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Abstract

Score-based generative models (SGMs) synthesize new data samples from Gaus-
sian white noise by running a time-reversed Stochastic Differential Equation (SDE)
whose drift coefficient depends on some probabilistic score. The discretization of
such SDEs typically requires a large number of time steps and hence a high com-
putational cost. This is because of ill-conditioning properties of the score that we
analyze mathematically. Previous approaches have relied on multiscale generation
to considerably accelerate SGMs. We explain how this acceleration results from an
implicit factorization of the data distribution into a product of conditional proba-
bilities of wavelet coefficients across scales. The resulting Wavelet Score-based
Generative Model (WSGM) synthesizes wavelet coefficients with the same number
of time steps at all scales, and its time complexity therefore grows linearly with the
image size. This is proved mathematically for Gaussian distributions, and shown
numerically for physical processes at phase transition and natural image datasets.

1 Introduction

Score-based Generative Models (SGMs) have obtained remarkable results to learn and sample
probability distributions of image and audio signals [44, 3, 24, 38, 39, 6]. They proceed as follows: the
data distribution is mapped to a Gaussian white distribution by evolving along a Stochastic Differential
Equation (SDE), which progressively adds noise to the data. The generation is implemented using the
time-reversed SDE, which transforms a Gaussian white noise into a data sample. At each time step,
it pushes samples along the gradient of the log probability, also called score function. This score is
estimated by leveraging tools from score-matching and deep neural networks [13, 47]. At sampling
time, the computational complexity is therefore proportional to the number of time steps, i.e., the
number of forward network evaluations. Early SGMs in [44, 46, 11] used thousands of time steps,
and hence had a limited applicability.

Diffusion models map a Gaussian white distribution into a highly complex data distribution. We thus
expect that this process will require a large number of time steps. It then comes as a surprise that
recent approaches have drastically reduced this time complexity. This is achieved by optimizing the
discretization schedule or by modifying the original SGM formulation [18, 17, 27, 53, 42, 37, 43, 23,
11, 29, 41, 51]. High-quality score-based generative models have also been improved by cascading
multiscale image generations [40, 12, 6] or with subspace decompositions [16]. We make explicit the
reason of this improvement, which provably accelerates the sampling of SGMs.

A key idea is that typical high-dimensional probability distributions coming from physics or natural
images have complex multiscale properties. They can be simplified by factorizing them as a product
of conditional probabilities of normalized wavelet coefficients across scales, as shown in [33].
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These conditional probabilities are more similar to Gaussian white noise than the original image
distribution, and can thus be sampled more efficiently. On the physics side, this observation is
rooted in the renormalization group decomposition in statistical physics [49], and has been used to
estimate physical energies from data [33]. In image processing, it relies on statistical observations of
wavelet coefficient properties [48]. A Wavelet Score-based Generative Model (WSGM) generates
normalized wavelet coefficients from coarse to fine scales, as illustrated in Figure 1. The conditional
distribution of each set of wavelet coefficients, given coarse scale coefficients, is sampled with its
own (conditional) SGM. The main result is that a normalization of wavelet coefficients allows fixing
the same discretization schedule at all scales. Remarkably, and as opposed to existing algorithms, it
implies that the total number of sampling iterations per image pixel does not depend on the image
size.

After reviewing score-based generation models, Section 2 studies the mathematical properties of its
time discretization, with a focus on Gaussian models and multiscale processes. Images and many
physical processes are typically non-Gaussian, but do have a singular covariance with long- and
short-range correlations. In Section 3, we review how to factorize these processes into probability
distributions which capture interactions across scales by introducing orthogonal wavelet transforms.
We shall prove that it allows considering SGMs with the same time schedule at all scales, indepen-
dently of the image size. In Section 4, we present numerical results on Gaussian distributions, the φ4

physical model at phase transition, and the CelebA-HQ image dataset [19]. The main contributions
of the paper are as follows:

• A Wavelet Score-based Generative Model (WSGM) which generates samples from the
conditional distribution of normalized wavelet coefficients, with the same discretization
schedule at all scales. The number of time steps per image pixel does not need to depend
upon the image size to reach a fixed error level.

• Theorems controlling errors of time discretizations of SGMs, proving accelerations obtained
by scale separation with wavelets. These results are empirically verified by showing that
WSGM provides an acceleration for the synthesis of physical processes at phase transition
and natural image datasets.

2 Sampling and Discretization of Score-Based Generative Models

2.1 Score-Based Generative Models

Diffusions and time reversal A Score-based Generative Model (SGM) [44, 46, 11] progressively
maps the distribution of data x into the normal distribution, with a forward Stochastic Differential
Equation (SDE) which iteratively adds Gaussian white noise. It is associated with a noising process
(xt)t, with x0 distributed according to the data distribution p, and satisfying:

dxt = −xtdt+
√
2dwt, (1)

where (wt)t is a Brownian motion. The solution is an Ornstein-Uhlenbeck process which admits the
following representation for any t ≥ 0:

xt = e−t x0 +

√
1− e−2tz, z ∼ N (0, Id). (2)

The process (xt)t is therefore an interpolation between a data sample x0 and Gaussian white noise.
The generative process inverts (1). Under mild assumptions on p [2, 9], for any T ≥ 0, the reverse-
time process xT−t satisfies:

dxT−t = {xT−t + 2∇ log pT−t(xT−t)} dt+
√
2 dwt, (3)

where pt is the probability density of xt, and ∇ log pt is called the Stein score. Since xT is close
to a white Gaussian random variable, one can approximately sample from xT by sampling from
the normal distribution. We can generate x0 from xT by solving this time-reversed SDE, if we can
estimate an accurate approximation of the score ∇ log pt at each time t, and if we can discretize the
SDE without introducing large errors.

Efficient approximations of the Stein scores are the workhorse of SGM. [13] shows that the score
∇ log pt can be approximated with parametric functions sθ which minimize the so-called implicit
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Figure 1: An SGM generates images by discretizing a reverse diffusion, which progressively
transforms white Gaussian noise into a natural image. A WSGM generates increasingly higher-
resolution images by discretizing reverse diffusions on wavelet coefficients at each scale. It begins
by generating a first low-resolution image. Renormalized wavelet coefficients are then generated
conditionally to this low-resolution image. A fast inverse wavelet transform reconstructs a higher-
resolution image from these wavelet coefficients. This process is repeated at each scale. The number
of steps is the same at each scale, and can be orders of magnitude smaller than for SGM.

score matching loss:

st = argmin
θ

Ept

[
1

2
∥sθ(xt)∥2 + div(sθ)(xt)

]
, (4)

or, equivalently, the denoising score matching loss:

st = argmin
θ

Ep0,N (0,Id)

[
∥sθ(e−tx0 +

√
1− e−2tz) +

z√
1− e−2t

∥2
]
. (5)

For image generation, sθ is calculated by a neural network parameterized by θ. In statistical physics
problems where the energy can be linearly expanded with coupling parameters, we obtain linear
models sθ(x) = θ⊤∇U(x). This is the case for Gaussian processes where U(x) = xx⊤; it also
applies to non-Gaussian processes, using non-quadratic terms in U(x).

Time discretization of generation An approximation of the generative process (3) is computed by
approximating ∇ log pt by st and discretizing time. It amounts to approximating the time-reversed
SDE by a Markov chain which is initialised by x̃T ∼ N (0, Id), and computed over times tk which
decrease from tN = T to t0 = 0, at intervals δk = tk − tk−1:

x̃tk−1
= x̃tk + δk{x̃tk + 2stk(x̃tk)}+

√
2δkzk, zk

i.i.d.∼ N (0, Id). (6)

Ignoring the error due to the score model, the minimum number of time steps is limited by the
Lipschitz regularity of the score ∇ log pt, see [5, Theorem 1]. The overall complexity of this
generation is N evaluations of the score st(x).
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2.2 Discretization of SGM and Score Regularity

We now study how the regularity of the score ∇ log p affects the discretization of (6). Assuming that
the score is known, i.e., that st = ∇ log pt, we prove that for Gaussian processes, the number of
time steps to reach a fixed error ε depends on the condition number of its covariance. This result is
generalized to non-Gaussian processes by relating this error to the regularity of ∇ log pt.

Gaussian distributions Suppose that the data distribution is a Gaussian p = N (0,Σ) with covari-
ance matrix Σ, in dimension d. Let pt be the distribution of xt. Using (2), we have:

∇ log pt(x) = −(Id+(Σ− Id)e−2t)−1x.

Let p̃t be the distribution of x̃t obtained by the time discretization (6). The approximation error
between the distribution p̃0 obtained with the time-reversed SDE and the data distribution p stems
from (i) the mismatch between the distributions of xT and x̃T , and (ii) the time discretization. The
following theorem relates these two errors to the covariance Σ of x in the particular case of a uniform
time sampling at intervals δk = δ. We normalize the signal energy by imposing that Tr(Σ) = d, and
we write κ the condition number of Σ, which is the ratio between its largest and smallest eigenvalues.
Theorem 1. If the data distribution p = N (0,Σ), the distribution p̃0 of x̃0 in (6) with a uniform
discretization δk = δ satisfies KL(p∥p̃0) ≤ ET + Eδ + ET,δ , with :

ET = f(e−4T |Tr((Σ− Id)Σ))|), (7)

Eδ = f(δ|Tr(Σ−1 − Σ(Σ− Id)−1 log(Σ)/2 + (Id−Σ−1)/3))|), (8)

where f(t) = t− log(1 + t) and ET,δ is a higher-order term with ET,δ = o(δ + e−4T ) when δ → 0
and T → +∞. Furthermore, for any ε > 0, there exists T, δ ≥ 0 such that:

(1/d)(ET + Eδ) ≤ ε and N = T/δ ≤ Cε−2κ3. (9)

with C ≥ 0 a universal constant and κ the conditioning number of Σ.

This theorem specifies the dependence of the Kullback-Leibler error on the covariance matrix. It
computes an upper bound on the number of time steps N = T/δ to reach an error ε as a function
of the condition number κ of Σ. As expected, it indicates that the number of time steps should
increase with the condition number of the covariance. This theorem is proved in a more general case
in Appendix S5, which includes the case where p has a non-zero mean. An exact expansion of the
Kullback-Leibler divergence is also given.

For stationary processes of images, the covariance eigenvalues are given by the power spectrum,
which typically decays like |ω|−1 at a frequency ω. It results that κ is proportional to a power of
the image size. Many physical phenomena produce such stationary images with a power spectrum
having a power law decay. In these typical cases, the number of time steps must increase with the
image size. This is indeed what is observed in numerical SGM experiments, as seen in Section 3.

General processes Theorem 1 can be extended to non-Gaussian processes. The number of time
steps then depends on the regularity of the score ∇ log pt.

Theorem 2. Assume that ∇ log pt(x) is C 2 in both t and x, and that:

supx,t ∥∇2 log pt(x)∥ ≤ K and ∥∂t∇ log pt(x)∥ ≤M e−αt ∥x∥. (10)

for some K,M,α > 0. Then ∥p− p̃0∥TV ≤ ET + Eδ + ET,δ , where:

ET =
√
2e−T KL(p∥N (0, Id))1/2, (11)

Eδ = 6
√
δ [1 + Ep(∥x∥4)1/4] [1 +K +M(1 + 1/(2α)1/2)], (12)

and Eδ,T is a higher order term with ET,δ = o(
√
δ + e−T ) when δ → 0 and T → +∞.

The proof of Theorem 2 is postponed to Appendix S5 and we show that the result can be strengthened
by providing a quantitative upper bound on ∥p − p̃0∥TV. Theorem 2 improves on [5, Theorem 1]
by proving explicit bounds exhibiting the dependencies on the regularity constants K and M of the
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score and by eliminating an exponential growth term in T in the upper bound. Theorem 2 is much
more general but not as tight as Theorem 1.

The first error term (11) is due to the fact that T is chosen to be finite. The second error term
(12) controls the error depending upon the discretization time step δ. Since pt is obtained from p
through a high-dimensional convolution with a Gaussian convolution of variance proportional to t,
the regularity of ∇ log pt(x) typically increases with t so ∥∇2 log pt(x)∥ and ∥∂t∇ log pt(x)∥ rather
decrease when t increases. This qualitatively explains why a quadratic discretization schedule with
non-uniform time steps δk ∝ k are usually chosen in numerical implementations of SGMs [38, 45].
For simplicity, we focus on the uniform discretization schedule, but our result could be adapted to
non-uniform time steps with no major difficulties. This remark also explains that it is mainly the
regularity of the score at time t = 0∇ log p which determines the error decay (12).

While Theorem 2 is more general than Theorem 1, the Gaussian case provides intuition about the
speed of the error decay (12) through the value of the constants K and M . If p is Gaussian, then the
Hessian ∇2 log p is the negative inverse of the covariance matrix. We verify in Appendix S5 that
in this case, the assumptions of Theorem 2 are satisfied. Furthermore, the constants K and M , and
hence the number of discretization steps, are controlled using the condition number of Σ. We thus
conjecture that non-Gaussian processes with an ill-conditioned covariance matrix will require many
discretization steps to have a small error. This will be verified numerically. As we now explain, such
processes are ubiquitous in physics and natural image datasets.

Multiscale processes Most images have variations on a wide range of scales. They require to use
many time steps to sample using an SGM, because their score is not well-conditioned. This is also
true for a wide range of phenomena encountered in physics, biology, or economics [22, 32]. We
define a multiscale process as a stationary process whose power spectrum has a power law decay.
The stationarity implies that its covariance is diagonalized in a Fourier basis. Its eigenvalues, which
then coincide with its power spectrum, have a power law decay defined by:

P (ω) ∼ (ξη + |ω|η)−1, (13)

where η > 0 and 2π/ξ is the maximum correlation length. Physical processes near phase transitions
have such a power-law decay, but it is also the case of many disordered systems such as fluid and gas
turbulence. Natural images also typically define stationary processes. Their power spectrum satisfy
this property with η = 2 and 2π/ξ ≈ L for images of size L× L. To efficiently synthesize images
and more general multiscale signals, we must eliminate the ill-conditioning properties of the score.
This is done by applying a wavelet transform.

3 Wavelet Score-Based Generative Model

The numerical complexity of the SGM algorithm depends on the number of time steps, which itself
depends upon the regularity of the score. We show that an important acceleration is obtained by
factorizing the data distribution into normalized wavelet conditional probability distributions, which
are closer to a white Gaussian distribution, and so whose score is better-conditioned.

3.1 Wavelet Whitening and Cascaded SGMs

Normalized orthogonal wavelet coefficients Let x be the input signal of width L and dimension
d = Ln, with n = 2 for images. We write xj its low-frequency approximation subsampled at
intervals 2j , of size (2−jL)n, with x0 = x. At each scale 2j−1 ≥ 1, a fast wavelet orthogonal
transform decomposes xj−1 into (x̄j , xj) where x̄j are the wavelet coefficient which carries the
higher frequency information over 2n − 1 signals of size (2−jL)n [30]. They are calculated with
convolutional and subsampling operators G and Ḡ specified in Appendix S3:

xj = γ−1
j Gxj−1 and x̄j = γ−1

j Ḡ xj−1 . (14)

The normalization factor γj guarantees that E[∥x̄j∥2] = (2n − 1)(2−jL)n. We consider wavelet
orthonormal filters where (G, Ḡ) is a unitary operator, i.e.:

ḠG⊤ = GḠ⊤ = 0 and G⊤G+ Ḡ⊤Ḡ = Id .
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It results that xj−1 is recovered from (x̄j , xj) with:

xj−1 = γj G
⊤xj + γj Ḡ

⊤x̄j .

The wavelet transform is computed over J ≈ log2 L scales by iterating J times on (14). The last xJ
has a size (2−JL)n ≈ 1. Appendix S3 contains a more detailed introduction to the wavelet transform.
The choice of wavelet filtersG and Ḡ specifies the properties of the wavelet transform and the number
of vanishing moments of the wavelet, as explained in Appendix S4.

Renormalized probability distribution A conditional wavelet renormalization factorizes the
distribution p(x) of signals x into conditional probabilities over wavelet coefficients:

p(x) = α
∏J

j=1 p̄j(x̄j |xj) pJ(xJ) . (15)

where α (the Jacobian) depends upon all γj .

Although p(x) is typically highly non-Gaussian, the factorization (15) involves distributions that
are closer to Gaussians. The largest scale distribution pJ is usually close to a Gaussian when the
image has independent structures, because xJ is an averaging of x over large domains of size
2J . In images, the wavelet coefficients x̄j are usually sparse and thus have a highly non-Gaussian
distribution; however, it has been observed [48] that their conditional distributions p̄j(x̄j |xj) become
much more Gaussian, due to dependencies of wavelet coefficients across scales. Furthermore, because
of the renormalization, the normalized wavelet coefficients x̄j have a white spectrum, as opposed to a
power-law decay for xj , which implies they are closer to a white Gaussian distribution. In statistical
physics, the analysis of high frequencies conditioned by lower frequencies have been studied in [50].
More recently, normalized wavelet factorizations (15) have been introduced in physics to implement
renormalization group calculations, and model probability distributions with maximum likelihood
estimators near phase transitions [33].

Wavelet Score-based Generative Model Instead of computing a Score-based Generative Model
(SGM) of the distribution p(x), a Wavelet Score-based Generative Model (WSGM) applies an SGM
at the coarsest scale pJ(xJ) and then on each conditional distribution p̄j(x̄j |xj) for j ≤ J . It is
thus a cascaded SGM, similarly to [12, 40], but calculated on p̄j(x̄j |xj) instead of pj(xj−1|xj). The
normalization of wavelet coefficients x̄j effectively produces a whitening which can considerably
accelerate the algorithm by reducing the number of time steps. This is not possible on xj−1 because
its covariance is ill-conditioned. It will be proved for Gaussian processes.

A forward noising process is computed on each x̄j for j ≤ J and xJ :

dx̄j,t = −x̄j,t dt+
√
2dw̄j,t and dxJ,t = −xJ,t dt+

√
2dwJ,t,

where the w̄j,t, wJ,t are Brownian motions. Since x̄j is nearly white and has Gaussian properties, this
diffusion converges much more quickly than if applied directly on x. Using (4) or (5), we compute
a score function sJ,t(xJ,t) which approximates the score ∇ log pJ,t(xJ,t). For each j ≤ J we also
compute the conditional score s̄j,t(x̄j,t|xj) which approximates ∇ log p̄j,t(x̄j,t|xj).
The inverse generative process is computed from coarse to fine scales as follows. At the largest
scale 2J , we sample the low-dimensional xJ by discretizing the inverse SDE. Similarly to (6), the
generative process is given by:

xJ,tk+1
= xJ,tk + δk{xJ,tk + 2sJ,tk(xJ,tk)}+

√
2δkzJ,k, zJ,k

i.i.d.∼ N (0, Id). (16)

For j going from J to 1, we then generate the wavelet coefficients x̄j conditionally to the previously
calculated xj , by keeping the same time discretization schedule at all scales:

x̄j,tk+1
= x̄j,tk + δk{x̄j,tk + 2s̄j,tk(x̄j,tk |xj)}+

√
2δk zj,k, zj,k

i.i.d.∼ N (0, Id). (17)

The inverse wavelet transform then approximately computes a sample of xj−1 from (x̄j,0, xj):

x̃j−1 = γj G
⊤xj + γj Ḡ

⊤x̄j,0. (18)
The generative process is illustrated in Figure 1 and its pseudocode is given in Algorithm 1 in
Appendix S2. The appendix also verifies that if x is of size d then the numerical complexity of the
generation is O(Nd), where N is the number of time steps, which is the same at each scale. For
multiscale processes, we shall see that the number of time steps N does not depend upon d to reach a
fixed error measured with a KL divergence.
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Related work Multi-scale representations, based on wavelets or not, have been incorporated
in many generative modeling approaches in order to increase generation quality and sampling
efficiency. Specifically, they have been shown to improve results for auto-encoders [4], GANs [7]
and normalizing flows [26]. Closer in spirit to our work, [52] introduces Wavelet Flow, a normalizing
flow with a cascade of layers generating wavelet coefficients conditionally on lower-scales, then
aggregating them with an inverse wavelet transform. This method yields training time acceleration
and high-resolution (1024× 1024) generation.

WSGM is closely related to other cascading diffusion algorithms, such as the ones introduced in
[12, 40, 6]. The main difference lies in that earlier works on cascaded SGMs do not model the wavelet
coefficients {x̄j}Jj=1 but the low-frequency coefficients {xj}Jj=1. As a result, cascaded models do
not explicitly exploit the whitening properties of the wavelet transform, nor the fact that conditional
wavelet distributions are often nearly Gaussian, and the mechanisms behind the acceleration remain
implicit. We also point out the recent work of [16] which, while not using the cascading framework,
drop subspaces from the noising process at different times. This allows using only one SDE to sample
approximately from the data distribution. However, the reconstruction is still computed with respect
to {xj}Jj=1 instead of the wavelet coefficients.

Finally, we highlight that our work could be combined with other acceleration techniques such as
the ones of [17, 27, 53, 42, 37, 43, 11, 23, 29, 41, 51] in order to improve the empirical results of
WSGM.

3.2 Discretization and Accuracy for Gaussian Processes

We now illustrate Theorem 1 and the effectiveness of WSGM on Gaussian multiscale processes. We
use the whitening properties of the wavelet transform to show that the time complexity required in
order to reach a given error is linear in the image dimension.

The following result proves that the normalization of wavelet coefficients performs a preconditioning
of the covariance, whose eigenvalues then remain of the order of 1. This is a consequence of a
theorem proved by [34] on the representation of classes of singular operators in wavelet bases,
see Appendix S4. As a result, the number of iterations N = T/δ required to reach an error ε is
independent of the dimension.

Theorem 3. Let x be a Gaussian stationary process of power spectrum P (ω) = c (ξη + |ω|η)−1

with η > 0 and ξ > 0. If the wavelet has a compact support, q ≥ η vanishing moments and is C q,
then the first-order terms ET and Eδ in the sampling error of WSGM KL(p∥p̃0) are such that for
any ε > 0, there exists C > 0 such that for any δ, T :

(1/d)(ET + Eδ) ≤ ε and N = T/δ ≤ Cε−2. (19)

To prove this result, we show that the conditioning number of the covariance matrix of the renormal-
ized wavelet coefficients does not depend on the dimension, by using Sobolev norm equivalences
[15, 34]. We conclude upon combining this result, the cascading property of the Kullback-Leibler
divergence and an extension of Theorem 1 to the setting with non-zero mean. The detailed proof is
postponed to Appendix S6.

Numerical results We illustrate Theorem 3 on a Gaussian field x, whose power spectrum P has a
power law decay (13). In Figure 2, we display the sup-norm between P and the power spectrum P̂ of
the samples obtained using either vanilla SGM or WSGM with uniform stepsize δk = δ. In the case
of vanilla SGM, the number N(ε) of time steps needed to reach a small error ∥P − P̂∥ = ε increases
with the size of the image L (Fig. 2, right). Equation (9) suggests that N(ε) scales like a power of the
conditioning number κ of Σ, which is for multiscale Gaussian processes κ ∼ Lη , for images of size
L× L. In the WSGM case, we sample from the conditional distributions p̄j of wavelet coefficients
x̄j given low frequencies xj . At a scale j, the conditioning numbers κ̄j of the conditional covariance
become dimension-independent (Appendix S4), removing the dependency of N(ε) on the image size
L as suggested by (19).
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Figure 2: Left and middle: evolution of the error on the estimated covariance matrix using either
SGM or WSGM w.r.t. the number of stepsizes used in the model (T = 10 is fixed). Right: number
N(ε) of discretization steps required to reach a given error ε = 0.1 using either SGM or WSGM.

4 Acceleration with WSGM: Numerical Results

For multiscale Gaussian processes, we proved that with WSGMs, the number of time steps N(ε) to
reach a fixed error ε does not depend on the signal size, as opposed to SGMs. This section shows that
this result applies to non-Gaussian multiscale processes. We consider a physical process near a phase
transition and images from the CelebA-HQ database [19].

4.1 Physical Processes with Scalar Potentials

Gaussian stationary processes are maximum entropy processes conditioned by second order moments
defined by a circulant matrix. More complex physical processes are modeled by imposing a constraint
on their marginal distribution, with a so-called scalar potential. The marginal distribution of x is
the probability distribution of an image pixel x(u), which does not depend upon u if x is stationary.
Maximum entropy processes conditioned by second order moments and marginal distributions have a
probability density which is a Gibbs distribution p(x) = Z−1 e−E(x) with:

E(x) = 1
2x

⊤Cx+
∑

u V (x(u)) , (20)

where C is a circulant matrix and V : R → R is a scalar potential. Appendix S8 explains how to
parameterize V as a linear combination of a family of fixed elementary functions. The φ4 model is a
particular example where C = −∆ is the negative Laplacian and V is a fourth-order polynomial,
adjusted in order to impose that x(u) ≈ ±1 with high probability. For so-called critical values of
these parameters, the resulting process becomes multiscale with long range interactions and a power
law spectrum, see Figure 3-(c).

We train SGMs and WSGMs on critical φ4 processes of different sizes; for the score model sθ,
we use a simple linear parameterization detailed in Appendix S8.2. To evaluate the quality of the
generated samples, it is sufficient to verify that these samples have the same second order moment
and marginals as φ4. We define the error metric as the sum of the L2 error on the power spectrum and
the total-variation distance between marginal distributions. Figure 3-(a) shows the decay of this error
as a function of the number of time steps used in an SGM and WSGM with a uniform discretization.
With vanilla SGM, the loss has a strong dependency in L, but becomes almost independent of L
for WSGM. This empirically verifies the claim that an ill-conditioned covariance matrix leads to
slow sampling of SGM, and that WSGM is unaffected by this issue by working with the conditional
distributions of normalized wavelet coefficients.

4.2 Scale-Wise Time Reduction in Natural Images

Images are highly non-Gaussian multiscale processes whose power spectrum has a power law decay.
We now show that WSGM also provides an acceleration over SGM in this case, by being independent
of the image size.

We focus on the CelebA-HQ dataset [28] at the 128 × 128 resolution. Its power spectrum has a
power law decay, as shown in Figure 4, and it thus suffers from ill-conditioning, even though it is a
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Figure 3: Left: error between ground-truth φ4 datasets in various dimensions L, and the synthetized
datasets with SGM and WSGM, for various number of discretization steps. Middle: realizations of
φ4 (top) and WSGM samples (bottom). Right: power spectrum of φ4 for L = 256.

non-stationary process. We compare SGM [11] samples at the 128× 128 resolution with WSGM
samples which start from the 32× 32 resolution. Though smaller, the 32× 32 resolution still suffers
from a power law decay of its spectrum over several orders of magnitude. The reason why we limit
this coarsest resolution is because border effects become dominant at lower image sizes. To simplify
the handling of border conditions, we use Haar wavelets.

Following [38], the global scores sθ(x) are parameterized by a neural network with a U-Net architec-
ture. It has 3 residual blocks at each scale, and includes multi-head attention layers at lower scales.
The conditional scores sθ(x̄j |xj) are parameterized in the same way, and the conditioning on the low
frequencies xj is done with a simple input concatenation along channels [38, 40]. The details of the
architecture are in Appendix S9. We use a uniform discretization of the backward SDE to stay in the
setting of Theorem 2, and show that WSGM still obtains satisfactory results in this case.

The generation results are given in Figure 4. With the same computational budget of 16 discretizations
steps at the largest scale (iterations at smaller scales having a negligible cost due to the exponential
decrease in image size), WSGM achieves a much better perceptual generation quality. Notably, SGM
generates noisy images due to discretization errors. This is confirmed quantitatively with the Fréchet
Inception Distance (FID) [10]. The FID of the WSGM generations decreases with the number of steps,
until it plateaus. This plateau is reached with at least 2 orders of magnitude less steps for WSGM
than SGM. This number of steps is also independent of the image size for WSGM, thus confirming
the intuition given in the Gaussian case by Theorems 1 and 3. Our results confirm that vanilla SGM
on a wide range of multiscale processes, including natural images, suffers from ill-conditioning, in
the sense that the number of discretization steps grows with the image size. WSGM, on the contrary,
leads to uniform discretization schemes whose number of steps at each scale does not depend on the
image size.

We also stress that there exists many techniques [18, 17, 27, 53, 42, 37, 43, 23, 11, 29, 41, 51] to
accelerate the sampling of vanilla SGMs, with sometimes better FID-time complexity tradeoff curves.
Notably, the FID plateaus at a relatively high value of 20 because the coarsest resolution 32× 32 is
still ill-conditioned, and thus requires thousands of steps with a non-uniform discretization schedule
to achieve FIDs less than 10 with vanilla SGM [38]. Such improvements (including proper handling
of border conditions) are beyond of the scope of this paper. The contribution of WSGM is rather to
show the reason behind this sampling inefficiency and mathematically prove in the Gaussian setting
that wavelet decompositions of the probability distribution allows solving this problem. Extending
this theoretical result to a wider class of non-Gaussian multiscale processes, and combining WSGM
with other sampling accelerations, are interesting research directions.

5 Discussion

This paper introduces a Wavelet Score-based Generative Model (WSGM) which applies an SGM to
normalized wavelet coefficients conditioned by lower frequencies. We prove that the number of steps
in SGMs is controlled by the regularity of the score of the target distribution. For multiscale processes
such as images, it requires a considerable number of time steps to achieve a good accuracy, which
increases quickly with the image size. We show that a WSGM eliminates ill-conditioning issues by
normalizing wavelet coefficients. As a result, the number of steps in WSGM does not increase with
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Figure 4: Top. (a): Generations from SGM with 16 discretization steps. (b): Generations from
WSGM with 16 discretization steps at each scale. (c): Power spectrum of CelebA-HQ. Bottom.
(a): Evolution of the FID w.r.t. the number of diffusion steps for SGM and WSGM with L = 128.
(b): Evolution of the FID w.r.t. the number of diffusion steps for SGM at several image sizes L. (c)
Evolution of the FID w.r.t. the number of diffusion steps for WSGM at several image sizes L.

the image size. We illustrated our results on Gaussian distributions, physical processes and image
datasets.

One of the main limitations of WSGM is that it is limited to multiscale processes for which the
conditional wavelet probabilities are nearly white. A promising direction for future work is to
combine WSGM with other acceleration techniques such as adaptive time discretizations to handle
such cases. In another direction, one could strengthen the theoretical study of SGM and extend our
results beyond the Gaussian setting, in order to fully describe SGM on physical processes that can be
seen as perturbations of Gaussian distributions.
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