤ ϵ′ for k ≥ 1, we have
f(xk+1)− f(xk) = f(s(yk))− f(xk)

= f(π(zk))− f(π(xk)) + f(π(xk))− f(xk)

+ f(s(yk))− f(π(yk)) + f(π(yk))− f(π(zk))

≤ −γk ⟨P0(xk)∇f(π(xk)), P0(xk)∇f(π(xk))⟩+ γ2k
L0

2
∥P0(xk)∇f(π(xk))∥2

+ C∥xk − π(xk)∥+ Cϵ+ L0γk(Cϵ+ L∥xk − π(xk)∥)

≤ −γk(1−
L0

2
γk)∥P0(xk)∇f(π(xk))∥2 + (2C + L0γk(C + L))ϵ′ .

Now let γk ∈ [γmin, γmax] ⊆ (0, 2
L0

). Then summing over k = 1, . . . , N yields

γmin(1−
1

2
γmaxL0)

1

N

N∑
k=1

∥P0(xk)∇f(π(xk))∥2 ≤ f(x1)− f(xN+1)

N
+ (2C + L0γk(C + L))ϵ′ .

Now note that by Lemma 9 and the fact that (1− ϵ′/τM)−1 ≤ 2 it holds

∥gradM f(π(xk))∥2 ≤ 2∥(P0(π(xk))− P0(xk))∇f(π(xk))∥2 + 2∥P0(xk)∇f(π(xk))∥2

≤ 8C2(ϵ′/τM)2 + 2∥P0(xk)∇f(π(xk))∥2 ,
which implies

γmin(1−
1

2
γmaxL0)

1

N

N∑
k=0

∥gradM f(π(xk))∥2 ≤ 4D

N
+ 8C2(ϵ′/τM)2 + 2(2C + L0γk(C + L))ϵ′ .

This finishes the proof.
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F.3 AUXILIARY RESULTS

F.3.1 A LEMMA ON NORMS OF ORTHOGONAL VECTORS

Lemma 23. Let x, y ∈ Rn be orthogonal and ϵ > 0. If there exists some z ∈ Rn with ∥x− z∥ ≤ ϵ

and ∥y − z∥ ≤ ϵ, then ∥x∥ ≤ 2ϵ, ∥y∥ ≤ 2ϵ and ∥z∥ ≤
√
2ϵ. If on the other hand for some δ > 0

there exist some z1, z2 ∈ Rn with ∥x−z1∥ ≤ ϵ, ∥y−z2∥ ≤ ϵ and ∥z1−z2∥ ≤ δ, then ∥x∥ ≤ 2ϵ+δ,
∥y∥ ≤ 2ϵ+ δ and ∥z∥ ≤

√
2ϵ+ δ/

√
2.

Proof. The first claim follows by geometric considerations. The second follows from the first by
noting that the midpoint z = (z1 + z2)/2 satisfies ∥z − z1∥ ≤ δ/2 and ∥z − z2∥ ≤ δ/2 and hence
∥x−z∥ ≤ ϵ+δ/2 and ∥y−z∥ ≤ ϵ+δ/2, i.e. ∥x∥ ≤ 2ϵ+δ, ∥y∥ ≤ 2ϵ+δ and ∥z∥ ≤

√
2ϵ+δ/

√
2.

F.3.2 GAUSSIAN TAIL BOUNDS

The following elementary lemmas give simplifications for some of the constants appearing in the
proof of Theorem 13 and Theorem 14.
Lemma 24. It holds for R > 0 that

G0(R) :=
1

(2π)n/2

∫
Rn\BR(0)

e−
1
2∥u∥

2

du ≤ 2e−
1
2nR

2

and for R ≥ 2n that

G2(R) :=
1

(2π)n/2

∫
Rn\BR(0)

∥u∥2e− 1
2∥u∥

2

du ≤ 22−n/2

Γ(n/2)
e−

1
4R

2

.

In particular G0(|log(σ)|) = O(σl) and G2(|log(σ)|) = O(σl) for any l ≥ 1 as σ → 0.

Proof. See Majerski (2015).

G FURTHER NUMERICAL EXPERIMENTS AND IMPLEMENTATION DETAILS

G.1 OPTIMIZATION OVER O(n)

G.1.1 IMPLEMENTATION DETAILS

In all of our experiments, we discretize the flow equation 8 using the Euler scheme with a step size
of tstep = 1 · 10−4 and set the landing gain η = 3 · 103.

Data generation: In our experiments, we take Q = diag(1, . . . , n) and a randomly sampled
symmetric A ∈ Sn×n with N (0, 1)-entries.

Score architecture: We use the following score architecture:

sσ(X) =
1

σ
s̃σ(X) ,

with X = (x1 · · · xn) ∈ Rn×n and Y = (y1 · · · yn) = s̃σ(X), where
yi = MLPl,w([r;xi;σ]) for i = 1, . . . , n ,

and MLP a fully connected multi-layer perceptron with ReLU activation function, l layers of width
w. The features r = r(X) ∈ Rm are

rj(X) = tr(QjXKjX
⊤) , j = 1, . . . ,m

where Qj ,Kj ∈ Rn×n are learnable weight matrices (shared for all i = 1, . . . , n). For n = 10 we
take l = 4, w = 512, m = 128 and for n = 20 we take l = 4, w = 2048, m = 512.

Diffusion and training parameters: We train minimizing equation 23 with the Adam opti-
mizer, early stopping (i.e. t ∼ Unif[ϵ, T ]) with T = 3 and ϵ = 10−4 and a cosine learning rate
scheduling from lr = 10−3 to lr = 5 · 10−5. We use Nepochs = 10000 and Nepochs = 50000
epochs for n = 10 and n = 20, respectively.
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G.1.2 EXPERIMENTS

Figure 3: Objective value vs. flow time t for the orthogonal manifold for n = 10 (left, different
σ > 0) and for n = 20 (right, σ = 0.05)

G.2 DATA-DRIVEN REFERENCE TRACKING

G.2.1 BENCHMARK SYSTEMS AND TRACKING GOALS

Benchmark systems: We consider two classical benchmark systems: The double pendulum and
the unicycle car model LaValle (2006). For the double pendulum the state is x = (θ1, ω1, θ2, ω2)

with ωi = θ̇i, gravity g, masses m1,m2, lengths l1, l2, dampings d1, d2, control torque u applied at
joint 1 (first pendulum), and ∆θ := θ2 − θ1.

θ̇1 = ω1, θ̇2 = ω2,

M(θ) θ̈ +C(θ, θ̇) +G(θ) +D θ̇ = τ , θ =

(
θ1
θ2

)
, τ =

(
u
0

)
,

with

M(θ) =

(
(m1 +m2)l

2
1 m2l1l2 cos∆

m2l1l2 cos∆θ m2l
2
2

)
, D =

(
d1 0
0 d2

)
,

C(θ, θ̇) =

(
−m2l1l2 sin∆θ ω

2
2

m2l1l2 sin∆θ ω
2
1

)
, G(θ) =

(
(m1 +m2)gl1 sin θ1

m2gl2 sin θ2

)
.

We pick the output y = (θ1, θ2) and set m1 = l1 = g = 1, m2, l2 = 0.5 and d1, d2 = 0.1. For the
unicycle car model the dynamics is given by x = (x, y, θ) with

ẋ = v cos(θ) , ẏ = v sin(θ) , θ̇ = ω

and the input u = (v, ω) and output y = x = (x, y, θ). Here (x, y), v, θ, ω is the car’s position,
velocity, angle and angular velocity, respectively.

Tracking goals: For the double pendulum system the goal is to track a reference trajectory
r via the first joint angle θ1 and we pick the optimal control objective f to be 15 with

Q =

(
10 0
0 10

)
, R = 0.01 ,

while for the unicycle car model the goal is to track a positional reference r = (rx, ry), i.e. we pick

Q =

(
10 0 0
0 10 0
0 0 0

)
, R =

(
0.01 0
0 0.01

)
.

Here R is some small penalty on the input u to keep it bounded during the optimization.
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G.2.2 IMPLEMENTATION DETAILS

Discretization: We discretize both continuous-time dynamics ẋ = fcont(x, u) via the RK4-method
and discretization step ∆t to obtain the discrete-time dynamics (13) as

f(x, u) = x+
∆t

6
(k1 + 2k2 + 2k3 + k4) where


k1 = fcont(x, u)

k2 = fcont(x+ 1
2∆tk1, u)

k3 = fcont(x+ 1
2∆tk2, u)

k4 = fcont(x+∆tk3, u)

We use ∆t = 0.1 for the double pendulum and ∆t = 0.05 for the unicycle model.

Data generation: To generate trajectories, we use i.i.d. random inputs uk ∼ Unif[−5, 5]
for the double pendulum and uk = (vk, ωk) ∼ Unif[0, 1] ⊗ N (0, 25) and a horizon of Nh = 100
for both system. We use Ndata = 50000 trajectories for the double pendulum and Ndata = 20000
trajectories for the unicycle model.

Score architecture: The score architecture is a 1-dimensional version of the standard UNet
architecture Ronneberger et al. (2015) with a sin-cos time-embedding Song et al. (2020) and
residual connections, where the different input-, state- and output dimensions are concatenated and
treated as additional channels. The down- and upsampling convolutions are done w.r.t. the temporal
dimension and channels.

Diffusion and training parameters: Same as in Appendix G.1.1 with this time Nepochs = 50000
training epochs. For the DRGD step-size we pick a fixed step-size of γ = 0.001.

G.2.3 EXPERIMENTS

In Figure 4 we present the objective value evolution for the experiment from Section 6.2.

Figure 4: Denoising Riemannian gradient descent: Objective value f vs the iteration count j for
double pendulum (left) and unicycle car model (right). Note the logarithmic scale on the y-axis.
The current cost (blue, dashed) is the objective value f(uj ,yj) at the current (in general infeasible
(uj ,yj) /∈ MIO) iterate, while the true cost (orange) is the value f(uj ,ytrue

j ), with ytrue
j obtained

by simulating (13) with input uj .

In Figure 5 we show optimized trajectories for two other reference trajectories. Note that we have
set our iteration budget at N = 4000, while the objective is still decreasing. How to accelerate the
denoising Riemannian gradient descent without losing feasibility is a core question for future work.
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Figure 5: Denoising Riemannian gradient descent: Unicycle car position (right) with the optimized
output trajectory y∗ (blue, dashed), the true system trajectory ytrue (orange), the initial trajectory
y0 (green, dotted) and the reference trajectory r (red)
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