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ABSTRACT

The state-space models (SSMs) are widely utilized in the analysis of time-series
data. SSMs rely on an explicit definition of the state and observation processes.
Characterizing these processes is not always easy and becomes a modeling chal-
lenge in many instances, such as when the dimension of observed data grows or
the observed data distribution deviates from the normal distribution. New variants
of SSMs try to address these challenges by utilizing the scalability of deep neural
networks (DNNs) in the SSM formulation. Here, we propose a new formulation of
SSM for high-dimensional observation processes with a heavy-tailed distribution.
We call this solution the deep direct discriminative process (D4). The D4 utilizes
discriminative models like DNN in characterizing the observation process. With
this formulation, we bring DNNs’ expressiveness and scalability to the SSM formu-
lation letting us build a novel solution that efficiently estimates the underlying state
processes through high-dimensional observation signal. For the D4, we define the
Bayesian filter solution and develop a training algorithm that finds the model-free
parameters. We demonstrate the D4 solutions in simulated and real data such as
Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocam-
pus spiking neural data and show that the D4’s performance precedes traditional
SSMs and RNNs. The D4 can be applied to a broader class of time-series data
where the connection between high-dimensional observation and the underlying
latent process is hard to characterize.

1 INTRODUCTION

The state-space model is one of the well-established dynamical latent variable modeling frameworks
successfully applied in the analysis of dynamical time-series data Paninski et al. (2010). The Kalman
filter, the most widely known form of SSMs, has been frequently utilized in characterizing a wide
range of time-series data from healthcare Zhang et al. (2015), navigation Grewal et al. (1990),
machine vision Kiriy & Buehler (2002), and neuroscience Eden et al. (2004). The standard SSM
consists of a state process that defines how the state, i.e. dynamical latent variables, evolves in
time, and an observation process that defines the conditional distribution of the observed signals
given the state variable(s) Durbin & Koopman (2012). A modeling challenge in SSMs is to build
an accurate conditional probability distribution of the observed signal given the state, specifically,
for the cases where the dimension of the observed signal is high or it has a heavy-tailed distribution.
In practice, the observation distribution model is simplified with assumptions such as conditional
independence between dimensions of the signal or normal distribution for the observed signal. These
assumptions might not hold in many datasets, including our research domain where we have neural
activity of thousands of neurons. New advances in SSMs focused on circumventing this problem by
increasing the dimension of the state variables, characterizing the observation conditional distribution
becomes easy given a large set of state variables Zoltowski et al. (2020); Linderman et al. (2017);
Glaser et al. (2020). Although this approach increases the expressive power of SSMs, we lose the
interpretability of the expanded state variables, given the extra state variable might not represent the
temporal dynamics of the underlying physical or biological systems. In addition, identifying the
optimal number of the state dimension is computationally intractable, and the proposed solutions
lack a mechanism for identifying the number of states.
Most recently, discriminative models such as deep neural networks (DNNs) and recurrent neural
networks (RNNs) Burkhart et al. (2020); Krishnan et al. (2015); Rezaei et al. (2018; 2022); Glaser et al.
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(2020) are introduced to SSM for increasing its scalability in the analysis of high dimensional data. A
modeling concern with these solutions is that the DNN expressive power is not efficiently embedded
in their solutions; as a result, they will not necessarily address the challenges of characterizing
high-dimensional observation. For instance, the discriminative Kalman filters (DKFs) Burkhart et al.
(2020) and direct discriminative decoders (DDD) Rezaei et al. (2022) use a simple discriminative
model, such as a linear model with an additive Gaussian noise or the history of observed signals
is discarded in the estimation of the state. In other solutions like the deep Kalman filter (Deep-
KF)Krishnan et al. (2015), the linear observation and state transition processes are replaced with
DNNs Krishnan et al. (2015); Rangapuram et al. (2018) and mainly ignore temporal dynamics of the
underlying biological or physical systems. This modeling assumption is prohibitive when a proper
prior is available for the state dynamics, or the interpretability of the inferred state is of interest.
A critical advantage of SMMs is their explicit definition of the state dynamics and observation
processes that allow information carried by the state and observation to be optimally combined to
infer the underlying latent dynamics. In the meantime, the advantage of the DNNs and RNNs is
expressive power and scalability. The deep direct discriminative decoder (D4) solution proposed
here leverages both SSM and DNN advantages in characterizing observed signals and inference
of the underlying dynamics. The D4 incorporates a state transition process like the way is being
utilized in SSMs and utilizes DNN or RNNs to augment the conditional distribution of observation
by a discriminative process. In contrast to the previous solutions, our discriminative process can
maintain DNN’s expressiveness as it optimally combines the current and history of the observation in
its estimation of the underlying state. We argue that the D4 will not only address scalability issues we
face in SSMs for high-dimensional time-series data but also will reach a high level of accuracy in the
estimation of state dynamics. We tested D4 on simulation and real datasets, where its performance
preceded traditional DNN and SSM models. The D4 applications are broader and can be applied to
different modalities of time-series data without constraints on the modality or distribution of observed
data. We argue D4 solution facilitates the analysis of high-dimensional data where the connection
between the high-dimensional observation and the underlying state process needs to be interpretable.

1.1 BACKGROUNDS

Consider the problem of modeling time-series data y1:K ,yk ∈ RN , where k = 1, ...,K, using
dynamical latent variables x1:K ,xk ∈ RM with a Markovian property. Under the SSM modeling
framework, the joint probability distribution of latent variables and observations can be factorized by
conditional probabilities of a generative processes defined by

p(x1:K ,y1:K) = p(x1)p(y1|x1)

K∏
k=2

p(xk|xk−1)p(yk|xk). (1)

The posterior distribution of x1:k given y1:k, the filter solution, is defined by the following recursive
solution

p(x1:k|y1:k) ∝ p(yk|xk)p(xk|xk−1)p(x1:k−1|y1:k−1), (2)

where the first term is the likelihood function given the current observation, the second term is
the state process conditional distribution, and the last term is the posterior from the previous time
index Chen et al. (2003). A modeling challenge in SSM is to build the conditional probability
of the observed signal. In practice, the likelihood function is simplified by an assumption like
observations are conditionally independent given the state or they follow normal distributions. These
assumptions are prohibitive in characterizing datasets such as neural data, where the observed signals
include the spiking activity which can not be properly characterized by a normal distribution. These
simplifications will potentially induce bias in the estimation of the underlying state process, causing
an inaccurate inference of the state variables. The SSM modeling structure, specifically its generative
model for the observation process, will avoid the utilization of many powerful tools such as DNNs in
its characterization of observed signals and estimation of the underlying states. With this in mind,
we propose a new variant of SMMs called the deep direct discriminative decoder (D4) model; a new
modeling framework that fuses the advantages of DNN in the SSM to build a scalable and potentially
accurate solution for characterizing high-dimensional dynamical time-series data.
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Figure 1: The D4 latent state inference for the Lorenz system with point-process observations
described in section 3.2. A) 100 simulated spiking channels using a point process intensity model,
see Appendix C, from a trajectory consists of 500 data samples. B) Graphical representation of the

D4 model. gω(.) is the state transition process parameterized by ω and fΩ(.) is a discriminative
process parameterized by Ω. C) The D4 inferred 3-D trajectory for the Lorenz latent states. The D4
successfully inferred the latent state trajectory as most of the points in the trajectory are covered by

the 95% HPD of the D4’s predictions.

2 D4 MODEL

Let’s assume hk = y1:k−1. With this assumption, we can rewrite the posterior distribution of x1:k

given y1:k as

p(x1:k|yk,hk) =
p(x1:k,yk,hk)

p(yk,hk)
=

p(yk|xk,x1:k−1,hk)p(xk,x1:k−1,hk)

p(yk,hk)
. (3)

With the Markovian assumption of the state process and factorization rule, we can rewrite equation 3
as

p(x1:k|yk,hk) =

p(yk|xk,hk)p(xk,x1:k−1,hk)

p(yk,hk)
=

p(yk|xk,hk)p(xk|xk−1)p(x1:k−1|hk)p(hk)

p(yk,hk)
, (4)

where we replace p(xk|x1:k−1,hk) with p(xk|xk−1). By applying the Bayes rule once again for
p(yk|xk,hk) and replacing hk with {yk−1,hk−1}, we can rewrite the posterior as

p(x1:k|yk,hk) =
p(xk|yk,hk)p(yk,hk)p(xk|xk−1)p(x1:k−1|hk)p(hk)

p(yk,hk)p(xk|hk)p(hk)
=

p(xk|yk,hk)

p(xk|hk)
p(xk|xk−1)p(x1:k−1|yk−1,hk−1) (5)

where p(xk|xk−1) is the state transition process and we call p(xk|yk,hk) the predic-
tion process. The p(x1:k−1|yk−1,hk−1) becomes the posterior distribution from the pre-
vious time index and the denominator term, p(xk|hk), can be expanded by p(xk|hk) =∫
dxk−1p(xk|xk−1)p(xk−1|hk−1,yk−1). Equation 5 gives a recursive solution to calculate the

posterior at time index k. In this formulation, the ratio term p(xk|yk,hk)/p(xk|hk) is equivalent
to the update term in the SSM and represents the amount of information carried by the current
observation. If the current observation is not informative, the ratio is close to one which corresponds
to a flat likelihood in the SSM for the observed signal; on the other hand, it will push the one-step
prediction distribution toward a new domain of states implied by the observed data.
As Figure1.B shows, the D4 is comprised of two equations: a) a state transition equation, and b) a
prediction process equation. The state transition equation at time index k is defined by

xk|xk−1 ∼ g(xk−1;ω), (6)

where ω is the model parameters of the conditional distribution. The prediction process is defined by

xk|yk,hk ∼ f(yk,hk;Ω). (7)

In practice, hk is assumed to be a subset of the observation from previous time points, and Ω is the
model free parameters of prediction process defined by the discriminative function f .
Equations 6 and 7 define the D4 model, where, the observation equation of SSM is replaced by a
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discriminative process. The discriminative process can be built using the state-of-the-art discrimina-
tive models such DNNs, RNNs, CNNs, or variants of these models. The flexibility in picking the
discriminative process allows us to benefit from the scalability and expressiveness of these models,
where these choices make the D4 agnostic to the modality of the input data.
Here we defined the D4 model structure, equations 6, 7, and 5 give a recursive solution to compute
the posterior distribution of the states variables. Due to involvement of an integration term in equation
5, the calculations in equation 5 is not strait forward. Note that the estimation of posterior distribution,
equation 5, involves an integral term; with this term, deriving a closed-form solution is becoming
a challenging problem for the posterior. As a result, in the next sections, we first propose efficient
sampling solution that allows to draw sample of state trajectories recursively for the state posterior
distribution, defined by P (x1:K | y1:K). We also discuss the computational complexity of sampling
solution for the posterior estimation in the D4 and compare it with the SSM one. We then discuss
the training solution for the D4; we will see how the P (x1:K | y1:K) samples will be used in the
training of the D4 components and discuss how in practice we can reduce the D4 computational cost
by controlling the hk term.

2.1 SMOOTHED SEQUENTIAL IMPORTANCE SAMPLING

Equation 5 defines the posterior distribution of the state variables given the observation. Like
sequential Monte Carlo sampling Doucet et al. (2009), we assume there is a proposal distribution
define by qk(xk | xk−1). Let’s assume at time index k, we draw D samples using the proposal
distribution give the samples form the previous time point. With this assumption, the weight for dth
sample, w(d)

k|k, is defined by

x
(d)
k ∼ q(x

(d)
k |x(d)

k−1,yk),

w
(d)
k|k :=

p(x
(d)
k |x(d)

k−1)p(x
(d)
k |yk,hk)

q(x
(d)
k |x(d)

k−1,yk)
∫
dx

(d)
k−1p(x

(d)
k | x(d)

k−1)p(x
(d)
k−1|hk)

(8)

The integral term in the denominator of equation 8 can be numerically approximated using the
samples from the previous time index, x(d)

k−1. In the cases where f(.,ω) is smooth and invertible
Rezende & Mohamed (2015), we can approximate the integral term by

p(x
(d)
k |hk, {ω,Ω}) =

∫
dx

(d)
k−1p(x

(d)
k | x(d)

k−1,ω)p(x
(d)
k−1|hk−1,yk−1,Ω) ≈ p(f(x

(d)
k−1,ω

∗)|hk,Ω)

(9)
where ω∗ satisfies

ω∗ = argminωKL(p(x(d)
k |hk, {ω,Ω}) ∥ p(f(x

(d)
k−1,ω)|hk,Ω) (10)

Using equation 8, we draw samples from the filter estimation. To draw samples from the smoother
estimate of the state, we use forward filtering and backwards smoothing (FFBS) formula suggested in
Kitagawa (1996). FFBS first runs the filter solution define by equation 8 for the D4; it then reweighs
particles with the backward recursion defined by

w
(d)
k|K = w

(d)
k|k

 K∑
i=1

w
(i)
k+1|K

p(x
(i)
k+1|x

(k)
k )∑K

j=1 w
(j)
k|kp(x

(i)
k+1|x

(k)
j )

 (11)

where w
(d)
K|k = w

(d)
K|k/

∑D
j=1 w

(j)
K|k with w

(d)
K|K = w

(d)
K|K . Using equations 8 and 11, we can draw

samples from the posterior of the state given the whole observation. Note that we will do the
resampling at each time index of the filter solution.

2.2 COMPUTATIONAL COMPLEXITY OF SMMS VS D4

The filtering for SSM, defined in equation 2 for SSM requires O(NK) operations to sample one
trajectory of the state approximately distributed according to p(x1:K |y1:K)Doucet et al. (2009). On
the other hand, the D4 requires O(NK2) operations to sample one path for the same distribution, if we
consider hk = y1:k−1. In practice, we replace the hk with a fixed length history h′

k = {yj}j=k−L−1
j=k−1

which can reduce the computational cost to Q(NKL). In the following sections, we discuss the
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training algorithm where we can estimate the model free parameters (ω, Ω) along with the optimal
history length, as a result, the training algorithm outcome for the history length will impact the
computation complex of the filter and smoother solution.

2.3 D4 MODEL TRAINING

With the D4 training, we maximize the likelihood of the observation data by tuning the model
free parameters. The D4 free parameters include the state process parameters - e.g. ω, and the
discirminative model free parameters - e.g Ω. Note that the history term, hk, needs to be identified,
which will change the optimal values of ω and Ω of the D4 model. Note that the state variables,
xk, are not directly observed; thus, the training requires the estimation of the state process Kenny &
Judd (1984). For this setting, we can use the EM algorithm, which let us find the ML estimates of
the model parameters Myung (2003). The EM alternates between computing the expected complete
log-likelihood according to the posterior estimation of the state (the E step) and maximizing this
expectation, Q function, by updating the model free parameters (the M step). The Q is defined by

Q(θ|θ(r)) = Ex0:K |y1:K ;θ(r) [log(p(x0;ω0)

K∏
k=1

p(xk|xk−1;ω)

K∏
k=1

p(xk|yk,hk;Ω)

p(xk|hk;Ω)
)] (12)

where θr = {ωr
0,Ω

r,ωr} represents the model parameters estimated by maximizing Q at the
previous iteration of the EM algorithm Yousefi et al. (2015). For the simplicity of notation, we use
EK for Ex0:K |y1:K ;θ(r) in the rest of the paper. We can expand the Q function, as

Q(θ|θ(r)) = EK [log p(x0;ω0)+

K∑
k=1

log p(xk|xk−1;ω) +

K∑
k=1

log p(xk|yk,hk;Ω)]− EK [

K∑
k=1

log p(xk|hk;Ω)] (13)

For the cases where the state process is linear with an additive Gaussian noise and the prediction
process is a multi-variate Gaussian, we can find a closed-form solution for different terms of the Q
function. However, for almost all other cases such as when the prediction process is a non-linear
function of the observation or the state transition represents a non-linear dynamics, it is hard to find
a closed-form solution for Q function given the model free parameters. Instead, we can use the
sampling technique, described in the section 2.1, to calculate the expectation for the first term, EK [.],
of equation 13; however, finding the expectation for the last term is still challenging given it involves
a second integration over the state variable. To address this challenge, we show that we can find an
approximation for the last term which turns into a lower bound for the Q. We can write the last term
in Q function as

EK [

K∑
k=1

log p(xk|hk;Ω)] =

K∑
k=1

∫
dxkp(xk|y1:K ,θ(r)) log p(xk|hk;Ω) =

=

K∑
k=1

∫
p(xk|y1:K ,θ(r)) log

p(xk|hk;Ω)p(xk|y1:K ,θ(r))

p(xk|y1:K ,θ(r))
dxk

=

K∑
k=1

(

∫
dxkp(xk|y1:K ,θ(r)) log

p(xk|hk;Ω)

p(xk|y1:K ,θ(r))
+

∫
dxkp(xk|y1:K ,θ(r)) log p(xk|y1:K ,θ(r)),

(14)
where the first term here is the negative of KL divergence between p(xk|y1:K ,θ(r)) and p(xk|hk;Ω),
and the second term is the negative of the entropy of the xk posterior distribution given the whole
observation. Notice that H(p(xk|y1:K ,θ(r)) is independent of the free parameters θ. As a result, we
can rewrite Q as

Q(θ|θ(r)) = EK [log p(x0;ω0) +

K∑
k=1

log p(xk|xk−1;ω)+

K∑
k=1

log p(xk|yk,hk;Ω)]+

K∑
k=1

KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω))+H(p(xk|y1:K ,θ(r)) (15)
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Algorithm 1 D4 Learning Algorithm

1: procedure REGULARIZED-EM-FOR-D4(y1:K ,θ(0), λ,D,L)
2: hk ←− {yk−L:k−1},Q0 ← 0
3: Do
4: Qmax ← Qr

5: x̃1:D
1:K ← x1:D

1:K

6: Sample D smoothed trajectories using equations 8 and 11, x1:D
1:K ∼ pθ(x

1:D
1:K | y1:K)

7: θ(r),Qr = Update−Model(y1:K , x̃1:D
1:K ,x1:D

1:K ,θ(r−1), λ)
8: DoWhile{Qr > Qmax}
9: return θ(r−1),Qmax

10: end procedure
11: procedure UPDATE-MODEL(y1:K , x̃1:D

1:K ,x1:D
1:K ,θ(r−1), λ)

12: {ω(r−1)
0 ,ω(r−1),Ω(r−1)} = θ(r−1)

13: Update Qr using equation 17 evaluate at θ(r−1)

14: Update Ω(r), ω(r), and ω
(r)
0 using gradients calculated by equations 18, 26, and 27; respectively

15: return {ω(r)
0 ,ω(r),Ω(r)},Qr

16: end procedure

The KL term in equation15 is positive; thus, a lower bound for the Q can be defined as the expectation
of the likelihood terms defined by the state transition and prediction processes. The KL term can not
be zero; however, it can generate smaller values as the length of the history term in the discriminative
model grows.
Note that the history term has two contrasting effects in the Q function. As the history length grows,
the Q value grows as the prediction process, the log p(xk|yk,hk;Ω), will better fit the state, wheres
it brings the value of the KL down. Thus, we can assume the KL term in equation 15, penalizes the
length of hk and prevents unconstrained growth of the hk. This dynamics of KL suggests that there
is an optimal history length that not only contributes to a better prediction of the state but also pushes
Q to a higher value. We assume that the sum of KL and H over the whole time indices should be
smaller than a pre-set threshold ϵ. With this assumption, we can approach our model training as a
regularized maximum likelihood problem defined by

max
θ

EK [log p(x0;ω0) +

K∑
k=1

log p(xk|xk−1;ω) +

K∑
k=1

log p(xk|yk,hk;Ω)]

s.t.

K∑
k=1

KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω)) +H(p(xk|y1:K ,θ(r))) < ϵ (16)

Re-writing equation 16 as a Lagrangian under the KKT conditions Higgins et al. (2016), we obtain

Q(θ, λ, | θ(r)) = EK [log p(x0;ω0) +

K∑
k=1

log p(xk|xk−1;ω) +

K∑
k=1

log p(xk|yk,hk;Ω)]

−λ(

K∑
k=1

KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω)) +H(p(xk|y1:K ,θ(r))) (17)

λ ≥ 0 keeps the KL non-zero by putting pressure to shrink history length.

2.4 STOCHASTIC OPTIMIZATION FOR PARAMETER ESTIMATION

We can optimize the objective function defined in equation 17 by using a stochastic optimization
algorithm. Stochastic optimization algorithms follow noisy gradients to reach the optimum of an
objective function. The gradient with respect to the state transition parameters is already derived
in Kingma & Welling (2019), which can be found in equations 27 and 26 of Appendix A. We also
require to find the gradient of Q with respect to Ω. This gradient is defined by

▽ΩQ(θ|θ(r)) ≃ 1

D

D∑
d=1

K∑
k=1

▽Ω log p(x̂
(d)
k |yk,hk;Ω) + λ▽Ω log p(x̂

(d)
k |hk;Ω), (18)
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where {x̂(d)
k }k=K

k=1 is dth state trajectory path derived from the smoothed posterior with parameter set
θ(r), see more details in Appendix A. Given equation18, we can optimize the Ω using a stochastic
back-propagation similar to the ones proposed for variational-autoencoder models Kingma & Welling
(2013).
Algorithm 1 presents the learning steps for the D4 using stochastic optimization. In developing the
learning algorithm, we assumed that xk is unobserved, when xk is known, the learning procedure
follows the same steps, whilst the expectation, EK , is replaced by the state values constructing the
trajectory of the state.

3 EXPERIMENTS

We demonstrate utility of the D4 by testing its different modeling steps on simulated data created
for non-linear dynamical systems with high-dimensional observations. The simulated experiments
are 1) Langevin dynamics with point-process observations, 2) Lorenz attractor with point-process
observations, and 3) 1-D random walk model with with a non-linear mapping onto 20 dimensional
space as the observed signal (results fort this example are shown Appendix B). We selected these
experiments to cover diverse non-linear dynamical systems with physically meaningful state variables
and different types of observations and noise processes. We show that the D4 accurately estimate the
non-linear latent dynamics. We also apply the D4 on a decoding problem using the rat hippocampus
data while the rat forages a W-shaped maze for food Rezaei et al. (2021). For this problem, we
compared D4’s performance with the current state-of-the-art solutions including traditional point-
process SSMs Truccolo et al. (2005) and GRU-RNNs Chung et al. (2014). In our assessment of
different decoder models’ performance, we consider mean squared error (MSE), mean absolute error
(MAE) Chai & Draxler (2014), correlation coefficients (CC), and the 95% highest posterior density
region (HPD) metrics Yao & Lindsay (2009).

3.1 LANGEVIN DYNAMICS WITH POINT-PROCESS OBSERVATIONS

Langevin dynamics is used to describe the acceleration of a particle in a liquid. Here we consider one-
dimensional harmonic oscillators, with potential function U(q) = Kq2

2 , q ∈ R which is a standard
test case for Langevin dynamics Leimkuhler & Matthews (2013),

dq = M−1pdt, dp = −▽U(q)dt− γpdt+ σM0.5dW (19)

where q, p ∈ R3N are vectors of instantaneous position and momenta, respectively, W = W (t) is a
vector of 3N independent Wiener processes, γ > 0 is a free (scalar) parameter, and M is a constant
diagonal mass matrix. We simulated 100-dimensional spiking time-series using a point process
intensity model, see Appendix C. Figure1.A shows the simulated spiking data. For the D4, we as-
sume the prediction process is a Gaussian process, p(xk|yk,hk,Ω) ∼ N(µΩ(yk,hk), σΩ(yk,hk)).
µΩ(yk,hk) and σΩ(yk,hk) are the mean and standard deviation of the Gaussian predictor which
are nonlinear functions of the current, yk, and a history of observed spiking data, hk. Given the
observed spiking data, Algorithm 1 simultaneously updates the state transition and prediction process
parameters that maximize the Q function given y1:K . Figure 2.C shows the performance of D4,
with the optimal hyper-parameter λ identified in Figure 2.B, along with the DDD and DKF. The D4
successfully inferred the latent state trajectory as most of the points in the trajectory are covered by
the 95% HPD of the D4’s predictions. The D4 gives a higher performance measures, meaning that it
gives a better estimation of the underlying states.

3.2 LORENZ ATTRACTOR WITH POINT-PROCESS OBSERVATIONS

Lorenz attractor is a chaotic system Afraimovich et al. (1977) with its nonlinear dynamics are defined
by,

ẋ1 = σ(x2 − x1) + ϵ1, ẋ2 = x1(ρ− x3)− x2 + ϵ1, ẋ3 = x1x2 − βx3 + ϵ1. (20)

where the {ϵ1, ϵ2, ϵ3} are Gaussian white noises. The model were set to {σ = 10, ρ = 28, β = 8/3}
to have a complex trajectory. We simulated 100 spiking data using a point process intensity model,
see AppendixC, Figure1.A shows the spiking data.
Here, we assume the prediction process is a Gaussian process, p(xk|yk,hk,Ω) ∼
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Figure 2: The D4 inference result for the Langevian system. A) 100 simulated spiking observations
based on equations 19. B) λ hyperparameter optimization for equation 17. C) The D4’s performance

comparison with DDD and DKF. D) The D4 inferred trajectory for the Langevian latent states.

Figure 3: Th D4’s performance compared with DDD and DKF models in Lorenz Attractor problem.
A) λ hyper-parameter optimization for D4, equation 17. B) The D4’s inference performance

compared with DDD and DKF.

N(µΩ(yk,hk), σΩ(yk,hk)), where µΩ(yk,hk) and σΩ(yk,hk) are the mean and standard de-
viation of the Gaussian noise, both nonlinear functions of the current, yk, and the history, hk. Figure
3.B shows the D4, with optimal value of λ hyper-parameter identified in Figure3.A, and inference
performance compared to DDD and DKF models. Similar to the D4’s results for Langevin dynamics,
shown in Figure 1.C, the D4 accurately inferred the latent state trajectories for the Lorenz system
with a better performance compared to DDD and DKF.

Figure 4: Decoding result for the rat movement trajectory using D4, SSM, and GRU-RNN. A) Raster
plot of the 62 place cells spiking activity for a 330 seconds period. B) The rat position during time

period shown in A. The rat position is measured using a camera installed over the maze. C-H)
Results of D4, SSM, and GRU-RNN for the test and training dataset.

8
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Figure 5: The D4, SSM, and GRU-RNN performance decoding performance in the rat dataset. I) The
MAE, J) The MSE, K) The 95% highest posterior density (HPD) performance results for D4, SSM,

and GRU-RNN for the 2D dimensions.

3.3 DECODING RAT HIPPOCAMPUS DATA

In this problem, we seek to decode the 2-D movement trajectory of a rat traversing through a W-
shaped maze from the ensemble spiking activity of 62 hippocampal place cells. The neural data are
recorded from 62 place cells in the CA1 and CA2 regions of the hippocampus brain area of a rat, more
details are available in AppendixD. Figure4.A shows the spiking activity of these 62 units, yk ∈ R62.
Here, the state variable ck represents the rat coordinates in the 2D spaces, see Figure4.B. For the state
process, we use a 2-dimensional random walk with a multivariate normal distribution as the state
process. The prediction process is a nonlinear multi-variate regression model for 2D-coordinates
where the mean and variance are a function of the current spiking activity of 62 cells and their spiking
history. Along with the D4, we also build point-process SSM, explained in Truccolo et al. (2005) and
GRU-RNN Chung et al. (2014) models, see Figure 4 for decoding results of these models.
Figure5 shows performance of different decoding solutions. Among these models, the D4 gives a
significantly better 95% HPD compared to the SSM model. Note that this comparison is not possible
for GRU-RNN, as its output is deterministic. The D4 model outperforms both SSM and GRU-RNN in
the performance measures. The D4 performance precedes other models given it optimally combines
the information carried by spiking activity and state model of the movement at different temporal scale.
These results are aligned with the physiology of neurons where their spiking activity is dependent
on their previous spikes, a phenomenon which is not necessarily addressed in SSMs Truccolo et al.
(2005). The other attribute of D4 is its robustness to the overfitting issue. As it shown in Figure5, the
difference in D4 decoding performance for training and test data are significantly less than those in
GRU-RNN model. This result suggests that we can utilize the D4 in modeling problems when the
size of the data is limited, whereas, RNNs will faces over-fitting issues.

4 CONCLUSION

In this research, we introduced a new modeling framework that extends the utility of SSMs in the
analysis of high-dimensional time-series data. We call the solution the Deep Direct Discriminative
Decoder, or D4, model. For this model, we demonstrated its solution in both simulated and real
datasets, where its performance precedes RNN and SSM models. The D4 is a variant of SSMs, in
which the conditional distribution of the observed signals is replaced by a discriminative process.
The D4 inherits attributes of SSM, while it provides a higher expressive power in its prediction of
the state variables. In sum, the D4 inherits the advantages of both SSM and DNNs. The D4 can
incorporate any information from the history of observed data at different time scales in computing
the estimate of this state process. D4 is fundamentally different from SSMs, where the information at
only two time scales: a) fast, which is carried by the observation, and b) slow, defined by the state
process, are combined in estimating the state process. We expect the D4 performance to be better
than SSM and DNNs, as a D4 without the state process turns to a DNN, and the D4 without the
history term will (potentially) correspond to the DKF and/or SSM. Here, we showed that the D4
performance in the simulated data with high-dimensional observation and non-linear state processes
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preceded the state-of-art solutions including SSM and RNNs. The D4 decoding performance in the
neural data is significantly better than SSM and RNNs, showing its applicability in the analysis of
complex and high-dimensional time-series data. In the neural data, the D4 performance shows less
discrepancy in the test and training data, pointing to its robust prediction. The D4 modeling pipeline
integrated with the training solution built in this research provides a scalable and versatile modeling
solution applicable in the analysis of dynamical high-dimensional time-series data, where a high level
of interpretability and performance are needed.
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A CALCULATING Q FUNCTION GRADIENTS

First we start with calculation of the gradients of the Q(θ|θ(r)) with respect to Ω which is defined by

▽ΩQ(θ|θ(r)) = ▽Ω(EK [log p(x0;ω0) +

K∑
k=1

log p(xk|xk−1;ω) +

K∑
k=1

log p(xk|yk,hk;Ω)]

−λ

K∑
k=1

KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω)))

We can change the order of expectation - EK- and gradient; thus, we have

▽ΩQ(θ|θ(r)) = EK [▽Ω(log p(x0;ω0))+

K∑
k=1

▽Ω(log p(xk|xk−1;ω))+

K∑
k=1

▽Ω(log p(xk|yk,hk;Ω))]

−λ

K∑
k=1

▽Ω(KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω)))

The gradient of the first two term with respect to Ω is zero; as a result, we can rewrite the gradient as

▽ΩQ(θ|θ(r)) = EK [

K∑
k=1

▽Ω(log p(xk|yk,hk;Ω))]

−λ

K∑
k=1

▽Ω(KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω))) (21)

The KL(.) term can be rewritten as Blei et al. (2017)

KL(p(xk|y1:K ,θ(r)) ∥ p(xk|hk;Ω))

= Ep(xk|y1:K ,θ(r))[log p(xk|y1:K ,θ(r))]− Ep(xk|y1:K ,θ(r))[log p(xk|hk;Ω)] (22)
By replacing equation 22 inside equation 21, we derive

▽ΩQ(θ|θ(r)) = EK [

K∑
k=1

▽Ω(log p(xk|yk,hk;Ω))]

−λ

K∑
k=1

▽Ω(Ep(xk|y1:K ,θ(r))[log p(xk|y1:K ,θ(r))]− Ep(xk|y1:K ,θ(r))[log p(xk|hk;Ω)]) (23)

The Ep(xk|y1:K ,θ(r))[p(xk|y1:K ,θ(r))] is not dependent on Ω; therefore, the
▽Ω(Ep(xk|y1:K ,θ(r))[log p(xk|y1:K ,θ(r))]) = 0. Now, we move the gradient inside the ex-
pectation term one more time which gives us

▽ΩQ(θ|θ(r)) =
K∑

k=1

Ep(xk|y1:K ,θ(r))[▽Ω(log p(xk|yk,hk;Ω)) + λ▽Ω(log p(xk|hk;Ω))] (24)

Therefore, we can calculate ▽ΩQ(θ|θ(r)) by

▽ΩQ(θ|θ(r)) ≃
1

D

D∑
d=1

K∑
k=1

▽Ω log p(x̂
(d)
k |yk,hk;Ω) + λ▽Ω log p(x̂

(d)
k |hk;Ω) (25)

The equation 25 is a Monte Carlo estimator of the equation25, where {x̂(d)
k }k=K

k=1 is dth sample
trajectory from the smoothed posterior with parameter set θ(r).
Similarly, the gradient of the Q(θ|θ(r)) with respect to ω can be derived by

▽ωQ(θ|θ(r)) ≃ 1

D

D∑
d=1

K∑
k=1

▽Ω log p(x̂
(d)
k |x̂(d)

k−1;ω) (26)

Finally, the gradient of the Q(θ|θ(r)) with respect to ω0 can be derived by

▽ω0
Q(θ|θ(r)) ≃ 1

D

D∑
d=1

▽Ω log p(x̂
(d)
k |x̂(d)

k−1;ω) (27)
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B PERFORMANCE COMPARISON IN 1D SIMULATION DATA WITH
HIGH-DIMENSIAL OBSERVATIONS

Figure 6: Decoding results for simulation dataset using D4, GRU-RNN, and SSM models. A)
Decoding results for the training set. B) Decoding results for the test set. C) MAE. D) MSE. E) 95%
HPD. Note that the GRU-RNN model has a deterministic output; as a result, there is no 95% HPD

measure for the GRU-RNN model.

We generate the simulation dataset by assuming the state of interest, xk, is a one-dimensional random
walk model which is defined by P (xk|xk−1) ∼ N(axk−1+ b, σ2

x), where a is the state transition and
b is the bias coefficient for the random walk with a normal additive noise with a standard deviation of
σx. Using the state, we then generate a 20-dimensional temporal signal with a conditional distribution
defined by

P (yk|xk) ∼ N(g(xk, xk−1, ..., xk−lm),Σs) (28)
where g(.) is a 20-dimensional vector of non-linear functions, like tanh, and cosine, with an argument
defined by a subset of state processes at the current and previous time points. The lm is the
maximum length of data points used in g(.) function. For each channel of data, we pick a l uniformly
from 0 to lm randomly, which is used for data generation. For example, in our simulation, the
g1 function corresponding to the first channel of observation g, is a tanh(.) with the argument
xk + 0.8 ∗ xk−1 + 0.6 ∗ xk−2 + 0.4 ∗ xk−3 + 0.2 ∗ xk−4. Σs is the stationary covariance matrix
with size 20× 20. Σs’s non-diagonal terms are non-zeros, implying observations across channels are
correlated as well. In our simulation, we picked a = .98, b = 0, and σx = 0.1. We generate the data
for 1000 data points. The observation signal in this simulation has a complex dynamics while the
undelying state is low dimensional; this setting was purposefully picked to demonstrate D4 prediction
power and build a clear comparison across models.
We tested SSM and GRU-RNN model decoding performance along with the D4. For the training,
we assumed the state process is observed. We consider the prediction process is a Gaussian process,
p(xk|yk,hk,Ω) ∼ N(µΩ(yk,hk), σΩ(yk,hk)). µΩ(yk,hk) and σΩ(yk,hk) are the mean and
standard deviation of the Gaussian predictor which both are nonlinear functions of the current, yk,
and the history of observed spiking data, hk. This is because we needed the state for GRU-RNN
training, and with the values of the state known, the training of the SSM becomes simple. For SSM
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training, we can find the state and observation process parameters using the MLE technique, if the
state trajectory is known. Figure6 shows the D4, GRU-RNN, and SSMs decoding results on this data.
The D4 model MAE and MSE measures outperform both SSM and GRU-RNN models. The D4
model also gives even a better 95% HPD compared to the SSM model.

C POINT-PROCESS OBSERVATIONS FOR LORENZ DYNAMICAL SYSTEM

We generate simulated M channels of spiking data using a point process intensity model that is
governed by a nonlinear mapping of the state values X , where the conditional intensity for each
channel of the data is a function of the state process defined by a problem, such as Langevin problem,
X = {p, q} and Lorenz attractor problem, X = {x1, x2, x3}, as

λj(X) = exp[aj −
∑

xk∈X

(xk − µj,xk
)2

2σ2
j,xk

], j = 1, ...,M (29)

where µj,xk
and σ2

j,xk
define the center and width for a hypothetical receptive field model of xk, and

aj is the peak firing rates. The history-dependent terms for ith channel is defined by another intensity
function as

λj,H =
∑

sn∈Sj

1− exp(− (k − sn)
2

2σ2
j

), (30)

where Sj is the set containing all the spike times of jth channel. Therefore, the intensity function for
jth point-process channel, λ̂j , is calculated by λ̂j = λj ∗ λj,H .
µj,xk

are drawn from uniform distributions that cover the domain of the state values, ∼
U(mean(xk) − 2 ∗ std(xk),mean(xk) + 2 ∗ std(xk)). {σj,xk

, σi} are drawn from a uni-
form distribution, ∼ U(minsigma, 1/M). aj are drawn from a uniform distribution, ∼
U(minfiring−rate,maxfiring−rate).

D DETAILS ABOUT THE NEURAL DATA

In this example, we seek to decode the 2D movement trajectory of a rat traversing a W-shaped maze
from the ensemble spiking activity of 62 hippocampal place cells Yousefi et al. (2019). The neural
data were recorded from an ensemble of place cells in the CA1 and CA2 regions of the hippocampus
of a single Long-Evans rat, aged approximately 6 months. The rat was trained to traverse between
a home box and the outer arms to receive a liquid reward (condensed milk) at the reward locations.
The spiking activity of these 62 units was detected offline by identifying events with peak-to-peak
amplitudes above a threshold of 80 uV in at least one of the tetrode channels. The rat’s position was
measured using video tracking software and was used for training the models and as the ground truth
for the decoded position. We used a 15-minute section of the experiment, with a time resolution of
33 milliseconds, to analyze multiple decoding methods. The first 82% of the recording (about 12.5
minutes) was used to train the discriminative and state process models and the remaining 18% (about
2.5 minutes) of data was used to test the model’s decoding performance.
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