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Abstract001

The rapid advancements in large language mod-002
els (LLMs) have led to the emergence of rout-003
ing techniques, which aim to efficiently select004
the optimal LLM from diverse candidates to005
tackle specific tasks, optimizing performance006
while reducing costs. Current LLM routing007
methods are limited in effectiveness due to008
insufficient exploration of the intrinsic con-009
nection between user queries and the charac-010
teristics of LLMs. To address this issue, in011
this paper, we present RadialRouter, a novel012
framework for LLM routing which employs a013
lightweight Transformer-based backbone with014
a radial structure named RadialFormer to ar-015
ticulate the query-LLMs relationship. The op-016
timal LLM selection is performed based on017
the final states of RadialFormer. The pipeline018
is further refined by an objective function that019
combines Kullback-Leibler divergence with the020
query-query contrastive loss to enhance robust-021
ness. Experimental results on RouterBench022
show that RadialRouter significantly outper-023
forms existing routing methods by 9.2% and024
5.8% in the Balance and Cost First scenarios,025
respectively. Additionally, its adaptability to-026
ward different performance-cost trade-offs and027
the dynamic LLM pool demonstrates practical028
application potential.029

1 Introduction030

Recent advances in natural language processing,031

significantly driven by the development of large032

language models (LLMs), has opened new fron-033

tiers across numerous applications. LLMs demon-034

strate outstanding performance on various tasks,035

including mathematical problem-solving (Romera-036

Paredes et al., 2024), commonsense reasoning037

(Zhao et al., 2023), and code generation (Wu et al.,038

2023). The growing reliance on LLMs gives rise to039

the concept of LLM ensemble (Chen et al., 2025),040

which integrates multiple LLMs to establish a sys-041

tem capable of multitasking, thereby generating042
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Figure 1: Paradigm comparison between different
LLM routing methods. Existing methods lack the mod-
eling of the interrelation between the query and LLMs,
while the proposed RadialRouter unifies the routing pro-
cess in a structured representation.

more accurate and robust responses to user inputs. 043

Through this collaborative approach, practition- 044

ers can leverage the unique strengths of different 045

LLMs, potentially improving the overall perfor- 046

mance and reliability in addressing diverse require- 047

ments. However, as the size and complexity of 048

LLMs increase, the challenges of deploying LLM 049

ensemble —such as computational cost, latency, 050

and scalability —also intensify. 051

To address these challenges, LLM routing is ex- 052

plored to dynamically assign a specific LLM in the 053

LLM ensemble to user queries. As shown in Fig.1, 054

early attempts (Ding et al., 2024; Ong et al., 2024) 055

employ a binary score router to decide whether to 056

select a smaller LLM or a larger one for a given 057

query. (Chen et al., 2023) utilizes a router to guide 058

cascaded LLMs for generating responses. Further 059

research (Chen et al., 2024) introduces similarity 060

matching to align the query with LLMs and select 061

the most appropriate LLM. However, these meth- 062

ods are limited in the following aspects: 1) They 063
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narrow the routing sorely to identify the optimal064

LLM, failing to capture the intrinsic connection065

between the query and LLMs, which undermines066

their effectiveness in achieving ideal routing re-067

sults. 2) The exclusive dependence on the features068

extracted by the BERT-based text encoder hinders069

their ability to leverage the contextual information070

and prevents a nuanced understanding of the under-071

lying relationships and constraining the efficiency072

of routing. 3) Existing methods that limit routing073

to a fixed number of LLMs struggle to adapt to a074

dynamically evolving pool of LLMs. 4) Certain075

approaches neglect the actual requirements of the076

task, rendering them ineffective in scenarios that077

necessitate a simultaneous consideration of both078

performance and cost.079

In this paper, we propose a novel LLM routing080

approach named RadialRouter, which leverages081

a Transformer-based architecture to enhance per-082

formance for efficient and robust LLM routing. To083

represent the interrelationship between the query084

and LLMs, we propose RadialFormer as the back-085

bone of RadialRouter and incorporate the structure086

consisting of a relay node and n satellite nodes.087

During update, these nodes are processed through088

the multi-head attention mechanism. Compared089

with the standard Transformer, RadialFormer re-090

duces the computational complexity from O(n2d)091

to O(nd). The optimal LLM selection is performed092

based on the final states of satellite nodes. To093

guide the selection and enhance comprehensive rep-094

resentation, we employ a Kullback-Leibler diver-095

gence loss for supervision. Additionally, we clus-096

ter the queries into groups and introduce a query-097

query contrastive loss, which fosters the genera-098

tion of similar embeddings for semantically related099

queries, facilitating robust LLM routing.100

We conduct experiments on challenging Router-101

Bench (Hu et al., 2024) encompassing 4 task do-102

mains (commonsense reasoning, knowledge-based103

language understanding, math, and coding) to eval-104

uate the proposed RadialRouter in three scenarios.105

Extensive experiments demonstrate that Radial-106

Router efficiently harnesses the interrelationship of107

routing and outperforms existing routing methods108

by a large margin. Furthermore, the adaptability109

of RadialRouter toward different performance-cost110

trade-offs and the dynamic LLM pool is verified111

through extended experiments.112

Our contributions are summarized as follows:113

• We propose RadialRouter, a novel framework114

that leverages a Transformer-based architec-115

ture to dynamically route user queries to suit- 116

able LLMs. 117

• We introduce a lightweight architecture Ra- 118

dialFormer as the backbone of RadialRouter 119

to capture the interrelationship between the 120

query and LLMs in routing. To improve the 121

robustness of routing, we incorporate con- 122

trastive loss in the optimization of Radial- 123

Router. 124

• Experimental results show that RadialRouter 125

outperforms baseline routing methods and 126

achieves efficient and robust routing in three 127

scenarios with different performance-cost 128

trade-offs. 129

2 Related Work 130

LLM Ensemble The remarkable performance 131

exhibited by a single LLM, coupled with the in- 132

creasing demand for enhanced cross-domain capa- 133

bilities, has catalyzed the emergence of the con- 134

cept of LLM ensemble. Majority voting (Wang 135

et al., 2022; Li et al., 2024) is a simple yet effective 136

method to achieve the LLM ensemble. (Jiang et al., 137

2023) proposes a supervised ensembling method 138

to produce enhanced results by synthesizing the 139

outputs of all LLMs. (Du et al., 2023) develops a 140

debate framework for LLM collaboration. LLM 141

cascading (Chen et al., 2023; Yue et al., 2023; 142

Gupta et al., 2024; Nie et al., 2024) adopts a serial- 143

ized model architecture and halts when the output 144

quality is satisfied. (Wang et al., 2023) tackles 145

the fusion-of-experts problem by combining out- 146

puts from models with diverse knowledge domains. 147

These approaches frequently exhibit considerable 148

computational complexity, leading to substantial 149

time latency and cost in practical applications. In 150

contrast, our RadialRouter is highly efficient, as 151

it requires only a single invocation of the routed 152

LLM. 153

LLM Routing Similar to Mixture-of-Expert 154

(MoE) approaches (Jacobs et al., 1991; Collobert 155

et al., 2003; Jiang et al., 2024), LLM routing is 156

designed to identify the most suitable LLM for a 157

query, allowing the lightweight activation of LLM 158

ensemble. (Shnitzer et al., 2023) addresses the 159

LLM selection problem with a series of binary clas- 160

sification tasks. ZOOTER (Lu et al., 2023) devel- 161

ops a reward-guided method to train the routing 162

function. HybridLLM (Ding et al., 2024) proposes 163

a hybrid approach to save cost and maintain quality 164
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(b) Connections of one layer in Radi-
alFormer, where each satellite node is
exclusively connected to the relay node
to form a radial configuration.

Figure 2: Overview of RadialRouter methodology.

leveraging LLM pairs. The framework proposed in165

RouteLLM (Ong et al., 2024) dynamically routes166

between a strong model and a weak model. Rou-167

terDC (Chen et al., 2024) improves the routing168

performance by introducing dual contrastive learn-169

ing. Recent advancements in LLM routing utilizing170

graph neural networks (Feng et al., 2024) and re-171

inforcement learning (Sikeridis et al., 2024; Yue172

et al., 2025) show significant promise. Different173

from the aforementioned methods, the proposed174

RadialRouter leverages a Transformer-based back-175

bone to achieve performance-cost balanced LLM176

routing.177

3 Method178

We consider a set of candidate LLMs {LLMi :179

i = 1, . . . n}, which can include local open-source180

LLMs and off-the-shelf LLMs hosted on cloud plat-181

forms. Our goal is to learn a router to select the182

most suitable LLM for each user query. For each183

round, the router receives the user query x as in-184

put and chooses the optimal LLMî for response,185

balancing high performance with minimal cost.186

In this section, we propose RadialRouter, a187

framework that leverages a Transformer-based ar-188

chitecture for query-based LLM routing. Fig.2a189

shows the framework of the proposed method. We190

present RadialFormer, a lightweight Transformer-191

based architecture as the backbone of routing192

(Sec.3.1). Based on the update of RadialFormer,193

we perform optimal LLM selection (Sec.3.2) and194

introduce a contrastive loss to optimize the router 195

(Sec.3.3). The overall algorithm of RadialRouter is 196

illustrated in Alg.2 of Appendix B. 197

3.1 RadialFormer Architecture 198

The key to LLM routing lies in designing a scor- 199

ing mechanism to measure the potential capacity 200

of LLMs on user queries. The backbone of the 201

router necessitates the efficient representation of 202

the query and LLMs. In this work, we present a 203

novel Transformer-based architecture named Radi- 204

alFormer, which builds upon the foundational de- 205

sign of the Star-Transformer (Guo et al., 2019), in- 206

corporating specific enhancements tailored to LLM 207

routing tasks. 208

The RadialFormer consists of one relay node and 209

n satellite nodes, representing the input user query 210

and n candidate LLMs, respectively. The topol- 211

ogy of the model is simplified for computational 212

efficiency, where each satellite node is exclusively 213

connected to the relay node, forming a radial con- 214

figuration as shown in Fig.2b. Through the compu- 215

tational mechanisms employed by RadialFormer, 216

the interrelationship between the query and LLMs 217

is comprehensively captured, providing valuable 218

insights for effective routing. 219

Update of RadialFormer Let rt ∈ R1×d de- 220

notes the state of the relay node, and St ∈ Rn×d 221

denote the states of the n satellite nodes at time 222

step t. Given a query x, we initialize the relay node 223

with the query embedding encoded by a pre-trained 224
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language model as q = E(x) ∈ R1×d. The satel-225

lite nodes are initialized with n learnable model226

embeddings {mi : i = 1, . . . , n}.227

Based on the multi-head attention mechanism228

(Vaswani et al., 2017), the update of RadialFormer229

focuses on processing the relay node and the satel-230

lite nodes. Details of the multi-head attention mech-231

anism are introduced in Appendix A. The satellite232

node si is updated from the contextual information233

considering the relay node rt−1, the previous state234

st−1
i , and the initial state mi:235

Ct
i = [st−1

i ;mi; r
t−1], (1)236

237
sti = MHAttn(st−1

i ,Ct
i), (2)238

where Ct
i denotes the contextual information of239

the i-th satellite node. The relay node r is updated240

from all the satellite nodes and its previous state:241

rt = MHAttn(rt−1, [rt−1;St]). (3)242

The updated satellite nodes are regularized243

through layer normalization (Ba et al., 2016). The244

update algorithm of RadialFormer is shown in245

Alg.1. Given the sequence length n and the di-246

mension of the hidden state d, RadialFormer re-247

duces the computational complexity of the standard248

Transformer from O(n2d) to O(nd). The specific249

design of RadialFormer integrates both lightweight250

and structured representations of the routing. Sub-251

sequent experiments validate that RadialFormer252

facilitates efficient and effective LLM routing.253

3.2 Optimal LLM Selection254

Following the update of RadialFormer, we sent255

the final states ST to an MLP networkM to pre-256

dict the potential score of the corresponding LLM257

as spri = M(sTi ), which comprehensively inte-258

grates both the information of the query and LLMs259

through RadialFormer. The optimal LLM selec-260

tion is performed based on the predicted scores261

as î = argmaxi(pi), where pi = softmax(spri )262

denotes the routing probability.263

Given a query xj , the process of LLM selection264

is supervised by the scores of the candidate LLMs265

scorexj = {s
(i)
j : i = 1, . . . , n}, which we identify266

in advance (described in Sec.4.3). We employ the267

Kullback-Leibler divergence loss (Kullback and268

Leibler, 1951) for supervision to guide the routing269

probability toward the probability derived from the270

exponent of true scores, which is defined as271

LKL(x;θ) = DKL(p∥q) =
n∑

i=0

pi log
pi
qi
, (4)272

Algorithm 1 Update of RadialFormer
Input: number of layers T , model embeddings
m1, · · · ,mn, and query embedding q.

1: // Feature Initialization
2: s01, · · · , s0n ←m1, · · · ,mn

3: r0 ← q
4: for t = 1 to T do
5: // Update the satellite nodes
6: for i = 1 to n do
7: Ct

i ← [st−1
i ;mi; r

t−1]
8: sti ← MHAttn(st−1

i ,Ct
i)

9: sti ← LayerNorm(ReLU(sti))

10: // Update the relay node
11: rt ← MHAttn(rt−1, [rt−1;St])
12: rt ← LayerNorm(ReLU(rt))

where θ denotes the parameters in RadialRouter, 273

p and q = softmax(scorex) denote the predicted 274

routing probability and the ground truth probability, 275

respectively. 276

3.3 Optimization with Contrastive Loss 277

Inspired by (Chen et al., 2024), we leverage a con- 278

trastive loss to provide additional supervision for 279

the optimization of RadialFormer. 280

Query-Query Contrastive Loss To enhance the 281

robustness of LLM routing, we introduce a query- 282

query contrastive loss, which promotes the abil- 283

ity of the language encoder in RadialRouter to 284

generate analogous embeddings for semantically 285

similar queries. Following (Chen et al., 2024), 286

we transform the query embeddings encoder by 287

a pre-trained language model into low-dimensional 288

vectors by the t-SNE algorithm (Van der Maaten 289

and Hinton, 2008) and perform k-means clustering 290

(MacQueen, 1967) to obtain N semantic groups 291

{K1, · · · ,KN}. We use the sample-sample con- 292

trastive loss to promote the generation of embed- 293

dings, formulated as: 294

Lq-q(x;θ) =

− log
esim⟨E(x),E(x+)⟩

esim⟨E(x),E(x+)⟩ +
∑
t
esim⟨E(x),E(x−t )⟩

, (5) 295

where x+ denotes in-group query, x−t denotes out- 296

group queries, and sim⟨·, ·⟩ denotes the cosine sim- 297

ilarity. 298

Optimization Objective Finally, we learn the 299

RadialRouter by minimizing a final objective that 300

4



combines the KL divergence and the query-query301

contrastive loss as302

θ∗ = argminEx∼DtrainLKL(x;θ) + λLq-q(x;θ),
(6)303

where λ > 0 is a hyper-parameter.304

4 Experimental Setup305

4.1 Datasets and Candidate LLMs306

We conduct experiments on RouterBench(Hu307

et al., 2024) to compare our RadialRouter model308

with baselines considering both performance and309

costs. We select user queries from 6 represen-310

tative datasets in RouterBench across 4 task do-311

mains: (i) Commonsense Reasoning: Hellaswag312

(Zellers et al., 2019), Winogrande (Sakaguchi313

et al., 2021), ARC Challenge (Clark et al., 2018);314

(ii) Knowledge-based Language Understand-315

ing: MMLU (Hendrycks et al., 2021); (iii) Math:316

GSM8K (Cobbe et al., 2021); (iv) Coding: MBPP317

(Austin et al., 2021). A total of 11 candidate LLMs318

are involved in RouterBench, including both open-319

source models: Llama-70B-chat (Touvron et al.,320

2023), Mixtral-8x7B-chat (Aggarwal et al., 2024),321

Yi-34B-chat (Young et al., 2024), Code Llama-34B322

(Roziere et al., 2023), Mistral-7B-chat (Jiang et al.,323

2023), WizardLM-13B (Xu et al., 2024); and pro-324

prietary models: GPT-4, GPT-3.5-turbo (Achiam325

et al., 2023), Claude-instant-v1, Claude-v1, Claude-326

v2 (Anthropic, 2023).327

4.2 Baselines328

RadialRouter is compared with the following rout-329

ing methods: (i) CosineClassifier trains a cosine330

classifier on the query embedding and performs331

a multi-class classification on candidate LLMs,332

which can be regarded as a simplified version of333

(Chen et al., 2024). (ii) HybridLLM (Ding et al.,334

2024) trains a language model to categorize queries335

to either small or large LLM. Mistral-7B-chat and336

GPT-4 are chosen as the small are large LLM, as337

they have the highest and lowest cost, respectively.338

We use DeBERTa (He et al., 2020) as the router339

model. (iii) FrugalGPT (Chen et al., 2023) uses a340

pre-trained language model to learn the scores of341

the generated results and guide the LLM cascade.342

We also use DeBERTa as the prediction model. (iv)343

RouterDC (Chen et al., 2024) learns a router to344

select the suitable LLM for user queries by dual345

contrastive learning. (v) GraphRouter (Feng et al.,346

2024) introduces a graph-based framework to lever-347

age contextual information among tasks, queries, 348

and LLMs for routing. 349

4.3 Metrics 350

Metrics that consider both performance and cost 351

are utilized to evaluate RadialRouter and baselines. 352

• Performance refers to the average accuracy 353

of responses across user queries generated by 354

LLM or LLM ensemble equipped with routing 355

methods. 356

• Cost refers to the average LLM inference cost 357

for generating responses to the queries, which 358

is expressed in dollars per 1M tokens. The 359

statistics of candidate LLMs on RouterBench 360

are shown in Appendix C. 361

• Score is employed to assess how effectively 362

a method balances performance and cost: for 363

an input query xj , the score for LLMi is cal- 364

culated via 365

scoreij = performanceij − α · costi, (7) 366

where α balances the performance-cost trade- 367

off and a higher α indicates a preference for 368

saving cost. We define three scenarios: Perfor- 369

mance First, Balance, and Cost First, which 370

correspond to different priorities between per- 371

formance and cost. In three scenarios, we set 372

the value of α to 0, 0.02, and 0.1, respectively. 373

4.4 Implementation Details 374

We adopt mDeBERTaV3-base (He et al., 2021) as 375

the language encoder E(x). For RadialFormer, the 376

number of layers T is set to 6, with a 768-dim hid- 377

den dimension. The head number of the multi-head 378

attention is 4, with each head having a dimension 379

of 32. The MLP for predicting the routing scores 380

has a hidden layer dimension of 128. The training 381

batch size is 64, and the maximum training epoch 382

is 1000. The router is trained using the AdamW 383

(Loshchilov and Hutter, 2019) optimizer with a 384

learning rate of 5 × 10−5. The hyperparameter λ 385

is set to 0.5. All experiments are run on a single 386

NVIDIA A100 80GB GPU. 387

5 Empirical Results 388

5.1 Comparison with Baselines 389

We compare RadialRouter with baselines in three 390

scenarios. The results are shown in Tab.1. Here, 391

‘Best candidate’ denotes the individual LLM that 392
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Table 1: Comparison of routing methods on RouterBench across three distinct performance-cost trade-off
scenarios. Bold and underline denote the best and second-best results. All methods are evaluated on Performance,
Cost, and Score. The results are taken as the average of each dataset.

Performance First Balance Cost First

Perf.↑ Cost↓ Score↑ Perf.↑ Cost↓ Score↑ Perf.↑ Cost↓ Score↑

Best candidate 0.813 7.185 0.813 0.709 0.562 0.698 0.704 0.439 0.660

Random 0.627 1.847 0.627 0.627 1.847 0.590 0.627 1.847 0.442

CosineClassifier 0.662 1.448 0.662 0.584 0.189 0.580 0.566 0.162 0.549
HybridLLM 0.801 6.869 0.801 0.791 6.612 0.659 0.517 0.107 0.506
FrugalGPT 0.813 7.185 0.813 0.671 0.336 0.664 0.549 0.124 0.536
RouterDC 0.815 6.768 0.815 0.716 1.313 0.690 0.718 0.418 0.676

GraphRouter 0.813 7.185 0.813 0.713 0.987 0.693 0.709 0.500 0.659
RadialRouter 0.816 6.759 0.816 0.781 1.179 0.757 0.763 0.476 0.715

Oracle 0.925 1.015 0.925 0.917 0.393 0.909 0.891 0.258 0.865

Table 2: Ablation results on RadialRouter. ‘PF’, ‘BA’,
‘CF’ denote three trade-off scenarios. RF , Star-T , T
denote RadialFormer, Star-Transformer and standard
Transformer, respectively. ‘Time’ refers to the average
routing time per batch in milliseconds. The best results
are highlighted in bold.

Setting PF BA CF Time/ms

RadialRouter 0.816 0.757 0.715 10.7

w/o RF
+ Star-T 0.813 0.751 0.709 13.5
+ T 0.815 0.753 0.705 15.8
+ MLP 0.781 0.732 0.701 4.6

w/o LKL 0.548 0.442 0.017 -
w/o Lq-q 0.813 0.740 0.711 -

achieves the highest score in the corresponding393

scenario. ‘Random’ denotes randomly selecting394

LLMs from the LLM pool to generate responses395

to testing queries. We conduct 50 independent396

selections and calculate the average of the results397

obtained. ‘Oracle’ denotes an ideal situation where398

all queries are routed to the optimal model, which399

defines the theoretical upper bound of the routing400

performance.401

We can observe that RadialRouter substantially402

outperforms baseline methods in all three scenar-403

ios. In the Performance First scenario, a relatively404

singular optimal LLM (GPT-4) yields similar per-405

formance outcomes across the routing methods.406

The routing process becomes complex considering407

the performance-cost trade-off, leading to greater408

disparities among the methods. RadialRouter sur-409

passes baselines by at least 9.2% and 5.8% in the410

Balance and Cost First scenarios, demonstrating411

the superiority of the framework. The adaptabil-412

ity of RadialRouter to different performance-cost413

trade-offs is further verified in the Sec.5.3.2. Radi-414

alRouter significantly exceeds the Best candidate415

and achieves at least 82.66% of the Oracle’s score.416

This suggests that RadialRouter is capable of im-417

GSM8K
Hellaswag
MBPP
MMLU
Winograde
ARC Challenge

(a) w/o Lquery-query.

GSM8K
Hellaswag
MBPP
MMLU
Winograde
ARC Challenge

(b) w/ Lquery-query.

Figure 3: t-SNE visualization of test query embeddings
extracted by the learned language encoder of Radial-
Router.

plementing flexible routing within the LLM pool to 418

improve the routing ability. In contrast, the baseline 419

methods struggle with ineffective representation 420

of the routing process, which limits their overall 421

scores. This underscores the importance of discern- 422

ing the intrinsic connection between the query and 423

LLMs in the routing task. 424

5.2 Ablation Studies 425

We conduct ablation studies to investigate the con- 426

tribution of each component in RadialRouter as 427

shown in Tab.2. Here, ‘w/o’ denotes variants with 428

specific components removed, and ‘+’ denotes 429

replacing RadialFormer with alternative architec- 430

tures. 431

Replacing RadialFormer with alternative archi- 432

tectures (Star-Transformer (Guo et al., 2019), stan- 433

dard Transformer (Vaswani et al., 2017), and MLP) 434

all leads to performance degradation, indicating the 435

effectiveness of the attention mechanism design in 436

RadialFormer for the structured representation. In 437

construct, the architecture of Star-Transformer in- 438

troduces unnecessary connections (e.g., Ring Con- 439

nections), causing interference to the routing pro- 440

cess. We further compare the routing efficiencies 441

of different architectures. RadialFormer demon- 442

strates lower time consumption than both Star- 443

Transformer and standard Transformer, validating 444
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Figure 4: Routing results on RouterBench within different performance-cost trade-offs.

Table 3: Comparison on different loss functions for
LLM selection. ‘PF’, ‘BA’, ‘CF’ denote three trade-off
scenarios. All settings are evaluated on Score. The best
results are highlighted in bold.

Model Setting PF BA CF

RadialRouter w/ LKL 0.816 0.757 0.715
RadialRouter w/ Lce 0.533 0.530 0.520
RadialRouter w/ Lq-L 0.815 0.714 0.676

the effectiveness of its lightweight design.445

Eliminating the KL divergence loss leads to a446

substantial drop in metrics, further experiments in447

Sec.5.3.1 investigate the impact of loss functions on448

the optimal LLM selection. Eliminating the query-449

query contrastive loss also leads to a performance450

decline. Fig.3 exhibits the t-SNE visualization of451

test query embeddings extracted by the learned lan-452

guage encoder of RadialRouter. We can observe453

that the absence of the query-query contrastive loss454

results in mixed query embeddings across different455

datasets. By incorporating the contrastive loss, we456

achieve well-separated query embeddings, thereby457

establishing a robust foundation for effective rout-458

ing. Detailed results of ablation studies are shown459

in Tab.8 of Appendix D.460

5.3 Analysis461

5.3.1 Loss Function for LLM Selection462

We further compare the Kullback-Leibler diver-463

gence loss with two different loss functions for464

supervision the optimal LLM selection.465

Cross-Entropy Loss Viewing LLM routing as466

a multi-class classification problem, the cross-467

entropy loss is introduced. In this approach, the468

LLM that receives the highest true score is assigned469

‘1’, while all other LLMs are assigned ‘0’. The470

1 2 3 4 5 6 7 8 9 10 11
#LLM
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0.55

0.60
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0.70
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M
et
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0.670 0.673 0.673 0.677

0.696
0.707

0.781

0.530
0.550

0.601 0.608 0.614

0.650 0.650 0.655

0.688
0.699

0.757

performance
score

Figure 5: Effects of different numbers of LLMs.

cross-entropy loss function is defined as 471

Lce(x;θ) = −
n∑

i=1

yi log(pi), (8) 472

where yi denotes the label for LLMi, and p denotes 473

the predicted routing probability. 474

Query-LLM Contrastive Loss Considering the 475

objective of routing is to allocate the query to top- 476

performing LLMs, rather than merely identifying 477

the optimal model, (Chen et al., 2024) introduces 478

the sample-LLM contrastive loss to learn the router. 479

We make minor modifications to it under the Ra- 480

dialRouter framework. Specifically, based on the 481

true scores, we construct the LLMs index set I+ 482

and I− as the indices of LLMs corresponding to 483

the top-K and bottom-K scores, respectively. The 484

query-LLM contrastive loss is then defined as 485

Lq-L(x;θ) =
∑

i+∈I+

− log
epi+

epi+ +
∑

i−∈I−
epi−

,

(9) 486

where p denotes the predicted routing probability. 487
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Table 4: Comparison on routing to an increasing number of candidate LLMs in the Balance scenario. The
results are taken as the average of each dataset.

#LLM Performance↑ Cost↓ Score↑

WizardLM-13B-V1.2 1 0.5331 0.166 0.530
+ code-llama-34b-chat 2 0.5539 0.178 0.550
+ llama-2-70b-chat 3 0.6105 0.468 0.601
+ claude-v2 4 0.6550 2.348 0.608
+ claude-v1 5 0.6696 2.758 0.614
+ claude-instant-v1 6 0.6731 1.134 0.650
+ mistral-7b-chat 7 0.6731 1.134 0.650
+ mixtral-8x7b-chat 8 0.6769 1.109 0.655
+ Yi-34B-Chat 9 0.6964 0.421 0.688
+ gpt-3.5-turbo-1106 10 0.7068 0.404 0.699
+ gpt-4-1106-preview 11 0.7810 1.179 0.757

Tab.3 displays the results of comparison. Train-488

ing RadialRouter with LKL yields the highest489

scores in all three scenarios, as can be observed.490

From a macroscopic perspective, LKL, Lce and491

Lq-L address the routing problem out of distinct492

viewpoints: probabilistic distribution fitting, multi-493

class classification, and similarity matching, respec-494

tively. The superiority of the KL divergence un-495

derscores the effectiveness of framing the routing496

problem through the lens of probabilistic distribu-497

tion fitting, which fosters a comprehensive under-498

standing of the intrinsic connection between the499

query and LLMs in the routing process, as opposed500

to focusing merely on a limited number of dom-501

inant LLMs. This perspective aligns seamlessly502

with the design principles of RadialFormer, allow-503

ing for the accomplishment of both efficient and504

robust routing.505

5.3.2 Adaptability to Performance-Cost506

Trade-Offs507

Beyond the three aforementioned scenarios, we as-508

sess the adaptability of RadialRouter and baseline509

routing methods to performance-cost trade-offs by510

varying the parameter α in Eq.7. Fig.4a shows the511

scores achieved by routing methods within differ-512

ent α, where RadialRouter achieves the highest513

scores in different trade-offs, significantly outper-514

forming baseline routing methods. Fig.4b depicts515

the performance-cost curves of routing methods.516

Our observation indicate that RadialRouter is ca-517

pable to obtain improved performance while main-518

taining comparable costs to baselines, leading to519

a robust performance-cost balance. This analysis520

substantiates the adaptability of RadialRouter to521

performance-cost trade-offs, which highlights its522

practical applicability. Detailed results are shown523

in Tab.9 of Appendix E.524

5.3.3 Routing to Different Numbers of LLMs 525

We evaluate the efficiency of RadialRouter with 526

a dynamic LLM pool by gradually increasing the 527

number of candidate LLMs. We compare the re- 528

sults in the Balance scenario, as shown in Tab.4 and 529

Fig.5. We can observe that increasing the number 530

of candidate LLMs leads to improved performance, 531

demonstrating RadialRouter’s ability to effectively 532

adapt to a dynamic LLM pool. 533

5.3.4 Effects of λ on Optimization 534

We study the impact of the contrastive loss weight 535

λ in Eq.6 on the optimization of RadialRouter. Ex- 536

periments are conducted in the Balance scenario, 537

and the results are presented in Appendix F. As 538

can be seen, the highest score is achieved when 539

λ = 0.5. Therefore, we fix λ to 0.5 when training 540

RadialRouter. Moreover, we can observe that Radi- 541

alRouter demonstrates insensitivity across a wide 542

range of λ ∈ [0.25, 5], providing more flexibility 543

for the selection of λ in practice. 544

6 Conclusions 545

In this paper, we introduce RadialRouter, a novel 546

Transformer-based framework for efficient and ro- 547

bust LLM routing. We achieve a structured repre- 548

sentation of the routing process with RadialFormer, 549

which efficiently captures the interrelationship be- 550

tween the query and LLMs. The robustness of 551

RadialRouter is enhanced by incorporating con- 552

trastive loss. Extensive experiments on Router- 553

Bench demonstrate that RadialRouter consistently 554

outperforms baseline methods across various sce- 555

narios, exhibiting adaptability to performance-cost 556

trade-offs and efficacy in routing queries within a 557

dynamic LLM pool. These findings confirm the 558

potential of RadialRouter as a superior solution for 559

LLM deployment in practical applications. 560
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Limitations561

We acknowledge several limitations regarding our562

proposed method.563

First, RadialRouter requires re-training when-564

ever a new LLM is introduced to the LLM pool.565

Consequently, the ability to rapidly adapt and it-566

erate in dynamic environments is hindered, par-567

ticularly in scenarios where frequent updates are568

needed to address evolving tasks or domains. The569

router’s implementation of training-free adaptation570

to the dynamic LLM pool relies on a general por-571

trait or embedding for various LLMs, but that is572

beyond the scope of this paper.573

Second, due to limited computational resources,574

we have not performed testing within multi-575

language and multi-modal LLM ensembles, which576

may restrict our ability to fully assess the frame-577

work’s applicability across languages and modali-578

ties. We leave the investigation of such scenarios579

to future work.580
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A Details of Multi-Head Attention 811

The update of RadialFormer is based on the atten- 812

tion mechanism (Vaswani et al., 2017). Specifically, 813

given the input sequence H ∈ Rm×d where m de- 814

notes the sequence length and d denotes the hidden 815

dimension, we use a query sequence q ∈ R1×d 816

to compute the relevant information based on the 817

scaled dot-product attention: 818

Attn(Q,K, V ) = softmax(
QKT

√
d

)V, (10) 819

where [Q;K;V ] = [qWq;HWk;HWv], and 820

Wq,Wk,Wv denote learnable parameters. 821

The multi-head attention layer extends the scale 822

dot-product attention by performing h paralleled 823

attention operations and concatenating the informa- 824

tion: 825

MHAttn(q,H) = [head1, · · · ,headh]Wo, (11) 826

827
headi = Attn(Qi,Ki, Vi), i ∈ [1, h], (12) 828

where [Qi;Ki, ;Vi] are the i-th group from 829

[Q;K;V ] with a dimension of d/h, and Wo de- 830

notes output learnable parameter. 831

In RadialFormer, the multi-head attention mech- 832

anism is utilized to update states of the relay node 833

and the satellite nodes. 834

B Training and Inference Algorithm of 835

RadialRouter 836

Alg.2 shows the training and inference procedures 837

of RadialRouter. The algorithm presented in Radi- 838

alRouter outlines a training and inference frame- 839

work for efficient and robust LLM routing. During 840

training, the learnable parameters in the router are 841

updated through mini-batch sampling, supervised 842

by the Kullback-Leibler divergence loss and the 843

query-query contrastive loss. Given an input query, 844

the inference of RadialRouter involves predicting 845

the routing probabilities for the candidate LLMs 846

and selecting the optimal one for response. 847

C Statistics of Candidate LLMs on 848

RouterBench 849

Tab.5 shows the basic statistics of 11 LLMs in 850

RouterBench as our candidate LLMs. Tab.7 shows 851

the statistics of candidate LLMs on RouterBench 852

considering performance and cost. The perfor- 853

mance of each candidate LLM is assessed by av- 854

eraging the accuracy across six different datasets. 855
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Algorithm 2 The overall algorithm of RadialRouter
Input: training set Dtrain, LLMs {LLMi : i = 1, . . . , n}, number of out-group queries H , number of

clusters N , hyper-parameter λ, mini-batch size b, and learning rate η; learnable parameters θ: encoder
E , RadialFormerRF , MLPM, and learnable LLM embeddings {mi : i = 1, . . . , n};

Training:
1: Score LLMs for each query (xj , yj) ∈ Dtrain and obtain {s(i)j : i = 1, . . . , n} by Eq.7;
2: Cluster training queries {xj : j = 1, . . . , l} into N groups {K1, · · · ,KN};
3: repeat
4: Sample a mini-batch B from Dtrain;
5: for (xj , yj) ∈ B do
6: q← E(xj);
7: Compute the updated state of RadialFormer by Alg.1:
8: rT , sT1 , · · · , sTn ← RF(q,m1, · · · ,mn);
9: Compute the Kullback-Leibler divergence loss LKullback-Leibler(xj ;θ) by Eq.4;

10: Sample an in-group query x+ and H out-group queries x−t from B;
11: Compute the query-query contrastive loss Lquery-query(xi;θ) by Eq.5;

12: L(B;θ)←
∑

xi∈B LKullback-Leibler(xi;θ) + λLquery-query(xi;θ);
13: θ ← θ − η∇θL(B;θ);
14: until converged.

Inference:
15: Sample a testing query x′;
16: Compute the predicted routing probability p′ using the E ,RF andM;
17: i′ ← argmaxi∈{1,...,n}(p

′
i);

18: ŷ′ ← LLMi′(x
′).

Output: response ŷ′

Table 5: Statistics of different LLMs in RouterBench.

LLM Size

op
en

-s
ou

rc
e WizardLM-13B-V1.2 13B

code-llama-34b-chat 34B
llama-2-70b-chat 70B
mistral-7b-chat 7B
mixtral-8x7b-chat 47B
Yi-34B-Chat 34B

pr
op

ri
et

ar
y claude-instant-v1 -

claude-v1 -
claude-v2 -
gpt-3.5-turbo-1106 -
gpt-4-1106-preview -

The cost is determined based on the pricing of the856

LLMs per million tokens, and is also averaged over857

the six datasets.858

D Detailed Results of Ablation Studies859

Tab.8 shows the detailed results of ablation stud-860

ies on RadialRouter. Through ablation studies, we861

verify the rationality of RadialFormer and the ne-862

cessity of introducing the KL divergence loss and863

the query-query contrastive loss.864

Table 6: Effects of λ in the Balance scenario. The best
results are highlighted in bold.

λ Performance Cost Score

0 0.7492 0.455 0.740
0.25 0.7911 1.964 0.752
0.5 0.7810 1.179 0.757

0.75 0.7923 1.960 0.753
1 0.7911 1.964 0.752
2 0.7845 1.985 0.745
3 0.7911 1.964 0.752
4 0.7589 0.478 0.749
5 0.7620 0.488 0.752
6 0.7577 0.482 0.748
8 0.7581 0.481 0.748
10 0.7575 0.481 0.748

E Full Results of Performance-Cost 865

Balance 866

Tab.9 is the full results of Fig.4. We set the value of 867

α to 0, 0.01, 0.02, 0.05, and 0.1 to assess the adapt- 868

ability of different routing methods to performance- 869

cost trade-offs. We can see that RadialRouter is 870

robust to a wide range of performance-cost trade- 871

off scenarios (α ∈ [0, 0.1]). 872
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Table 7: Statistics of candidate LLMs on RouterBench.

LLM GSM8K Hellaswag MBPP MMLU winograde ARC Perf.↑ Cost↓

WizardLM-13B-V1.2 0.5054 0.6004 0.3906 0.5253 0.5289 0.6476 0.5331 0.166
claude-instant-v1 0.6281 0.7690 0.6250 0.4529 0.5211 0.8421 0.6397 0.514

claude-v1 0.6520 0.8187 0.6094 0.5281 0.5711 0.9199 0.6832 4.486
claude-v2 0.6671 0.3130 0.6406 0.5652 0.4763 0.6247 0.5478 5.336

gpt-3.5-turbo-1106 0.6094 0.7843 0.6875 0.6667 0.6632 0.8444 0.7092 0.562
gpt-4-1106-preview 0.6589 0.9057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185
code-llama-34b-chat 0.4548 0.5194 0.5156 0.5284 0.5921 0.6636 0.5457 0.407

llama-2-70b-chat 0.5252 0.7046 0.3750 0.6034 0.4974 0.8169 0.5871 0.490
mistral-7b-chat 0.4151 0.5410 0.3828 0.5198 0.5737 0.6705 0.5171 0.107

mixtral-8x7b-chat 0.5214 0.6960 0.5391 0.6822 0.6842 0.8627 0.6642 0.324
Yi-34B-Chat 0.5517 0.8782 0.4141 0.7187 0.7421 0.9176 0.7037 0.439

Table 8: Detailed ablation results on RadialRouter. The best results are highlighted in bold.

Performance First Balance Cost First

Perf. Cost Score Perf. Cost Score Perf. Cost Score

RadialRouter 0.816 6.759 0.816 0.781 1.179 0.757 0.763 0.476 0.715

w/o RadialFormer
+ Star-Transformer 0.813 7.185 0.813 0.794 2.170 0.751 0.758 0.491 0.709
+ Transformer 0.815 6.768 0.815 0.792 1.960 0.753 0.752 0.478 0.705
+ MLP 0.781 4.362 0.781 0.770 1.940 0.732 0.751 0.496 0.701

w/o LKL 0.548 5.308 0.548 0.548 5.308 0.442 0.548 5.308 0.017
w/o Lq-q 0.813 7.185 0.813 0.759 0.519 0.749 0.759 0.478 0.711
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Figure 6: Effects of λ in the Balance scenario.

F Detailed Results of Effects of λ on873

Optimization874

Tab.6 shows the effects of the contrastive loss875

weight λ on the optimization of RadialRouter. Ex-876

periments are conducted in the Balance scenario,877

visualized in Fig.6. As can be seen, the highest878

score is achieved when λ = 0.5 and RadialRouter879

demonstrates insensitivity across a wide range of880

λ ∈ [0.25, 5], offering greater flexibility for the 881

selection of λ in practice. 882
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Table 9: Performance and cost of routing methods on RouterBench with different α.

Method α GSM8K Hellaswag MBPP MMLU winograde ARC Perf.↑ Cost↓

CosineClassifier

0 0.6062 0.7046 0.6250 0.6798 0.5395 0.8169 0.6620 1.448
0.01 0.4671 0.6004 0.4922 0.5730 0.5553 0.8627 0.5918 0.271
0.02 0.4725 0.5410 0.4766 0.5765 0.5737 0.8627 0.5838 0.189
0.05 0.4320 0.5410 0.5000 0.5663 0.5763 0.8627 0.5797 0.201
0.1 0.4945 0.5410 0.5703 0.5352 0.5816 0.6705 0.5655 0.162

HybridLLM

0 0.6489 0.8898 0.6719 0.8054 0.8474 0.9405 0.8006 6.869
0.01 0.6489 0.8898 0.6719 0.8054 0.8474 0.9405 0.8006 6.869
0.02 0.6371 0.8715 0.6719 0.7904 0.8474 0.9291 0.7912 6.612
0.05 0.4294 0.5586 0.4219 0.5393 0.5868 0.6842 0.5367 0.553
0.1 0.4151 0.5410 0.3828 0.5198 0.5737 0.6705 0.5171 0.107

FrugalGPT

0 0.6589 0.9057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185
0.01 0.6317 0.8437 0.6953 0.7422 0.7816 0.8993 0.7656 3.910
0.02 0.5229 0.7172 0.5312 0.6888 0.6947 0.8696 0.6708 0.336
0.05 0.5056 0.6004 0.5234 0.5253 0.5289 0.6476 0.5552 0.327
0.1 0.4154 0.5410 0.5703 0.5198 0.5737 0.6705 0.5485 0.124

RouterDC

0 0.6671 0.9057 0.6875 0.8163 0.8553 0.9565 0.8147 6.768
0.01 0.6671 0.8782 0.5078 0.6860 0.6842 0.9176 0.7235 1.329
0.02 0.6671 0.8782 0.5156 0.6869 0.6842 0.8627 0.7158 1.313
0.05 0.6094 0.8782 0.6016 0.5822 0.7553 0.8627 0.7149 0.810
0.1 0.6281 0.8782 0.5078 0.6910 0.6842 0.9176 0.7178 0.418

GraphRouter

0 0.6589 0.9057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185
0.01 0.6121 0.7902 0.6953 0.6751 0.6711 0.8513 0.7158 0.980
0.02 0.6121 0.7886 0.6875 0.6739 0.6711 0.8444 0.7129 0.987
0.05 0.6013 0.7896 0.6719 0.6698 0.6553 0.8421 0.7050 0.548
0.1 0.5802 0.8321 0.5859 0.6926 0.6895 0.8719 0.7087 0.500

RadialRouter

0 0.6672 0.9057 0.6953 0.8163 0.8553 0.9565 0.8161 6.759
0.01 0.6671 0.8782 0.7031 0.8077 0.8553 0.9565 0.8113 5.072
0.02 0.6281 0.8782 0.6797 0.7270 0.8553 0.9176 0.7810 1.179
0.05 0.6281 0.8782 0.6875 0.7187 0.7421 0.9176 0.7620 0.488
0.1 0.6281 0.8782 0.6875 0.7235 0.7421 0.9176 0.7628 0.476
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