Restore3D: Breathing Life into Broken Objects with
Shape and Texture Restoration
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Figure 1: Completion Results Our Restore3D is among the first to simultaneously restore the shape
and texture of relatively complex and diverse objects, producing highly plausible and realistic results.
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Abstract

Restoring incomplete or damaged 3D objects is crucial for cultural heritage preser-
vation, occluded object reconstruction, and artistic design. Existing methods primar-
ily focus on geometric completion, often neglecting texture restoration and strug-
gling with relatively complex and diverse objects. We introduce Restore3D, a novel
framework that simultaneously restores both the shape and texture of broken objects
using multi-view images. To address limited training data, we develop an automated
data generation pipeline that synthesizes paired incomplete-complete samples from
large-scale 3D datasets. Central to Restore3D is a multi-view model, enhanced by a
carefully designed Mask Self-Perceiver module with a Depth-Aware Mask Rectifier.
The rectified masks, learned through the self-perceiver, facilitate an image integra-
tion and enhancement phase that preserves shape and texture patterns of incomplete
objects and mitigates the low-resolution limitations of the base model, yielding
high-resolution, semantically coherent, and view-consistent multi-view images. A
coarse-to-fine reconstruction strategy is then employed to recover detailed textured
3D meshes from refined multi-view images. Comprehensive experiments show
that Restore3D produces visually and geometrically faithful 3D textured meshes,
outperforming existing methods and paving the way for more robust 3D object
restoration. Project page: https://nip-ss.github.io/NIPS-anonymous/\
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Figure 2: The importance of masks. In single-view inpainting, user—prov1ded masks define the
regions requiring inpainting. However, in a multi-view context, manually creating consistent masks
across all views is impractical. Directly inverting object masks to serve as inpainting masks inevitably
causes issues (see Prob. 1 & 3). Moreover, manually adjusting masks based on depth information
(see Prob. 2) is labor-intensive and time-consuming. As shown in the right figure (a), our mask
self-perceiver can automatically indicate the regions that need to be completed. By leveraging
both preserved and generated masks (d & e), our approach retains the incomplete object’s patterns,
ensuring accurate and consistent multi-view inpainting. These masks are also used for the image
enhancement stage to yield high-resolution restored images (see Fig. Ef[)

1 Introduction

Recent advances in 3D generation and reconstruction techniques [[12, 451 30, 29,169, 31} 156] have
demonstrated impressive capabilities, paving the way for innovative applications across diverse
fields. Despite these strides, a significant gap remains in the comprehensive restoration of both
shape and texture for broken or incomplete 3D objects. This challenge is particularly relevant for
some applications such as cultural heritage preservation, occluded objects reconstruction, and artistic
creation, where high-fidelity restoration/completion is crucial.

In this study, we aim to develop a robust framework that can simultaneously restore the shape and
texture of incomplete 3D objects while handling complex and diverse data types. Key challenges in
achieving this goal include: i) Data Collection. Existing 3D datasets [0} 16, 48] focus primarily on
shape completion, often neglecting the equally critical aspect of texture restoration. Furthermore,
these datasets typically contain simple objects. Creating a diverse, high-quality dataset remains
labor-intensive and time-consuming. ii) Complexity of Object Completion. Addressing the intricacies
of restoring complex and general objects requires a robust framework, as simpler methods often fall
short. iii) Consistency Preservation of Broken Parts. Incomplete objects may exhibit varying degrees
of degradation in shape and texture. Therefore, preserving the integrity of original components,
including consistent color, style, and structural coherence, is crucial for realistic restoration.

To address these challenges, we propose several complementary solutions: i) Synthetic Data
Generation. To overcome the limitations of existing datasets, we propose to synthesize paired
broken and complete data. ii) Leveraging Foundation Models. Recent advancements in foundation
models [23}152150, 143} 128l [71] have demonstrated exceptional generalizability, due to their extensive
architectures, large-scale datasets, and adaptability through fine-tuning. We incorporate foundation
models to provide prior knowledge, enabling our framework to effectively handle complex and diverse
cases. iii) Task-Specific Structures. While foundation models offer valuable priors, task-specific
components are necessary to tailor their application. Motivated by studies [80, (73| 40], we guide
these models toward optimal probability distributions with specialized modules, achieving more
accurate and contextually appropriate restorations.

Concretely, we first produce an automatic pipeline to construct paired data, which uses the Boolean
modifier in Blender. It offers diverse and large-scale data that are difficult to acquire manually. Second,
we propose an innovative framework named Restore3D, comprising two key components, i.e., multi-
view image inpainting and reconstruction. There are several foundational models [52} 31} 169]] in
these two components that we can leverage prior knowledge to further handle more diverse incomplete
objects effectively. However, simply applying foundational models to multi-view images introduces
several challenges, as shown in Fig. 2| including: /) View Inconsistency: Generated results often
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differ across views, leading to visual incoherence. 2) Depth Understanding: Existing models often
lack robust depth perception, resulting in failures to recognize occlusions and spatial relationships. 3)
Inpainting Position Perception: Accurately identifying regions requiring inpainting can be difficult,
especially for large masks.

To address these issues, we propose a multi-view base model combined with a specially de-
signed mask self-perceiver module incorporating a depth-aware mask rectifier. This module
autonomously perceives and reconstructs missing components, preserving the integrity of original
broken regions and ensuring consistent results across multiple views. Additionally, by leveraging
the preserved and generated masks predicted by the self-perceiver, we can develop an image inte-
gration and enhancement pipeline (see Fig.[2] &[], yielding high-quality and consistent results. To
convert high-quality multi-view images into 3D objects, we employ large reconstruction models
(LRMs)[23L 156, 169} 1291 163]], which offer efficient single- and multi-view object reconstruction capa-
bilities. To overcome the limitation of coarse outputs from these models, we adopt a coarse-to-fine
refinement approach. Leveraging recent advances in surface normal prediction models[3 [72], we
inject normal priors to progressively enhance geometric quality, and refine texture based on updated
geometry by using enhanced images. This ensures that our refined shapes and textures maintain high
fidelity, even for complex scenarios.

We conduct extensive experiments on Objaverse [17], GSO [18]], and OmniObject3D [67] to validate
the quality of inpainting and reconstruction. The results demonstrate that our inpainting method
significantly outperforms previous approaches [36 80, 50], e.g., 7 13 in PSNR compared to Ner-
filler [62]]. By carefully designing a mask self-perceiver, our method can alleviate view inconsistency,
understand depth concepts, and capture inpainting regions, achieving consistent structure and texture
styles without requiring user-provided masks to indicate inpainting regions. For reconstruction,
our approach enhances both geometric and texture quality as shown in Fig. [T} indicating that our
proposed framework is capable of producing complete shapes and textures with relatively high fidelity
compared to baseline methods [22} [69]. Overall, our contributions are summarized as follows,

* To the best of our knowledge, we are among the first to explore the completion of relatively complex
shapes and textures. To support this task, we introduce an automated data synthesis pipeline that
generates paired incomplete and complete shapes and textures, providing a rich source of training
data named Restorelt-3D.

* We propose Restore3D, a novel framework to tackle shape and texture completion through a
combination of multi-view image inpainting and reconstruction. In multi-view image inpainting,
we design a mask self-perceiver with a depth-aware mask rectifier for autonomous perception and
reconstruction of missing components, ensuring preservation of original features. Moreover, we
introduce an image integration and enhancement pipeline to restore fine details. We refine coarse
meshes by using normal priors and enhanced images.

* Comprehensive experiments validate the effectiveness of Restore3D, demonstrating its ability to
produce complete and high-quality textured meshes.

2 Related Work

2D Inpainting and Generation models 2D inpainting methods are designed to complete missing
content in an image using a given image and mask. LaMa [54]] utilizes fast Fourier convolutions, a
large receptive field, and extensive training masks to effectively fill large missing areas, producing
plausible inpainting results. Recent advancements in image generation [50, I80] have demonstrated su-
perior performance and can be adapted for inpainting tasks with high-quality outcomes. RePaint [36]
modifies the diffusion generation process, allowing it to be used for inpainting. NeRFiller [62] uses
grid priors to make the 2D diffusion model produce more consistent multi-view inpainting results.
However, these methods require a user-defined mask to specify the regions that need inpainting.

3D Generation and Completion Recent 3D generation models [61} 30, 9] showcase promising
results. DreamFusion [45] and SJC [S9] are first proposed to generate 3D assets from text using
the strong 2D text-to-image generation model [50]. As 2D diffusion models easily lead to 3D
inconsistency, some works [311 182} 57,155 158l [70] focus on consistent multi-view image diffusion
models. MVDream [52] uses 3D self-attention and camera embedding to achieve multi-view text-to-
image generation. Considering the time-consuming nature of SDS-based methods, there are some
works [20} 134, 29113311561 165, 35]] that use multi-view diffusion models and reconstruction models.
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Figure 3: An overview of multi-view image inpainting. We carefully design a mask self-perceiver
based on a multi-view diffusion model that composes the image and text features with a spatial mask
predicted by a depth-aware mask rectifier, therefore the model can automatically perceive the missing
part and further generate it meanwhile preserving the original parts.

Another line for 3D generation is that directly train 3D generative models using 3D representations
like point cloud [42, 77} 1377, 181]], meshes [32, [21], neural fields [27} 1,41} 24, 78} 119, |8]]. In addition
to 3D generation, recent 3D shape completion works [26} 79,166, 68l (16 (15} 139, 144, 12} [13]] usually
use different types of 3D representations and networks to model global and local structures, e.g., point
cloud, sdf, GAN, VAE, and diffusion models. However, they all learn models on small-scale datasets,
therefore the modeling capacity is limited compared with some 3D generation models trained on
large-scale datasets (e.g., Objavese [17]). Moreover, these works do not consider the texture.

Texture Generation. Several texture generation works [49, |5, [7] use an iteratively texturing strategy
based on the pre-trained depth-to-image diffusion models, yielding high-quality texture. However,
these methods tend to error lighting inherited from training data. Paint3D [76] proposes a shape-
aware UV Inpainting and a shape-aware UVHD diffusion model to alleviate this situation. There
is another line to learn texture. Texturify [53] employs texture maps on the surface of meshes and
uses StyleGAN [25] to predict texture. Mesh2Tex [4] incorporates an implicit texture field for
texture prediction. These methods are lacking in global information modeling. PointUV [75] first
trains a diffusion model specifically for mesh texture generation, and the proposed coarse-to-fine
framework allows it to enjoy the efficiency of 2D representation while enhancing 3D consistency.
Other approaches like AUV-net [10], LTG [74]], and TUVF [11] learn to generate UV-Maps for 3D
shapes. However, they typically focus on the texture generation starting from a complete shape.

3 Method

3.1 Data Preparation

Motivation. We browse the datasets of related tasks and find that the existing datasets [6} 17,67, |18
14]) are not sufficient to handle the shape and texture completion of broken objects, which suggests the
need to construct specific broken and complete paired data. However, collecting large-scale paired
data in the real world is time-consuming and labor-intensive. Thus we propose to synthesize broken
and complete paired data.

Data Collection. We select the recent dataset, G-objaverse [46] that has more diverse and general
objects, and sample about 83K 3D objects from this dataset.

Synthesis Pipeiline. Specifically, we propose an automatic data processing technique using Boolean
operations (i.e., Difference and Intersect) of Blender. Additionally, we equip the dataset with text
captions using Cap3D [38]]. Subsequently, we normalize and merge the prepared 3D data. The use
of Boolean operations requires the introduction of another object. Therefore, we use an ico sphere
or cube with random size and rotation angle and then randomly place them inside the 3D bounding
box of the prepared 3D data to ensure that the objects can be realistically segmented. After that, it is
essential to render this processed data in the format of RGB images to facilitate model learning. We
execute the rendering at a resolution of 256x256. The camera settings include a randomly chosen
elevation between -10° and 30°. Additionally, the azimuth values are uniformly rendered from 0° to
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360° with a randomly sampled start view, producing a total of 32 images per object. The Fov of the
camera is randomly from 35° to 45° and the distance is always 2.

3.2 Multi-view Image Inpainting

Motivation. Traditional single-view image inpainting methods [54} 50, |80] rely on the user-provided
masks that indicate the areas to be inpainted. While this approach works well in the context of
single-view images, it presents significant challenges when extended to multi-view contexts as shown
in Fig.[2] 1. View inconsistency. In a multi-view scenario, the user is required to manually provide a
mask for each of the views (e.g., four views in our case). This also introduces the risk of errors, as
the mask needs to be accurately aligned across different perspectives to maintain 3D consistency. 2.
Uncertainty Regarding Inpainting Areas. These models cannot autonomously perceive the regions
that require inpainting when a large mask is applied. Additionally, they do not incorporate depth
perception, limiting their understanding of occlusion and spatial relationships. To address these
challenges, we propose an innovative approach that enables the model to ensure view consistency and
self-perceive the mask. Concretely, we design the following two parts.

Mask Self-perceiver. We propose a mask self-perceiver module based on a multi-view image
generation model as shown in Fig. [3] It has two projectors that consist of transformer-based blocks
and camera modulation layers, which project the depth and image features (fy, f;-) extracted from
CLIP [47] to the diffusion feature space. The camera modulation helps the model to discriminate the
feature under different cameras. Then these projected features (pg, p,-) will be fed to the respective
cross-attention blocks as key and value (K4, K, V4, V). The process can be formulated as follows,

px = Proj(f.,c) = Trans(Mod(fs, ¢)) (D
QKT
Vd
where f, can be depth or image features, p. is the projected features of them. Similarly, s., K, and

V.. are the results of p, via cross-attention and linear layers. Q originates from the pre-layer features
in the diffusion model.

s« = Softmax( )V. (2)

Depth-aware Mask Rectifier. Since depth effectively captures the incomplete shape while disre-
garding texture information, the rectifier can focus solely on identifying the regions that require
generation and preservation. Moreover, the depth can help the model understand the spatial relation
and occlusion. Specifically, This module leverages depth features obtained after the cross-attention
layer, along with incomplete masks, and inputs them into a mask rectifier. The rectifier then outputs a
mask indicating where needs to be generated i.e., leveraging the text features and where needs to be
preserved i.e., using the image features. The process can be formulated as follows,

M, = Sigmoid(Conv(CBAM(Conv|sq, M,]))) 3)

fn = (]— - M'r‘)st + Mrsr (4)
where Conv is a convolution layer, and CBAM is Convolutional Block Attention Module [64]]

Training objectives Given training samples, including incomplete images Z, depth images D,
incomplete masks M, text prompts P and camera embedding C, the multi-view inpainting loss can
be formulated as follows,

L= mgin Ez,ENN(O,I),t HE — €0 (Zﬂ t,Z,D,M,P, C)”% Q)]
3.3 Image Integration and Enhancement

Motivation. The input resolution of multi-view model is 256 x 256, which is subsequently encoded
to 32 x 32 using a Variational Autoencoder. As a result, local details are compressed, leading to a
loss of clarity in both the original and generated regions of the image. This compression often causes
the inpainted part to be unclear, and the reconstructed image may lose fine details that are essential for
achieving high-quality results. Moreover, high-quality images will help the next reconstruction stage
to give accurate and detailed textured meshes. To address these challenges, we propose a pipeline
that enables the model to restore local details and preserve the original patterns.

Enhancement Models. We explore two types of enhancement models. Real-ESRGAN [60] is
effective at preserving the patterns of low-resolution images with minimal misalignment, making
it ideal for recovering the overall structure. ControlNet-Tile [80] offers advanced capabilities for
enhancing image details, but will modify the original pattern when a high denoising step is used.

5
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Figure 5: Geometry and Texture Refinement. We separately refine the geometry and texture of the
coarse results inferred by LRMs [[69].
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alignment using Real-ESRGAN. Before integrat- s e 2% a . [ 2y

ing with the original images, we need to align 2\ T £

the resolution. Using Real-ESRGAN effectively

preserves the overall structure and does not in-

troduce content that is not related to the original * *

style. 2. Integration of generated and origi- "’ NOPES l l
nal parts using rectified masks. As depicted .

in Fig. [ this procedure infers the preserved Figure 4: Image Integration and Enhancement
and generated masks used to compose the im- Pipeline using Rectified Masks.

ages, which preserves the original parts as soon as possible. However, this procedure inevitably
leads to some artifacts, e.g., inconsistent color transitions. To address these artifacts, we leverage
the mentioned property of ControlNet-Tile to enhance the images. 3. Image harmonizing using
ControlNet-Tile with a blending strategy. Directly using ControlNet-Tile will alter the original pattern
and destroy the integration step. Inspired by previous works [2}36], we incorporate a mask blending
technique within the diffusion process. This technique helps maintain the original patterns, eliminates
any gaps caused by integration in image space, and enhances the image quality.

3.4 Multi-view Image Reconstruction

Fast Reconstruction using Large Reconstruction Models (LRMs). Recent advancements in
LRMs [231 156, 169]], which leverage sophisticated architectures, large-scale datasets, and extensive
model parameters, have demonstrated impressive capabilities in 3D object reconstruction from single
or sparse-view images. These models are particularly well-suited for tasks requiring fast mesh
reconstruction. However, while LRMs can produce initial reconstructions efficiently, the results
are often coarse and lack the fine details necessary for high-quality 3D representations. To address
this limitation, we adopt a coarse-to-fine schema and refine the shapes and textures of the outputs
generated by LRMs, separately, as shown in Fig.[5]

Geometry Refinement using Normal Prior. A key component in optimizing shape structure is
to obtain high-quality surface normals. Recent surface normal estimation methods [3} [72] have
demonstrated the ability to predict relatively accurate normals for in-the-wild monocular images
or videos. Therefore, we can employ an off-the-shelf normal estimation model to provide normal
priors and then use it to optimize the shape structure of 3D objects. Since these models are primarily
trained on monocular images or videos, the predicted normals are typically in camera space. Thus
we need to convert these normals into world space using camera extrinsic parameters. Specifically,
we select StableNorm, a model that accepts coarse rendered normals and RGB images as inputs to
predict refined normal outputs. The consistency of the rendered normals contributes to the stability
and accuracy of the predicted normals, allowing for more precise geometry refinement.

Texture Refinement using Enhanced High-quality Images. Since the current shape differs from
the coarse shape, the original texture no longer aligns with the updated geometry. Thus we propose to
learn the textures that better match the optimized shape. Concretely, we can use Xatlas to obtain UV
coordinates, enabling us to back-project the colors from the inpainted images onto the UV textures.
After that, we treat the UV textures as parameters and use the enhanced high-quality images to
optimize the texture maps.

Training Objectives. We apply a normal loss £,,4;mq; based on the rendered normals Z,, and the
target normals Z,,. Additionally, we apply a mask loss L,,,4s% to ensure that the optimization regions
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Repaint

Table 1: Comparison with the previous inpainting and reconstruction methods. * means
inpainting, while /A means using Depth-Anything to obtain the depth images. Note that we do
not apply image integration and enhancement pipelines. IM means InstantMesh [69].

(a) Inpainting. (b) Reconstruction.

Method \PSNR 1 LPIPS | FID | SSIM 1 Method \PSNR 1 LPIPS | CD | F-Score 1
Repaint [36] 10.55 031 69.57 0.76 Open-LRM [22]| 16.90 0.15 0.011 0.179
SD * [30] 12.58 022 61.15 0.83 IM [[69] 20.60 0.11 0.006 0.321
ControlNet x [80]| 10.66 0.30 69.91 0.76 Ours 2335 0.09 0.005 0.389
NeRFiller [62] 12.03  0.25 65.20 0.82

Ours A 2529 0.07 32.05 0.95

Ours 2550 0.06 31.82 0.95

are correctly aligned. The loss function is defined as follows,

‘Cshape = ‘Cnormal + [/mask = HIn - fn||% + HM - M”% (6)

To optimize the texture, we use a RGB loss L,.g;, on the rendered images Z,.,; and enhanced images

Z,4p. The mask loss L4 is also applied. Moreover, the SSIM L, loss is introduced to improve
the texture quality. The loss functions are defined as follows,

Etew = £7‘gb + ['mask + )\Essim = ||I7'gb - IrAgb”g + ||M - M”% + )\SSIM(I, j)a @)

where )\ is a weight parameter.

4 Experiments

Dataset & Metrics. For model training, we sample approximately 83K data from the G-objaverse [46]]
dataset and process them using our proposed pipeline. For model testing, we sample approximately
350 data from the GSO [18]], Omniobject [67]], and Objaverse datasets. Inpainting. To assess
image quality, We choose Peak Signal-to-Noise Ratio (PSNR), Frechet Inception Distance (FID),
Learned Perceptual Image Patch Similarity (LPIPS), and Structural Similarity Index Measure (SSIM).
Reconstruction. In addition to the metrics mentioned above, we evaluate geometry quality using
Chamfer Distance (CD) and F-scores.

4.1 Inpainting Results.

Baselines. We compare our method with single-view image inpainting, i.e., Repaint[36]], Stable-
Diffusion [30], Controlnet [80], and a multi-view inpainting method, i.e., Nerfiller [62].

Qualitative Comparison. As shown in Fig.[f] the results demonstrate that our model produces plau-
sible and coherent inpainting outcomes. Previous methods require user-provided masks to guide the
model in generating missing parts. However, when given a relatively large mask, these methods strug-
gle to capture the inherent structure of the objects, leading to less accurate and coherent inpainting.

7
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Table 2: Ablation studies for multi-view inpainting and reconstruction. GR and TR mean
geometry and texture refinements.

(a) Inpainting. (b) Reconstruction.
Method | PSNRT LPIPS| SSIM*t Method |PSNR1 LPIPS | CD | F-Score
IF 22.65 0.14 0.90 Baseline | 20.60 0.11 0.006 0.321
IF + Conv 26.53 0.08 0.94 GR - - 0.005  0.389
IF + Conv + DMR 29.44 0.06 0.95 GR + TR | 23.35 0.09 0.005 0.389

)
In contrast, our approach does not require prede- "7 %
fined inpainting masks. Instead, it autonomously %
perceives and reconstructs the missing regions,
capturing the underlying structure of the object B
without manual intervention. This capability al- R
lows our method to produce high-quality, struc-
turally consistent inpainting results. s

Quantitative Comparison. As illustrated in
Table [Ta] we observe the following: 1) Our ap-
proach achieves the best performance in restor-
ing shape and texture. 2) When applying depth
images predicted by Depth-Anything [[71]], our
method yields results comparable to those obtained with ground truth depths. 3) The compared
methods produce noticeably inferior results in terms of inpainting quality.

= e

Tnput ! Open-LRM 3 InstantMesh ' Ours
Figure 7: Visual comparison with reconstruction
methods.

4.2 Reconstruction Results.

Baselines. We compare our method against both single-view and multi-view LRMs, including LRM
[22, 23] and InstantMesh [69]. For single-view baselines, we input the front-view image.

Quantitative & Qualitative Comparison. As shown in Table. |15|, our method achieves superior
rendered image quality and geometry accuracy, with a substantial improvement over baseline methods.
In Fig.[7} it is evident that our approach delivers clearer details and the most accurate geometry among
the compared methods. Training time. Our approach is highly efficient, requiring 20 seconds per
object for geometry and texture refinements.

4.3 Ablation Study

Multi-view Inpainting. We conduct ablation studies on the proposed multi-view inpainting module
in the following components: 1) IF. Only inputting incomplete images to the cross-attention layers.
2) Conv. Concatenating noise and incomplete im-

ages to a learnable convolutional layer. 3) DMR. % % » / X
Adding the designed Depth-aware Mask Rectifier. As /30 /s © | &
shown in Table 24| the results improve progressively ﬂ is 1", =

with each added component, and using all designed ¢ . [/ !R ? \ a
components achieves the highest results. In the qual- N - x )
itative comparison shown in Fig.[8p, 1) IF Only: the w w NV & &
model captures the general style of the object but 1 : ’ § T+ Conv F + Cony
lacks an understanding of spatial relationships and wIR  whR o 1 _m,w,m;;?"
structure. 2) IF + Conv: This enables the model o Geomary andTexure Tfinenene
to capture spatial positioning and understand object
structure. However, it is still prone to color inaccuracies, especially in areas like the head (blended
with error black color). Additionally, the region that needs to be preserved is changed. 3) IF + Conv
+ DMR: This allows the model to improve its ability to handle occlusions and spatial relationships,
producing the best inpainting quality, with coherent colors and well-preserved spatial structure.

in Multi-view Inpainting.

Figure 8: Visualization of ablation studies.

Reconstruction. We evaluate the impact of the following components: 1) Geometry Refinement (GR),
and 2) Texture Refinement (TR). In Table 2b] and Fig. [8h, incorporating GR leads to substantial
improvements in geometry quality. TR improves the visual quality of the rendered images.
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Table 3: Different lighting settings.

&9 5" v - 3‘ cT T Method [PSNR 1 LPIPS | SSIM 1

Top area light 25.18 0.06  0.95
Multiple area lights| 25.50 0.06  0.95
Environment light | 25.28 0.06  0.95

Table 4: Occlusion results.
*{ Q ' Method \ PSNRT LPIPS| SSIM?
1-view 27.16 0.06 0.95
3 ££ L ol ] dview | 2562 007 095

Table 5: BBD [51] results

Flgure 9: leferent llghtlng settlngs

i
1-view occlusion 1 4-view occlusion (real-world Tmages)

Figure 10: Visualization of occlusion cases. Method | PSNRT LPIPS| SSIM1t
CRERUEREEEE oo s
.n. . o lo— ControlNet 14.50 0.59 0.71
e NeRFiller 17.66 0.52 0.79
Figure 11: Visual results on BBD 511, Ours 2509 010 0.95

Different lights. We render our test samples with different lights and test our inpainting model on
these rendered images. In Table [3and Fig. [9] the results show our model can achieve promising
results under different lighting settings.

5 Application

Our Restore3D can be directly used for some applications:

Object Restoration. We test our model on the validation set of Breaking Bad Dataset (BBD) [51], as
shown in Fig. [[T|and Table[5] This dataset is synthesized by a physically based method that simulates
the natural destruction process of geometric objects.

-3 i
Occluded Object Reconstruction. We arrange “ e ! A
either a single object or four objects to create oc- “ |

cluded scenarios with one view and four views,
respectively, based on our 350 test samples. As . ) .
shown in Table[dand Fig.[I0} the results indicate Figure 12: Text-gulded editing results.

that the one-view occlusion scenario achieves higher performance, as the occluded regions can be
inferred more easily from the visible areas. When applying four-view occlusion, our model still
demonstrates strong performance. In addition, we present a real-world example in Fig.

Text prompt: wearing a jacket Text prompt: wearing denim jeans.

3D Object Editing. We can position a cube or sphere over the target region for editing and use a
Boolean operation to segment the object. This enables us to render the object as an incomplete image.
We then process them using our inpainting model with a text prompt for editing. Finally, we apply
the reconstruction model. In Fig.[T2] our approach successfully handles simple editing scenarios.

6 Conclusion

In this paper, we propose a novel framework named Restore3D, consisting of multi-view image
inpainting and reconstruction, to simultaneously complete both the shape and texture of broken
3D objects. To facilitate this task, we develop an automated data processing pipeline that collects
pair-wise data from a large-scale dataset [17]. In the multi-view image inpainting, we design a
mask self-perceiver with a depth-aware mask rectifier. This component autonomously identifies and
reconstructs missing regions while preserving the original patterns. To address the low resolution
resulting from the base model [52]], we implement an image integration and enhancement pipeline,
allowing for seamless integration and detail enhancement by learned masks. For the reconstruction
stage, we employ an LRM to quickly generate a coarse result, followed by separate geometry
refinement using normal priors and texture refinement using enhanced images. Through this designed
framework, our model produces coherent completions of broken objects as illustrated in Fig.[T}
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A Technical Appendices and Supplementary Material

A.1 Preliminary

Multi-view Diffusion models. Extending 2D generation models to the multi-view domain has been
explored in various works [31,I52]]. These extensions often incorporate modifications like adding
camera conditions and adjusting the attention mechanisms to enable effective multi-view synthesis.
In this paper, we adopt MVDream as our base model. MVDream modifies the spatial attention
mechanism in Stable Diffusion [S0], allowing the attention to focus on corresponding features across
different views.

A.2 Implementation Details

We train the multi-view inpainting model using four NVIDIA A100 GPUs. We use the Adam
optimizer and incorporate classifier-free guidance. The training is conducted with a learning rate of
le-4 and a batch size of 256. MVDream is utilized as the base model for multi-view inpainting, while
InstantMesh is employed as the large reconstruction model. The input consists of 4-view images. For
the sampling process, we employ DDIM with 50 steps and a guidance scale of 5.0.

Table 6: Ablation studies of views.

&é&é Qé@é &é&-&
: Method | PSNR1 LPIPS| FID| SSIM%

‘‘‘‘‘‘ 4oview | 2550 006 3182  0.95

Figure 13: Different color types. 6-view 25.00 0.07 24.70 0.95
8-view 25.17 0.07 20.49 0.95

A.3 More Results

More views. Although our model is trained on a 4-view setting, our model can be directly used to
process inputs with more views. As shown in Table[6] the results show that their performance is
comparable to the 4-view setting.

Different color types on the broken plane. As , | e o )
shown in Fig. [T3] altering the broken plane (blue ¢ ¢ ¥ ¢ ¢ 4
dotted box) with different colors does not affect our

model’s ability to complete the broken objects. This |, Gl 3 w '@?' " 4

further validates that our model effectively distin- e B ey g
guishes between regions that need to be preserved Figure 14: Visualization of image integra-
and those that require generation. tion and enhancement.

Image Integration and Enhancement As shown in Fig.|14] we provide some results of this pipeline.
The results show that the proposed pipeline restores the original pattern and improves the image
quality.

Inpainting and reconstruction results on full GSO dataset (1030 Objects). As shown in Table[7]
and Table[8] our model achieves the best performance on both inpainting and reconstruction results.

A.4 Limitations

Our approach builds upon a base model and thus inevitably inherits some of its limitations. For
instance, the low resolution of the input restricts the ability to capture very fine details, such as the
facial features of characters, even with the application of enhancement techniques. In addition, there
is still a lot of room to enrich the quality of geometry and material details in the reconstruction.
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Table 7: Inpainting results on GSO.

Method |PSNR 4 LPIPS | FID | SSIM
SD-inpainting| 13.52  0.68 67.79 0.55
ControlNet 12.63  0.70 83.46 0.51
NeRFiller 17.07 0.60 7524 0.72
Ours 26.02 0.06 11.12 0.94

A.5 Broader Impacts.

Table 8: Reconstruction results on GSO.

Method  |PSNR 1 LPIPS | CD | F-Score 1
Open-LRM| 17.56  0.15 0.014 0.15
M 22.15 0.11 0.002 0.36
Ours 24.74  0.08 0.002 0.43

Object restoration will help cultural heritage preservation: restoring historical artifacts, sculptures,
and architectural elements with accuracy. Negative impact: the ability to create highly accurate
replicas can be misused for fraudulent purposes, such as creating counterfeit artifacts, artworks, or
products, which can deceive consumers and harm original creators.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist'",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See § [T} we introduce our contribution and the scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See §[A.4] we discuss our limitations.
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Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See § @]

Guidelines:

The answer NA means that the paper does not include experiments.
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673 * If the paper includes experiments, a No answer to this question will not be perceived well

674 by the reviewers: Making the paper reproducible is important, regardless of whether the
675 code and data are provided or not.

676 * If the contribution is a dataset and/or model, the authors should describe the steps taken to
677 make their results reproducible or verifiable.

678 * Depending on the contribution, reproducibility can be accomplished in various ways.
679 For example, if the contribution is a novel architecture, describing the architecture fully
680 might suffice, or if the contribution is a specific model and empirical evaluation, it may be
681 necessary to either make it possible for others to replicate the model with the same dataset,
682 or provide access to the model. In general. releasing code and data is often one good
683 way to accomplish this, but reproducibility can also be provided via detailed instructions
684 for how to replicate the results, access to a hosted model (e.g., in the case of a large
685 language model), releasing of a model checkpoint, or other means that are appropriate to
686 the research performed.

687 * While NeurIPS does not require releasing code, the conference does require all submis-
688 sions to provide some reasonable avenue for reproducibility, which may depend on the
689 nature of the contribution. For example

690 (a) If the contribution is primarily a new algorithm, the paper should make it clear how to
691 reproduce that algorithm.

692 (b) If the contribution is primarily a new model architecture, the paper should describe
693 the architecture clearly and fully.

694 (c) If the contribution is a new model (e.g., a large language model), then there should
695 either be a way to access this model for reproducing the results or a way to reproduce
696 the model (e.g., with an open-source dataset or instructions for how to construct the
697 dataset).

698 (d) We recognize that reproducibility may be tricky in some cases, in which case authors
699 are welcome to describe the particular way they provide for reproducibility. In the
700 case of closed-source models, it may be that access to the model is limited in some
701 way (e.g., to registered users), but it should be possible for other researchers to have
702 some path to reproducing or verifying the results.

703 5. Open access to data and code

704 Question: Does the paper provide open access to the data and code, with sufficient instruc-
705 tions to faithfully reproduce the main experimental results, as described in supplemental
706 material?

707 Answer:

708 Justification: We will release the code and data after the publication of our paper.

709 Guidelines:

710 » The answer NA means that paper does not include experiments requiring code.

711 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
712 public/guides/CodeSubmissionPolicy) for more details.

713 * While we encourage the release of code and data, we understand that this might not be
714 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
715 including code, unless this is central to the contribution (e.g., for a new open-source
716 benchmark).

717 * The instructions should contain the exact command and environment needed to run to
718 reproduce the results. See the NeurIPS code and data submission guidelines (https:
719 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

720 * The authors should provide instructions on data access and preparation, including how to
721 access the raw data, preprocessed data, intermediate data, and generated data, etc.

722 * The authors should provide scripts to reproduce all experimental results for the new
723 proposed method and baselines. If only a subset of experiments are reproducible, they
724 should state which ones are omitted from the script and why.

725 * At submission time, to preserve anonymity, the authors should release anonymized ver-
726 sions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See § @]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not include it.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See §@ We provide it in the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.
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11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We acknowledge the NeurIPS Code of Ethics and obey them in our paper
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See §[A.5] We provide the potential positive societal impacts and negative
societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model is based on publicly available datasets and models.

Guidelines:
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the datasets and models.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.
 The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

 The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include this.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not include this.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the Neur[PS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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