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Abstract

Building precise call graphs for Javascript programs is a fundamental build-
ing block for many important software engineering and security applications
such as bug detection, program repair, and refactoring. However, resolving
dynamic calls using static analysis is challenging because it requires
enumerating all possible values of both the object and the field. As a result,
static call graph construction algorithms for Javascript ignore such dynamic
calls, resulting in missed edges and a high false negative rate. We present
anew approach, CALLME, that combines Language Models (LMs) with a
custom static analyzer to address this challenge. Our key insight is in using
LMs to incorporate additional modalities such as variable names, natural
language documentation, and calling contexts, which are often sufficient to
resolve dynamic property calls, but are difficult to incorporate in traditional
static analysis. We implement our approach in CALLME and evaluate it
on a dataset of call edges that are dependent on dynamic property accesses.
CALLME achieves 80% accuracy and .79 F1, outperforming the state-of-the-
art static analyzer by 30% and .60, respectively. To study the effectiveness
of CALLME on downstream analysis tasks, we evaluate it on our manually
curated dataset with 25 known Javascript vulnerabilities. CALLME can
detect 24 vulnerabilities with only 3 false positives, whereas static analysis
tools based on current call graph construction algorithms miss all of them.

1 Introduction

Call graph construction has been a prerequisite for many critical software analysis tasks, such
as code optimization (Fink et al., 2008; Malavolta et al., 2023), bug detection (Brown et al., 2017;
Caietal., 2023a; 2021), taint analysis (Kang et al., 2023), and software maintenance and inspec-
tion (Feldthaus et al., 2013). However, dynamic languages such as Javascript present unique
challenges for call graph construction. The dynamic nature of Javascript alongside the size of
sophisticated frameworks such as React and Angular]S makes call graph construction very dif-
ficult. For example, a recent survey on Javascript call graph construction (Antal et al., 2023) has
shown that even the best static analyzer only obtains a 0.43 detection F1 score, suffering from
high false positives and false negatives. Moreover, the majority of the existing static analyzers
tested simply ignore the method calls when they are across multiple files (Antal et al., 2023).

A key challenge for constructing call graphs statically is Javascript’s flexible object model,
which allows properties to be created and deleted at runtime. Specifically, dynamic property
accesses, where the property being accessed depends on a runtime-computed string, are esti-
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mated to cause 70% of missed edges in static call graph construction algorithms (Chakraborty
etal., 2022). Recent static call graph construction algorithms specifically ignore reasoning
about most dynamic property accesses due to their runtime-dependent behavior, and thus
miss any calls that are computed dynamically from objects (Feldthaus et al., 2013; Nielsen
etal., 2021a).

Figure 1 shows an example of a dynamic
property access, where the property access

. . 1 . . 1 var o = {};
call is made in line 13 to a function field on PERTICR NG A e G rEa TGOS R
the object 0. Analyzing the call requires a 3 for (user of this.getUsers()) {
field-sensitive pointer analysis to determine 4 ANl ce o i Pl g
. " " . 5 o[greetUser] = new function(){

the points-tosetof o[ "greet"+firstUser]. 6 console.log(arguments[0] + \\
However, the property names of 0 are com- 7 "+ user);
puted dynamically in a loop in lines 3-8. g } ¥
Computing a field-sensitive pointer analy- 10 }
sis with the presence of dynamic property 11 createGreetFunctions();

is th hibitivel . 12 var firstUser = this.getUsers()[0];
accesses is thus a prohibitively expensive 13 ol"greet" + firstUser](*hello"};

process. The presence of dynamic proper-
ties increase pointer analysis runtime from
O(N3) to O(N*), where N is the size of the
program (Sridharan et al., 2012). As a result,
traditional field-sensitive analyses are un-
able to handle large Javascript frameworks
such as jQuery and react.

Figure 1: A basic example of a dynamic prop-
erty access function call on line 13. The value
of firstuser is determined at runtime, making
it difficult for static analyzers.

In this paper, we introduce CALLME, an approach to specifically target dynamic property
access calls for Javascript call graph construction. CALLME has two stages: statement
selection and inference.

1. Statement selection. We develop JSelect, a custom static analyzer that efficiently selects
the relevant statements needed to determine if a call site calls a specified function.

2. Inference. The output of JSelect is further processed by a Language Model (LM) which
determines whether the call site can call the function.

Importantly, CALLME does not replace the need for traditional call graph construction
algorithms. Rather, CALLME is intended to augment traditional call graph construction
specifically for dynamic property accesses. To the best of our knowledge, CALLME is the
first static analysis system capable of resolving dynamic property accesses without runtime
information.

Reasoning about dynamic property accesses for Javascript makes a good target for LMs
for several reasons. First, existing solutions are already unsound and incomplete, so a
solution that works well in practice can be competitive even without theoretical guarantees
- introducing an unsound LM does not worsen any existing guarantees. Second, LMs can
take advantage of useful sources of information that are difficult to encode as traditional
static analysis rules. In Figure 1, for example, it is fairly straightforward to infer that the
function call made in line 13 likely refers to the function defined in line 5, given the variable
names such as “greet” and “User”. Similarly, inferring the relationship between words such
as “greet” and “hello” often relies on knowledge of natural language. Additionally, LMs can
infer high-level design patterns, such as visitors and builders, which can be challenging to
incorporate into traditional static analysis.

We evaluate CALLME on a dataset of caller-callee edges collected by dynamic analy-
sis (Chakraborty et al., 2022), where we specifically target dynamic property accesses. Im-
portantly, the dataset consists only of calls that were missed by Approximate Call Graph
(ACG) (Feldthaus et al., 2013), a recent call graph construction algorithm. CALLME is able
to resolve 75% of calls with an F1 score of 0.79. Jelly, the recent open source implementation
based off of the state-of-the-art static analysis framework JAM (Nielsen et al., 2021a), is only
able to resolve 11% of these calls with an F1 score of .19 by handling dynamic property
accesses that start or end with hard-coded strings, e.g., obj ["foo" + y]().
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We show how CALLME can be applied downstream program analysis tasks such as vulnera-
bility detection by resolving edges that are currently undetectable by call graph construction
algorithms due to their use of dynamic property accesses. We manually searched multiple
datasets of known Javascript bugs in real-world projects and identified 25 function calls
across 23 projects resulting in bugs or vulnerabilities that are undetectable with current call
graph construction due to dynamic property accesses. These security bugs include prototype
pollution, cross-site scripting, command injection, and arbitrary file overwrites. We build a
scanner using CALLME to search for these vulnerable function calls, which resolves 24 out of
25 vulnerable calls with only 3 false positives.

2 Motivation

As an example to motivate our approach, consider a simplified code snippet (Figure 2) from
the jQuery framework (openjsf.org) containing a call that is ignored by static analyzers. In the
following, we discuss several features of Javascript that make analyzing the call difficult.

Functions are objects. Functions are ob-
jects which can have assigned fields them- ) )
selves. This is shown on line 9, where the |1 jQuery = function(selector, context); {

initial jQuery object is a function butalso | 2 return new jQuery.prototype.init();
has a field called extend. Functions can [T Functions are objects.]
also be passed around as objects, as shown g : '
in the each function on line 28. : —
. |2.Dynamic additions/uses. |

Dynamic additions/uses. Propertiesand |
fields can be added to objects dynamically, | g
such as adding extend to the jQuery object | ¢ [jquery.extend = function() {

on line 9, and then using extend to add the |1 for (i=0; i < arguments.length; i++ ) {

[3.Arity mismatching. |

each and show properties. The properties |11 for ( name in arguments[i] ) {
can then be overwritten, as shown on line |12 this[name] = options[name];
30. 13 }

14 }

Arity mismatching. Functions can be 12 b

called with any number of arguments, as |17 [jquery.extend ( {

showninthe extend functiononlines8and |4 B function( obj, cb ) {

10. 19 for (i in obj ) {
20 cb.call(obj[i], i, obj[i]);
Computed names. Properties canberead |21 ; ¥

and written by computed names, as seen .
. ‘s . . 23 showAll : function() {

on line 29. Additionally, precise modeling o o )
. . return showHide( this, true );

of functions is necessary for an analyzer. |5 3

In our example, an analyzer would need % )

to model the functionality of each in or- |3 '

der to understand what happens on 11pe 28, |3 [GGUeryEEEh! ([ “show"], function (i,name){

and would need to model the functional-

ity of extend to understand what happens

|4.C0mputed names.|

29 var cssFn = j0uery.fb[name + "All"] ;

on line 17. Without the explicit modeling 2(1) Jorueizyr[nnas";]e: ::n;jll{’ n?( SEesl
of extend, there is no way for a static ana- o
32 cssFn.apply(this,arguments)
lyzer to know that the showAll and each |, this ani :
. . . .animate(name, speed);
functions are added to jQuery itself. 34 };

|Dynamic property access call.

However, for a human looking at the |35 1);

code snippet in Figure 2, there are several ; A modified code smippet ke from 10 — 7
. . 1. . igure 2: A modified code snippet taken from jQuery showing

thmgs that 1nd1cqte that the function CaH several features of Javascript that make static analysis difficult. The

csan.apply(thls,arguments) on line dynamic property access is on line 29, and the function call is on line

32 can refer to the function showA1ll on line 32. However, information such as the variable names allow an LM

. to successfully resolve the call.

23. There are natural language hints and

background knowledge of programming patterns that are helpful. For example, the anony-

mous function defined on line 28 takes two parameters, i and name, a common pattern where
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CaLLME Q_

Extract relevant slice
from input program.

function logValue(obj, key) { function logValue(obj, key){
return obj[keyl(); //call | return objlkeyl();
} ]
function getAge (name) { function getAge (name) { _}I
const user = {
return db.lookup (name) .age; return greet: () => "Hil"
} db. lookup (name) .age; (7]
const user = { } const result = logValue(user,key)
getName: () => "Alice", const user = {
getAge: () => getName: () => "Alice", LM checks

getAge ("Alice"),
greet: () => "Hi!"

}

—

ge

const unused = add (10, 20);

l )

In the following program slice,
does the call on line 2 refer
to the function on line 5?

getAge: () => indirect call.

tAge ("Alice"),

logAll (user) ; const unused = add (10, 20); function logValue(obj, key) {
const key = "greet"; logAll (user) ; I e (/R oI
const result = logValue (user, const key = "greet"; ._
key); const result = greets () => "t
console.log(result) ; _ [ |

const result = logValue(user key);

console.log(result) ;

Figure 3: An overview of our system CALLME. JSelect selects the relevant statements from
the original program, which then gets formulated into a prompt for an LM.

i refers to an index and name refers to the value of a list. each is a word commonly used
in programming when iterating over lists, so it is fairly easy to infer that jQuery.each is
iterating through each element in the list of its first argument, even without looking at the
definition of each on line 18. While these types of heuristics are very difficult to encode in a
traditional static analyzer, they can be incorporated into machine learning models and large

language models. Codellama-34B-

Instruct, a 34-billion parameter large language model

optimized for code generation and understanding released by Meta Alin 2023 (Roziere et al.,
2024a), successfully resolves the call on line 32.

3 Approach

CodeLlama-34b is able to identify
the call in Figure 2 because of its
small size at 35 lines. In a real-
world program, the call site and
target function could be several
thousand lines apart, with most
of the code being irrelevant to the
function call we are trying to re-
solve. Thus, we need a way to au-
tomatically find the relevant lines
to feed into the LM. We implement
a custom statement selection algo-
rithm, JSelect, which outputs the
relevant lines to be formulated into
a prompt for an LM. An overview
of CALLME can be seen in Figure 3.

3.1 JSelect

can.each(options, function(attr) {
options.attr = attr;

if (/Scanner.attributes [attr]) {
Scanner.attributes [attr](options, el);
I}
1)

N Ul = W N

[Global variables are defined elsewhere. |

Figure 4: We want to provide local information around
the call site as well as information about the global vari-
able Scanner whose definition is several hundred lines
away from the call on line 4 in the snippet.

Our statement selection algorithm, JSelect, is an intra-procedural def-use analysis combined
with a simple window around the call site. We show an example of our statement selection in
Appendix B in Figure 6 and Table 7 with other statement selection methods we tested.
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Typically, static program slicing (Weiser, 1984) would be used to identify the relevant state-
ments to the function call. The goal of static slicing is to identify all statements that can affect
a specified variable, and has been used with machine learning algorithms to perform type
inference for Python (Yan et al., 2023). Unfortunately, static program slicing for Javascript
runs into the same problem as call graph reconstruction, as it requires a pointer analysis to
collect the data flow graph. Sridharan et al. showed that a traditional field-sensitive pointer
analysis has an O(N*) runtime for an N-statement Javascript program (Sridharan et al., 2012).
In Section 4.1, we show that a field-sensitive pointer analysis is unable to finish on large
Javascript libraries within 12 hours. To the best of our knowledge, there are no static slicing
algorithms using field-sensitive pointer analysis for Javascript that scale to large frameworks
like React. Instead, we opt for a cheap and scalable analysis in JSelect to identify the relevant
statements for the call sites.

Call site statement selection. The intuition behind our approach is to collect the immediate
context in which the call is invoked, as well as to capture references to global objects. For
example, in Figure 4, we want to capture that the call on line 4 is happening inside of an if
statement which is inside of a loop. However, we also want to provide information about the
global variable Scanner.

The implementation of JSelect relies on parsing Javascript AST’s to extract variable informa-
tion. We build our implementation using Esprima (esp) and Esrefactor (Ariya), two static
analysis tools for parsing Javascript AST’s. First, JSelect performs a static scope analysis in
order to each variable to its set of references and declaration. JSelect takes in a call site location
and identifies what variables are being referenced in the call itself (in Figure 4, the variables
are Scanner.attributes, attr, options, el).]Select collects each of the statements that
modifies or uses one of the variables. The final output of JSelect which is sent to the LM con-
tains all of these statements along with the statements immediately surrounding the call site.
This approach combines the local context with information about any global variables that are
being referenced. JSelect is not path or flow-sensitive, and is not inter-procedural. An inter-
procedural analysis would require a pre-existing call graph, leading to a chicken-and-egg
problem.

Target function statement selection. There is often useful information around the function
definition for the target function (If we are trying to determine whether call site A calls function
B, the target function is B). For example, the target function may be assigned as a field to
an object. In this case, it would be very helpful to include the entire object in the input to
the LM. To obtain the relevant information, we use Esprima (esp) to obtain the AST node
corresponding to the target function. We then provide the statements of the parent of the
target function node to the model. If the parent node is too big (sometimes the parent node is
the entire program), we use a window of 50 lines before and after the target function. We set
the limit of the parent node at 200 lines.

3.2 Prompt Formulation

Once we have filtered the relevant statements from the programs, we form the input to the
language model. We base our prompting strategy off of how a human might resolve an
indirect call. Our prompting has three steps: program understanding, call site intention
inference, and final prediction. Our final prompting template can be seen in Figure 5 in
Appendix A.

Program understanding. First, the model should gain an understanding of what each
statement in the program is doing. We ask the model to interpret the slice from JSelect
line-by-line to get a general understanding of the code. Section 4.2 shows the performance
of CALLME with different methods of interpreting the code line-by-line, such as asking the
model to explain each line or asking the model to simulate the execution line-by-line.

Call site intention inference. Next, we ask the model to reason about the call site itself. We
provide the call, the line number, as well as information on the variables referenced in the
call site. This provides additional information about what the call is being used for and helps
determine whether it is likely to be a match with the target function provided later.
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Final prediction. Finally, we ask the model to predict whether the call site in question refers
to the specified function. By this point, the model has reasoned about the program snippet as
awhole as well as how the call site of interest is used.

4 Evaluation

Our primary baseline is Jelly, an open-source call graph construction algorithm written by
the authors of JAM (Nielsen et al., 2021a), which handles dynamic property accesses with
string prefixes and postfixes as well as indirect calls. The static analysis for Jelly is based
off of three static analysis tools for Javascript —JAM (Nielsen et al., 2021a), ACG (Feldthaus
etal., 2013), and Tapir (Meller et al., 2020a). First, we analyze how well CALLME performs in
resolving dynamic property calls. Next, we explore how the design decisions in CALLME
affect the performance. Finally, we show how CALLME can be used with downstream
program analysis tasks such as bug detection. We conducted the experiments on a Linux
server with two AMD EPYC 7763 64-Core Processors, 128 cores, 1024GB RAM, and 4 NVIDIA
RTX 6000 Ada Generation GPUs.

Dataset. We use the dataset from
Chakraborty et al. (2022) root
cause analysis of Javascript call

Program  #Lines Inter-File  Total

graphs (Chakraborty et al., 2022), con- %I;%Eéiﬂz 15’83; g Z27
sisting of caller-callee pairs generated !
by performing dynamic analysis on the Siodio s LU S 2t
yp g dynhami 4 KnockbackJs 15836 24 85
popular TodoMVC Suite (Chakraborty CanJs 11371 34 91
et al., 2022). We identified 660 caller- React 2 4’855 1 57
callee pairs that were missed by ACG Mithril 1433 25 27
due to a dynamic property access. For Ve 7667 15 61
each caller-callee pair, we generate : !
. . VanillaJs 751 0 14
a negative example by selecting a iQuer 9506 7 48
random function for the same caller J = t}; 93’557 T =
ota b

for a total of 1,320 total caller-callee

pairs evenly split between positive and ) - .
negative samples. Statistics for each Table 1: Dataset statistics. Inter-file refers to the

framework in the TodoMVC Suite can umber of caller-callee edges that are in different
be found in Table 1. files, and Total refers to the total number of calls.

4.1 Performance on TodoMVC

Table 2 presents the results of

CALLME while using differ- Model Detect Miss FP Acc. F1 Prec. Recall
ent LM backends. We test
the CodeLlama models (Roz- Jelly 71 589 19 501 .19 .79 .11

iere et al., 2024b), Llama-3.3-  CodeLlama-7B 490 170 339 .61 .71 .59 .74
70B-Instruct (Grattaﬁori etal., CodelLlama-13B 435 225 230 .66 .66 .65 .66
2024), and GPT-4 (Achiam CodelLlama-34B 497 163 102 .80 .79 .83 .79
et al., 2023). CALLME with Llama-3.3-70B 280 380 18 .70 .59 94 42
CodeLlama-34b achieves an GPT-4 292 368 13 .71 61 96 .44
F1 score of .79 and is able to
detectalmost 7x more callsas  Table 2: Final results on the TodoMVC benchmark using

Jelly while maintaining a tol- {ifferent models for the final inference. FP stands for False
erable false positive rate. Ad- Pppgitive.

ditionally, as shown in Table 9

in Appendix D, 39/71 of the

calls detected by Jelly are in Knockback.js, due to Knockback using more dynamic property
accesses with string concatenations. Excluding Knockbackjs, Jelly can only detect 5.5% of
calls, while CALLME is able to detect 75% of all calls in our dataset. Additionally, as shown in
Table 8 in Appendix D, results remain stable even when calls are resolved across different files.
GPT-4 and Llama-3.3’s false positive rates are much lower than everything else, with almost
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9x fewer false positives than the next lowest model, but suffers from lower recall. CALLME
is configurable with different LM backends, so users can use CodeLlama-34b or GPT-4 based
on their precision requirements.

Runtime. As noted in prior work (Sridharan et al., 2012), a field-sensitive pointer anal-
ysis is intractably slow for large programs. To test, we ran a pointer analysis using two
existing static tools on the 5 largest files in the TodoMVC benchmark. WALA performs
a standard Andersen’s alias analysis with call site abstractions. TAJS is a static analysis
tool based on abstract interpretation. TAJS errored out on all of the programs except for
React due to unsupported Javascript features. We set the time-out threshold at 12 hours.
As CALLME is meant to augment
existing static analyzers, we use

Total Runtime (Hours)

an analogous setup for our exper-  Program #Lines #Calls

iment. V%/e run ]ellljy on each Il;)ro— i CALLME WALA TAJS
gram in Table 3 and find all calls Angular]S 28,363 1,349 26 TO([12+) N/A
that do not have a target function. React 21,641 2,307 45 T.O(12+) T.O (12+)
We then run CALLME once for  yo,000 9205 728 14 TO®12+4) N/A
each call. This is likely an over- i

approximation of CALLME's run. _ Ractive 9,133 900 17  TO(12+) N/A
time in practice, as we do not antic- Blocks 14,724 1,031 2 TO(2+) N/A
ipate CALLME being used tocon-  Average 16,613 1,263 25 N/A N/A

struct an entire call graph. How-
ever, as seen in Table 3, CALLME
is still able to scale to much larger
programs than a traditional field-
sensitive pointer analysis.

Table 3: Runtime performance of CALLME compared
to a field-sensitive pointer analysis. TAJS errored out on
everything except for React. #Calls refers to the num-
ber of call sites which Jelly does not return any target
functions.

4.2 Ablations

We tested multiple statement selec-

tion methodologies and prompting

formats to achieve the best tradeoff between scalability and accuracy. We perform the same
experiment as in Section 4.1 on the TodoMVC dataset.

Statement selection. We
evaluate the effect of dif-
ferent statement selec-

Slicing Method Detect Miss FP Improve (+/-)

tion methodologies in i Detect Miss FP
CALLME’s performance. Def-Use + Window 497 163 102 0% 0% 0%
Our goal is to find the Window Only 531 129 299 +7.1% -25.6%
fastest analysis that still Def-UseOnly 491 169 195

gets robust performance. Thin-Slicing 452 208 170

We show an example pro- Full-Slicing ~ 438 222 163

gram in Figure 6, as well
as the output of various
slicers in Table 7. We test
using a simple window
around the caller and
callee, a program slicer
tracking the flow of func-
tion values (Feldthaus
et al.,, 2013), thin slic-
ing (Sridharan et al., 2007), and following def-use information of variables used in the
call sites. Additional information on each of the statement selection methodologies can be
found in Appendix B.

Table 4: Ablation on various slicing methods. We treat the first
row as the baseline and then compute the improvement of other
slicing methods. Green = Performance improvement. Red =
Performance decrease. Using a window slightly improves the
detection and miss rates, but greatly increases the number of false
positives.

The results of the slicing ablation study can be found in Table 4, where we find that combining
Def-Use chains and a simple window performs best. The improvement seems to come
primarily in the false negative and false positive rates, where the next best slicing method
still has 60% more false positives. We find evidence that incorporating static analysis leads to
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dramatic improvements over only using LMs. Simply using the 50 statements before and
after the call sites almost triple the false positive rate. This is likely due to the fact that simply
using a window includes the context in which a call is made, but likely does not include
information about the relevant variables used in the call itself.

Prompting. We tested multiple prompting strategies, such as asking the model to perform ab-
stract interpretation, asking the model to analyze the code in English, and directly prompting
the model. Details on all our prompting strategies can be found in Appendix C.

The results of the study can be found in Table 5, where we find that asking the model to per-
form abstract interpretation has the best results. We can see that giving the model instructions
as well as generating a high level summary through abstract interpretation or English interpre-
tation of the code significantly improves performance over the direct and explain approaches.
Interestingly, abstract inter-
pretation performs better Improve (+/-)
than English. This is likely Prompt Method Detect Miss FP P

due to it being slightly more Detect Miss  FP
granular and providing bet-  Abstract Interpret. 495 162 102 0% 0% 0%

ter information about the in- English Interpret. 450 209 94 -8.5%
dividual variables. Instruct 490 169 165

. Two-Step 304 171 119
4.3 Bug detection. Direct 525 135 277 +6.1%

In order to determine Explain 471 189 225

CALLME’s effectiveness
in a downstream program Table 5: Ablation on various prompts. We treat the first row of

analysis task, we use each design as the baseline and compute the improvement of
CALLME to h,elp identify other alternatives. Green = Performance improvement. Red =
Performance decrease.

bugs which rely on re-
solving dynamic property
accesses. We simulate a
taint analysis scenario,
where the analysis needs to
discover all paths from any tainted sources to vulnerable sinks. For example, a user might
want to locate all call sites to library function which writes information to the filesystem to
ensure that it is free from unsafe user input. An example of a real-world security vulnerability
that requires resolving a dynamic property call can be found in Appendix E in Figure 7.

Our dataset includes multiple examples of security bugs that require resolving dynamic
property access calls such as Cross Site Scripting, Arbitrary File Overwrites, Prototype
Pollution, Improper Access Control, and Remote Code Execution.

Case study methodology. We manually searched through several hundred examples from
three datasets of known Javascript bugs, SecBench js, BugAid, and Vulnerable Functions in
the Wild for bugs which required resolving dynamic property accesses and found 24 separate
bugs. For each, we manually identified the target buggy function in question. Next, we built
an automated detection tool which performs the following steps:

1. Scans the code for dynamic property access calls with Esprima (esp) and EsRefac-
tor (Ariya), which returns all the locations in the program where dynamic property
access calls occur.

2. For each call discovered by our scanner, ran CALLME to obtain the relevant state-
ments to the call site.

3. Formulates the statements into a prompt as described in Section 3 with the vulnerable
function to determine whether the call could refer to the vulnerable function or not
and query CodeLlama-34b.

Our final dataset has 25 dynamic property access calls which resolve to vulnerable functions
and 66 which do not.



Published as a conference paper at COLM 2025

Code obfuscation. Language models trained on code have been shown to be brittle to
semantics-preserving program transformations (Miceli-Barone et al., 2023; Zeng et al., 2022).
To test our CALLME's robustness, we obfuscate our samples using Uglify]S (Mishoo) and
repeat our experiment. We replace all variable names with single letters, such as a and b, and
compress the AST with Uglify]S’s built-in compressor. It is important to note that analyzing
obfuscated code is a significantly harder task. Prior work shows that language models are
very brittle to name changes (Miceli-Barone et al., 2023), as replacing random variable names
causes an average of 81% performance decrease in BLEU-4 on code summarization (Zeng et al., 2022).

Case study results.
As shown in Table 6,
CALLME successfully  Prediction
resolves 24 true positives
with only three false  Pred.True 24 3 17 9
positives and a single _Pred. False 1 63 8 57

false negative. Closer

introspection into the fail- Table 6: Results of case study on obfuscated and un-obfuscated
ures show that the false samples.

negative uses function

parameters as part of the indirect call, which are not handled by JSelect as discussed in
Section 3. Additionally, performance remains relatively robust on an obfuscated dataset,
where CALLME can still identify almost 67% of true positives.

Normal Obfuscated
True Pos. TrueNeg. | TruePos. True Neg.

5 Related Work

Program analysis for Javascript. There have been several approaches to static analysis for
Javascript (Lee etal., 2012; Jensen et al., 2009; Sridharan et al., 2012; Moller et al., 2020b; Nielsen
etal., 2021b; Li et al., 2022; Kang et al., 2023). Several tools also explicitly target call graph con-
struction (Feldthaus et al., 2013; Nielsen et al., 2021a; Madsen et al., 2015). Additionally, these
systems have difficulty scaling up to large programs, as shown in Section 4.1. Madsen et al.
generates a call graph using static analysis, but only handles event listeners. ACG (Feldthaus
etal., 2013) and JAM (Nielsen et al., 2021a) generate call graphs for Javascript programs that
can handle multiple files and are scalable, but ignore dynamic property accesses.

There have been several analysis techniques to apply additional analysis specifically for
certain features such as dynamic reads and writes (Park et al., 2013; Ko et al., 2019; Stein et al.,
2019; Kim et al., 2014; Madsen & Andreasen, 2014; Park et al., 2016). One popular technique
is to use dynamic information to focus a static analyzer on dynamic structures collected at
runtime, and has led to many improvements in reasoning about dynamic data (Wei et al,,
2016b; Wei & Ryder, 2014b; Wei et al., 2016a; Wei & Ryder, 2013; 2014a; 2012; Wei, 2012;
Chakraborty et al., 2024; Laursen et al., 2024). However, these approaches are not purely static
like CALLME, as they require the program to be executed to collect the runtime information.

LMs for program analysis. LMs have been used for many program analysis task such as type
inference (Peng et al., 2023; Wei et al., 2023; Wang et al., 2023b), fuzzing (Xia et al., 2024; Yang
etal., 2023b;a; Deng et al., 2023), vulnerability detection (Mathews et al., 2024; Liu et al., 2023),
resource leak detection (Wang et al., 2023a; Mohajer et al., 2023), code summarization (Cai
etal., 2023b; Geng et al., 2024; Ahmed et al., 2024; Wang et al., 2022), and fault localisation (Wu
etal., 2023). DLInfer (Yan et al., 2023) and TypeGen (Peng et al., 2023) both use static program
slicing as well as a machine learning model for type inference on Python. CALLME differs
from the prior work as it is the first to perform call graph construction. Unlike many prior
works, CALLME is meant to augment current static analysis tools on certain edge cases,
rather than replacing them. To the best of our knowledge, CALLME is the first work to
explicitly tackle an inter-procedural analysis task like call graph construction using LMs.
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6 Limitations

Single link prediction. CALLME is designed to predict a single edge between a specified
call site and a function. Thus, it is not scalable to build an entire call graph using CALLME,
and is not designed for a task such as IDE support like ACG (Feldthaus et al., 2013) on its own.
However, as many program analysis tasks only require discovering a single link, CALLME
can still be useful in many cases as demonstrated in Section 4.3. Additionally, CALLME is
meant to be used alongside existing algorithms to handle some difficult edge cases rather
than replacing them.

7 Conclusion

We present a new approach, CALLME, which combined static program analysis with LLMs
to perform call graph construction for Javascript. Given a full program, CALLME first runs
the static analysis, JSelect, to select the relevant statements. Next, CALLME formulates a
prompt with the output of JSelect and queries an LLM to determine whether a specified call
site calls a target function. We evaluate CALLME on the TodoMVC benchmark (Chakraborty
et al., 2022) and find that CALLME is able to resolve 75% of all calls with an F1 score of
.79. The next best tool, Jelly, is only able to resolve 11% of these calls with an F1 score of .19.
Additionally, we show how CALLME can find vulnerabilities that are currently undetectable
by static analyzers, where we are able to find 24 out of 25 vulnerabilities with only 3 false
positives.
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[CALLER SNIPPET from JSelect]
Please perform abstract interpretation on the previous piece of code line by line.
After each line you interpret, provide the output from abstract interpretation.
Focus specifically on the call -[CALL]" that is on line [LINE]. Please note that
this is not a complete piece of code, and is a snippet from a larger body.

[MODEL RESPONSE]

What does the -[CALL]" call on line [LINE] do? Below is some information about the
variables that are used.

Varl, which is defined on line X of the previous snippet.

Var2, which is defined on line Y of the previous snippet.

[MODEL RESPONSE]

Does the “[CALL]" call refer to the function ~[TARGET FUNCTION]- on line [LINE] in
the following program snippet? Please use the information provided previously and
answer yes or no.

[TARGET FUNCTION SNIPPET from JSelect]

[MODEL RESPONSE]

Figure 5: The final prompting template for CALLME.

1 wvar obj = {};

2 var callUserString = true;

3 obj["call funcl"] = function() {

4 console.log("funcl");

5 5

6

7 obj["call_func2"] = function() {

8 console.log("func2");

9 }

10

11 function callFunc(userString) {

12 if (userString == "funcl" ||

13 userString == "func2") {

14 if (callUserString === true) {
15 var a = "call_" + userString;
16 obj[al(); -

v )
18 } else {

19 obj[userString] = "foo";

20 }

21 };

22

23 function foo() {

24 callFunc("funcl");

25 }

26 foo();

Figure 6: An example of a program to demonstrate slicing.

A Appendix

B Statement Selection Details

Simple Windowing: Our baseline approach is to use a simple window around the call site and
callee function without any further analysis. This determines whether LLMs can perform call
graph reconstruction without being augmented by traditional static analysis tools. In our
experiments, we found a window size of 50 to work best.

Full Slicing with ACG: As CALLME is meant to be used alongside existing algorithms such
as ACG, we use the output of WALA’s ACG implementation to construct our slices. We
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Table 7: The output of different slicing methods on Figure 6.

Slicing Option Slice

var obj = {};

obj["call_funcl"] = function() {
console.log("funcl");

}

obj["call _func2"] = function() {
console.log("func2");

}

o function callFunc(userString) {

Full Slicing if (userString == "funcl" ||

userString == "func2") {

if (callUserString === true) {
var a = "call_" + userString;
obj[a]();

}

callFunc("funcl");
var obj = {};
function callFunc(userString) {

a = "call_" + userString;
obj[al();

callFunc("funcl");

var obj = {};

obj["call_funcl"] = function() {
console.log("funcl");

}

Def-Use obj["call_func2"] = function() {
console.log("func2");
}

var a = "call_" + userString;
obj[al();
obj[userString] = "foo";

Thin Slicing

choose ACG rather than Jelly as its implementation inside of WALA allows for querying
of the points-to graph generated during call graph construction. ACG generates a simple
flow analysis (Feldthaus et al., 2013), which only tracks the flow of function values rather
than all objects. This allows it to scale to large frameworks such as React and jQuery. We use
the output from the flow analysis to build a system dependence graph for our slicer. WALA
constructs an Intermediate Representation (IR) from the source code. We use the built in
source mapping to find all IR statements that correspond with the caller line. Each statement
is a seed statement. Full slicing returns the set of all statements that can influence the value
of one or more specified seed statements by tracing all data and control dependencies from
any variables in the seed statement, and is repeated recursively to find all statements. Table 7
shows the output of our full slicer on the code from Figure 6. Note that ACG only tracks
function values rather than all objects, leading to the definition of callUserString on line 2
not being included in the slice.

Thin Slicing with ACG: Full program slices often return more information than is necessary.
To remedy this, Sridharan et al. developed an approach called thin slicing (Sridharan et al.,
2007), which helps limit the size of the slices. Thin slicing ignores value flow of base pointers
as well as control dependencies. In contrast, if one of the seed statements contains a value
read from a global object, a full slice would include all writes to that object, whereas a thin
slice would ignore all writes to the object. In Table 7, we can see that the thin slice ignores all
control dependencies and all other writes to obj.
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Model Detect Miss FP Acc. Prec. Recall
Jelly 7 177 0 52% 1.0 .04
CodeLlama-7B 108 76 49 66% .69 .59
CodelLlama-13B 133 51 35 76% .79 .72
CodelLlama-34B 121 63 21 77% .85 .66
GPT-4 98 8 3 76% 97 .53

Table 8: Results to determine CALLME's ability to resolve calls from different files.

Def-Use. We follow the protocol described in Section 3. The Def-Use slice only contains
statements that reference the one of the variables at the seed statement. In the code snippet in
Figure 6, these are any statements that refer obj or a. We test both using only the Def-Use
information as well as combining it with a naive window, as seen in Table 4.

C Prompting details.

Program understanding with Abstract Interpretation. The approach described in Section 3. We
ask the model to perform abstract interpretation line-by-line in the first prompt. We then ask
the model to analyze the purpose of the call. Finally, we ask the model whether the call refers
to the target function.

Program understanding with English Interpretation. This serves as a baseline to determine how
much asking the model to perform abstract interpretation helps. We use the same prompts as
the abstract interpretation approach, except we ask the model to create textual descriptions of
each line without mentioning abstract interpretation.

Instruct. We guide the model step by step through resolving a dynamic property access call
using the same methodology that a person would. The prompts in order are as follows:

1. We ask the model to analyze the variables used in the call, and provide the variable
information that is provided by JSelect as well as the statements.

2. We ask the model what the purpose of the call is for and how it is used.

3. We ask the model whether the call refers to the target function and provide the
statements for the target function output by JSelect.

Two-step. We first provide the model with the relevant statements for the call site, and ask
the model to analyze what is happening at the call site. After the model responds, we then
provide the model with the callee function and ask whether the call site refers to the callee
function. The purpose of the two-step prompt is to see if the model is able to determine what
the important pieces of information are in resolving a dynamic property access.

Direct. In our direct prediction approach, we provide the model with the relevant statements
for the call site as well as the callee function, and ask the model to predict whether the call site
can refer to the callee function.

Explain. We perform the same test as in the direct prompts, but also ask the model to explain
its reasoning before providing an answer.

D Additional Results
E Vulnerability Example

Motivating example. To show how resolving dynamic property accesses can be crucial
to vulnerability detection, consider the following code snippet from the NPM package
find-process in Figure 7, which has over 1.2 million weekly downloads (fin).
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Benchmarks Detect Miss FP
CALLME Jelly| CALLME Jelly | CALLME Jelly

Angular]S 136 12 71 195 25 11
Backbone 30 2 16 44 4 1
Knockout]s 24 2 0 22 6 0
Knockback]s 70 39 15 46 15 4
CanJs 71 6 20 85 18 2
React 45 2 12 55 15 0
Mithril 27 1 0 26 4 0
Vue 48 4 13 57 3 1
VanillaJs 13 0 1 14 2 0
jQuery 32 3 16 45 10 0

Table 9: Results separated by program and compared to Jelly, the state of the art call graph
construction algorithm for Javascript.

1 const finders = {
2 sdarwin : function(/cond) {
3 500
4
) o /
e N . s |
. exec(cond.cmd) ; |Command injection!
4 1,
8 android: function(cond) {
/9 let cmd = 'ps';
10 utils.exec(cmd);
11 D
12 'linux': darwin
13}
14

15 function findProcess (cond) {
16 let platform = process.platform;

17 let find = finders[platform];

18 if (typeof find === /'string') {

19 find = finders[find];

20 }

21 find(cond) then(resolve, reject);
22 }

23

24 module.exports = findProcess

Figure 7: A security vulnerability from findProcess. Because cond is an argument to the
darwin function, whether there is command injection on line 6 depends on whether cond . pid
was sanitized before the call to darwin. Resolving the call on line 21 requires resolving the
dynamic property access on line 17.

There is a potential command injection vulnerability in the function darwin online 6. If an
attacker can control cond. pid, they can execute arbitrary commands as cond. pid is passed
into exec. However, cond is a function argument, so whether or not there is a vulnerability
depends on whether it was sanitized before the function call. The function call is made
on line 21, where if finders[platform] is darwin, then the darwin function is called with
unsanitized input. In order to discover the vulnerability, a static analyzer would need to
determine whether the dynamic property access on line 17 can refer to the darwin function
on line 2. As a result, current static call graph algorithms such as JAM (Nielsen et al., 2021a)
and ACG (Feldthaus et al., 2013) miss this dynamic property access and the vulnerability is
undiscovered.
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