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Abstract

Elliptic partial differential equations (PDEs) are a major class of time-independent
PDEs that play a key role in many scientific and engineering domains such as fluid
dynamics, plasma physics, and solid mechanics. Recently, neural operators have
emerged as a promising technique to solve elliptic PDEs more efficiently by directly
mapping the input to solutions. However, existing networks typically neglect
complex geometries and inhomogeneous boundary values present in the real world.
Here we introduce Boundary-Embedded Neural Operators (BENO), a novel neural
operator architecture that embeds the complex geometries and inhomogeneous
boundary values into the solving of elliptic PDEs. Inspired by classical Green’s
function, BENO consists of two Graph Neural Networks (GNNs) for interior source
term and boundary values, respectively. Furthermore, a Transformer encoder maps
the global boundary geometry into a latent vector which influences each message
passing layer of the GNNs. We test our model and strong baselines extensively in
elliptic PDEs with complex boundary conditions. We show that all existing baseline
methods fail to learn the solution operator. In contrast, our model, endowed with
boundary-embedded architecture, outperforms state-of-the-art neural operators and
strong baselines by an average of 60.96%.

1 Introduction

Partial differential equations (PDEs), which include elliptic, parabolic, and hyperbolic types, play
a fundamental role in diverse fields across science and engineering. For all types of PDEs, but
especially for elliptic PDEs, the treatment of boundary conditions plays an important role in the
solutions. Elliptic PDEs are one of the three types of PDEs, whose solutions describe steady-state
phenomena under interior source and boundary conditions. In particular, the Laplace and Poisson
equations constitute prime examples of linear elliptic PDEs, which are used in a wide range of
disciplines, including solid mechanics (Rivière, 2008), plasma physics (Chen, 2016), and fluid
dynamics (Hirsch, 2007).

Recently, neural operators have emerged as a promising tool for solving elliptic PDEs by directly
mapping input to solutions (Li et al., 2020b,c,a; Lötzsch et al., 2022). Lowering the computation
efforts makes neural operators more attractive compared with classical approaches like finite element
methods (FEM) (Quarteroni & Valli, 2008) and finite difference methods (FDM) (Dimov et al.,
2015). However, existing neural operators have not essentially considered the influence of boundary
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(a) Forcing term f

(b) Solution term u

Figure 1: Examples of different geometries for the elliptic PDEs: (a) forcing terms and (b) solutions.
The nodes in red-orange color-map represent the complex, inhomogeneous boundary values. The
redder the area, the higher the boundary value it represents, whereas the more orange the area, the
lower the boundary value.

conditions on solving elliptic PDEs. A distinctive feature of elliptic PDEs is their sensitivity to
boundary conditions, which can heavily influence the behavior of solutions.

In fact, boundary conditions pose two major challenges for neural operators in terms of inhomoge-
neous boundary values and complex boundary geometry. First, inhomogeneous boundary conditions
can cause severe fluctuations in the solution, and have a distinctive influence on the solution com-
pared to the interior source terms. For example, as shown in Fig. 1, the inhomogeneous boundary
values cause high-frequency fluctuations in the solution especially near the boundary, which makes it
extremely hard to learn. Second, since elliptic PDEs are boundary value problems whose solution
describes the steady-state of the system, any variation in the boundary geometry and values would
influence the interior solution globally (Hirsch, 2007). The above challenges need to be properly
addressed to develop a neural operator suitable for more general and realistic settings.

In this paper, we propose Boundary-Embedded Neural Operators (BENO), a novel neural operator
architecture to address the above two key challenges. Inspired by classical Green’s function, BENO
consists of two Graph Neural Networks (GNNs) that model the boundary influence and the interior
source terms, respectively, addressing the first challenge. Moreover, to model the global influence
of the boundary to the solution, we employ a Transformer (Vaswani et al., 2017) to encode the full
boundary information to a latent vector and feed it to each message passing layer of the GNNs. This
captures how the global geometry and values of the boundary influence the pairwise interaction
between interior points, addressing the second challenge. As a whole, BENO provides a simple
architecture for solving elliptic PDEs with complex boundary conditions, incorporating physics
intuition into its boundary-embedded architecture. In Table 1, we provide a comparison between
BENO and prior deep learning methods for elliptic PDE solving.

Table 1: Comparison of data-driven methods to time-independent elliptic PDE solving.

Methods
1. PDE-agnostic
prediction on ne-
w initial condition

2. Train/Test space
grid independence

3. Evaluation at
unobserved sp-
atial locations

4. Free-form spatial
domain for boundary
shape

5. Inhomogeneous
boundary condition
value

GKN (Li et al., 2020b) ✓ ✓ ✓ % %

FNO (Li et al., 2020a) ✓ % ✓ % %

GNN-PDE (Lötzsch et al., 2022) ✓ ✓ % ✓ %

MP-PDE (Brandstetter et al., 2022) ✓ % % % %

BENO (ours) ✓ ✓ ✓ ✓ ✓

To fully validate the effectiveness of our model on inhomogeneous boundary value problems, we
construct a novel dataset encompassing various boundary shapes, different boundary values, different
types of boundary conditions, and varying resolutions. The experimental results demonstrate that our
approach not only outperforms the existing state-of-the-art methods by about an average of 60.96%
in solving elliptic PDEs problems but also exhibits excellent generalization capabilities in other
scenarios. In contrast, all existing baselines fail to learn solution operators for the above challenging
elliptic PDEs.
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2 Problem Setup

In this work, we consider the solution of elliptic PDEs in a compact domain subject to inhomogeneous
boundary conditions along the domain boundary. Let u ∈ Cd(R) be a d-dimnesion-differentiable
function of N interior grid nodes over an open domain Ω. Specifically, we consider the Poisson
equation with Dirichlet (and Neumann in Appendix M) boundary conditions in a d-dimensional
domain, and we consider d = 2 in the following experiments:

∇2u ([x1, x2, . . . , xd]) = f ([x1, x2, . . . , xd]) , ∀ ([x1, x2, . . . , xd]) ∈ Ω,

u ([x1, x2, . . . , xd]) = g ([x1, x2, . . . , xd]) , ∀ ([x1, x2, . . . , xd]) ∈ ∂Ω,
(1)

where f and g are sufficiently smooth function defined on the domain Ω = {(x1,i, x2,i, . . . , xd,i)}Ni=1,
and boundary ∂Ω, respectively. Eq. 1 is utilized in a range of applications in science and engineering
to describe the equilibrium state, given by f in the presence of time-independent boundary constraints
specified by g. A distinctive feature of elliptic PDEs is their sensitivity to boundary values g and shape
∂Ω, which can heavily influence the behavior of their solutions. Appropriate boundary conditions
must often be carefully prescribed to ensure well-posedness of elliptic boundary value problems.

3 Method

In this section, we detail our method BENO. We first motivate our method using Green’s function, a
classical approach to solving elliptic boundary value problems in Section 3.1. We then introduce our
graph construction method in Section 3.2. Inspired by the Green’s function, we introduce BENO’s
architecture in Section 3.3.

3.1 Motivation

How to facilitate boundary-interior interaction? To design the boundary-embedded message
passing neural network, we draw inspiration from the traditional Green’s function (Stakgold & Holst,
2011) method which is based on a numerical solution. Take the Poisson equation with Dirichlet
boundary conditions for example. Suppose the Green’s function is G : Ω × Ω → R, which is the
solution of the corresponding equation as follows:{

∇2G = δ(x− x0)δ(y − y0)

G|∂Ω = 0
(2)

Based on the aforementioned equations and the detailed representation of the Green’s function
formula in the Appendix B, we can derive the solution in the following form:

u(x, y) =

∫∫
Ω

G(x, y, x0, y0)f(x0, y0)dσ0 −
∫
∂Ω

g(x0, y0)
∂G(x, y, x0, y0)

∂n0
dl0 (3)

Motivated by the two terms presented in Eq. 3, our objective is to approach boundary embedding
by extending the Green’s function. Following the mainstream work of utilizing GNNs as surrogate
models (Pfaff et al., 2020; Eliasof et al., 2021; Lötzsch et al., 2022), we exploit the graph network
simulator (Sanchez-Gonzalez et al., 2020) as the backbone to mimic the Green’s function, and add
the boundary embedding to the node update in the message passing. Besides, in order to decouple the
learning of the boundary and interior, we adopt a dual-branch network structure, where one branch
sets the boundary value g to 0 to only learn the structural information of interior nodes, and the other
branch sets the source term f of interior nodes to 0 to only learn the structural information of the
boundary. The Poisson equation solving can then be disentangled into two parts:

{
∇2u(x, y) = f(x, y)

u(x, y) = g(x, y)
⇒

{
∇2u(x, y) = f(x, y)

u(x, y) = 0︸ ︷︷ ︸
Branch 1

+

{
∇2u(x, y) = 0

u(x, y) = g(x, y)︸ ︷︷ ︸
Branch 2

(4)

Therefore, our BENO will use a dual-branch design to build two different types of edges on the same
graph separately. Branch 1 considers the effects of interior nodes and Branch 2 focuses solely on how
to propagate the relationship between boundary values and interior nodes in the graph. Finally, we
aggregate them together to obtain a more accurate solution under complex boundary conditions.
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How to embed boundary? Since boundary conditions are crucially important for solving PDEs,
how to better embed the boundary information into the neural network is key to our design. During
a pilot study, we found that directly concatenating the interior node information with boundary
information fails to solve for elliptic PDEs, and tends to cause severe over-fitting. Therefore, we
propose to embed the boundary to represent its global information for further fusion. In recent years,
Transformer (Vaswani et al., 2017) has been widely adopted due to its global receptive field. By
leveraging its attention mechanism, the Transformer can effectively capture long-range dependencies
and interactions within the boundary nodes. This is particularly advantageous when dealing with
complex boundary conditions (i.e., irregular shape and inhomogeneous boundary values), as it allows
for the modeling of complex relationships between boundary points and the interior solution.

3.2 Graph Construction

Figure 2: Visualization of the graph construction on our train/set samples from 5 different corner
elliptic datasets. The interior nodes are in black and the boundary one in purple.

Before designing our method, it is an important step to construct graph G = {(V, E)} with the finite
discrete interior nodes as node set V on the PDE’s solution domain Ω. In traditional solution methods
such as FEM, the solution domain is initially constructed by triangulating the mesh graph (Bern &
Eppstein, 1995; Ho-Le, 1988), followed by the subsequent solving process. Therefore, the first step is
to implement Delaunay triangulation (Lee & Schachter, 1980) to construct mesh graph with edge set
Emesh, in which each cell consists of three edges. Then we proceed to construct the edge set Ekn by
selecting the K-nearest nodes for each individual node. K is predetermined to signify the quantity of
neighboring nodes that we deem as closely connected based on the Euclidean distance Dij between
node i and j. The final edge set is E = Emesh ∪ Ekn. Figure 2 shows examples of graph construction.

3.3 Overall Architecture

In this section, we will introduce the detailed architecture of our proposed BENO, as shown in Figure
3. Our overall neural operator is divided into two branches, with each branch receiving different
graph information and boundary data. However, the operator architecture remains the same with the
encoder, boundary-embedded message passing neural network and decoder. Therefore, we will only
focus on the common operator architecture.

3.3.1 Encoder & Decoder

Encoder. The encoder computes node and edge embeddings. For each node i, the node encoder
ϵv maps the node coordinates pi = (xi, yi), forcing term fi, and distances to boundary dxi, dyi to
node embedding vector vi = ϵv([xi, yi, fi, dxi, dyi]) ∈ RD in a high-dimensional space. The same
mapping is implemented on edge attributes with edge encoder ϵe for edge embedding vector eij . For
both node and edge encoders ϵ, we exploit a two-layer Multi-Layer Perceptron (MLP) (Murtagh,
1991) with Sigmoid Linear Unit (SiLU) activation (Elfwing et al., 2018).

Decoder. We use a two-layer MLP to map the features to their respective solution. Considering our
dual-branch architecture, we will add the outputs from each decoder to obtain the final predicted
solution û.

3.3.2 Boundary-Embedded Message Passing Neural Network (BE-MPNN)

To address the inherent differences in physical properties between boundary and interior nodes, we
opt not to directly merge these distinct sources of information into a single network representation.
Instead, we first employ the Transformer to specifically embed the boundary nodes. Then, the
obtained boundary information is incorporated into the graph message passing processor. We will
provide detailed explanations for these two components separately.
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Figure 3: Overall architecture of our proposed BENO. The pink branch corresponds to the first
term in Eq. 4, and the green branch corresponds to the second term. As the backbone of boundary
embedding, Transformer provides boundary information as a supplement for BE-MPNN, thereby
enabling better prediction under complex boundary geometry and inhomogeneous boundary values.

Embedding Boundary with Transformer. With the boundary node coordinates pB = (xB, yB), the
boundary value g, and the distance to the geometric center of solution domain dc as input features, we
first utilize the position embedding to include relative position relationship for initial representation
HB

0 , followed by a Transformer encoder with L layers to embed the boundary information HB. The
resulting boundary features, denoted as B, are obtained by applying global average pooling (Lin et al.,
2013) to the encoder outputs HB.

Each self-attention layer applies multi-head self-attention and feed-forward neural networks to the
input. The output of the i-th self-attention layer is denoted as HB

i . The self-attention mechanism
calculates the attention weights Ai as follows:

Ai = Softmax
(
QiH

B
i (KiH

B
i )

T

√
dk

)
(5)

where Qi, Ki, and Vi are linear projections of HB
i−1 with learnable weight matrices, and dk is the

dimension of the key vectors. The attention output is computed as:

HB
i+1 = LayerNorm

(
AiVi

(
HB

i

)
+HB

i

)
(6)

where LayerNorm denotes layer normalization, which helps to mitigate the problem of internal
covariate shift. After passing through the L self-attention layers, the output HB is subject to global
average pooling to obtain the boundary features: B = AvgPool(HB).

Boundary-Embedded Message Passing Processor. The processor computes T steps of message
passing, with an intermediate graph representation G1, · · · , GT and boundary representation B1, · · · ,
BT . The specific passing message mt

ij in step t in our processor is formed by:

mt
ij = MLPs

(
vti , v

t
j , e

t
ij , pi − pj

)
(7)

where mt+1
ij represents the message sent from node j to i. pi − pj is the relative position which can

enhance the equivariance by justifying the symmetry of the PDEs.

Then we update the node feature vti and edge feature etij as follows:

vt+1
i = MLPs

vti ,Bt,
∑

j∈N (i)

mt
ij

 , (8)

et+1
ij = MLPs

(
etij ,m

t
ij

)
(9)

Here, boundary information is embedded into the message passing. N (i) represents the gathering of
all the neighbors of node i.

Learning objective. Given the ground truth solution u and the predicted solution û, we minimize the
mean squared error (MSE) of the predicted solution on Ω.
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Table 2: Performances of our proposed BENO and the compared baselines, which are trained on 900
4-corners samples and tested on 5 datasets under relative L2 norm and MAE separately. The unit of
the MAE metric is 1× 10−3. Bold fonts indicate the best performance.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.1146±
0.3936

3.6497±
1.1874

1.0692±
0.2034

3.7059±
0.9543

1.0673±
0.1393

3.6822±
0.9819

1.1063±
0.1905

3.4898±
0.9469

1.0728±
0.2074

3.9551±
0.9791

FNO 1.0947±
0.3265

2.2707±
0.3361

1.0742±
0.3418

2.1657±
0.3976

1.0672±
0.3736

2.2617±
0.2449

1.0921±
0.2935

2.3922±
0.3526

1.0762±
0.4420

2.2281±
0.4192

GNN-PDE 1.0026±
0.0093

3.1410±
0.8751

1.0009±
0.0101

3.2812±
0.8839

1.0015±
0.0099

3.3557±
0.8521

1.0002±
0.0153

3.1421±
0.8685

1.0011±
0.0152

3.7561±
1.0274

MP-PDE 1.0007±
0.0677

3.1018±
0.8431

1.0003±
0.0841

3.2464±
0.8049

0.9919±
0.0699

3.2765±
0.8632

0.9829±
0.07199

3.0163±
0.8272

0.9882±
0.0683

3.6522±
0.8961

BENO (ours) 0.3523±
0.1245

0.9650±
0.3131

0.4308±
0.1994

1.2206±
0.4978

0.4910±
0.1888

1.4388±
0.5227

0.5416±
0.2133

1.4529±
0.4626

0.5542±
0.1952

1.7481±
0.5394

4 Experiments

Here we aim to answer the following questions: (1) Compared with existing baselines, can BENO
learn the solution operator for elliptic PDEs with complex geometry and inhomogeneous boundary
values? (2) Can BENO generalize to out-of-distribution boundary geometries and boundary values,
and different grid resolutions? (3) Are all components of BENO essential for its performance? We
first introduce the setup in Sec. 4.1, then answer questions above in the following three sections.

4.1 Experiment setup

Datasets. For elliptic PDEs simulations, we construct five different datasets with inhomogeneous
boundary values, including 4/3/2/1-corner squares and squares without corners. Each dataset consists
of 1000 samples with randomly initialized boundary shapes and values, with 900 samples used for
training and validation, and 100 samples for testing. Each sample covers a grid of 32×32 nodes and
128 boundary nodes. To further assess model performance, higher-resolution versions of each data
sample, such as 64×64, are also provided. Details on data generation are provided in Appendix E.

Baselines. We adopt two of the most mainstream series of neural PDE solvers as baselines, one
is graph-based, including GKN (Li et al., 2020b), GNN-PDE (Lötzsch et al., 2022), and MP-
PDE (Brandstetter et al., 2022); the other is operator-based, including FNO (Li et al., 2020a). For
fair comparison and adaption to irregular boundary shapes in our datasets, all of the baselines are
re-implemented with the same input as ours, including all the interior and boundary node features.
Please refer to Appendix G for re-implementation details.

Implementation Details. All experiments are based on PyTorch (Paszke et al., 2019) on 2× NVIDIA
A100 GPUs (80G). Following (Brandstetter et al., 2022), we also apply graph message passing
neural network as our backbone for all the datasets. We use Adam (Kingma & Ba, 2014) optimizer
with a weight decay of 5× 10−4 and a learning rate of 5× 10−5 obtained from grid search for all
experiments. Please refer to Appendix F for more implementation details.

4.2 Main Experimental Results

We first test whether our BENO has a strong capability to solve elliptic PDEs with varying shapes.
Table 2 and 3 summarize the results for the shape generalization task (more in Appendix J).

From the results, we see that recent neural PDE solving methods (i.e., MP-PDE) overall fail to solve
elliptic PDEs with inhomogeneous boundary values, not to mention generalizing to datasets with
different boundary shapes. This precisely indicates that existing neural solvers are insufficient for
solving this type of boundary value problems.

In contrast, from Table 2, we see that our proposed BENO trained only on 4-Corners dataset
consistently achieves a significant improvement and strong generalization capability over the previous
methods by a large margin. More precisely, the improvements of BENO over the best baseline
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MP-PDE
Output Predictions

Ground TruthOurs MP-PDE Ours
Prediction Error

Figure 4: Visualization of two samples’ prediction and prediction error from 4-Corners dataset. We
render the solution u of the baseline MP-PDE, our BENO and the ground truth in Ω.

Table 3: Performances of our proposed BENO and the compared baselines, which are trained on 900
mixed samples (180 samples each from 5 datasets) and tested on 5 datasets under relative L2 error
and MAE separately. The unit of the MAE metric is 1× 10−3.

Train on mixed dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0588±
0.1713

3.5051±
0.9401

1.0651±
0.1562

3.7061±
0.8563

1.0386±
0.1271

3.6043±
0.9392

1.0734±
0.1621

3.4048±
0.9519

1.0423±
0.2102

3.901±
0.9287

FNO 1.0834±
0.0462

4.6401±
0.5327

1.0937±
0.0625

4.6092±
0.6713

1.0672±
0.0376

4.5267±
0.5581

1.0735±
0.0528

4.5027±
0.5371

1.0713±
0.0489

4.5783±
0.5565

GNN-PDE 1.0009±
0.0036

3.1311±
0.8664

1.0003±
0.0039

3.2781±
0.8858

1.0005±
0.0038

3.3518±
0.8520

0.9999±
0.0042

3.1422±
0.8609

1.0002±
0.0041

3.7528±
1.0284

MP-PDE 1.0063±
0.0735

3.1238±
0.8502

1.0045±
0.0923

3.2537±
0.7867

0.9957±
0.0772

3.2864±
0.8607

0.9822±
0.0802

3.0177±
0.8363

0.9912±
0.0781

3.6658±
0.8949

BENO (ours) 0.4487±
0.1750

1.2150±
0.4213

0.4783±
0.1938

1.3509±
0.5432

0.4737±
0.1979

1.3516±
0.5374

0.5168±
0.1793

1.3728±
0.5148

0.4665±
0.2001

1.4213±
0.5262

are 55.17%, 52.18%, 52.43%, 47.38%, and 52.94% in terms of relative L2 norm when testing on
4/3/2/1/No-Corner dataset respectively. We attribute the remarkable performance to two factors: (i)
BENO comprehensively leverages boundary information, and fuses them with the interior graph
message for solving. (ii) BENO integrates dual-branch architecture to fully learn boundary and
interior in a decoupled way and thus improves generalized solving performance.

Similarly, from Table 3, we see that among mixed corner training results, BENO always achieves the
best performance among various compared baselines when varying the test sets, which validates the
consistent superiority of our BENO with respect to different boundary shapes.

Additionally, we plot the visualization of the best baseline and our proposed BENO trained on
4-Corners dataset in Figure 4. It can be clearly observed that the predicted solution of BENO is
closed to the ground truth, while MP-PDE fails to learn any features of the solution. We observe
similar behaviors for all other baselines.

4.3 Results on Different Values

To investigate the generalization ability on boundary value, we again train the models on 4-Corners
dataset with inhomogeneous boundary value but utilize the test set with zero boundary value, which
makes the boundary inhomogeneities totally different. Table 4 compares the best baseline and
summarizes the results. From the results, we see that BENO has a significant advantage, successfully
reducing the L2 norm to around 0.1. In addition, our method outperforms the best baseline by
approximately 60.96% in terms of performance improvement. This not only demonstrates BENO’s
strong generalization ability regarding boundary values but also provides solid experimental evidence
for the successful application of our elliptic PDE solver.
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Table 4: Performances of our BENO and the compared baselines, which are trained on 900 4-Corners
samples and tested with zero boundary value samples. The unit of the MAE metric is 1× 10−3.

Train on 4-Corners dataset with homogeneous boundary value

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GNN-PDE 0.7092±
0.0584

0.1259±
0.0755

0.7390±
0.0483

0.2351±
0.1013

0.7491±
0.0485

0.3290±
0.1371

0.7593±
0.05269

0.4750±
0.1582

0.7801±
0.0371

0.6808±
0.1692

MP-PDE 0.2598±
0.1098

0.0459±
0.0359

0.3148±
0.0814

0.1066±
0.0618

0.3729±
0.0819

0.1778±
0.0969

0.4634±
0.0649

0.3049±
0.1182

0.5458±
0.0491

0.4924±
0.1310

BENO (ours) 0.0908±
0.07381

0.0142±
0.0131

0.1031±
0.0728

0.0288±
0.0189

0.1652±
0.1324

0.0583±
0.0362

0.1783±
0.1508

0.0862±
0.0456

0.2441±
0.1665

0.1622±
0.0798

Table 5: Ablation study of our BENO. The unit of the MAE metric is 1× 10−3.
Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

BENO w. M 1.0130±
0.0858

3.1436±
0.8667

1.0159±
0.0975

3.3041±
0.7906

0.9999±
0.0792

3.3007±
0.8504

1.0026±
0.0840

3.0842±
0.8202

0.9979±
0.0858

3.6832±
0.8970

BENO w/o. D 0.4058±
0.1374

1.1175±
0.3660

0.4850±
0.2230

1.3810±
0.6068

0.5273±
0.1750

1.5439±
0.4774

0.5795±
0.1981

1.5683±
0.4670

0.5835±
0.2232

1.8382±
0.5771

BENO w. E 0.4113±
0.1236

1.2020±
0.4048

0.4624±
0.2102

1.3569±
0.5453

0.5347±
0.1985

1.5990±
0.5604

0.5891±
0.2129

1.6222±
0.2016

0.5843±
0.2016

1.8790±
0.5952

BENO w. G 0.9037±
0.1104

2.6795±
0.5332

0.8807±
0.1298

2.6992±
0.6118

0.8928±
0.1208

2.8235±
0.5892

0.8849±
0.1462

2.561±
0.5085

0.8721±
0.1569

2.9851±
0.5591

BENO (ours) 0.3523±
0.1245

0.9650±
0.3131

0.4308±
0.1994

1.2206±
0.4978

0.4910±
0.1888

1.4388±
0.5227

0.5416±
0.2133

1.4529±
0.4626

0.5542±
0.1952

1.7481±
0.5394

4.4 Ablation Study

To investigate the effectiveness of inner components in BENO, we study four variants of BENO.
Table 5 shows the effectiveness of our BENO on ablation experiments, which is implemented based
on 4-Corners dataset training. Firstly, BENO w. M replaces the BE-MPNN with a vanilla message
passing neural network (Gilmer et al., 2017) and merely keeps the interior node feature. Secondly,
BENO w/o. D removes the dual-branch structure of BENO and merely utilizes a single Encoder-
BE-MPNN-Decoder procedure. Thirdly, BENO w. E adds the Transformer output for edge message
passing. Finally, BENO w. G replaces the Transformer architecture with a vanilla graph convolution
network (Kipf & Welling, 2016).

From the results we can draw conclusions as follows. Firstly, BENO w. M performs significantly
worse than ours, which indicates the importance of fusing interior and boundary in BENO. Secondly,
results of BENO w/o. D indicate that decoupled learning of the interior and boundary proves to
be effective. Thirdly, comparing the results of BENO w. E and ours, we can find that boundary
information only helps in node-level message passing. In other words, it is not particularly suitable to
directly inject the global information of the boundary into the edges. Finally, comparing results of
BENO w. G with ours validates the design of Transformer for boundary embedding is crucial.

5 Conclusion

We propose the Boundary-Embedded Neural Operators (BENO) to address the challenges of solving
elliptic PDEs with inhomogeneous and complex boundary conditions. Our BENO incorporates
physical intuition through a boundary-embedded architecture consisting of graph neural networks
and a Transformer to model the influence of boundary conditions on the solution. Comprehensive
experiments demonstrate the effectiveness of our approach in outperforming state-of-the-art methods
by an average of 60.96% in solving elliptic PDE problems.
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Appendix

A Anonymous Code

Our source code can be found https://anonymous.4open.science/r/BENO-3D53, which is an
anonymous link for reproducibility.

B Derivation of the Green’s function method.

We first review the definition of the Green’s function, which is G : Ω×Ω → R, which is the solution
of the corresponding equation as follows:{

∇2G = δ(x− x0)δ(y − y0)

G|∂Ω = 0
(10)

According to Green’s identities,∫∫
Ω

(u∇2G)dσ =

∫
∂Ω

u
∂G

∂n
dl −

∫∫
Ω

(∇u · ∇G)dσ (11)

Since u and G are arbitrary, we can change the position to obtain that,∫∫
Ω

(G∇2u)dσ =

∫
∂Ω

G
∂u

∂n
dl −

∫∫
Ω

(∇u · ∇G)dσ (12)

Subtract Eq. 12 from Eq. 11, we have,∫∫
Ω

(u∇2G−G∇2u)dσ =

∫
∂Ω

(
u
∂G

∂n
−G

∂u

∂n

)
dl (13)

Substitute Eq. 13 into Eq. 10, we can have that,∫
∂Ω

(
u
∂G

∂n
−G

∂u

∂n

)
dl =

∫∫
Ω

(u · ∇2G−G · ∇2u)dσ

=

∫∫
Ω

(−uδ(x− x0)δ(y − y0)−G∇2u)dσ

= −u(x0, y0)−
∫∫

Ω

G∇2udσ

= −u(x0, y0) +

∫∫
Ω

Gf(x, y)dσ

(14)

Namely, we have that,

u(x, y) =

∫∫
Ω

G(x, y, x0, y0)f(x0, y0)dσ0

+

∫
∂Ω

[
G(x, y, x0, y0)

∂u(x0, y0)

∂n0
− u(x0, y0)

∂G(x, y, x0, y0)

∂n0

]
dl0

(15)

When considering the Dirichlet boundary conditions, we can simplify the solution in the following
form:

u(x, y) =

∫∫
Ω

G(x, y, x0, y0)f(x0, y0)dσ0 −
∫
∂Ω

g(x0, y0)
∂G(x, y, x0, y0)

∂n0
dl0 (16)

C Numerical solution of the elliptic PDE

The strong solution to (1) can be expressed in terms of the Green’s function (see Section 3.1 and
Appendix B for discussion). However, obtaining a closed form expression using the Green’s function
is typically not possible, except for some limited canonical domain shapes. In the present paper,
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we obtain the solution to (1) in arbitrary two dimensional domains Ω using the finite volume
method (Hirsch, 2007). This numerical approach relies on discretizing the domain Ω using cells. The
surfaces of these cells at the boundary, which are called cell interfaces, are used to specify the given
boundary condition. The solution of (1) is then numerically approximated over N (e.g., for 32×32
cells, N = 1024) computational cells by solving,

Pû = f , (17)

where P ∈ RN×N is an N × N matrix which denotes a second-order discretization of the ∇2

operator incorporating the boundary conditions, û ∈ RN×1 is a vector of values at the cell centers,
and f ∈ RN×1 is a vector with values f(·, ·) at cell centers used to discretize the domain Ω. The matrix
P resulting from this approach is positive definite and diagonally dominant, making it convenient
to solve Equation 17 with a matrix-free iterative approach such as the Gauss-Seidel method (Saad,
2003).

D Related Work

D.1 Classic Elliptic PDE Solvers

The classical numerical solution of elliptic PDEs approximates the domain Ω and its boundary
∂Ω in Eq. 1 using a finite number of non-overlapping partitions. The solution to Eq. 1 is then
approximated over these partitions. A variety of strategies are available for computing this discrete
solution. Popular approaches include finite volume method (FVM) (Hirsch, 2007), finite element
method (FEM) (Hughes, 2012), and finite difference method (FDM) (LeVeque, 2007). In the present
work we utilize the FVM to generate the dataset which can easily accommodate complex boundary
shapes. This approach partitions the domains into cells, and the boundary is specified using cell
interfaces. After numerically approximating the operator ∇2 over these cells, the numerical solution
is obtained on the centers of the cells constituting our domain.

D.2 GNN for PDE Solver

GNNs are initially applied in physics-based simulations on solids and fluids represented by particles
(Sanchez-Gonzalez et al., 2018). Recently, an important advancement MeshGraphNets (Pfaff et al.,
2020) emerge to learn mesh-based simulations. Subsequently, several variations have been proposed,
including techniques for accelerating finer-level simulations by utilizing GNNs (Belbute-Peres et al.,
2020), combining GNNs with Physics-Informed Neural Networks (PINNs) (Gao et al., 2022), solving
inverse problems with GNNs and autodecoder-style priors (Zhao et al., 2022), and learning optimized
parameters in two-level multi-grid GNNs (Taghibakhshi et al., 2023). However, the research focus on
addressing boundary issues is limited. T-FEN (Lienen & Günnemann, 2022), FEONet (Lee et al.,
2023), and GNN-PDE (Lötzsch et al., 2022) are pioneering efforts in this regard, encompassing
complex domains and various boundary shapes. Nevertheless, the boundary values are still set to
zero, which does not account for the presence of inhomogeneous boundary values. This discrepancy
is precisely the problem that our paper aims to address.

D.3 Neural Operator as PDE Solver

Neural operators map from initial/boundary conditions to solutions through supervised learning in a
mesh-invariant manner. Prominent examples of neural operators include the Fourier neural operator
(FNO) (Li et al., 2020a), graph neural operator (Li et al., 2020b), and DeepONet(Lu et al., 2019).
Neural operators exhibit invariance to discretization, making them highly suitable for solving PDEs.
Moreover, neural operators enable the learning of operator mappings between infinite-dimensional
function spaces. Subsequently, further variations have been proposed, including techniques for
solving arbitrary geometries PDEs with both the computation efficiency and the flexibility (Li et al.,
2022), enabling deeper stacks of Fourier layers by independently applying transformations (Tran
et al., 2021), utilizing Fourier layers as a replacement for spatial self-attention (Guibas et al., 2021),
and incorporating symmetries in the physical domain using group theory (Helwig et al., 2023). (Gupta
et al., 2021, 2022; Xiao et al., 2023) continuously improve the design of the operator by introducing
novel methods for numerical computation.
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E Details of Datasets

In this paper, we have established a comprehensive dataset for solving elliptic PDEs to facilitate
various research endeavors. The elliptic PDEs solver is performed as follows. (1) A square domain
is set with Nc number of cells in both x and y directions (note N = N2

c ). The number of corners
is set, however, the size of the corners is chosen randomly. (2) The source term f(x, y) is assigned
assuming a variety of basis functions, including sinusoidal, exponential, logarithmic, and polynomial
distributions. (3) The values of the boundary conditions g(x, y) are set using continuous periodic
functions with a uniformly distributed wavelength ∈ [1, 5]. (4) The Gauss-Seidel method (Saad,
2003) is used to iteratively obtain the solution u(x, y). Each Poisson run generates two files: one
for the interior cells with discrete values of x, y, f , and u and the other for the boundary interfaces
with discrete values of x, y, and g. The simulations are performed on the Sherlock cluster at Stanford
University.

F More Implementation Details

Our normalization process is performed using the z-score method (Patro & Sahu, 2015), where the
mean and standard deviation are calculated from the training set. This ensures that all features are
normalized based on the mean and variance of the training data. We also apply the CosineAnnealing-
WarmRestarts scheduler (Loshchilov & Hutter, 2016) during the training. Each experiment is trained
for 1000 epochs, and validation is performed after each epoch. For the final evaluation, we select the
model parameters from the epoch with the lowest validation loss. Consistency is maintained across
all experiments by utilizing the same random seed.

All our experiments are evaluated on relative L2 error, abbreviated as L2, and mean absolute error
(MAE), which are two commonly used metrics for evaluating the performance of models or algorithms.
The relative L2 error, also known as the normalized L2 error, measures the difference between the
predicted values and the ground truth values, normalized by the magnitude of the ground truth values.
It is typically calculated as the L2 norm of the difference between the predicted and ground truth
values, divided by the L2 norm of the ground truth values. On the other hand, MAE measures the
average absolute difference between the predicted values and the ground truth values. It is calculated
by taking the mean of the absolute differences between each predicted value and its corresponding
ground truth value.

G Details of Baselines

Our proposed BENO is compared with a range of competing baselines as follows:

• GKN (Li et al., 2020b) develops an approximation method for mapping in infinite-dimensional
spaces by combining non-linear activation functions with a set of integral operators. The integration
of kernels is achieved through message passing on graph networks. For fair comparison, we
re-implement it by adding the boundary nodes to the graph. To better distinguish between nodes
belonging to the interior and those belonging to the boundary, we have also added an additional
column of one-hot encoding to the nodes for differentiation.

• FNO (Li et al., 2020a) introduces a novel approach that directly learns the mapping from functional
parametric dependencies to the solution. The method implements a series of layers computing
global convolution operators with the fast Fourier transform (FFT) followed by mixing weights in
the frequency domain and inverse Fourier transform, enabling an architecture that is both expressive
and computationally efficient. For fair comparison, we re-implement it by fixing the value of
out-domain nodes with a large number, and then implement the global operation.

• GNN-PDE (Lötzsch et al., 2022) represents the pioneering effort in training neural networks
on simulated data generated by a finite element solver, encompassing various boundary shapes.
It evaluates the generalization capability of the trained operator across previously unobserved
scenarios by designing a versatile solution operator using spectral graph convolutions. For fair
comparison, we re-implement it by adding the boundary nodes to the graph. To better distinguish
between nodes belonging to the interior and those belonging to the boundary, we have also added
an additional column of one-hot encoding to the nodes for differentiation.
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• MP-PDE (Brandstetter et al., 2022) presents a groundbreaking solver that utilizes neural message
passing for all its components. This approach replaces traditionally heuristic-designed elements in
the computation graph with neural function approximators that are optimized through backpropaga-
tion. For fair comparison, we re-implement it by adding the boundary nodes to the graph. To better
distinguish between nodes belonging to the interior and those belonging to the boundary, we have
also added an additional column of one-hot encoding to the nodes for differentiation.

H Differences with other Neural Operators

In this section, we compare our method, BENO, with existing approaches in terms of several key
aspects according to Table 1.

• PDE-agnostic prediction on new initial conditions: GKN, FNO, GNN-PDE, MP-PDE, and BENO
are all capable of predicting new initial conditions.

• Train/Test space grid independence: GKN, GNN-PDE, and BENO exhibit independence between
the training and testing spaces, while FNO and MP-PDE lack this independence.

• Evaluation at unobserved spatial locations: GKN, FNO, and BENO are capable of evaluating the
PDE at locations that are not observed during training, while GNN-PDE and MP-PDE do not
possess this capability.

• Free-form spatial domain for boundary shape: Only GNN-PDE and BENO are capable of dealing
with arbitrary boundary shapes, while GKN and MP-PDE are limited in this aspect.

• Inhomogeneous boundary condition value: Only our method, BENO, has the ability to handle
inhomogeneous boundary conditions, while GKN, FNO, GNN-PDE, and MP-PDE are unable to
handle them.

In summary, compared to the existing methods, our method, BENO, possesses several distinct
advantages. It can predict new initial conditions regardless of the specific PDE, maintains grid
independence between training and testing spaces, allows evaluation at unobserved spatial locations,
handles free-form spatial domains for boundary shapes, and accommodates inhomogeneous boundary
condition values. These capabilities make BENO a versatile and powerful approach for solving
time-independent elliptic PDEs.

I Algorithm

The whole learning algorithm of BENO is summarized in Algorithm 1.

Algorithm 1 Learning Algorithm of the proposed BENO
Input: The forcing term f , the inhomogeneous boundary condition g on ∂Ω .
Output: The solution prediction û of the elliptic PDEs.

1: Construct the graph G = {(V, E)} following Section 3.2;
2: Initialize the parameters in our model;

# Training procedure
3: while not convergence do
4: for each training input do
5: Set the boundary value of one branch to zero following Eq. 16;
6: Set the source term of interior in the other branch to zero;
7: Feed the node/edge attributes to encoder following Section 3.3.1.;
8: Feed the boundary to the Transformer for boundary features B;
9: Add B to the message passing processor following Eq. 8;

10: Feed output features into a decoder to get the predictions û;
11: Calculate the loss using MSE;
12: Update the parameters in BENO using back propagation;
13: end for
14: end while
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Table 6: Performances of our proposed BENO and the compared baselines, which are trained on 900
No-Corner samples and tested on 5 datasets under relative L2 Norm and MAE separately. The unit of
the MAE metric is 1× 10−3.

Train on No-Corner dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0147±
0.1128

3.3790±
0.8922

1.0179±
0.1212

3.5419±
0.8643

1.0047±
0.1166

3.4530±
0.9514

1.0072±
0.1098

3.2295±
0.8520

1.0028±
0.1060

3.6899±
0.8987

FNO 0.9714±
0.0128

3.3210±
0.6546

0.9745±
0.0175

3.3187±
0.6639

0.9733±
0.0137

3.3319±
0.6298

0.9789±
0.0210

3.3511±
0.6109

0.9755±
0.0121

3.3427±
0.6981

GNN-PDE 0.9988±
0.0051

3.1182±
0.8543

0.9997±
0.0054

3.2748±
0.8902

0.9994±
0.0054

3.3475±
0.8533

1.0002±
0.0056

3.1447±
0.8559

0.9998±
0.0056

3.7518±
1.0314

MP-PDE 1.0029±
0.0808

3.1005±
0.8158

1.0049±
0.0891

3.2488±
0.7941

0.9986±
0.0822

3.2902±
0.8651

0.9855±
0.0769

3.0356±
0.8133

0.9917±
0.07670

3.6648±
0.8949

BENO (ours) 0.6870±
0.2038

1.8830±
0.6083

0.6036±
0.1940

1.7293±
0.5844

0.5760±
0.1998

1.6703±
0.6605

0.6192±
0.2259

1.6749±
0.5773

0.4093±
0.1873

1.2505±
0.5752

J More Experimental Results

J.1 Sensitivity Analysis

In this section, we discuss the process of determining the optimal values for the number of MLP
layers (M ) and the number of Transformer layers (L) using grid search, a systematic approach for
hyper-parameter tuning.

Grid search involves defining a parameter grid consisting of different combinations of M and L
values. We specified M in the range of [2, 3, 4] and L in the range of [1, 2, 3] to explore a diverse
set of configurations. We build multiple models, each with a different combination of M and L
values, and train them on 4-Corners training dataset. The models are then evaluated using appropriate
evaluation metrics on a separate validation set. The evaluation results allowed us to compare the
performance of models across different parameter combinations.

After evaluating the models, we select the combination of M and L that yield the best performance
according to our chosen evaluation metric. This combination became our final choice for M and
L, representing the optimal configuration for our model. To ensure the reliability of our chosen
parameters, we validate them on an independent validation set. This step confirmed that the model’s
performance remained consistent and reliable.

The grid search process provided a systematic and effective approach to determine the optimal values
for M = 3 and L = 1, allowing us to fine-tune our model and achieve improved performance.

J.2 More Experimental Results

We have successfully validated our method’s performance on the 4-Corners and mixed corners
datasets during training and testing on other shape datasets, yielding favorable results. In this section,
we will further supplement the evaluation by training on the No Corner dataset and testing on other
shape datasets. Since the No Corner dataset does not include any corner scenarios, the remaining
datasets present completely unseen scenarios for it, thereby providing a stronger test of the model’s
generalization performance.

Table 6 summarizes the results of training on 900 No-Corner samples and tested on all datasets.
We can infer similar conclusions to those in the experimental section above. Our BENO performs
well in learning on No-Corner cases, yielding more accurate solutions. Additionally, our method
demonstrates stronger generalization ability, as it can obtain good solutions even in cases where
corners of any shape have not been encountered.

J.3 Convergence Analysis

We draw the training curve of the train L2 norm and test L2 norm of three models trained on the
4-Corners dataset with inhomogeneous boundary value in Figure 5. It is obviously that although
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Figure 5: Visualization of the convergence curve of our BENO and two baselines.

two baselines also contains the boundary information, they fail to learn the elliptic PDEs with non-
decreasing convergence curves. However, our proposed BENO is capable of successfully learning
complex boundary conditions with the use of the CosineAnnealingWarmRestarts scheduler, converges
to a satisfactory result.

K Limitations & Broader Impacts

Limitations. Although this paper primarily focuses on Dirichlet boundary conditions, it is essential
to acknowledge that there are other types of boundary treatments, including Neumann and Robin
boundary conditions. While the framework presented in this study may not directly address these
alternative boundary conditions, it still retains its usefulness. Future research should explore the
extension of the developed framework to incorporate these different boundary treatments, allowing
for a more comprehensive and versatile solution for a broader range of practical problems.

Broader Impact. The development of a fast, efficient, and accurate neural network for solving
PDEs holds significant potential for numerous physics and engineering disciplines. The impact of
such advancements cannot be understated. By providing a more streamlined and computationally
efficient approach, this research can revolutionize fields such as computational fluid dynamics, solid
mechanics, electromagnetics, and many others. The ability to solve PDEs more efficiently opens up
new possibilities for modeling and simulating complex physical systems, leading to improved designs,
optimizations, and decision-making processes. The resulting advancements can have far-reaching
implications, including the development of more efficient and sustainable technologies, enhanced
understanding of natural phenomena, and improved safety and reliability in engineering applications.
It is crucial to continue exploring and refining these neural network-based approaches to maximize
their potential impact across a wide range of scientific and engineering disciplines.

L More Visualization Analysis

In this section, we visualize the experimental results on a broader range of experiments. Figure 6
presents the comparison of solution prediction on 64 × 64 grid resolution. Figure 7 presents the
comparison of solution prediction on data with zero boundary value. Figure 8 presents the qualitative
results of training on the 4-Corners dataset and testing on data with various other shapes.
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MP-PDE Ours Ground truth MP-PDE Ours

Figure 6: Visualization of prediction and prediction error on 64 × 64 grid resolution.

MP-PDE Ours Ground truth MP-PDE Ours

Figure 7: Visualization of prediction and prediction error on data with zero boundary value.
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MP-PDE
Output Predictions

Ground TruthOurs MP-PDE Ours
Prediction Error

Figure 8: Visualization of prediction and prediction error from 3/2/1/No-Corner dataset, and each has
two samples. We render the solution u of the baseline MP-PDE, our BENO and the ground truth in
Ω.
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Table 7: Performances of our proposed BENO and the compared baselines under Neumann boundary
condition, which are trained on 900 4-corners samples and tested on 5 datasets under relative L2
norm and MAE separately. The unit of the MAE metric is 1× 10−3. Bold fonts indicate the best.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0118±
0.1031

3.7105±
1.0699

1.0046±
0.1284

3.6013±
1.2937

1.0301±
0.1417

3.3880±
1.0127

1.0025±
0.1326

3.3675±
0.9112

0.9827±
0.1270

3.5691±
1.2194

FNO 1.0547±
0.1643

4.0316±
0.8953

1.0587±
0.1761

4.0219±
0.8210

1.0519±
0.1822

4.0308±
0.8369

1.0533±
0.1782

4.0276±
0.8554

1.0549±
0.1842

4.0417±
0.8063

GNN-PDE 1.0105±
0.0898

2.3685±
0.6933

0.9907±
0.1054

2.5474±
0.8863

1.0132±
0.1208

2.7348±
0.8461

0.9821±
0.1225

2.9824±
0.8106

0.9711±
0.1071

3.4930±
1.1110

MP-PDE 1.0070±
0.0813

2.3595±
0.6941

0.9895±
0.0973

2.5480±
0.8955

1.0134±
0.1120

2.7345±
0.8393

0.9782±
0.1240

2.9679±
0.7958

0.9670±
0.1164

3.4807±
1.1143

BENO (ours) 0.3568±
0.0988

0.8311±
0.2864

0.4201±
0.1170

1.0814±
0.3938

0.5020±
0.1648

1.3918±
0.5454

0.5074±
0.1422

1.5676±
0.4815

0.5221±
0.1474

1.8649±
0.5472

Table 8: Performances of our proposed BENO and the compared baselines under Neumann boundary
condition, which are trained on 900 mixed samples (180 samples each from 5 datasets) and tested
on 5 datasets under relative L2 norm and MAE separately. The unit of the MAE metric is 1× 10−3.
Bold fonts indicate the best.

Train on mixed datasets

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0578±
0.1859

3.8992±
1.2048

1.0399±
0.2116

3.6554±
1.2172

1.0975±
0.1912

3.5980±
0.9631

1.0649±
0.3096

3.6030±
0.9310

1.0373±
0.2210

3.7000±
1.0831

FNO 1.0426±
0.0917

3.5817±
0.8212

1.0408±
0.0925

3.6187±
0.8338

1.0548±
0.1239

3.6338±
0.8042

1.0592±
0.1065

3.6531±
0.8448

1.0575±
0.1019

3.6498±
0.8239

GNN-PDE 0.9999±
0.0008

2.3648±
0.7703

1.0000±
0.0010

2.6404±
0.9250

0.9999±
0.0010

2.7425±
0.9808

1.0000±
0.0010

3.1458±
0.9672

1.0001±
0.0010

3.7167±
1.3370

MP-PDE 1.0245±
0.1048

2.3973±
0.7015

0.9989±
0.1277

2.5510±
0.8717

1.0277±
0.1399

2.7722±
0.8091

0.9940±
0.1543

2.9998±
0.7781

0.9731±
0.1414

3.4930±
1.0867

BENO (ours) 0.4237±
0.1237

1.0114±
0.4165

0.3970±
0.1277

1.0378±
0.4221

0.3931±
0.1347

1.0881±
0.3993

0.3387±
0.1279

1.0520±
0.4253

0.3344±
0.1171

1.2261±
0.4467

M Experiments on Neumann Boundary

In this section, we consider to solve the Poisson equation with Neumann boundary conditions using
our proposed BENO. In the context of Neumann boundary conditions, the equation takes the form:

∇2u(x, y) = f(x, y), ∀(x, y) ∈ Ω,

∂u(x, y)

∂n
= g(x, y), ∀(x, y) ∈ ∂Ω,

(18)

where f represents the source term, n typically represents the unit normal vector perpendicular
to the boundary surface, and g specifies the prescribed rate of change normal to the boundary
∂Ω. The challenge in solving Poisson’s equation with Neumann boundary conditions lies in the
proper treatment of the boundary derivative term, which requires sophisticated numerical schemes to
approximate accurately.

Specifically, the model is trained exclusively on a dataset consisting of 900 4-corners samples. The
robustness and generalizability of our approach were then evaluated on 5 different test datasets, which
represent various boundary configurations encountered in practical applications. Each dataset is
constructed to challenge the model with different boundary complexities.

The results are shown in Table 7 and Table 8. Our proposed BENO still demonstrates superior
performance across all test datasets in comparison to the baselines, including GNN-PDE, and MP-
PDE models. Particularly, BENO achieves the lowest MAE and relative L2 norm scores in the
majority of the scenarios. In Table 7, when tested on the 4-Corners dataset, BENO exhibites an
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Output
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Figure 9: Visualization of the output from 2 GNN branches.

Table 9: Performances of our proposed BENO and the compared baselines on Darcy flow, which
are trained on 900 4-corners samples and tested on 5 datasets under relative L2 norm and MAE
separately. The unit of the MAE metric is 1× 10−3. Bold fonts indicate the best.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

MP-PDE 0.5802±
0.1840

0.3269±
0.2085

0.5332±
0.1742

0.4652±
0.2999

0.6197±
0.1709

0.6307±
0.3282

0.6906±
0.1432

0.8469±
0.4087

0.7406±
0.1271

1.0906±
0.3949

BENO (ours) 0.2431±
0.0895

0.1664±
0.0773

0.2542±
0.1252

0.2150±
0.1270

0.2672±
0.1497

0.2585±
0.1313

0.2466±
0.1405

0.3091±
0.2350

0.2366±
0.1104

0.3591±
0.2116

L2 norm of 0.3568 and an MAE of 0.8311, outperforming all other methods and showcasing the
effectiveness of our approach under strict 4-corners conditions.

When trained on mixed boundary conditions in Table 8, BENO still maintains the highest accuracy,
yielding an relative L2 norm of 0.4237 and an MAE of 1.0114 on the 4-Corners test set, confirming
its robustness to varied training conditions. Notably, the improvement is significant in the more
challenging No-Corner test set, where BENO’s L2 is 0.3344, a remarkable enhancement over the
baseline methods. The bolded figures in the tables highlight the instances where BENO outperforms
all other models, underscoring the impact of our boundary-embedded techniques.

The consistency of BENO’s performance under different boundary conditions underscores its po-
tential for applications in computational physics where such scenarios are prevalent. Besides, the
experimental outcomes affirm the efficacy of BENO in handling complex boundary problems in the
context of PDEs. It is also worth noting that the BENO model not only improves the prediction
accuracy but also exhibits a significant reduction in error across different test cases, which is critical
for high-stakes applications such as numerical simulation in engineering and physical sciences.

N Experiments on Darcy Flow

In this section, we consider the solution of the Darcy flow using our proposed BENO approach. The
2-d Darcy flow is a second-order linear elliptic equation of the form

∇ · (κ(x, y)∇u(x, y)) = f(x, y), ∀(x, y) ∈ Ω,

u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω,
(19)

where the coefficients κ is generated by taking a linear combination of smooth basis function in the
solution domain. The coefficients of the linear combination of these basis functions is taken from
uniform distribution of random numbers. Dirichlet boundary condition is imposed along the boundary
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∂Ω using the function g which is sufficiently smooth. The objective of BENO is to map from the
coefficient κ to solution u of the PDE in Equation 19.

The model was exclusively trained on a dataset comprised of 900 samples, each featuring 4-corner
configurations. To assess the robustness and adaptability of our method, we conduct evaluations on
five distinct test datasets. These datasets are deliberately chosen to represent a variety of boundary
conditions commonly encountered in real-world applications, with each one designed to present the
model with different levels of boundary complexity. The outcomes of these evaluations are detailed
in Table 9. Our proposed BENO model consistently outperforms the best baseline across all test
datasets. Notably, BENO achieves the lowest Mean MAE and relative L2 norm in the majority of
these scenarios. This performance underscores the effectiveness of our approach, particularly under
the stringent conditions of 4-corner boundaries.

O Visualization of Two Branches

In this section, the visualized outputs of two distinct branches offer a deeper insight into our model’s
functionality. Branch1, with the boundary input set to zero, is posited to approximate the impact
emanating from the interior, while Branch2, nullifying the interior inputs, is conjectured to capture the
boundary’s influence on the interior. The observations from Figure 9 lend credence to our hypothesis,
indicating a discernible delineation of roles between the two branches.

Extending this analysis, we further postulate that the interplay between Branch1 and Branch2 is critical
for accurately modeling the PDE solution landscape. The synergy of these branches, as evidenced in
our results, showcases a composite model that effectively balances the intricate boundary-interior
dynamics. This balance is crucial in situations where boundary conditions significantly dictate the
behavior of the system, further emphasizing the robustness and adaptability of our model. The
innovative dual-branch strategy presents a promising avenue for enhancing the interpretability and
precision of PDE solutions in complex domains.

P Hyper-parameter List

Table 10: Hyper-parameters Configuration

Hyper-parameter Name Hyper-parameter Value
Boundary Dimension 128
Node Dimension 128
Edge Dimension 128
Epochs 1000
Learning Rate 5e-05
MLP Layers in Eq. 7 3
Nearest Node Number K 8
Message Passing Steps T 5
Transformer Layers 1
Number of Attention Head 2
Number of iterations for the first restart 16
Scheduler CosineAnnealingWarmRestarts
Activation Function Sigmoid Linear Unit (SiLU)
GPU Device Nvidia A100 GPU
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