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Figure 1: Completion Results. Our Restore3D is among the first to simultaneously restore the shape
and texture of relatively complex and diverse objects, producing highly plausible and realistic results.

Abstract

Restoring incomplete or damaged 3D objects is crucial for cultural heritage preser-1

vation, occluded object reconstruction, and artistic design. Existing methods primar-2

ily focus on geometric completion, often neglecting texture restoration and strug-3

gling with relatively complex and diverse objects. We introduce Restore3D, a novel4

framework that simultaneously restores both the shape and texture of broken objects5

using multi-view images. To address limited training data, we develop an automated6

data generation pipeline that synthesizes paired incomplete-complete samples from7

large-scale 3D datasets. Central to Restore3D is a multi-view model, enhanced by a8

carefully designed Mask Self-Perceiver module with a Depth-Aware Mask Rectifier.9

The rectified masks, learned through the self-perceiver, facilitate an image integra-10

tion and enhancement phase that preserves shape and texture patterns of incomplete11

objects and mitigates the low-resolution limitations of the base model, yielding12

high-resolution, semantically coherent, and view-consistent multi-view images. A13

coarse-to-fine reconstruction strategy is then employed to recover detailed textured14

3D meshes from refined multi-view images. Comprehensive experiments show15

that Restore3D produces visually and geometrically faithful 3D textured meshes,16

outperforming existing methods and paving the way for more robust 3D object17

restoration. Project page: https://nip-ss.github.io/NIPS-anonymous/.18
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Figure 2: The importance of masks. In single-view inpainting, user-provided masks define the
regions requiring inpainting. However, in a multi-view context, manually creating consistent masks
across all views is impractical. Directly inverting object masks to serve as inpainting masks inevitably
causes issues (see Prob. 1 & 3). Moreover, manually adjusting masks based on depth information
(see Prob. 2) is labor-intensive and time-consuming. As shown in the right figure (a), our mask
self-perceiver can automatically indicate the regions that need to be completed. By leveraging
both preserved and generated masks (d & e), our approach retains the incomplete object’s patterns,
ensuring accurate and consistent multi-view inpainting. These masks are also used for the image
enhancement stage to yield high-resolution restored images (see Fig. 4).

1 Introduction19

Recent advances in 3D generation and reconstruction techniques [12, 45, 30, 29, 69, 31, 56] have20

demonstrated impressive capabilities, paving the way for innovative applications across diverse21

fields. Despite these strides, a significant gap remains in the comprehensive restoration of both22

shape and texture for broken or incomplete 3D objects. This challenge is particularly relevant for23

some applications such as cultural heritage preservation, occluded objects reconstruction, and artistic24

creation, where high-fidelity restoration/completion is crucial.25

In this study, we aim to develop a robust framework that can simultaneously restore the shape and26

texture of incomplete 3D objects while handling complex and diverse data types. Key challenges in27

achieving this goal include: i) Data Collection. Existing 3D datasets [6, 16, 48] focus primarily on28

shape completion, often neglecting the equally critical aspect of texture restoration. Furthermore,29

these datasets typically contain simple objects. Creating a diverse, high-quality dataset remains30

labor-intensive and time-consuming. ii) Complexity of Object Completion. Addressing the intricacies31

of restoring complex and general objects requires a robust framework, as simpler methods often fall32

short. iii) Consistency Preservation of Broken Parts. Incomplete objects may exhibit varying degrees33

of degradation in shape and texture. Therefore, preserving the integrity of original components,34

including consistent color, style, and structural coherence, is crucial for realistic restoration.35

To address these challenges, we propose several complementary solutions: i) Synthetic Data36

Generation. To overcome the limitations of existing datasets, we propose to synthesize paired37

broken and complete data. ii) Leveraging Foundation Models. Recent advancements in foundation38

models [23, 52, 50, 43, 28, 71] have demonstrated exceptional generalizability, due to their extensive39

architectures, large-scale datasets, and adaptability through fine-tuning. We incorporate foundation40

models to provide prior knowledge, enabling our framework to effectively handle complex and diverse41

cases. iii) Task-Specific Structures. While foundation models offer valuable priors, task-specific42

components are necessary to tailor their application. Motivated by studies [80, 73, 40], we guide43

these models toward optimal probability distributions with specialized modules, achieving more44

accurate and contextually appropriate restorations.45

Concretely, we first produce an automatic pipeline to construct paired data, which uses the Boolean46

modifier in Blender. It offers diverse and large-scale data that are difficult to acquire manually. Second,47

we propose an innovative framework named Restore3D, comprising two key components, i.e., multi-48

view image inpainting and reconstruction. There are several foundational models [52, 31, 69] in49

these two components that we can leverage prior knowledge to further handle more diverse incomplete50

objects effectively. However, simply applying foundational models to multi-view images introduces51

several challenges, as shown in Fig. 2, including: 1) View Inconsistency: Generated results often52
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differ across views, leading to visual incoherence. 2) Depth Understanding: Existing models often53

lack robust depth perception, resulting in failures to recognize occlusions and spatial relationships. 3)54

Inpainting Position Perception: Accurately identifying regions requiring inpainting can be difficult,55

especially for large masks.56

To address these issues, we propose a multi-view base model combined with a specially de-57

signed mask self-perceiver module incorporating a depth-aware mask rectifier. This module58

autonomously perceives and reconstructs missing components, preserving the integrity of original59

broken regions and ensuring consistent results across multiple views. Additionally, by leveraging60

the preserved and generated masks predicted by the self-perceiver, we can develop an image inte-61

gration and enhancement pipeline (see Fig. 2 & 4), yielding high-quality and consistent results. To62

convert high-quality multi-view images into 3D objects, we employ large reconstruction models63

(LRMs)[23, 56, 69, 29, 63], which offer efficient single- and multi-view object reconstruction capa-64

bilities. To overcome the limitation of coarse outputs from these models, we adopt a coarse-to-fine65

refinement approach. Leveraging recent advances in surface normal prediction models[3, 72], we66

inject normal priors to progressively enhance geometric quality, and refine texture based on updated67

geometry by using enhanced images. This ensures that our refined shapes and textures maintain high68

fidelity, even for complex scenarios.69

We conduct extensive experiments on Objaverse [17], GSO [18], and OmniObject3D [67] to validate70

the quality of inpainting and reconstruction. The results demonstrate that our inpainting method71

significantly outperforms previous approaches [36, 80, 50], e.g., ↑ 13 in PSNR compared to Ner-72

filler [62]. By carefully designing a mask self-perceiver, our method can alleviate view inconsistency,73

understand depth concepts, and capture inpainting regions, achieving consistent structure and texture74

styles without requiring user-provided masks to indicate inpainting regions. For reconstruction,75

our approach enhances both geometric and texture quality as shown in Fig. 1, indicating that our76

proposed framework is capable of producing complete shapes and textures with relatively high fidelity77

compared to baseline methods [22, 69]. Overall, our contributions are summarized as follows,78

• To the best of our knowledge, we are among the first to explore the completion of relatively complex79

shapes and textures. To support this task, we introduce an automated data synthesis pipeline that80

generates paired incomplete and complete shapes and textures, providing a rich source of training81

data named RestoreIt-3D.82

• We propose Restore3D, a novel framework to tackle shape and texture completion through a83

combination of multi-view image inpainting and reconstruction. In multi-view image inpainting,84

we design a mask self-perceiver with a depth-aware mask rectifier for autonomous perception and85

reconstruction of missing components, ensuring preservation of original features. Moreover, we86

introduce an image integration and enhancement pipeline to restore fine details. We refine coarse87

meshes by using normal priors and enhanced images.88

• Comprehensive experiments validate the effectiveness of Restore3D, demonstrating its ability to89

produce complete and high-quality textured meshes.90

2 Related Work91

2D Inpainting and Generation models 2D inpainting methods are designed to complete missing92

content in an image using a given image and mask. LaMa [54] utilizes fast Fourier convolutions, a93

large receptive field, and extensive training masks to effectively fill large missing areas, producing94

plausible inpainting results. Recent advancements in image generation [50, 80] have demonstrated su-95

perior performance and can be adapted for inpainting tasks with high-quality outcomes. RePaint [36]96

modifies the diffusion generation process, allowing it to be used for inpainting. NeRFiller [62] uses97

grid priors to make the 2D diffusion model produce more consistent multi-view inpainting results.98

However, these methods require a user-defined mask to specify the regions that need inpainting.99

3D Generation and Completion Recent 3D generation models [61, 30, 9] showcase promising100

results. DreamFusion [45] and SJC [59] are first proposed to generate 3D assets from text using101

the strong 2D text-to-image generation model [50]. As 2D diffusion models easily lead to 3D102

inconsistency, some works [31, 82, 57, 55, 58, 70] focus on consistent multi-view image diffusion103

models. MVDream [52] uses 3D self-attention and camera embedding to achieve multi-view text-to-104

image generation. Considering the time-consuming nature of SDS-based methods, there are some105

works [20, 34, 29, 33, 56, 65, 35] that use multi-view diffusion models and reconstruction models.106
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Figure 3: An overview of multi-view image inpainting. We carefully design a mask self-perceiver
based on a multi-view diffusion model that composes the image and text features with a spatial mask
predicted by a depth-aware mask rectifier, therefore the model can automatically perceive the missing
part and further generate it meanwhile preserving the original parts.

Another line for 3D generation is that directly train 3D generative models using 3D representations107

like point cloud [42, 77, 37, 81], meshes [32, 21], neural fields [27, 1, 41, 24, 78, 19, 8]. In addition108

to 3D generation, recent 3D shape completion works [26, 79, 66, 68, 16, 15, 39, 44, 12, 13] usually109

use different types of 3D representations and networks to model global and local structures, e.g., point110

cloud, sdf, GAN, VAE, and diffusion models. However, they all learn models on small-scale datasets,111

therefore the modeling capacity is limited compared with some 3D generation models trained on112

large-scale datasets (e.g., Objavese [17]). Moreover, these works do not consider the texture.113

Texture Generation. Several texture generation works [49, 5, 7] use an iteratively texturing strategy114

based on the pre-trained depth-to-image diffusion models, yielding high-quality texture. However,115

these methods tend to error lighting inherited from training data. Paint3D [76] proposes a shape-116

aware UV Inpainting and a shape-aware UVHD diffusion model to alleviate this situation. There117

is another line to learn texture. Texturify [53] employs texture maps on the surface of meshes and118

uses StyleGAN [25] to predict texture. Mesh2Tex [4] incorporates an implicit texture field for119

texture prediction. These methods are lacking in global information modeling. PointUV [75] first120

trains a diffusion model specifically for mesh texture generation, and the proposed coarse-to-fine121

framework allows it to enjoy the efficiency of 2D representation while enhancing 3D consistency.122

Other approaches like AUV-net [10], LTG [74], and TUVF [11] learn to generate UV-Maps for 3D123

shapes. However, they typically focus on the texture generation starting from a complete shape.124

3 Method125

3.1 Data Preparation126

Motivation. We browse the datasets of related tasks and find that the existing datasets [6, 17, 67, 18,127

14] are not sufficient to handle the shape and texture completion of broken objects, which suggests the128

need to construct specific broken and complete paired data. However, collecting large-scale paired129

data in the real world is time-consuming and labor-intensive. Thus we propose to synthesize broken130

and complete paired data.131

Data Collection. We select the recent dataset, G-objaverse [46] that has more diverse and general132

objects, and sample about 83K 3D objects from this dataset.133

Synthesis Pipeiline. Specifically, we propose an automatic data processing technique using Boolean134

operations (i.e., Difference and Intersect) of Blender. Additionally, we equip the dataset with text135

captions using Cap3D [38]. Subsequently, we normalize and merge the prepared 3D data. The use136

of Boolean operations requires the introduction of another object. Therefore, we use an ico sphere137

or cube with random size and rotation angle and then randomly place them inside the 3D bounding138

box of the prepared 3D data to ensure that the objects can be realistically segmented. After that, it is139

essential to render this processed data in the format of RGB images to facilitate model learning. We140

execute the rendering at a resolution of 256×256. The camera settings include a randomly chosen141

elevation between -10◦ and 30◦. Additionally, the azimuth values are uniformly rendered from 0◦ to142
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360◦ with a randomly sampled start view, producing a total of 32 images per object. The Fov of the143

camera is randomly from 35◦ to 45◦ and the distance is always 2.144

3.2 Multi-view Image Inpainting145

Motivation. Traditional single-view image inpainting methods [54, 50, 80] rely on the user-provided146

masks that indicate the areas to be inpainted. While this approach works well in the context of147

single-view images, it presents significant challenges when extended to multi-view contexts as shown148

in Fig. 2. 1. View inconsistency. In a multi-view scenario, the user is required to manually provide a149

mask for each of the views (e.g., four views in our case). This also introduces the risk of errors, as150

the mask needs to be accurately aligned across different perspectives to maintain 3D consistency. 2.151

Uncertainty Regarding Inpainting Areas. These models cannot autonomously perceive the regions152

that require inpainting when a large mask is applied. Additionally, they do not incorporate depth153

perception, limiting their understanding of occlusion and spatial relationships. To address these154

challenges, we propose an innovative approach that enables the model to ensure view consistency and155

self-perceive the mask. Concretely, we design the following two parts.156

Mask Self-perceiver. We propose a mask self-perceiver module based on a multi-view image157

generation model as shown in Fig. 3. It has two projectors that consist of transformer-based blocks158

and camera modulation layers, which project the depth and image features (fd, fr) extracted from159

CLIP [47] to the diffusion feature space. The camera modulation helps the model to discriminate the160

feature under different cameras. Then these projected features (pd, pr) will be fed to the respective161

cross-attention blocks as key and value (Kd,Kr,Vd,Vr). The process can be formulated as follows,162

p∗ = Proj(f∗, c) = Trans(Mod(f∗, c)) (1)
163

s∗ = Softmax(
QKT

∗√
d

)V∗ (2)

where f∗ can be depth or image features, p∗ is the projected features of them. Similarly, s∗,K∗ and164

V∗ are the results of p∗ via cross-attention and linear layers. Q originates from the pre-layer features165

in the diffusion model.166

Depth-aware Mask Rectifier. Since depth effectively captures the incomplete shape while disre-167

garding texture information, the rectifier can focus solely on identifying the regions that require168

generation and preservation. Moreover, the depth can help the model understand the spatial relation169

and occlusion. Specifically, This module leverages depth features obtained after the cross-attention170

layer, along with incomplete masks, and inputs them into a mask rectifier. The rectifier then outputs a171

mask indicating where needs to be generated i.e., leveraging the text features and where needs to be172

preserved i.e., using the image features. The process can be formulated as follows,173

Mr = Sigmoid(Conv(CBAM(Conv[sd,Mo]))) (3)

174 fn = (1−Mr)st +Mrsr (4)
where Conv is a convolution layer, and CBAM is Convolutional Block Attention Module [64]175

Training objectives Given training samples, including incomplete images I, depth images D,176

incomplete masks M, text prompts P and camera embedding C, the multi-view inpainting loss can177

be formulated as follows,178

L = min
θ

Ez,ϵ∼N (0,I),t∥ϵ− ϵθ(zt; t, I,D,M,P, C)∥22. (5)

179
3.3 Image Integration and Enhancement180

Motivation. The input resolution of multi-view model is 256 x 256, which is subsequently encoded181

to 32 x 32 using a Variational Autoencoder. As a result, local details are compressed, leading to a182

loss of clarity in both the original and generated regions of the image. This compression often causes183

the inpainted part to be unclear, and the reconstructed image may lose fine details that are essential for184

achieving high-quality results. Moreover, high-quality images will help the next reconstruction stage185

to give accurate and detailed textured meshes. To address these challenges, we propose a pipeline186

that enables the model to restore local details and preserve the original patterns.187

Enhancement Models. We explore two types of enhancement models. Real-ESRGAN [60] is188

effective at preserving the patterns of low-resolution images with minimal misalignment, making189

it ideal for recovering the overall structure. ControlNet-Tile [80] offers advanced capabilities for190

enhancing image details, but will modify the original pattern when a high denoising step is used.191
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Based on these properties, we design the follow-192

ing enhancement pipeline. 1. Input resolution193

alignment using Real-ESRGAN. Before integrat-194

ing with the original images, we need to align195

the resolution. Using Real-ESRGAN effectively196

preserves the overall structure and does not in-197

troduce content that is not related to the original198

style. 2. Integration of generated and origi-199

nal parts using rectified masks. As depicted200

in Fig. 4, this procedure infers the preserved201

and generated masks used to compose the im-202

ages, which preserves the original parts as soon as possible. However, this procedure inevitably203

leads to some artifacts, e.g., inconsistent color transitions. To address these artifacts, we leverage204

the mentioned property of ControlNet-Tile to enhance the images. 3. Image harmonizing using205

ControlNet-Tile with a blending strategy. Directly using ControlNet-Tile will alter the original pattern206

and destroy the integration step. Inspired by previous works [2, 36], we incorporate a mask blending207

technique within the diffusion process. This technique helps maintain the original patterns, eliminates208

any gaps caused by integration in image space, and enhances the image quality.209

3.4 Multi-view Image Reconstruction210

Fast Reconstruction using Large Reconstruction Models (LRMs). Recent advancements in211

LRMs [23, 56, 69], which leverage sophisticated architectures, large-scale datasets, and extensive212

model parameters, have demonstrated impressive capabilities in 3D object reconstruction from single213

or sparse-view images. These models are particularly well-suited for tasks requiring fast mesh214

reconstruction. However, while LRMs can produce initial reconstructions efficiently, the results215

are often coarse and lack the fine details necessary for high-quality 3D representations. To address216

this limitation, we adopt a coarse-to-fine schema and refine the shapes and textures of the outputs217

generated by LRMs, separately, as shown in Fig. 5.218

Geometry Refinement using Normal Prior. A key component in optimizing shape structure is219

to obtain high-quality surface normals. Recent surface normal estimation methods [3, 72] have220

demonstrated the ability to predict relatively accurate normals for in-the-wild monocular images221

or videos. Therefore, we can employ an off-the-shelf normal estimation model to provide normal222

priors and then use it to optimize the shape structure of 3D objects. Since these models are primarily223

trained on monocular images or videos, the predicted normals are typically in camera space. Thus224

we need to convert these normals into world space using camera extrinsic parameters. Specifically,225

we select StableNorm, a model that accepts coarse rendered normals and RGB images as inputs to226

predict refined normal outputs. The consistency of the rendered normals contributes to the stability227

and accuracy of the predicted normals, allowing for more precise geometry refinement.228

Texture Refinement using Enhanced High-quality Images. Since the current shape differs from229

the coarse shape, the original texture no longer aligns with the updated geometry. Thus we propose to230

learn the textures that better match the optimized shape. Concretely, we can use Xatlas to obtain UV231

coordinates, enabling us to back-project the colors from the inpainted images onto the UV textures.232

After that, we treat the UV textures as parameters and use the enhanced high-quality images to233

optimize the texture maps.234

Training Objectives. We apply a normal loss Lnormal based on the rendered normals In and the235

target normals În. Additionally, we apply a mask loss Lmask to ensure that the optimization regions236

6



Repaint SD Inpainting ControlNet Inpainting NeRFiller OursInput Ground Truth

Figure 6: Visual comparison with inpainting methods.
Table 1: Comparison with the previous inpainting and reconstruction methods. ⋆ means
inpainting, while △ means using Depth-Anything [71] to obtain the depth images. Note that we do
not apply image integration and enhancement pipelines. IM means InstantMesh [69].

(a) Inpainting.

Method PSNR ↑ LPIPS ↓ FID ↓ SSIM ↑

Repaint [36] 10.55 0.31 69.57 0.76
SD ⋆ [50] 12.58 0.22 61.15 0.83
ControlNet ⋆ [80] 10.66 0.30 69.91 0.76
NeRFiller [62] 12.03 0.25 65.20 0.82
Ours △ 25.29 0.07 32.05 0.95
Ours 25.50 0.06 31.82 0.95

(b) Reconstruction.

Method PSNR ↑ LPIPS ↓ CD ↓ F-Score ↑

Open-LRM [22] 16.90 0.15 0.011 0.179
IM [69] 20.60 0.11 0.006 0.321
Ours 23.35 0.09 0.005 0.389

are correctly aligned. The loss function is defined as follows,237

Lshape = Lnormal + Lmask = ∥In − În∥22 + ∥M− M̂∥22. (6)

To optimize the texture, we use a RGB loss Lrgb on the rendered images Irgb and enhanced images238

ˆIrgb. The mask loss Lmask is also applied. Moreover, the SSIM Lssim loss is introduced to improve239

the texture quality. The loss functions are defined as follows,240

Ltex = Lrgb + Lmask + λLssim = ∥Irgb − ˆIrgb∥22 + ∥M− M̂∥22 + λSSIM(I, Î), (7)

where λ is a weight parameter.241

4 Experiments242

Dataset & Metrics. For model training, we sample approximately 83K data from the G-objaverse [46]243

dataset and process them using our proposed pipeline. For model testing, we sample approximately244

350 data from the GSO [18], Omniobject [67], and Objaverse [17] datasets. Inpainting. To assess245

image quality, We choose Peak Signal-to-Noise Ratio (PSNR), Frechet Inception Distance (FID),246

Learned Perceptual Image Patch Similarity (LPIPS), and Structural Similarity Index Measure (SSIM).247

Reconstruction. In addition to the metrics mentioned above, we evaluate geometry quality using248

Chamfer Distance (CD) and F-scores.249

4.1 Inpainting Results.250

Baselines. We compare our method with single-view image inpainting, i.e., Repaint[36], Stable-251

Diffusion [50], Controlnet [80], and a multi-view inpainting method, i.e., Nerfiller [62].252

Qualitative Comparison. As shown in Fig. 6, the results demonstrate that our model produces plau-253

sible and coherent inpainting outcomes. Previous methods require user-provided masks to guide the254

model in generating missing parts. However, when given a relatively large mask, these methods strug-255

gle to capture the inherent structure of the objects, leading to less accurate and coherent inpainting.256
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Table 2: Ablation studies for multi-view inpainting and reconstruction. GR and TR mean
geometry and texture refinements.

(a) Inpainting.

Method PSNR ↑ LPIPS ↓ SSIM ↑

IF 22.65 0.14 0.90
IF + Conv 26.53 0.08 0.94
IF + Conv + DMR 29.44 0.06 0.95

(b) Reconstruction.

Method PSNR ↑ LPIPS ↓ CD ↓ F-Score ↑

Baseline 20.60 0.11 0.006 0.321
GR - - 0.005 0.389
GR + TR 23.35 0.09 0.005 0.389

InstantMesh OursOpen-LRMInput

Figure 7: Visual comparison with reconstruction
methods.

In contrast, our approach does not require prede-257

fined inpainting masks. Instead, it autonomously258

perceives and reconstructs the missing regions,259

capturing the underlying structure of the object260

without manual intervention. This capability al-261

lows our method to produce high-quality, struc-262

turally consistent inpainting results.263

Quantitative Comparison. As illustrated in264

Table 1a, we observe the following: 1) Our ap-265

proach achieves the best performance in restor-266

ing shape and texture. 2) When applying depth267

images predicted by Depth-Anything [71], our268

method yields results comparable to those obtained with ground truth depths. 3) The compared269

methods produce noticeably inferior results in terms of inpainting quality.270

4.2 Reconstruction Results.271

Baselines. We compare our method against both single-view and multi-view LRMs, including LRM272

[22, 23] and InstantMesh [69]. For single-view baselines, we input the front-view image.273

Quantitative & Qualitative Comparison. As shown in Table. 1b, our method achieves superior274

rendered image quality and geometry accuracy, with a substantial improvement over baseline methods.275

In Fig. 7, it is evident that our approach delivers clearer details and the most accurate geometry among276

the compared methods. Training time. Our approach is highly efficient, requiring 20 seconds per277

object for geometry and texture refinements.278

4.3 Ablation Study279

Multi-view Inpainting. We conduct ablation studies on the proposed multi-view inpainting module280

in the following components: 1) IF. Only inputting incomplete images to the cross-attention layers.281

w. TR w/o. TR

w. GR w/o. GR
Input IF

IF + Conv IF + Conv
+ DMR

a. Geometry and Texture Refinement
b. Designed Module

in Multi-view Inpainting.

Figure 8: Visualization of ablation studies.

2) Conv. Concatenating noise and incomplete im-282

ages to a learnable convolutional layer. 3) DMR.283

Adding the designed Depth-aware Mask Rectifier. As284

shown in Table 2a, the results improve progressively285

with each added component, and using all designed286

components achieves the highest results. In the qual-287

itative comparison shown in Fig. 8b, 1) IF Only: the288

model captures the general style of the object but289

lacks an understanding of spatial relationships and290

structure. 2) IF + Conv: This enables the model291

to capture spatial positioning and understand object292

structure. However, it is still prone to color inaccuracies, especially in areas like the head (blended293

with error black color). Additionally, the region that needs to be preserved is changed. 3) IF + Conv294

+ DMR: This allows the model to improve its ability to handle occlusions and spatial relationships,295

producing the best inpainting quality, with coherent colors and well-preserved spatial structure.296

Reconstruction. We evaluate the impact of the following components: 1) Geometry Refinement (GR),297

and 2) Texture Refinement (TR). In Table 2b and Fig. 8a, incorporating GR leads to substantial298

improvements in geometry quality. TR improves the visual quality of the rendered images.299
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c. Multiple Area Lights (+z, +x, -x, +y, -y)

Figure 9: Different lighting settings.

4-view occlusion (real-world Images)1-view occlusion

Figure 10: Visualization of occlusion cases.

Input Inpainting Input Inpainting Input Inpainting

Figure 11: Visual results on BBD [51].

Table 3: Different lighting settings.
Method PSNR ↑ LPIPS ↓ SSIM ↑
Top area light 25.18 0.06 0.95
Multiple area lights 25.50 0.06 0.95
Environment light 25.28 0.06 0.95

Table 4: Occlusion results.

Method PSNR ↑ LPIPS ↓ SSIM ↑
1-view 27.16 0.06 0.95
4-view 25.62 0.07 0.95

Table 5: BBD [51] results

Method PSNR ↑ LPIPS ↓ SSIM ↑

SD-inpainting 12.02 0.74 0.53
ControlNet 14.50 0.59 0.71
NeRFiller 17.66 0.52 0.79
Ours 25.09 0.10 0.95

Different lights. We render our test samples with different lights and test our inpainting model on300

these rendered images. In Table 3 and Fig. 9, the results show our model can achieve promising301

results under different lighting settings.302

5 Application303

Our Restore3D can be directly used for some applications:304

Object Restoration. We test our model on the validation set of Breaking Bad Dataset (BBD) [51], as305

shown in Fig. 11 and Table 5. This dataset is synthesized by a physically based method that simulates306

the natural destruction process of geometric objects.307

Text prompt: wearing a jacket Text prompt: wearing denim jeans.

Figure 12: Text-guided editing results.

Occluded Object Reconstruction. We arrange308

either a single object or four objects to create oc-309

cluded scenarios with one view and four views,310

respectively, based on our 350 test samples. As311

shown in Table 4 and Fig. 10, the results indicate312

that the one-view occlusion scenario achieves higher performance, as the occluded regions can be313

inferred more easily from the visible areas. When applying four-view occlusion, our model still314

demonstrates strong performance. In addition, we present a real-world example in Fig. 10.315

3D Object Editing. We can position a cube or sphere over the target region for editing and use a316

Boolean operation to segment the object. This enables us to render the object as an incomplete image.317

We then process them using our inpainting model with a text prompt for editing. Finally, we apply318

the reconstruction model. In Fig. 12, our approach successfully handles simple editing scenarios.319

6 Conclusion320

In this paper, we propose a novel framework named Restore3D, consisting of multi-view image321

inpainting and reconstruction, to simultaneously complete both the shape and texture of broken322

3D objects. To facilitate this task, we develop an automated data processing pipeline that collects323

pair-wise data from a large-scale dataset [17]. In the multi-view image inpainting, we design a324

mask self-perceiver with a depth-aware mask rectifier. This component autonomously identifies and325

reconstructs missing regions while preserving the original patterns. To address the low resolution326

resulting from the base model [52], we implement an image integration and enhancement pipeline,327

allowing for seamless integration and detail enhancement by learned masks. For the reconstruction328

stage, we employ an LRM to quickly generate a coarse result, followed by separate geometry329

refinement using normal priors and texture refinement using enhanced images. Through this designed330

framework, our model produces coherent completions of broken objects as illustrated in Fig. 1.331
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A Technical Appendices and Supplementary Material534

A.1 Preliminary535

Multi-view Diffusion models. Extending 2D generation models to the multi-view domain has been536

explored in various works [31, 52]. These extensions often incorporate modifications like adding537

camera conditions and adjusting the attention mechanisms to enable effective multi-view synthesis.538

In this paper, we adopt MVDream as our base model. MVDream modifies the spatial attention539

mechanism in Stable Diffusion [50], allowing the attention to focus on corresponding features across540

different views.541

A.2 Implementation Details542

We train the multi-view inpainting model using four NVIDIA A100 GPUs. We use the Adam543

optimizer and incorporate classifier-free guidance. The training is conducted with a learning rate of544

1e-4 and a batch size of 256. MVDream is utilized as the base model for multi-view inpainting, while545

InstantMesh is employed as the large reconstruction model. The input consists of 4-view images. For546

the sampling process, we employ DDIM with 50 steps and a guidance scale of 5.0.547

1) Case 1
Input Inpainting

2) Case 2
Input Inpainting

3) Case 3
Input Inpainting

Figure 13: Different color types.

Table 6: Ablation studies of views.

Method PSNR ↑ LPIPS ↓ FID ↓ SSIM ↑

4-view 25.50 0.06 31.82 0.95
6-view 25.00 0.07 24.70 0.95
8-view 25.17 0.07 20.49 0.95

A.3 More Results548

More views. Although our model is trained on a 4-view setting, our model can be directly used to549

process inputs with more views. As shown in Table 6, the results show that their performance is550

comparable to the 4-view setting.551

Input Generated Images Enhanced Images

Figure 14: Visualization of image integra-
tion and enhancement.

Different color types on the broken plane. As552

shown in Fig. 13, altering the broken plane (blue553

dotted box) with different colors does not affect our554

model’s ability to complete the broken objects. This555

further validates that our model effectively distin-556

guishes between regions that need to be preserved557

and those that require generation.558

Image Integration and Enhancement As shown in Fig. 14, we provide some results of this pipeline.559

The results show that the proposed pipeline restores the original pattern and improves the image560

quality.561

Inpainting and reconstruction results on full GSO dataset (1030 Objects). As shown in Table 7562

and Table 8, our model achieves the best performance on both inpainting and reconstruction results.563

A.4 Limitations564

Our approach builds upon a base model and thus inevitably inherits some of its limitations. For565

instance, the low resolution of the input restricts the ability to capture very fine details, such as the566

facial features of characters, even with the application of enhancement techniques. In addition, there567

is still a lot of room to enrich the quality of geometry and material details in the reconstruction.568
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Table 7: Inpainting results on GSO.

Method PSNR ↑ LPIPS ↓ FID ↓ SSIM ↑

SD-inpainting 13.52 0.68 67.79 0.55
ControlNet 12.63 0.70 83.46 0.51
NeRFiller 17.07 0.60 75.24 0.72
Ours 26.02 0.06 11.12 0.94

Table 8: Reconstruction results on GSO.

Method PSNR ↑ LPIPS ↓ CD ↓ F-Score ↑

Open-LRM 17.56 0.15 0.014 0.15
IM 22.15 0.11 0.002 0.36
Ours 24.74 0.08 0.002 0.43

A.5 Broader Impacts.569

Object restoration will help cultural heritage preservation: restoring historical artifacts, sculptures,570

and architectural elements with accuracy. Negative impact: the ability to create highly accurate571

replicas can be misused for fraudulent purposes, such as creating counterfeit artifacts, artworks, or572

products, which can deceive consumers and harm original creators.573
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NeurIPS Paper Checklist574

The checklist is designed to encourage best practices for responsible machine learning research,575

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove576

the checklist: The papers not including the checklist will be desk rejected. The checklist should577

follow the references and follow the (optional) supplemental material. The checklist does NOT count578

towards the page limit.579

Please read the checklist guidelines carefully for information on how to answer these questions. For580

each question in the checklist:581

• You should answer [Yes] , [No] , or [NA] .582

• [NA] means either that the question is Not Applicable for that particular paper or the relevant583

information is Not Available.584

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).585

The checklist answers are an integral part of your paper submission. They are visible to the586

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it587

(after eventual revisions) with the final version of your paper, and its final version will be published588

with the paper.589

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.590

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a591

proper justification is given (e.g., "error bars are not reported because it would be too computationally592

expensive" or "we were unable to find the license for the dataset we used"). In general, answering593

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we594

acknowledge that the true answer is often more nuanced, so please just use your best judgment and595

write a justification to elaborate. All supporting evidence can appear either in the main paper or the596

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification597

please point to the section(s) where related material for the question can be found.598

IMPORTANT, please:599

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",600

• Keep the checklist subsection headings, questions/answers and guidelines below.601

• Do not modify the questions and only use the provided macros for your answers.602

1. Claims603

Question: Do the main claims made in the abstract and introduction accurately reflect the604

paper’s contributions and scope?605

Answer: [Yes]606

Justification: See § 1, we introduce our contribution and the scope.607

Guidelines:608

• The answer NA means that the abstract and introduction do not include the claims made609

in the paper.610

• The abstract and/or introduction should clearly state the claims made, including the611

contributions made in the paper and important assumptions and limitations. A No or NA612

answer to this question will not be perceived well by the reviewers.613

• The claims made should match theoretical and experimental results, and reflect how much614

the results can be expected to generalize to other settings.615

• It is fine to include aspirational goals as motivation as long as it is clear that these goals616

are not attained by the paper.617

2. Limitations618

Question: Does the paper discuss the limitations of the work performed by the authors?619

Answer: [Yes]620

Justification: See § A.4, we discuss our limitations.621
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Guidelines:622

• The answer NA means that the paper has no limitation while the answer No means that623

the paper has limitations, but those are not discussed in the paper.624

• The authors are encouraged to create a separate "Limitations" section in their paper.625

• The paper should point out any strong assumptions and how robust the results are to626

violations of these assumptions (e.g., independence assumptions, noiseless settings, model627

well-specification, asymptotic approximations only holding locally). The authors should628

reflect on how these assumptions might be violated in practice and what the implications629

would be.630

• The authors should reflect on the scope of the claims made, e.g., if the approach was only631

tested on a few datasets or with a few runs. In general, empirical results often depend on632

implicit assumptions, which should be articulated.633

• The authors should reflect on the factors that influence the performance of the approach.634

For example, a facial recognition algorithm may perform poorly when image resolution is635

low or images are taken in low lighting. Or a speech-to-text system might not be used636

reliably to provide closed captions for online lectures because it fails to handle technical637

jargon.638

• The authors should discuss the computational efficiency of the proposed algorithms and639

how they scale with dataset size.640

• If applicable, the authors should discuss possible limitations of their approach to address641

problems of privacy and fairness.642

• While the authors might fear that complete honesty about limitations might be used by643

reviewers as grounds for rejection, a worse outcome might be that reviewers discover644

limitations that aren’t acknowledged in the paper. The authors should use their best645

judgment and recognize that individual actions in favor of transparency play an important646

role in developing norms that preserve the integrity of the community. Reviewers will be647

specifically instructed to not penalize honesty concerning limitations.648

3. Theory assumptions and proofs649

Question: For each theoretical result, does the paper provide the full set of assumptions and650

a complete (and correct) proof?651

Answer: [NA]652

Justification: This paper does not include theoretical results.653

Guidelines:654

• The answer NA means that the paper does not include theoretical results.655

• All the theorems, formulas, and proofs in the paper should be numbered and cross-656

referenced.657

• All assumptions should be clearly stated or referenced in the statement of any theorems.658

• The proofs can either appear in the main paper or the supplemental material, but if they659

appear in the supplemental material, the authors are encouraged to provide a short proof660

sketch to provide intuition.661

• Inversely, any informal proof provided in the core of the paper should be complemented662

by formal proofs provided in appendix or supplemental material.663

• Theorems and Lemmas that the proof relies upon should be properly referenced.664

4. Experimental result reproducibility665

Question: Does the paper fully disclose all the information needed to reproduce the main ex-666

perimental results of the paper to the extent that it affects the main claims and/or conclusions667

of the paper (regardless of whether the code and data are provided or not)?668

Answer: [Yes]669

Justification: See § 4670

Guidelines:671

• The answer NA means that the paper does not include experiments.672
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• If the paper includes experiments, a No answer to this question will not be perceived well673

by the reviewers: Making the paper reproducible is important, regardless of whether the674

code and data are provided or not.675

• If the contribution is a dataset and/or model, the authors should describe the steps taken to676

make their results reproducible or verifiable.677

• Depending on the contribution, reproducibility can be accomplished in various ways.678

For example, if the contribution is a novel architecture, describing the architecture fully679

might suffice, or if the contribution is a specific model and empirical evaluation, it may be680

necessary to either make it possible for others to replicate the model with the same dataset,681

or provide access to the model. In general. releasing code and data is often one good682

way to accomplish this, but reproducibility can also be provided via detailed instructions683

for how to replicate the results, access to a hosted model (e.g., in the case of a large684

language model), releasing of a model checkpoint, or other means that are appropriate to685

the research performed.686

• While NeurIPS does not require releasing code, the conference does require all submis-687

sions to provide some reasonable avenue for reproducibility, which may depend on the688

nature of the contribution. For example689

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to690

reproduce that algorithm.691

(b) If the contribution is primarily a new model architecture, the paper should describe692

the architecture clearly and fully.693

(c) If the contribution is a new model (e.g., a large language model), then there should694

either be a way to access this model for reproducing the results or a way to reproduce695

the model (e.g., with an open-source dataset or instructions for how to construct the696

dataset).697

(d) We recognize that reproducibility may be tricky in some cases, in which case authors698

are welcome to describe the particular way they provide for reproducibility. In the699

case of closed-source models, it may be that access to the model is limited in some700

way (e.g., to registered users), but it should be possible for other researchers to have701

some path to reproducing or verifying the results.702

5. Open access to data and code703

Question: Does the paper provide open access to the data and code, with sufficient instruc-704

tions to faithfully reproduce the main experimental results, as described in supplemental705

material?706

Answer:[No]707

Justification: We will release the code and data after the publication of our paper.708

Guidelines:709

• The answer NA means that paper does not include experiments requiring code.710

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/711

public/guides/CodeSubmissionPolicy) for more details.712

• While we encourage the release of code and data, we understand that this might not be713

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not714

including code, unless this is central to the contribution (e.g., for a new open-source715

benchmark).716

• The instructions should contain the exact command and environment needed to run to717

reproduce the results. See the NeurIPS code and data submission guidelines (https:718

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.719

• The authors should provide instructions on data access and preparation, including how to720

access the raw data, preprocessed data, intermediate data, and generated data, etc.721

• The authors should provide scripts to reproduce all experimental results for the new722

proposed method and baselines. If only a subset of experiments are reproducible, they723

should state which ones are omitted from the script and why.724

• At submission time, to preserve anonymity, the authors should release anonymized ver-725

sions (if applicable).726
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• Providing as much information as possible in supplemental material (appended to the727

paper) is recommended, but including URLs to data and code is permitted.728

6. Experimental setting/details729

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-730

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the731

results?732

Answer: [Yes]733

Justification: See § 4734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• The experimental setting should be presented in the core of the paper to a level of detail737

that is necessary to appreciate the results and make sense of them.738

• The full details can be provided either with the code, in appendix, or as supplemental739

material.740

7. Experiment statistical significance741

Question: Does the paper report error bars suitably and correctly defined or other appropriate742

information about the statistical significance of the experiments?743

Answer: [No]744

Justification: The paper does not include it.745

Guidelines:746

• The answer NA means that the paper does not include experiments.747

• The authors should answer "Yes" if the results are accompanied by error bars, confidence748

intervals, or statistical significance tests, at least for the experiments that support the main749

claims of the paper.750

• The factors of variability that the error bars are capturing should be clearly stated (for751

example, train/test split, initialization, random drawing of some parameter, or overall run752

with given experimental conditions).753

• The method for calculating the error bars should be explained (closed form formula, call754

to a library function, bootstrap, etc.)755

• The assumptions made should be given (e.g., Normally distributed errors).756

• It should be clear whether the error bar is the standard deviation or the standard error of757

the mean.758

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably759

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality760

of errors is not verified.761

• For asymmetric distributions, the authors should be careful not to show in tables or figures762

symmetric error bars that would yield results that are out of range (e.g. negative error763

rates).764

• If error bars are reported in tables or plots, The authors should explain in the text how they765

were calculated and reference the corresponding figures or tables in the text.766

8. Experiments compute resources767

Question: For each experiment, does the paper provide sufficient information on the com-768

puter resources (type of compute workers, memory, time of execution) needed to reproduce769

the experiments?770

Answer: [Yes]771

Justification: See § A.2. We provide it in the implementation details.772

Guidelines:773

• The answer NA means that the paper does not include experiments.774

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or775

cloud provider, including relevant memory and storage.776
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• The paper should provide the amount of compute required for each of the individual777

experimental runs as well as estimate the total compute.778

• The paper should disclose whether the full research project required more compute than779

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t780

make it into the paper).781

9. Code of ethics782

Question: Does the research conducted in the paper conform, in every respect, with the783

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?784

Answer: [Yes]785

Justification: We acknowledge the NeurIPS Code of Ethics and obey them in our paper786

Guidelines:787

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.788

• If the authors answer No, they should explain the special circumstances that require a789

deviation from the Code of Ethics.790

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration791

due to laws or regulations in their jurisdiction).792

10. Broader impacts793

Question: Does the paper discuss both potential positive societal impacts and negative794

societal impacts of the work performed?795

Answer: [Yes]796

Justification: See § A.5. We provide the potential positive societal impacts and negative797

societal impacts.798

Guidelines:799

• The answer NA means that there is no societal impact of the work performed.800

• If the authors answer NA or No, they should explain why their work has no societal impact801

or why the paper does not address societal impact.802

• Examples of negative societal impacts include potential malicious or unintended uses803

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,804

deployment of technologies that could make decisions that unfairly impact specific groups),805

privacy considerations, and security considerations.806

• The conference expects that many papers will be foundational research and not tied to807

particular applications, let alone deployments. However, if there is a direct path to any808

negative applications, the authors should point it out. For example, it is legitimate to point809

out that an improvement in the quality of generative models could be used to generate810

deepfakes for disinformation. On the other hand, it is not needed to point out that a811

generic algorithm for optimizing neural networks could enable people to train models that812

generate Deepfakes faster.813

• The authors should consider possible harms that could arise when the technology is being814

used as intended and functioning correctly, harms that could arise when the technology is815

being used as intended but gives incorrect results, and harms following from (intentional816

or unintentional) misuse of the technology.817

• If there are negative societal impacts, the authors could also discuss possible mitigation818

strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-819

nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback820

over time, improving the efficiency and accessibility of ML).821

11. Safeguards822

Question: Does the paper describe safeguards that have been put in place for responsible823

release of data or models that have a high risk for misuse (e.g., pretrained language models,824

image generators, or scraped datasets)?825

Answer: [NA]826

Justification: Our model is based on publicly available datasets and models.827

Guidelines:828
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• The answer NA means that the paper poses no such risks.829

• Released models that have a high risk for misuse or dual-use should be released with830

necessary safeguards to allow for controlled use of the model, for example by requiring831

that users adhere to usage guidelines or restrictions to access the model or implementing832

safety filters.833

• Datasets that have been scraped from the Internet could pose safety risks. The authors834

should describe how they avoided releasing unsafe images.835

• We recognize that providing effective safeguards is challenging, and many papers do not836

require this, but we encourage authors to take this into account and make a best faith837

effort.838

12. Licenses for existing assets839

Question: Are the creators or original owners of assets (e.g., code, data, models), used in840

the paper, properly credited and are the license and terms of use explicitly mentioned and841

properly respected?842

Answer: [Yes]843

Justification: We cite the datasets and models.844

Guidelines:845

• The answer NA means that the paper does not use existing assets.846

• The authors should cite the original paper that produced the code package or dataset.847

• The authors should state which version of the asset is used and, if possible, include a URL.848

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.849

• For scraped data from a particular source (e.g., website), the copyright and terms of service850

of that source should be provided.851

• If assets are released, the license, copyright information, and terms of use in the package852

should be provided. For popular datasets, paperswithcode.com/datasets has curated853

licenses for some datasets. Their licensing guide can help determine the license of a854

dataset.855

• For existing datasets that are re-packaged, both the original license and the license of the856

derived asset (if it has changed) should be provided.857

• If this information is not available online, the authors are encouraged to reach out to the858

asset’s creators.859

13. New assets860

Question: Are new assets introduced in the paper well documented and is the documentation861

provided alongside the assets?862

Answer: [NA]863

Justification: We do not introduce new assets.864

Guidelines:865

• The answer NA means that the paper does not release new assets.866

• Researchers should communicate the details of the dataset/code/model as part of their sub-867

missions via structured templates. This includes details about training, license, limitations,868

etc.869

• The paper should discuss whether and how consent was obtained from people whose asset870

is used.871

• At submission time, remember to anonymize your assets (if applicable). You can either872

create an anonymized URL or include an anonymized zip file.873

14. Crowdsourcing and research with human subjects874

Question: For crowdsourcing experiments and research with human subjects, does the paper875

include the full text of instructions given to participants and screenshots, if applicable, as876

well as details about compensation (if any)?877

Answer: [NA]878

Justification: This paper does not include this.879
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Guidelines:880

• The answer NA means that the paper does not involve crowdsourcing nor research with881

human subjects.882

• Including this information in the supplemental material is fine, but if the main contribution883

of the paper involves human subjects, then as much detail as possible should be included884

in the main paper.885

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or886

other labor should be paid at least the minimum wage in the country of the data collector.887

15. Institutional review board (IRB) approvals or equivalent for research with human888

subjects889

Question: Does the paper describe potential risks incurred by study participants, whether890

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)891

approvals (or an equivalent approval/review based on the requirements of your country or892

institution) were obtained?893

Answer: [NA]894

Justification: This paper does not include this.895

Guidelines:896

• The answer NA means that the paper does not involve crowdsourcing nor research with897

human subjects.898

• Depending on the country in which research is conducted, IRB approval (or equivalent)899

may be required for any human subjects research. If you obtained IRB approval, you900

should clearly state this in the paper.901

• We recognize that the procedures for this may vary significantly between institutions902

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the903

guidelines for their institution.904

• For initial submissions, do not include any information that would break anonymity (if905

applicable), such as the institution conducting the review.906

16. Declaration of LLM usage907

Question: Does the paper describe the usage of LLMs if it is an important, original, or908

non-standard component of the core methods in this research? Note that if the LLM is used909

only for writing, editing, or formatting purposes and does not impact the core methodology,910

scientific rigorousness, or originality of the research, declaration is not required.911

Answer: [NA]912

Justification: the core method development in this research does not involve LLMs as any913

important, original, or non-standard components.914

Guidelines:915

• The answer NA means that the core method development in this research does not involve916

LLMs as any important, original, or non-standard components.917

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for918

what should or should not be described.919
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