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Abstract
Narrative planning is the use of automated planning to con-
struct, communicate, and understand stories, a form of in-
formation to which human cognition and enaction is pre-
disposed. We review the narrative planning problem in a
manner suitable as an introduction to the area, survey differ-5

ent plan-based methodologies and affordances for reasoning
about narrative, and discuss open challenges relevant to the
broader AI community.

1 The Role of Narrative
The field of artificial intelligence has grappled with mod-10

eling story reasoning since its beginning (McCarthy 1990),
due in part because the ability to understand and tell stories
is thought to underlie or inevitably result from human cog-
nition (Winston 2011).

Research on narrative intelligence progresses along three15

efforts that encompass a multitude of intertwined nat-
ural language, commonsense, and multi-agent reasoning
tasks: narrative construction, communication, and under-
standing (Mueller 2013). Common across these efforts is
the use of automated planning as a formal, rigorous, and20

common vocabulary for framing advances in the field. This
is because AI planning naturally reasons over concepts
(e.g. agents, objects, states, events) central to plot structure
and its communication (Young 1999).

While not all narrative intelligence research focuses on25

planning, it is predominantly plan-based or plan-like. Appli-
cations include efforts to model human cognition (Cardona-
Rivera et al. 2016), achieve human-level performance on
language processing tasks (Martin et al. 2018), demonstrate
independent creativity (Summerville et al. 2017), struc-30

ture human-computer interaction (Porteous, Cavazza, and
Charles 2010), and explain AI rationales (Riedl 2016). Strik-
ingly, AI research that does not focus on narrative plan-
ning is re-discovering the utility of data structures and al-
gorithms that form its basis. For example, neuro-symbolic35

systems that use narrative representations outperform non-
trivial baselines in commonsense reasoning (Bosselut et al.
2019; Cohen 2020).

We thus feel the time is ripe to take stock of the state-
of-the-art in narrative planning. This research community40

has converged upon representational and reasoning commit-
ments necessary to account for storytelling and story under-

standing in people (Cardona-Rivera and Young 2019; Hay-
ton et al. 2020). These commitments are important to survey
for advancing AI that can perform as robustly and flexibly 45

as humans do. At the same time, this area is relevant where
we already see the use of narrative, when having greater
predictive control over narrative effects would benefit soci-
ety; e.g., in narratives for personalized learning (Wang et al.
2017), rehabilitation therapy and healthcare communication 50

(Ozer et al. 2020), and intelligence analysis (Lukin and Eum
2023). And while there is no established standard for speci-
fying narrative planning problems (Hayton et al. 2020; Shir-
vani and Ware 2020) there is a vibrant community of prac-
tice, whose advances and unsolved problems may bear rele- 55

vance to the broader AI community.
One work in recent history has surveyed narrative plan-

ning (Young et al. 2013), but its contours are imprecise in
technical detail. In contrast, we survey the field in formal
depth that is sufficient to precisely describe common themes. 60

We structure our survey as a tour guided by the motivating
question:

How might a computer system tell a story?

The answer is deceptively trite: it depends. In unpacking
this answer, we illustrate why narrative planning is so vast. 65

Along the way, we use an extended case example to identify
where our community has converged and diverged. As we
discuss later, the points of convergence are centered on ele-
ments deemed necessary for a computer-generated story to
be perceived as a story by an audience. In turn, the points 70

of divergence concern what layers of narrative detail are
needed, what narrative effects are desirable, and what plan-
ning approaches are used for modeling.

As a consequence of our exploration, we will cut across
narrative planning systems that address the tasks of narrative 75

understanding, construction, and communication. Finally,
we briefly sketch promising open problems that might stim-
ulate the broader community’s pursuit of new directions.

2 Pre-rigorous Notions in an Example
Before we introduce this area in technical depth, we first 80

present more-intuitive descriptions of key narratological
concepts. For this, we introduce a running example that
makes our motivating question more specific: how might a
computer system tell a story like the one in Figure 1?



Figure 1: Panels from Marvel’s Star Wars #39–#44, which depict Princess Leia, Han Solo, Chewbacca, and C-3P0 realizing
they are in the belly of a giant space worm. The crew originally piloted the Millennium Falcon into the beast, thinking it was
an asteroid cave where they could hide from the relentlessly-pursuing Empire. In this paper, we explore how an automated
planning system would be able to tell such a story.

The depicted excerpt is from Star Wars #39–#44 (Good-85

win, Williamson, and Garzon 1977), a Marvel Comics adap-
tation of the film Star Wars Episode V: The Empire Strikes
Back. Despite its brevity, it is rich enough to discuss narra-
tive in two senses that narrative planning models must con-
tend with: as a communicative act and as a designed artifact.90

2.1 Narrative as a Communicative Act

Figure 1 reflects an implicit communicative choice: the
choice of narration—the narrative’s surface form realiza-
tion in a medium (Hühn and Sommer 2013). While we use
a comic, we could have used a film, book, or video game.95

Audiences familiar with the comic’s source film may
note differences in content beyond narration; namely, in the
plot—the narrative’s virtual world (Rimmon-Kenan 2002).
The comic differs from the film in its events (causally and
purposively related changes in states-of-affairs). To wit,100

there are differences in the dialogue of characters (anthro-
pomorphized intention-driven agents), and event locations
(spatial context).

Plot differences reflect why the choice of narration is
more than a matter of aesthetic taste: the medium constrains105

what plot information can be narrated (Elliott 2004). Above,
the constraints are from the comic form; i.e., syntax and se-
mantics of visual language (Martens, Cardona-Rivera, and
Cohn 2020). This explains why the last panel contains dia-
logue to clarify the ship’s maneuver; dialogue absent from110

the film because the maneuver itself can be shown. The in-
formation that is narrated is the discourse—a time-ordered,
intentionally-selected subset of the plot (Genette 1980).

Algorithmically telling a story akin to Figure 1 demands
formalizing plot, discourse, and narration. This is often not115

practically feasible, which invites the choice of which layers
to model and which others to control for. The choice ulti-
mately depends on authorial intent (Pratt 1977)—the com-
municative goals (e.g., entertain, teach, inspire) to accom-
plish via the telling of the story. Above, the authors entertain120

the audience by carefully preserving ambiguity to build sus-
pense until the last panel reveals a surprise: the crew’s “safe
haven” is in fact a deadly threat.

2.2 Narrative as a Designed Artifact
Telling a story is a design task (Simon 1996). Methods to ac- 125

complish design tasks are not strictly “right” or “wrong,” but
rather “better” or “worse” along qualitative dimensions that
the designer cares about. In storytelling, quality is assessed
relative to authorial intent. Thus, the quality of a story goes
beyond just what is told. An author may also care about how 130

it is told, why it is told, to whom, when, and where—all to
varying, use-inspired degrees and extents.

Consider that in Figure 1, Han Solo’s actions do not sim-
ply emerge from his rational deliberation as an agent in a
task environment. While his behavior may accomplish the 135

authorial goal of leading the Millennium Falcon’s crew to
safety, it is irrational w.r.t. the original plot-level intent of
hiding from the Empire. Nonetheless, his actions are autho-
rially planned for precisely because of their discourse-level
narrative quality: they advance the plot in a deliberately sus- 140

penseful way.
Ultimately, a narrative is successful to the degree it ac-

complishes an author’s intent. While similar to the process
of anticipating a plan’s execution dynamics (as in robotic
task planning; e.g., Cashmore et al. 2019), it is further com- 145

plicated by the nature of storytelling: the domain of dis-
course is different when narrative plans are narrated, as plan
effects are manifest in the mental states of the audience.
Thus, a narrative’s success is not directly observable and
must be empirically assessed. For our example, the comic 150

would succeed as a narrative artifact if it predictably elicits
entertaining suspense in its audiences.

2.3 The Narrative Planning Challenge
The central challenge for developing narrative planning sys-
tems is two-fold. The first challenge is computationally 155

modeling both senses of narrative – as communicative act
and as designed artifact – in terms of structural features of
plans and their construction (search) processes. This could
mean modeling narratives in such a way that classical plan-
ners can produce them; e.g., via compilation (Haslum 2012; 160

Christensen, Nelson, and Cardona-Rivera 2020). More com-
monly, it means developing novel planners with expanded
knowledge representations and reasoning mechanisms. We
focus on this latter approach.



Importantly, the choice of modeling technique presumes165

a researcher has identified a desired narrative quality—i.e.,
the authorial intent that should be achieved by the narra-
tive planner during its operation. This narrative quality de-
fines the second challenge: the empirical assessment of how
well a developed narrative planner predictably elicits (in an170

audience) the phenomenon it purports to model. In other
words, the researcher must assess their system’s success by
answering the question: “to what degree does my narra-
tive planner accomplish the authorial intent I care about?”
The answer usually manifests as an experimental inquiry175

to determine how well a resulting narrative plan, its con-
struction process, or both evokes the desired communica-
tive goal in an audience. For example, given a plan-based
representation of Figure 1, the SUSPENSER narrative plan-
ner (Cheong and Young 2014) predicts what discursive in-180

formation would elicit suspense in an audience, as evidenced
by several human-subjects studies.

3 Introduction to Narrative Planning
Narrative planning frames a planning agent as a story di-
rector. The story director must craft a narrative plan that185

represents a narrative—the product of a narration of a se-
quence of events that constitutes a trajectory through states-
of-affairs. Like other planning agents, a story director crafts
a plan by searching over a graph constructed from a declar-
ative description of a task environment. In our case, the de-190

scription is a narrative problem, isomorphic to a classical
problem.

Revisiting Classical Problems We briefly review the clas-
sical problem representation that most narrative planners
rely on: STRIPS (Fikes and Nilsson 1971), where a problem195

is a tuple P = ⟨L, I, A,G, fcost⟩. L is a set of atomic well-
formed formulae (wff) or their negations, composed from a
formal language of predicate P, constant C, and variable V
symbols (and no function symbols).1 I ⊆ L is an initial state
that obeys the closed-world assumption, G ⊆ L is a set of200

goal conditions, and A is a set of actions.
An action is a state-transition represented by a triple

a = ⟨PRE(a), ADD(a), DEL(a)⟩; respectively the precondi-
tion, add, and delete lists, all subsets of L. An action a is
applicable in a state s if PRE(a) ⊆ s. Applying it results in205

a state s′ = (s\DEL(a)) ∪ ADD(a) and incurs a cost per the
function fcost : A −→ R0+; we assume fcost = 1.

The solution to P is a classical plan π = [a1, ..., am]. This
ordered sequence of actions ai ∈ A transforms the prob-
lem’s initial state I to a state sm that satisfies the goal; i.e.210

G ⊆ sm. Its cost is computed as c(π) =
∑

ai∈π fcost(ai).

3.1 Narrative Planning Problems and Solutions
A narrative (planning) problem is broadly defined using the
same ingredients: L, I , A, G, and fcost. However, unlike its
classical counterpart, a narrative problem represents a for-215

mal description of authorial intent (including the task envi-
ronment with which to achieve it). It thus encodes the com-

1Words in true-type font are predicates. When prepended
with ‘?’, they are variables. When TitleCase, they are constants.

municative goals that the researcher would like to accom-
plish via the narrative planner. These goals are the ones the
story director must aim for during the construction of the 220

narrative plan.
Critically, authorial intent encompasses more than just the

achievement of conditions specified within G. The planner
also tacitly encodes authorial intent via the maintenance of
conditions during plan construction demanded by the re- 225

searcher’s desired quality. The narrative plan construction
process is therefore key: it must guarantee that the solution π
exhibits the authorially-intended qualities when it (or some
morphism of it) is narrated to an audience.

For example, the authorial intent of the PROVANT narra- 230

tive planner (Porteous and Lindsay 2019) is the generation
of narrative that exhibits a canonical Hollywood-style strug-
gle between a protagonist and antagonist. This is guaran-
teed by more than just the statement of conditions to achieve
in G: it is also guaranteed by its plan construction process. 235

During operation, PROVANT rules out portions of the search
space that do not conform to the canonical Hollywood form.
To expand, the comic in Figure 1 would not be an output
reachable by PROVANT, as it does not exhibit the desired au-
thorial intent. 240

A consequence of what narrative problems mean is that
(by default) classical planners are insufficient for story-
telling.2 To illustrate, we reconsider Han’s apparent irra-
tionality: his actions are not what one might expect from (for
example) a cooperative multi-agent belief-desire-intention 245

(BDI) planning architecture (Rao and Georgeff 1995). In
fact, his actions might never be considered for inclusion in π
because they potentially thwart the intent of all other agents.
What we need instead is the ability to reason about how ele-
ments added to π achieve authorial intent, sometimes to the 250

apparent detriment of the characters within π.
The preceding considerations explain why classical no-

tions of plan quality (e.g., cost, length) are insufficient: the
anticipated audience’s reception of the narrative plan must
be a critical part of a story director’s plan quality assess- 255

ment. Han’s actions are deliberately chosen because of their
expected value to the tellability of the resulting narrative.

3.2 Points of Divergence in Narrative Planning
As mentioned, researchers typically focus on dimensions of
narrative plan quality they care about. 260

For instance, a great deal of recent work has modeled
agents who obtain mistaken beliefs and act per them such
that they fail. These failed actions, like the disparities of be-
lief used to prompt them, can be used to create irony as in the
SABRE planner (Shirvani, Ware, and Farrell 2017), support 265

the illusion of theory of mind as in the IMPRACTICAL plan-
ner (Teutenberg and Porteous 2013), and build tension as in
the HEADSPACE planner (Sanghrajka, Young, and Thorne
2022). Of these, HEADSPACE would be able to approximate
generating narratives like our Figure 1: the crew’s mistaken 270

beliefs are what lead them inside the giant space worm to
begin with.

2The storytelling limitations of classical planners are not simply
addressed by non-classical (e.g., conformant) approaches.



The choice of which phenomenon to model is the major
point of divergence within the narrative planning commu-
nity. Different researchers seek to model different narrative-275

theoretic dimensions, each with unique rationales that ex-
plain why a given dimension matters for narrative plan qual-
ity. Presently, there is no consensus on which dimensions
matter the most. We further contend: if we accept that sto-
rytelling is a design task, then there is no universal set of280

narrative-theoretic dimensions that are sufficient to charac-
terize stories. Transitively, there is a rich (potentially in-
finite) set of storytelling forms and phenomena that re-
searchers may reason about via planning systems.

Reasoning about diverse narrative phenomena requires285

adapting the narrative problem representation, the narrative
planning process, or – more commonly – both. In the cited
examples, the problem representation is expanded in differ-
ent ways. For example, in HEADSPACE the wff in L, I , and
G are expanded to admit statements about positive and neg-290

ative character beliefs, and actions in A must specify belief-
based PRE(a), ADD(a), DEL(a) lists. This is like IMPRAC-
TICAL, which further distinguishes conscious(?char) and
at(?char, ?location) in L to reason about characters who
witness others doing things at given locations, and transi-295

tively, characters who can predict when others do so to af-
ford generating stories in which characters deceive one an-
other.

3.3 Points of Convergence in Narrative Planning
While the diverse motivations for modeling narratives as300

plans has precluded a standard specification of narrative
problems, the narrative planning community has tacitly con-
verged on several “fundamental particles.” These include
characters, locations, and actions as distinguished plot con-
cepts that are privileged in human cognition as these are the305

basis for mental models—our mental simulation of possi-
ble worlds—and event models—our mental simulation of se-
quences of events. Both models underlie our ability to make
sense of stories (Cardona-Rivera and Young 2019). We de-
scribe other key points of convergence below.310

Several narrative planners distinguish outcome Go from
trajectory Gt goals within G. The former are akin to clas-
sical planning ones: desired outcomes for the story’s end.
The latter are most similar to state-space planning land-
marks (Hoffmann, Porteous, and Sebastia 2004) or plan-315

space planning islands (Hayes-Roth and Hayes-Roth 1979).
Whereas landmarks or islands provide guidance to non-
narrative planners, narrative problems admit them to afford
authors more-direct expression of authorial intent over solu-
tion narrative plans (Riedl 2009).320

Several narrative planners further partition A into two nar-
ratological classes. Happenings Ah are actions that can oc-
cur without reason, e.g. an accident. Non-happenings, on the
other hand, must be intended (Bratman 1987)—they are car-
ried out by characters in service of goals they have adopted,325

and are termed intentional actions AI. A happening is iso-
morphic to a STRIPS-style action, whereas an intentional ac-
tion is a quadruple a = ⟨PRE(a), ADD(a), DEL(a), CHA(a)⟩,
where PRE(a), ADD(a), and DEL(a) are as before and
CHA(a) is a list of terms in C that denote plot characters.330

Another point of broad convergence is the role of a nar-
rative plan’s causal coherence, that each action that takes
place has its preconditions satisfied. This causal backbone
is critical for audiences to derive temporal sequences—
people cannot easily understand stories without a spatio- 335

temporal frame (Radvansky and Zacks 2014). A narrative
plan’s causal coherence contributes the tacitly-valued qual-
ity of comprehensibility, that the resulting narrative can be
understood by audiences. Several studies have demonstrated
that causally-coherent narrative plans rendered as textual or 340

filmic media can themselves be used to predict average hu-
man answers to comprehension questions about the plan’s
constituent actions (Christian and Young 2004; Cardona-
Rivera et al. 2016). For a given action ai ∈ π, we can pre-
dict people’s responses to the questions Why / How did ai 345

happen?, What enabled ai to happen?, and What was the
consequence of ai?

The last point of broad convergence concerns another
tacitly-valued dimension of narrative plan quality: believ-
ability, that the resulting narrative does not thwart the au- 350

dience’s willing suspension of disbelief or sense of being in
a fictional world (Holland 2003). Believability is what mo-
tivated partitioning A into Ah and AI in the first place. This
partition is needed because ceteris paribus a story director
will search to satisfy G, without regard to whether all ai ∈ π 355

are believable for characters to execute. For example, sup-
pose our narrative problem describes part of our comic, with
Leia and Han, aboard the Millennium Falcon. Further sup-
pose the author specifies Go = {(not (conscious(Han))}.
A plausible narrative plan π narrated via templated text is: 360

(1) Leia picks up a blaster. (2) Leia stuns Han.

This plan is causally coherent; e.g. the blaster must be picked
up in order to stun Han. However, is this plan believable as
a story? Perhaps, but nothing in π would structurally justify
that. Why Leia strikes Han is not clear. Arguably, we need 365

more context to understand how Leia’s actions are believ-
able. In other words, the plan lacks motivational coherence:
the plan contains actions that do not appear to be motivated
by anything. The IPOCL planner was developed to address
this concern (Riedl and Young 2010), under the rationale 370

that intentions are a distinguishing feature of anthropomor-
phic activity (Bates 1994; Dennett 1989) and that intentions
provide motive to act (Bratman 1987). IPOCL expanded the
wff in L, I , and G to admit statements about character in-
tentions. These afford the expression of character goals as 375

modal sentences of the form intends(c, gc), where c rep-
resents any term from C that denotes a plot character and
gc ∈ L represents a condition the character c intends to ac-
complish. These intentions constrain the search space of the
story director: an action a ∈ AI can only be considered for 380

expanding the search space if it is possible to make a part
of a character c’s sub-plan πgc ⊆ π that accomplishes gc.
Today, narrative planners largely take intentional actions as
a given,3 as we do for the remainder of this paper.

3State-of-the-art planners such as HEADSPACE, SABRE, and IM-
PRACTICAL all reason about character intentions as sub-parts of
their primary modeling purpose.



4 The Different Layers of Narrative385

Fully modeling a narrative as we have defined would require
formalizing all layers we have discussed thus far: plot, dis-
course, and narration. This task is often not practically feasi-
ble, leading researchers to pragmatically choose which lay-
ers to model. Each layer re-casts the classical problem rep-390

resentation to mean different narrative concepts. Below, we
review different framings and extract common themes.

4.1 Plot Planning
The bulk of the work in narrative planning has focused on
modeling plot, in which the narrative plan is meant to repre-395

sent the plot structure: a sequence of actions taken by char-
acters in the story that evolve the virtual world from its ini-
tial configuration to an author-desired one. When represent-
ing plot, the narrative problem is similar to a multi-agent
planning (MAP) one (Brafman and Domshlak 2013). This400

is because characters exhibit intention dynamics as they are
orchestrated by the story director toward achieving G. But
unlike MAP, it is plausible for characters to intentionally
conflict, under the rationale that this phenomenon features
prominently in global Western narratives (Herman, Man-405

fred, and Ryan 2010). Whereas plans with resource or coor-
dination conflicts would be ruled out in MAP, they are made
possible by design in the GLAIVE planner (Ware and Young
2014): its search space allows the story director to find plans
where characters adopt intentions that are mutually exclu-410

sive, relaxing the IPOCL requirement that a character c’s sub-
plan πgc necessarily achieve gc. In other words, characters
can take actions toward goals, but fail to accomplish them.

Plot-level plans ought to be sound with respect to the
story world domain and problem in which they take place.415

But because these task environments are virtual, they can
themselves be modified to suit particular storytelling goals.
For instance, the INITIAL STATE REVISION (ISR) algo-
rithm (Riedl and Young 2005) partitions I into true, false,
and undetermined sentence sets whose combinations de-420

termine the plot’s set of alternative possible worlds (Ryan
1991). While this is similar to I being an open-world state,
ISR shifts undetermined sentences into true or false as con-
venient to accomplish storytelling goals, which only makes
sense per the synthetic nature of the plot’s virtual world.425

Because quality is assessed with respect to an audience,
plot plans must be narrated in some way in order to em-
pirically evaluate whether the plot model achieves its in-
tended effect. Today, most narrative planners tacitly fol-
low Reiter and Dale’s (2000) Natural Language Generation430

(NLG) pipeline, which starts with (plot) Content Determi-
nation, is followed by (discourse) Content Structuring, and
ends with (narration) Linguistic Realization. Plot planners
typically have a perfunctory NLG pipeline, to control for
any spurious discourse and narration effects on comprehen-435

sion due to natural language. But because AI planning is
itself an effective model of NLG, a separate line of research
has focused on narrative discourse planning.

4.2 (Narrative) Discourse Planning
As in conventional discourse planning, narrative plans are440

meant to reflect the informational and intentional structure

of a discourse (Grosz and Sidner 1986), within a sequence
of communicative actions taken by the story director that
are intended to evolve the mental state of the audience from
its (initial) state prior to experiencing the discourse to an 445

author-desired one. When representing discourse, the narra-
tive problem is similar to the more general discourse plan-
ning one (Garoufi 2014). This is because the story direc-
tor relies on the framing of utterances as speech actions and
treats communication as a goal-oriented process in the space 450

of audience beliefs (Cohen and Perrault 1979). But unlike
its more general formulation (cf. Gatt and Krahmer, 2018),
narrative discourse planning does not assume that the beliefs
of the audience monotonically increase over time. Nor does
it assume that the goal must be a belief that the audience 455

should obtain at the end of the discourse. In fact, the audi-
ence’s belief dynamics – i.e., the trajectory of belief expan-
sion, contraction, and revision operations (cf. Alchourrón,
Gärdenfors, and Makinson, 1985) – is a key determinant of
narrative coherence; i.e., that the artifact is received as a nar- 460

rative (Herman 2013). This quality is particularly important
in human-AI applications: information parsed by people as a
story is better comprehended and better retained by them rel-
ative to non-story information (Fisher and Radvansky 2018).

In the pipeline approach, the input plot plan πplot repre- 465

sents the knowledge base and informs the material com-
municative goals that the narrative discourse planner will
strive for. Thus, elements of πplot remain fixed and are rei-
fied: they become part of the language L for the narrative
discourse problem. Narrative discourse planning operates 470

in belief space, and thus L also admits statements about
belief—these are used to specify the expected audience’s
mental state before narration I , the author-desired mental
state outcome for the plot’s telling G, and the communica-
tion actions A that will effect changes in audience belief. 475

Thus, for narrative discourse planning, the actions in A
tacitly specify a model of belief-based narrative-theoretic
phenomena: they manipulate the presentation of plot details
to elicit particular belief dynamics in audiences, which in
turn result in particular narrative effects. Examples include 480

the use of staging via MISER (Matthews et al. 2017) and elic-
itation of inferencing via INFER (Niehaus and Young 2014).

4.3 Narration Planning
Typically, narrative discourse planners are tightly-coupled to
the narration, such that the solution narrative discourse plan 485

is itself the realization of the plot in a given medium. As a
result, narrative-theoretic plan-based linguistic realization is
relatively under-explored; the FIREBOLT cinematic realiza-
tion planner (Thorne et al. 2019) is a notable exception.

Other work in this area has sought to break-away from 490

the NLG pipeline, under the rationale that the storytelling’s
form (i.e., discourse and narration) cannot be separate from
its (plot) content (Elliott 2004). Work includes adapting
the direction of the pipeline via specification of plot-level
landmarks based on required discourse “snapshots” as in 495

PLOTSHOT (Cardona-Rivera and Li 2016), as well as do-
ing away with the pipeline altogether in order to co-evolve
plot and discourse (coupled to narration) simultaneously as
in BIPOCL (Winer and Young 2016).



5 Three Key Narrative Planning Paradigms500

Techniques to solve narrative problems are tightly-coupled
to a problem representation—the one needed to formalize
the particular class of narrative phenomena of interest to the
modeler. A fundamental assumption they share is that story-
telling is well-modeled as a search process.505

At the same time, different planning paradigms afford dif-
ferent ways of modeling this search process and transitively,
how to think about modeling narrative phenomena. Different
paradigms offer different spaces that shape the story direc-
tor’s range of generatable stories, or expressive range (Sum-510

merville 2018). We cover three broadly-used paradigms.

5.1 Modeling Narrative via Plan-space Planning
Plan-space search operates over a graph in which nodes rep-
resent partial-plans and arcs represent plan refinement oper-
ations (Kambhampati, Knoblock, and Yang 1995). For ex-515

ample, in POCL planning (Weld 1994), refinements are in-
troduced to guarantee that (1) no preconditions remain un-
satisfied (recorded via causal links), and (2) no action in the
plan could be ordered such that it threatens to undo (estab-
lish the opposite condition of) a causal link between two520

other actions. These respectively are Open Condition (OC)
and Threatened Link (TL) flaws.

Plan-space narrative planning affords modeling story phe-
nomena in terms of narrative-theoretic plan construction
flaws and fixes. That is, a modeler must add (to OC and TL)525

new classes of flaws and fixes that in some way capture a di-
mension of plan quality with narrative import. For example,
IPOCL introduced three flaws to model the intention dynam-
ics that make character actions more believable when nar-
rated. When IPOCL adds an action a ∈ AI to fix some other530

flaw, it must guarantee that a is at some point added to a
sub-plan πgc ⊆ π that accomplishes gc, ∀c ∈ CHA(a); while
a remains un-added, the partial-plan (under refinement) has
an Unknown Intent (UI) flaw. If any sub-plan πgc is not pre-
ceded by an action that establishes the effect intends(c, gc)535

for the sub-plan’s c ∈ C, the partial-plan has an Open Mo-
tivation (OM) flaw, fixable by adding such an action. And
if any two sub-plans π1

gc , π
2
gc ⊆ π assert opposite sub-goals

(i.e., gc1 = ¬gc2) the partial-plan has a Threatened Intent
(TI) flaw, fixable by ordering π1

gc after π2
gc or vice-versa.540

This modeling strategy is attractive in that it directly
shapes the underlying search space in a way that facili-
tates providing theoretical guarantees about the space of so-
lutions. Flaws and their fixes respectively identify partial-
plans that would not be solutions to a given narrative-545

theoretic problem class, and the algorithmic means to re-
fine partial-plans such that they do become solutions (or fail
in the attempt). The full modeling strategy then is to em-
pirically demonstrate that narrative plans with the structural
quality to-be-preserved (via flaw detection and refinement)550

do in fact elicit a particular narrative-theoretic effect of in-
terest to the modeler. The drawback of plan-space narrative
planners lies in their performance, but plan-space heuristics
which seek to offset that penalty, such as those codified by
VHPOP (Younes and Simmons 2003), give insights into po-555

tential directions.

5.2 Modeling Narrative via Hierarchical Planning
Hierarchical formalisms are varied, but broadly share the
property of being more expressive and complex than clas-
sical planning: STRIPS-style primitive actions are comple- 560

mented with isomorphic more-abstract compound actions
that require decomposition, or associated sub-plan (Bercher,
Alford, and Höller 2019). Decomposition happens via meth-
ods representing sub-goals that require sub-plans, to be fur-
ther decomposed until all compound actions are reduced 565

to primitives. The idea is that a decomposition method
d = ⟨aC , π⊆⟩ maps a compound action aC to a sub-plan
π⊆ that depends on (i.e., has preconditions that relate to)
PRE(aC) and contributes to (i.e., has effects that relate to)
EFF(aC) = ADD(aC) ∪ DEL(aC) (Bercher et al. 2016). 570

Hierarchical narrative planning affords modeling story
phenomena in terms of narrative-theoretic recursive specifi-
cations, akin to grammar rewriting rules. This is well-suited
for representing a wide variety of story phenomena that de-
pend on abstraction, across the narrative layers. In plot, for 575

example, character intentions can be straightforwardly cod-
ified (Cavazza, Charles, and Mead 2002): a compound ac-
tion aC may assert intends(c, gc) ∈ ADD(aC) with its
decomposition being the sub-plan πgc that achieves it. An-
other example is DARSHAK (Jhala and Young 2010), which 580

uses hierarchies to bridge cinematic discourse and narration:
a compound action’s effects EFF(aC) represent discourse-
layer information about the plot being filmed, and a method
represents a cinematic idiom that identifies a narration-layer
sub-plan of film shots thought to achieve EFF(aC). 585

Modeling via hierarchical formalisms is attractive due its
potential for authorial leverage (Chen, Nelson, and Mateas
2009): that is, hierarchical story directors afford users signif-
icant power to define narrative plan quality aligned to their
authorial intent, across all narrative layers. Like in other hi- 590

erarchical planners, authors may introduce elements of “ad-
vice” to a hierarchical story director: decomposition meth-
ods afford ways to encode typical (not necessarily optimal)
action sequences or scripts (Schank and Abelson 1975). For
example, this is used in the GROUND DECOMPOSITIONAL 595

PARTIAL ORDER PLANNER to suggest idiomatic film edits
during the construction of a cinematic narration plan (Winer
and Cardona-Rivera 2018). We observe that certain aspects
of hierarchical representation provide a mechanism to exer-
cise this authorial leverage via specification of non-classical 600

temporally extended goals. For example, partially ordered
compound tasks that are used to scaffold the structure of
novel variants of the TV drama Friends (Cavazza, Charles,
and Mead 2002). Related approaches to such non-classical
goal specification are discussed below in the context of 605

heuristic search planning.

5.3 Modeling Narrative via Heuristic Search
Heuristic search planning, the dominant current approach,
plans via forward search through state space, evaluating
states on the basis of general, domain-independent heuris- 610

tics (Bonet and Geffner 2001). The narrative planning chal-
lenge is how best to encode narrative-theoretic phenomena,
in order to leverage the efficient performance of such ap-
proaches.



One strategy has been to encode narrative phenomena as615

constraints within the narrative domain or as control knowl-
edge to scaffold the structure of narrative. In the NETWORK-
ING plan-based system, the use of constraints scaffolds con-
struction of story genre-consistent sub-plans that enable
characters to realize their intentions (Porteous, Charles, and620

Cavazza 2013). It has also featured as control knowledge to
guide story development, as with the affective storytelling in
the MADAME BOVARY system (Pizzi and Cavazza 2007).
Such approaches have been shown to work well in practice,
but they fail to capture more general narrative-theoretic phe-625

nomena.
Hence, other work has looked to develop heuristics that

directly reason about narrative-theoretic properties. This
is the case for GLAIVE (Ware and Young 2014), a for-
ward search planner which generates motivationally coher-630

ent narrative plans, as discussed earlier. GLAIVE introduces
a heuristic that incorporates character intentions, via a goal
graph, which is used with an FF-style plan graph (Hoffmann
and Nebel 2001) to calculate the heuristic estimate during
search.635

6 Open Challenges
While many open challenges are common to both narrative
and non-narrative planning, others are driven by the differ-
entiation required for plans to serve as narrative artifacts. We
mention here two of the most significant: expanding expres-640

sive range and incorporating cognitive-driven generation.

Increased Expressive Range There is a need to increase
the expressive range of planning systems meant to create
plot or narrative discourse structures. Narrative planners’ ex-
pressive range – the breadth of structural features of their645

output artifacts – must differ from those of conventional
planning because the structural features of narrative im-
pose a set of distinct properties not readily accountable for
by conventional planning knowledge representations. For
example, plot structures contain actions that fail, explicit650

conflict between the actions and goals of their agents, and
controlled increases in potential but unrealized threats to a
plan’s execution. Narrative discourse elements may work to
intentionally obfuscate aspects of their domain of discourse
from a reader/viewer. They may intentionally drive false be-655

liefs or they may carefully curate and promote uncertainty,
prompt repeated belief revision around specific concepts,
play off of the relationships between the time of story events
and the time of their telling, and focus as much on the trajec-
tory of cognitive and emotional states during the experience660

of a reader as the set of beliefs they hold at the end of a
narrative experience.

Cognitive-driven Narrative Generation A second sig-
nificant challenge for narrative planning is the need to
strengthen our knowledge of the connection between nar-665

rative generation and narrative comprehension. In the field
of cognitive psychology, narrative comprehension has long
been studied by building cognitive models of narrative com-
prehension (Graesser and Franklin 1990) that posit that hu-
man readers progressively construct a mental concept graph670

during narrative comprehension that represents events in a
story and their causal, temporal and spatial relationships,
character intentions, and other elements with parallels to the
contents of plan graphs. So similar are the parallels between
representations in the two fields that narrative planning re- 675

searchers have adapted the experimental methods used to
validate these cognitive models for use by psychologists in
evaluating the narrative coherence of generated plans (Riedl
and Young 2010), but little work has been done to directly
take in to account comprehension during narrative genera- 680

tion.
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