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Abstract001

The supervised fine-tuning (SFT) stage is cru-002
cial for multimodal large language models003
(MLLMs), yet a comprehensive scaling law to004
guide the optimal model-data configuration re-005
mains lacking. In this paper, we make an initial006
attempt to address this gap. First, we theoreti-007
cally demonstrate that directly computing the008
optimal computation frontier for MLLM-SFT,009
as we can for traditional LLMs, is a challenging010
task. This complexity arises because MLLM-011
SFT is influenced by a broader range of factors,012
including model size, LLM pre-training tokens,013
and MLLM SFT tokens. To tackle this issue,014
we propose two scaling laws based on LLM015
paradigms: one applicable when training data016
volumes are well defined by researchers, and017
another for cases where models are sourced018
from open communities with unknown training019
data. Through theoretical modeling and approx-020
imations, we provide researchers with valuable021
recommendations for optimal resource alloca-022
tion. Furthermore, we establish a strong cor-023
relation (R2 = 0.98) between training loss and024
downstream performance, enabling accurate025
performance estimation without the need for026
exhaustive benchmarking. To validate our scal-027
ing laws, we construct a testbed of 60 models028
ranging from 50 million to 8 billion parameters,029
totaling 1,560 checkpoints. Each checkpoint030
is evaluated on than 10 MLLM benchmarks,031
ensuring robust fitting of our formulations.032

1 Introduction033

The rapid advancement of MLLMs (Liu et al.,034

2023b; Zhang et al., 2024a; Fu et al., 2024b) has un-035

locked unprecedented capabilities in understanding036

and reasoning across diverse modalities, including037

text, images, and structured data. A critical stage in038

developing these models is SFT, where pre-trained039

large language models (LLMs) are adapted to align040

with multimodal tasks through curated datasets.041

While existing works often prioritize scaling SFT042

data volumes to boost performance (Wang et al.,043

2024; Liu et al., 2024b), they largely overlook a 044

fundamental question: Given fixed model architec- 045

tures or target performance levels, how can we de- 046

termine the minimal SFT data required to achieve 047

computational efficiency? Blindly expanding data 048

not only incurs prohibitive annotation costs but also 049

risks diminishing returns, especially in resource- 050

constrained scenarios. 051

Scaling laws, which quantitatively model rela- 052

tionships between computational resources, model 053

parameters, and performance, have proven instru- 054

mental in guiding LLM pre-training (Hoffmann 055

et al., 2022; Kaplan et al., 2020; Clark et al., 056

2022). However, existing laws are ill-suited for 057

MLLM SFT due to its unique complexities. Un- 058

like LLM training, MLLM SFT is governed by 059

a broader set of factors: model size (N ), LLM 060

pre-training data (Dpretrain), the LLM’s inherent ca- 061

pabilities (Pbase), and multimodal SFT data (DSFT). 062

Moreover, as we theoretically demonstrate in our 063

paper, deriving a concise “compute frontier” for 064

MLLM SFT—analogous to the N ∝ D0.5 rule for 065

LLMs—is inherently challenging. 066

To address this gap, we propose the first 067

systematic framework for MLLM SFT scaling 068

laws. Our approach introduces two complemen- 069

tary paradigms: 070

• From-Scratch Scaling Law: For scenarios 071

with full control over LLM pre-training, we 072

model performance as 073

P = A−B/Nα − C/Dβ
pretrain − E/Dγ

SFT, 074

capturing trade-offs between model size, pre- 075

training, and SFT data. 076

• Pre-Trained Model Scaling Law: For widely 077

adopted open-source LLMs (e.g., LLaMA, 078

Qwen), we link downstream performance to 079

the LLM’s benchmark scores (Pbase) via 080

P = F · Pbase −G/N δ −H/Dζ
SFT, 081
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where A,B,C,E, α, β are the coefficients and ex-082

ponents that need to be fitted.083

Additionally, we establish a robust correlation084

(R2 = 0.98) between training loss and downstream085

accuracy, enabling performance prediction without086

exhaustive benchmarking. To validate these laws,087

we construct a testbed of 60 models (50M–8B pa-088

rameters) and 1,560 checkpoints, rigorously eval-089

uated across 10+ multimodal tasks. Our findings090

yield actionable insights for MLLM development:091

• Optimal Resources Allocation: For LLMs092

trained from scratch, we provide the optimal093

pre-training token and SFT token numbers094

for various model sizes. For example, a 1B095

model is best pre-trained with 20.2B text to-096

kens and fine-tuned with 9.2B image-text to-097

kens. The relationship between DSFT and098

Dpretrain follows a nearly linear growth trend,099

with DSFT ≈ 0.48×D0.98
pretrain.100

• LLM Baseline Dominance: For LLMs101

with opaque pre-training data, the pre-trained102

LLM’s performance (Pbase) contributes signif-103

icantly more to downstream performance (P )104

than model size or SFT data. This highlights105

the importance of a strong baseline LLM.106

• Commonsense Reasoning Impact: The107

LLM’s commonsense reasoning capability108

has the greatest impact on MLLM perfor-109

mance after SFT. Next in importance is the110

model’s reasoning ability, while capabilities111

related to Natural Language Inference (NLI)112

have smaller effect.113

• Task-Specific Dynamics: Different multi-114

modal tasks exhibit varying preferences for115

influencing factors. For example, OCR tasks116

rely heavily on DSFT (H = 146.2), while117

real-world perception tasks benefit more from118

model scaling (δ = 0.13).119

• Loss-Driven Prediction: Cumulative train-120

ing loss predicts downstream accuracy with121

strong correlation R2 = 0.98, allowing for122

early stopping and efficient resource realloca-123

tion.124

These results provide a principled foundation for125

optimizing MLLM SFT, balancing performance,126

cost, and practicality.127

2 Related Works 128

Training of Multimodal Large Language Mod- 129

els: MLLMs are typically divided into three stages: 130

pretraining (to bridge the modality gap), instruction 131

tuning, and post-training (Zhang et al., 2025; Lu 132

et al., 2025). Current research primarily focuses on 133

the supervised fine-tuning (SFT) stage, which has 134

been pivotal in enabling models to perform a wide 135

range of multimodal tasks, including image-text 136

alignment, reasoning, and instruction following. 137

This stage also addresses the challenges associated 138

with data fusion across various modalities. Recent 139

open-source MLLMs such as mPLUG-Owl (Ye 140

et al., 2023), LLaVA (Liu et al., 2023b), Qwen- 141

VL (Bai et al., 2023b), Cambrian-1 (Tong et al., 142

2024), Mini-Gemini (Li et al., 2024b), MiniCPM- 143

V 2.5 (Hu et al., 2024), DeepSeek-VL (Lu et al., 144

2024), SliME (Zhang et al., 2024a), and the VITA 145

series (Fu et al., 2024a, 2025; Shen et al., 2025) 146

have made significant contributions to the SFT 147

stage, addressing some of the most fundamental 148

challenges in multimodal AI. These include im- 149

proving vision/audio-language alignment, reason- 150

ing, and instruction-following capabilities, thereby 151

enabling more nuanced and context-aware interac- 152

tions. Some of the most remarkable open-source 153

models, such as InternLM-XComposer-2.5 (Zhang 154

et al., 2023) InternVL-2 (Chen et al., 2023), and 155

QwenVL-2.5 (Bai et al., 2025), have demonstrated 156

impressive strides in multimodal understanding, 157

closely rivaling proprietary models across a variety 158

of multimodal benchmarks. 159

Neural scaling laws quantify the relationship 160

between model size, dataset size, compute budget, 161

and performance during the training of neural net- 162

works. Early works proposed unified formulas for 163

scaling laws and provided practical guidelines for 164

compute-optimal training, laying the foundation 165

for understanding how model performance scales 166

with increased computational resources (Hoffmann 167

et al., 2022; Kaplan et al., 2020). These stud- 168

ies have since been extended to various domains 169

and specialized architectures, offering insights into 170

more specific scenarios. For example, the ap- 171

plication of scaling laws to Mixture of Experts 172

(MoE) models has been explored, demonstrating 173

how sparse activation of model parameters intro- 174

duces unique trade-offs between compute and per- 175

formance (Clark et al., 2022). Similarly, the use 176

of lower precision training, such as 16-bit float- 177

ing point numbers, has been studied in the context 178
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of scaling laws to reduce memory consumption179

and computational overhead in large neural net-180

works (Dettmers et al., 2022). Another line of181

research has conducted extensive experiments on182

scaling laws in the over-trained regime, address-183

ing performance prediction benchmarks for neural184

networks and providing new insights into this un-185

derexplored area (Gadre et al., 2024b). Beyond the186

domain of LLMs, scaling laws have been applied187

in other fields. Image generation research has an-188

alyzed how model size and dataset size influence189

generative performance, providing actionable in-190

sights for tasks in computer vision (Henighan et al.,191

2020; El-Nouby et al., 2024). In the domain of192

acoustic models, scaling laws have been studied to193

understand their impact on automatic speech recog-194

nition tasks, showcasing their relevance in optimiz-195

ing models for speech-based applications (Droppo196

and Elibol, 2021). Despite these advancements,197

there remains a significant gap in the literature198

concerning the SFT stage of MLLMs. Unlike the199

pre-training phase, the SFT stage involves adapt-200

ing pre-trained models to multi-modal tasks us-201

ing additional data and task-specific training ob-202

jectives, making it a distinct and underexplored203

domain for scaling laws. Currently, no established204

scaling laws exist to characterize the relationship205

between model size, fine-tuning data volume, and206

computational budget during this critical stage.207

3 Developing scaling laws for MLLM208

Supervised Fine-Tuning209

In the context of MLLMs, SFT refers to the pro-210

cess of adapting a pre-trained LLM to multi-modal211

tasks by introducing additional data and training212

objectives. This stage builds upon the pre-trained213

LLM, extending its capabilities to understand and214

process multi-modal inputs such as text, images,215

and other modalities. SFT focuses on aligning the216

model’s outputs with specific task objectives using217

curated datasets. The goal of SFT scaling laws is218

to determine the optimal training data volume re-219

quired in the SFT stage to minimize computational220

costs while maximizing performance.221

3.1 MLLM SFT Scaling Laws222

The scaling laws describe the relationship between223

the amount of data used in the supervised fine-224

tuning stage and the model’s performance, partic-225

ularly in the multi-modal domain. To address the226

unique challenges in the multi-modal fine-tuning227

process, we define two types of scaling laws: 228

1. From-Scratch Language Model Scaling 229

Law: This scaling law applies when the underly- 230

ing language model is trained entirely from scratch. 231

In such cases, the model parameters (N ), the data 232

volume used during the LLM pre-training phase 233

(Dpretrain), and the fine-tuning data volume (DSFT) 234

are precisely known. The scaling law examines 235

how these factors interact to influence the average 236

performance (P (N,Dpretrain, DSFT)) of the multi- 237

modal model on downstream tasks. We adopt a 238

parametric form inspired by classical risk decom- 239

position: 240

P (N,Dpretrain, DSFT) = A− B

Nα
− C

Dβ
pretrain

− E

Dγ
SFT

,

(1) 241

whereA,B,C,E, α, β, and γ are fitted parameters. 242

This formula captures the contribution of model 243

parameters, pre-training data, and fine-tuning data 244

to the final performance. 245

2. Pre-Trained(PT) Language Model Scaling 246

Law : In practical scenarios, MLLMs often use 247

publicly available pre-trained LLMs, such as Qwen 248

or LLaMA, as foundational models. The training 249

data volume (Dpretrain) for these models is typically 250

unknown. Instead, this scaling law leverages the ob- 251

served performance of the pre-trained LLM on spe- 252

cific benchmark tasks, such as NLI, Commonsense, 253

and Reasoning. The baseline performance (Pbase) 254

of the pre-trained model is defined as a weighted 255

combination of these tasks: 256

Pbase = w1P
k1
NLI +w2P

k2
Commonsense +w3P

k3
Reasoning,

(2) 257

where PNLI, PCommonsense, and PReasoning are the 258

performance scores on the respective tasks, and w1, 259

w2, w3, k1, k2, k3 are task-specific weights and ex- 260

ponents that are fitted empirically. The scaling law 261

models the relationship between Pbase, model pa- 262

rameters (N ), and fine-tuning data volume (DSFT) 263

to predict the multi-modal model’s downstream 264

performance (P (N,Pbase, DSFT)): 265

P (N,Pbase, DSFT) = F ∗Pbase−
G

N δ
− H

Dζ
SFT

, (3) 266

where F , G, δ, and ζ are fitted parameters. This 267

formula accounts for the foundational model’s ini- 268

tial capabilities and the incremental improvements 269

from SFT. By empirically evaluating Pbase across 270

tasks, we provide a framework for optimizing fine- 271

tuning data requirements without relying on un- 272

known pre-training data sizes. 273
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3. Training Loss and Downstream Perfor-274

mance Scaling Law: In addition to the two types275

of scaling laws classified by model type, we also in-276

vestigate the scaling law between training loss and277

downstream performance. In LLMs, scaling laws278

are often studied in the context of loss. However, in279

MLLMs, researchers focus less on loss and more280

on downstream performance metrics. Whether281

there is a consistent relationship between train-282

ing loss and downstream performance in MLLMs283

remains uncertain. To address this question, we284

hypothesize that the downstream performance P285

(defined as accuracy in this context) is related to286

the training loss L through a decaying relationship:287

P (L) = Pmin +
(Pmax − Pmin)

1 + k · Lγ
, (4)288

Specifically, Pmax represents the maximum achiev-289

able performance when the loss L approaches zero,290

reflecting the model’s best possible accuracy un-291

der ideal conditions. Conversely, Pmin denotes the292

baseline performance when the loss becomes arbi-293

trarily large, ensuring the formula remains bounded294

and realistic (e.g., reflecting random guessing or295

task-specific Bayes error). The parameter k con-296

trols the sensitivity of performance to changes in297

loss, allowing the formula to model how quickly298

performance degrades as loss increases. Finally, γ299

shapes the decay curve, with higher values result-300

ing in a sharper decline at smaller losses, which301

aligns with empirical observations where small in-302

creases in loss can lead to disproportionately large303

drops in accuracy.304

3.2 Model Fitting305

To estimate the parameters in the scaling laws (e.g.,306

A, B, C, E, α, β, γ, w1, w2, w3, k1, k2, k3, F ,307

G, δ, ζ), we minimize the Huber loss between the308

predicted and observed log performance values us-309

ing the L-BFGS algorithm (Hoffmann et al., 2022;310

Aghajanyan et al., 2023):311

min
parameters

Runs∑
i

Huberδ
(
log P̂ (·)− logPi

)
, (5)312

where δ is a hyperparameter controlling the robust-313

ness to outliers. This optimization process accounts314

for potential local minima by selecting the best fit315

from a grid of initializations. The Huber loss, with316

δ = 10−3, is employed for its ability to handle317

outliers effectively, ensuring reliable predictive per-318

formance on held-out data points. To reduce the319

variance introduced by a single fitting attempt, we 320

perform 100 independent fits and select the best 321

five results based on performance. 322

In Section A, we discuss the significance of scal- 323

ing laws in optimizing compute resource alloca- 324

tion, reducing data collection and computational 325

costs, and predicting downstream task performance 326

through stable training loss estimates. 327

4 Experimental Setup 328

In our experimental setup, we adopt the LLaVA 329

1.6 (Liu et al., 2024a) architecture, recognized 330

for its simplicity and efficiency in integrating vi- 331

sual and textual modalities. The visual encoder 332

is based on CLIP-ViT-L-336px, and we employ a 333

dynamic high-resolution strategy for optimal im- 334

age processing. For language models, we eval- 335

uate both models trained from scratch and pre- 336

trained models, encompassing a wide range of sizes 337

and datasets—totaling 60 models and over 1560 338

checkpoints. The training corpus on SFT using the 339

LLaVA-OneVision dataset, which consists of 3.7 340

million samples. Performance is assessed through 341

benchmarks grouped into four categories: General 342

Capabilities, Real-World (High-Resolution Percep- 343

tion), Chart and Document Understanding Tasks, 344

and Optical Character Recognition (OCR) Tasks. 345

We also evaluate core language model abilities, in- 346

cluding reasoning, commonsense understanding, 347

and natural language inference. For a comprehen- 348

sive overview of the model architecture, training 349

approach, and benchmark details, please refer to 350

Section B in the Appendix. This setup provides a 351

robust and comprehensive evaluation of MLLMs 352

across a diverse range of tasks and modalities. 353

5 From-Scratch LLM Scaling Law 354

LLMs and MLLMs require efficient scaling 355

of compute, pretraining data, and fine-tuning 356

data to achieve optimal performance. Our 357

objective is to maximize model performance 358

P (N,Dpretrain, DSFT) under a compute budget, 359

while taking into account the constraints between 360

model size, pretraining data, and fine-tuning data. 361

The key constraint is (Kaplan et al., 2020; Hoff- 362

mann et al., 2022): FLOPs = 6N(Dpretrain+DSFT) 363

In the ideal case, we should be able to obtain the 364

following expressions x = CxFLOPs
γx , clearly 365

showing the relationship between each variable and 366

FLOPs, thus deriving the compute-optimal fron- 367

tier. However, as we theoretically demonstrate 368
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Figure 1: Scaling law of model performance with respect to the size of DSFT data, where different colors
represent the ratio of pretraining tokens to model parameters. Warmer colors (closer to red) indicate higher ratios,
suggesting the model is closer to overtraining during the pretrain stage. Different model sizes are distinguished by
varying markers, and quadratic polynomial fits are applied to illustrate the performance trends for each model size.
All models except 7B size show signs of overtraining during the SFT stage, with their optimal DSFT token counts
aligning closely with the predicted value of from Table 1.

in Section C, deriving a closed-form solution for369

the multimodal scaling law is much more challed-370

nging for LLM scaling laws. Therefore, in the371

main text, we adopt an approximate fitting strategy.372

Specifically, we first study the optimal pretrain to-373

kens for an LLM with model size N (for which374

there are already well-established results in exist-375

ing works(Kaplan et al., 2020; Hoffmann et al.,376

2022)). Then, based on our fitting results, we inves-377

tigate the optimal SFT tokens for the SFT phase,378

given N and pretrain tokens.379

Firstly, in Table 1, we present the optimal pre-380

train tokens corresponding to different model sizes381

according to the existing LLM scaling law (Hoff-382

mann et al., 2022). Secondly, in Appendix E, we383

derive the relationship between pretraining data384

and SFT data: Dpretrain =
(
βC
γE

) 1
β+1

D
γ+1
β+1

SFT . Sub-385

sequently, leveraging the parameters fitted to our386

model:387

A = 256.76, B = 143.75, C = 288.56,

E = 96.17, α = 0.039, β = 0.054, γ = 0.074,
388

We determine approximate optimal numbers of389

Pretrain Tokens and SFT Tokens for a given model390

size. Figure 1 illustrates our experimental data,391

where each point represents a model checkpoint.392

The solid line represents our fitted curve, demon-393

strating that the results align closely with the ap-394

proximate optimal solutions in Table 1, validating395

the efficacy of our approximation method.396

Model Size Pretrain Tokens SFT Tokens FLOPs

400 Million 8.0 Billion 3.7 Billion 2.81E+19
1 Billion 20.2 Billion 9.2 Billion 1.76E+20

10 Billion 205.1 Billion 89.5 Billion 1.77E+22
67 Billion 1.5 Trillion 631.0 Billion 8.57E+23
175 Billion 3.7 Trillion 1.5 Trillion 5.46E+24
280 Billion 5.9 Trillion 2.4 Trillion 1.39E+25
520 Billion 11.0 Trillion 4.4 Trillion 4.80E+25
1 Trillion 21.2 Trillion 8.4 Trillion 1.78E+26

10 Trillion 216.2 Trillion 82.9 Trillion 1.79E+28

Table 1: Estimated optimal training compute and tokens
for various model sizes.

6 Pre-Trained LLM Scaling Law 397

Challenges in Deriving the Efficient Frontier: 398

Unlike from-scratch LLM scaling laws, the PT 399

Scaling Law faces a key issue: the pre-training 400

process often involves proprietary or unknown data 401

volume and compute, leaving the relationship be- 402

tween N and Pbase unclear. Specifically: 403

• Pbase often scales with N , but its growth typi- 404

cally saturates. For example, it may follow a 405

saturating function such as: 406

Pbase(N) = Pbase,max ·
(
1− 1

Nα

)
. (6) 407

• This dependency introduces a non-linear in- 408

teraction between Pbase, and N , complicating 409

the optimization problem. 410

In addition, the performance formula is inher- 411

ently coupled. For example, increasing N im- 412
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Subset Task Weights Task Exponents Scaling Parameters Scaling Exponents R2

w1 w2 w3 k1 k2 k3 F G H δ ζ

overall 0.2512 0.7018 0.0470 0.4841 0.8895 1.0045 4.4104 34.4322 99.9371 0.0016 0.0350 0.9129
chart & document 0.0232 0.9195 0.0573 0.0272 0.7483 0.7269 7.8389 92.6541 88.2644 0.0050 0.0651 0.8931
general knowledge 0.2169 0.2982 0.4849 0.4703 0.9200 0.5539 6.4711 35.1324 132.0660 0.0085 0.0665 0.8223
ocr 0.0072 0.8320 0.1608 0.2094 0.9861 0.9326 3.0259 27.1967 146.2460 0.0675 0.0208 0.9267
real world 0.5323 0.3813 0.0864 0.7043 1.0221 0.5556 2.6240 46.5741 75.1569 0.1342 0.0220 0.8340

Table 2: Summary of best fitted parameters across different subsets. The parameters w1, w2, and w3 represent
the weights assigned to NLI, commonsense, and reasoning tasks, respectively, while k1, k2, and k3 are their
corresponding exponents. F , G, and H describe the influence of the baseline performance, model size (N ), and
fine-tuning data (DSFT), respectively. δ and ζ are scaling exponents for N and DSFT. R2 represents the goodness of
fit for the scaling law.

proves Pbase, but this also reduces marginal returns413

due to the penalty term −G/N δ. At the same time,414

increasing DSFT reduces the penalty −H/Dζ
SFT,415

but its impact is influenced by the starting value416

of Pbase. These interactions make it infeasible to417

derive the efficient frontier analytically without pre-418

cise knowledge of the functional form of Pbase(N).419

Therefore, in this section, we only provide valuable420

analysis and suggestions for training MLLMs from421

pretrained LLMs.422

6.1 Analysis of Scaling Parameters and423

Recommendations424

The proposed scaling law offers a holistic perspec-425

tive on how model size (N ), the LLM baseline426

performance (Pbase), and fine-tuning data (DSFT)427

influence downstream performance. Based on the428

fitted parameters shown in Table 2, the following429

key insights have been derived:430

• Dominance of LLM Baseline Performance431

(Pbase): The scaling law reveals that the base-432

line performance of the pre-trained LLM is433

the primary determinant of downstream per-434

formance, as reflected by the relatively high435

value of F = 4.3585. While both model size436

(N ) and fine-tuning data volume (DSFT) make437

meaningful contributions, their impact is sec-438

ondary to the inherent capabilities of the pre-439

trained LLM.440

• Task Contributions within Pbase: The task-441

specific weights (w1, w2, w3) highlight that442

commonsense reasoning (w2 = 0.7598) is the443

most critical component of Pbase, followed444

by reasoning (w3 = 0.0996) and natural lan-445

guage inference (NLI) (w1 = 0.1404). This446

underscores that LLM performance on com-447

monsense reasoning and general reasoning448

tasks is crucial for developing robust multi- 449

modal models. 450

• Impact of Model Size (N ): G = 64.3677 451

and δ = 0.0032 indicate that while increas- 452

ing model size contributes positively to down- 453

stream performance, the marginal gains de- 454

crease significantly as the model size grows. 455

This diminishing return suggests that after a 456

certain scale, increases in model size yield 457

limited improvements. 458

• Significance of Fine-Tuning Data Volume 459

(DSFT): The parameters H = 170.2884 and 460

ζ = 0.0995 emphasize the critical role of fine- 461

tuning data volume in enhancing downstream 462

performance. Compared to model size, DSFT 463

emerges as the second most influential fac- 464

tor, following Pbase. The combination of a 465

relatively large H and a moderate ζ suggests 466

that increasing fine-tuning data volume can 467

yield substantial improvements, particularly 468

for smaller or moderately sized LLMs. 469

7 Average Downstream Performance 470

Scales as a Function of loss. 471

Reconciling Results from FS-Scaling and PT- 472

Scaling Laws: It is worth noting that the findings 473

presented here appear to differ from those of the FS- 474

scaling law, where model size (N ) was identified 475

as more significant than fine-tuning data volume 476

(DSFT). However, this apparent discrepancy can be 477

explained by considering the implicit dependencies 478

within Pbase. As stated earlier in this section, Pbase 479

inherently encapsulates the contributions of model 480

size. Therefore, the role of N here reflects the 481

marginal impact of increasing model size given a 482

fixed baseline LLM performance, rather than its ab- 483

solute contribution to the multi-modal downstream 484

performance. 485
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Figure 2: Loss and Accuracy Correlation under Different Loss Calculation Strategies. The left plot evaluates
the model every 1000 steps, using the average loss of those 1000 steps, while the right plot evaluates the model
every 1000 steps but uses the cumulative average loss from the beginning of training up to the current step. Both
approaches reveal a strong correlation (above 0.977) between loss and accuracy, demonstrating that either loss
calculation strategy can effectively reflect the model’s performance.

Efficient SFT from Pretrained LLM
1. Investing in pre-trained LLMs with strong commonsense and reasoning capabilities provides the
most efficient foundation.
2. Prioritize fine-tuning data scaling, particularly for mid-sized models, to achieve balanced perfor-
mance gains without over-reliance on massive model sizes.
3. While increasing model size is critical for improving the baseline LLM performance, its contribution
to enhancing multi-modal understanding capabilities is relatively limited.

These two sections are thus complementary486

rather than contradictory. The FS-scaling law high-487

lights the fundamental importance of model size,488

whereas the PT-scaling law reveals that the primary489

role of increasing model size lies in improving490

the LLM baseline performance Pbase, rather than491

directly enhancing multi-modal understanding ca-492

pabilities. By contrast, for multi-modal understand-493

ing, fine-tuning data volume (DSFT) emerges as the494

more significant factor.495

We conduct a task-specific scaling law analysis496

across four key categories: General Knowledge,497

OCR, Chart and Document Understanding, and498

Real-World tasks. This analysis reveals distinct499

trends in how different factors—such as LLM per-500

formance (reasoning, commonsense understanding,501

and NLI) and scaling parameters (model size and502

fine-tuning data)—contribute to task performance.503

For instance, general knowledge tasks are heavily504

influenced by reasoning capabilities, while OCR505

tasks benefit significantly from fine-tuning data506

augmentation. Detailed findings, including spe-507

cific scaling parameters and takeaways for efficient508

training strategies, are provided in Appendix F.509

First, since evaluating the model at every step is 510

computationally prohibitive, we evaluate it every 511

1000 steps and record the loss at those intervals. 512

However, using the loss of a single point (e.g., at 513

step 1000) as input for fitting yields unstable results 514

due to high variance. This variance arises because 515

the loss at a single step is influenced not only by 516

the model’s inherent ability but also by the specific 517

data in the current batch, making it unreliable. 518

To address this issue, two alternative strategies 519

were adopted, as shown in Figure 2: 520

1.Average Loss over 1000 Steps: This strategy 521

calculates the mean loss over the 1000-step in- 522

terval before each evaluation to reduce variance. 523

The fitted parameters from this strategy (Pmin = 524

4.64, Pmax = 80.00, k = 1.75, γ = 1.95) indicate 525

a clear relationship between the average loss and 526

downstream performance. The slightly sharper de- 527

cay (γ = 1.95) suggests that performance is more 528

sensitive to loss reductions in this setup. 529

2. Cumulative Average Loss: This strategy uses 530

the cumulative average loss from the beginning of 531

training up to the evaluation point. By incorporat- 532

ing a longer history of training performance, this 533
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Task-Specific Loss and Accuracy Predictions

General Knowledge: Loss is predictive of accuracy due to the lower sensitivity (γ = 1.41) and slower
degradation. While loss reductions improve performance, fine-tuning beyond a certain point yields
diminishing returns.
Chart & Document Understanding: Training loss is highly predictive of downstream performance
(R2 = 0.974), with high sensitivity to low-loss improvements (γ = 2.50). Fine-tuning for minimal
loss is critical, as even small reductions can yield significant accuracy gains.
OCR: Loss and accuracy are strongly correlated (R2 = 0.9831), with the sharpest decay (γ = 2.75).
This task benefits the most from loss reduction, making loss a reliable metric.
Real-World Tasks: Loss is a reasonably strong predictor (R2 = 0.9296). Moderate sensitivity
(γ = 1.90) suggests that loss reductions improve performance but with less drastic gains compared to
OCR or Chart tasks. A task-specific approach is recommended.

method reduces the influence of outliers and cap-534

tures training dynamics more effectively. The fit-535

ted parameters (Pmin = 6.64, Pmax = 80.00, k =536

1.57, γ = 2.12) reveal a slightly higher baseline537

performance (Pmin = 6.64) and a steeper decay538

(γ = 2.12). This indicates that cumulative averag-539

ing is more robust to noise and provides a smoother540

estimate of the training trajectory.541

While the overall scaling law provides a general542

relationship between training loss and downstream543

performance, specific tasks exhibit unique sensi-544

tivities and dependencies on loss, which require545

a more granular analysis. To better understand546

these variations, we summarize the key findings547

for task-specific scaling laws in the appendix. Be-548

low, we highlight the primary takeaways, empha-549

sizing the nuances of using training loss to predict550

downstream accuracy for different task types. This551

complements the overall observations and provides552

actionable insights tailored to specific tasks.553

8 Conclusion and Future Work554

This work presents the first principled framework555

for understanding scaling laws in MLLM-SFT. We556

systematically model the interplay between model557

size (N ), pre-training data (Dpretrain), fine-tuning558

data (DSFT), and the inherent capabilities of pre-559

trained LLMs (Pbase). Our findings offer valuable560

insights into the optimal configuration of these fac-561

tors for efficient training.562

Although this study lays a foundation for opti-563

mizing MLLM performance, there are several av-564

enues for future research and aspects not addressed565

in this work:566

1. Exploring Alternative Theoretical Model-567

ing Approaches: As discussed in article, while var-568

ious approximation methods have been attempted,569

none lead to a theoretically optimal computational 570

Pareto frontier. In future, we intend to explore 571

alternative modeling and approximation strategies. 572

2. Interaction Between Model Size and Fine- 573

Tuning Data Volume: We quantitatively model the 574

interaction between model size (N ) and fine-tuning 575

data volume (DSFT), establishing a relationship that 576

captures the combined impact on performance: 577

P (N,DSFT, Pbase) = Pbase ·K+1− F

(N ·DSFT)γ
, 578

where the parameter γ captures the joint effect 579

of model size and fine-tuning data volume. This 580

model aids in understanding the trade-offs between 581

computational resources and training effectiveness 582

for different configurations. 583

3. Nonlinear Combination of Tasks: We also 584

demonstrate that the baseline performance (Pbase) 585

of an LLM can be modeled as a nonlinear combina- 586

tion of the model’s capabilities across various tasks, 587

such as NLI, commonsense and general reasoning. 588

The relationship is expressed as: 589

Pbase =
(
w1P

k1
NLI + w2P

k2
Commonsense + w3P

k3
Reasoning

)γ
, 590

where γ controls the degree of nonlinearity, em- 591

phasizing the complex interdependencies between 592

different task capabilities. 593

4. Noise and Uncertainty Modeling: To en- 594

hance performance prediction, we incorporate a 595

noise term that accounts for variance in model per- 596

formance, modeled as: 597

P (N,Pbase, DSFT) = Original Formula + ϵ, 598

where ϵ ∼ N (0, σ2) represents the uncertainty in 599

performance. This addition provides a more ro- 600

bust and reliable prediction framework for MLLM 601

development. 602
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Limitations603

This study has several limitations. Firstly, there604

is a lack of a theoretically optimal computational605

Pareto frontier, indicating the need to explore alter-606

native theoretical modeling methods. Secondly, the607

relationship between model size and fine-tuning608

data volume is not yet fully understood, necessi-609

tating the establishment of a quantitative model610

to analyze its impact on performance. Addition-611

ally, while baseline performance is modeled as a612

nonlinear combination of task capabilities, the com-613

plex interdependencies between tasks, such as nat-614

ural language reasoning, common sense, and in-615

ference tasks, require further exploration. Lastly,616

the current model insufficiently accounts for perfor-617

mance variance, and the study suggests incorporat-618

ing noise terms to enhance the model’s robustness619

and reliability.620
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A The Role of Scaling Laws in 910

Multi-Modal Model Training 911

Scaling laws are essential for understanding and op- 912

timizing the SFT process of MLLMs. These laws 913

quantitatively model the relationships between key 914

factors such as model size (N ), fine-tuning data vol- 915

ume (DSFT), pre-training data volume (Dpretrain), 916

and the performance of downstream tasks (P ). By 917

identifying these relationships, scaling laws pro- 918

vide actionable insights for achieving efficient com- 919

pute allocation and performance optimization in 920

multi-modal tasks. Specifically, scaling laws serve 921

the following purposes: 922

1. Compute-Optimal Allocation: Scaling laws en- 923
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of compute resources between model size (N ) and925

the data volume used in SFT (DSFT) to optimize926

performance. By modeling the loss and perfor-927

mance trade-offs, scaling laws provide a framework928

to achieve compute-optimal configurations.929

2. Practical Optimization of SFT Data Volume:930

Scaling laws are particularly useful for multi-modal931

SFT as they provide a systematic way to deter-932

mine the optimal fine-tuning data volume (DSFT)933

required to achieve a desired level of performance.934

In many practical scenarios, collecting or anno-935

tating large-scale multi-modal datasets is expen-936

sive and time-consuming. By using scaling laws,937

researchers can estimate the minimum necessary938

DSFT to achieve a target performance, reducing939

computational and data collection costs. This is940

especially valuable when leveraging pre-trained941

LLMs where Dpretrain is often unknown or fixed.942

3. Performance Prediction from Training Loss:943

As MLLM benchmarks continue to grow in di-944

versity, comprehensively evaluating model perfor-945

mance across all downstream tasks has become946

increasingly challenging. Scaling laws relating947

training loss to downstream performance provide948

a powerful tool for addressing this issue. By mod-949

eling the relationship between a model’s final con-950

vergence loss and its performance (P ), researchers951

can predict performance ranges directly from loss952

without requiring exhaustive evaluations on every953

benchmark. This capability simplifies the evalua-954

tion process, enabling efficient comparison of mod-955

els and configurations while reducing the reliance956

on costly benchmark runs.957

In summary, scaling laws provide a critical958

framework for the compute-efficient design of959

MLLMs during the SFT stage. By balancing model960

size, fine-tuning data, and computational resources,961

these laws ensure that training and fine-tuning pro-962

cesses are both cost-effective and performance-963

optimized.964

B Experimental Setup965

B.1 Model Structure966

We primarily follow the architecture design of967

LLaVA 1.6 (Liu et al., 2024a), which is one of the968

most widely adopted and efficient architectures for969

MLLMs. This architecture is known for its simplic-970

ity and effectiveness. Specifically, our model pro-971

cesses visual information and establishes connec-972

tions between the visual and textual modalities us-973

ing the following approaches. By default, we adopt974

CLIP-ViT-L-336px1 as the visual encoder. To han- 975

dle image inputs, we utilize the dynamic high res- 976

olution strategy, which is a mainstream approach 977

for image splitting and encoding. This method 978

employs a grid configuration of {2×2, 1×{2,3,4}, 979

{2,3,4}×1} and selects the optimal configuration 980

for splitting and encoding images. Subsequently, 981

the image features are mapped to the textual feature 982

space using a two-layer MLP. The resulting image 983

tokens are concatenated with the text tokens, and 984

the combined tokens are passed into the LLM for 985

further processing. 986

B.2 Language Model 987

For the language models trained from scratch, 988

we used 45 models from OpenLM (Gadre et al., 989

2024a). These models are divided into four dif- 990

ferent sizes (50M, 0.1B, 0.5B, 1B, 7B), and each 991

size was trained with different datasets and training 992

data ratios. During the SFT phase, we evaluated 993

every 1000 steps, resulting in over one thousand 994

checkpoints for performance evaluation. For mod- 995

els where the data sources and pretraining data 996

volumes are less clear, we selected 15 representa- 997

tive models, including various model sizes from 998

0.5B to 8B. Similarly, in the SFT phase, perfor- 999

mance at every 1000-step evaluation is recorded 1000

as a checkpoint. It is worth noting that the check- 1001

points from language models trained from scratch 1002

can also be used for fitting the scaling law in this 1003

phase. Specifically, the pretrain LLM scaling law 1004

was fitted using 1560 checkpoints. The model sizes 1005

and datasets used for both "training from scratch" 1006

and "training from pretrain" are summarized in Ta- 1007

ble 3. 1008

B.3 Training Corpus and Strategy 1009

As our primary focus is not on the pre-training 1010

stage of MLLMs, all experiments use the pre- 1011

training data from LLaVA-1.5 (Liu et al., 2023a), 1012

which consists of 558K samples. The first-stage 1013

training is not counted in the total token count. For 1014

the SFT stage, we utilize the single-image training 1015

dataset from LLaVA-OV (Li et al., 2024a), compris- 1016

ing a total of 3.7M training samples. The average 1017

image + text tokens per sample is 2041.7. 1018

B.4 Benchmarks 1019

To comprehensively evaluate the performance of 1020

MLLMs on downstream tasks, we categorize the 1021

1https://huggingface.co/openai/
clip-vit-large-patch14-336
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From Scratch

N Dpretrain/N Pretrain Dataset

50M 0.25, 4, 32 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
0.1B 0.25, 4, 32 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
0.5B 0.25, 4, 16 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
1B 0.25, 1, 4, 16 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
7B 1, 4 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)

From Pretrain

N Model Name

0.5B Qwen1.5 (Bai et al., 2023a), Qwen2 (Yang et al., 2024a), Qwen2.5 (Yang et al., 2024b)
1.5/1.8B Qwen1.5 (Bai et al., 2023a), Qwen2 (Yang et al., 2024a), Qwen2.5 (Yang et al., 2024b)

3/4B Qwen1.5 (Bai et al., 2023a), Qwen2 (Yang et al., 2024a)
7/8B LLaMA2 (Touvron et al., 2023), LLaMA3 (Dubey et al., 2024), LLaMA3.1 (Dubey et al., 2024), Qwen2 (Yang et al., 2024a),

Vicuna1.1 (Chiang et al., 2023), Vicuna1.3 (Chiang et al., 2023), Vicuna1.5 (Chiang et al., 2023)

Table 3: Pretraining datasets and model sizes for language models trained from scratch and pretrained models

MLLM evaluation benchmarks into four groups: 1.1022

General Capabilities: This includes benchmarks1023

such as MME (Fu et al., 2023), GQA (Hudson1024

and Manning, 2019), and VQAv2 (Goyal et al.,1025

2017), which assess overall multi-modal perfor-1026

mance. 2. Real-World (High-Resolution Percep-1027

tion): Benchmarks include RealWorld-QA2 and1028

MME-RealWorld-CN (Zhang et al., 2024b), tar-1029

geting high-resolution perception tasks and under-1030

standing fine-grained real-world details. 3. Chart1031

and Document Understanding Tasks: Benchmarks1032

like ChartQA (Masry et al., 2022), AI2D (Kem-1033

bhavi et al., 2016), and DocVQA (Mathew et al.,1034

2021) are used to assess the model’s capability in1035

understanding structured data and visual informa-1036

tion in charts and documents. 4. Optical Charac-1037

ter Recognition (OCR) Tasks: This includes OCR-1038

Bench (Liu et al., 2023c), TextVQA (Singh et al.,1039

2019), and WebSRC (Chen et al., 2021), focusing1040

on extracting text information and reasoning over1041

textual content.1042

To evaluate the foundational performance of1043

the underlying LLM, we assess three key abil-1044

ities: 1. Reasoning: Benchmarks include1045

MMLU (Hendrycks et al., 2020), SciQ3, and ARC-1046

Easy4 to test logical and problem-solving abili-1047

ties. 2. Commonsense Understanding: Bench-1048

marks include Winogrande (ai2, 2019) and Open-1049

BookQA (Mihaylov et al., 2018) to evaluate the1050

model’s grasp of general world knowledge and1051

commonsense reasoning. 3. Natural Language In-1052

ference (NLI): Benchmarks such as COPA (Roem-1053

mele et al., 2011) and RTE5 are used to test the1054

model’s ability to infer relationships between state-1055

2https://x.ai/blog/grok-1.5v
3https://huggingface.co/datasets/allenai/sciq
4https://huggingface.co/datasets/allenai/ai2_

arc
5https://aclweb.org/aclwiki/Recognizing_

Textual_Entailment

ments. These benchmarks provide a holistic evalu- 1056

ation of the MLLM’s performance, encompassing 1057

both its multi-modal and foundational language 1058

model capabilities. By covering a diverse set of 1059

tasks, we ensure that the scaling laws are applicable 1060

to a wide range of real-world use cases. 1061

C Direct Calculation of the Efficient 1062

Frontier is Extremely Challenging 1063

Assume the optimal solution follows a power- 1064

law form, i.e., there exist constants k1, k2, k3 1065

and exponents a, b, and c, such that N = 1066

k1 FLOPsa, Dpretrain = k2 FLOPsb, DSFT = 1067

k3 FLOPsc. 1068

Substituting into the Compute Constraint: 1069

Given the compute constraint 1070

6N (Dpretrain +DSFT) = FLOPs, 1071

substitute the assumptions into the equation: 1072

6
(
k1 FLOPsa

)(
k2 FLOPsb + k3 FLOPsc

)
=

6 k1

(
k2 FLOPsa+b + k3 FLOPsa+c

)
= FLOPs.

1073

For the equation to hold for all values of FLOPs, 1074

the highest FLOPs exponent in the two terms must 1075

be exactly 1. A common assumption is thatDpretrain 1076

and DSFT are "balanced" in terms of resource allo- 1077

cation, i.e., b = c. This gives us: 1078

6 k1(k2 + k3)FLOPsa+b = FLOPs. 1079

This implies that 1080

a+ b = 1, or equivalently, b = c = 1− a. 1081

In practical scenarios, the data sizes for MLLM 1082

SFT and LLM pretrain are generally not on the 1083

same scale. In other words, there is a gap between 1084

the theoretical and actual results! This gap arises 1085

13

https://x.ai/blog/grok-1.5v
https://huggingface.co/datasets/allenai/sciq
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://aclweb.org/aclwiki/Recognizing_Textual_Entailment
https://aclweb.org/aclwiki/Recognizing_Textual_Entailment


from our modeling approach. In reality, the size of1086

DSFT should be closely related to N and Dpretrain,1087

rather than being independent of them (i.e., there1088

should be a nonlinear relationship among the three;1089

for example, an LLM trained with a sufficiently1090

large Dpretrain intuitively converges faster than a1091

freshly initialized LLM).1092

However, there are two difficulties in modeling1093

this dependency:1094

1. First, we do not know what kind of nonlinear1095

dependency this would be.1096

2. As shown in Section D, even without consid-1097

ering additional inequality or equality con-1098

straints, it is extremely difficult to perform1099

mathematical analysis to obtain the Efficient1100

Frontier for our problem, let alone more com-1101

plex modeling approaches.1102

Therefore, in the main text, we adopt an approxi-1103

mate fitting strategy. Specifically, we first study the1104

optimal pretrain tokens for an LLM with model size1105

N (for which there are already well-established re-1106

sults in existing works). Then, based on our fitting1107

results, we investigate the optimal SFT tokens for1108

the SFT phase, given N and pretrain tokens.1109

D Failure Case 1: Challenges in1110

Approximating the Efficient Frontier1111

In this section, we explore an approximation strat-1112

egy to derive the Efficient Frontier, ultimately we1113

successfully describe the dependence of Dpretrain,1114

DSFT, and N on FLOPs. However, this approxi-1115

mation may incur significant errors, leading to poor1116

performance in practical applications.1117

D.1 Assumptions1118

1. Performance Function: The performance P1119

is decomposed into contributions from model1120

size N , pretraining data Dpretrain, and fine-1121

tuning data DSFT:1122

P (N,Dpretrain, DSFT) =

A− B

Nα
− C

Dβ
pretrain

− E

Dγ
SFT

1123

2. Compute Constraint: Compute resources are1124

consumed as:1125

6N(Dpretrain +DSFT) = FLOPs1126

D.2 Efficiency Frontier Derivation 1127

We use the Lagrange multiplier method to incorpo- 1128

rate the compute constraint: 1129

L(N,Dpretrain, DSFT, λ) = −P (N,Dpretrain,DSFT)

+λ
(
FLOPs − 6N(Dpretrain +DSFT)

) 1130

Taking partial derivatives and solving, we find: 1131

1. For N : 1132

∂L
∂N

=
αB

Nα+1
− 6λ(Dpretrain +DSFT) = 0 1133

2. For Dpretrain: 1134

∂L
∂Dpretrain

=
βC

Dβ+1
pretrain

− 6λN = 0 1135

3. For DSFT: 1136

∂L
∂DSFT

=
γE

Dγ+1
SFT

− 6λN = 0 1137

4. For λ: 1138

∂L
∂λ

= FLOPs − 6N(Dpretrain +DSFT) = 0 1139

Since there are many variables involved, it is 1140

very difficult to directly obtain the closed-form 1141

solution for each variable with respect to FLOPs. 1142

Therefore, for simplicity, we introduce an auxiliary 1143

variable 1144

ψ ≡ 6λN. 1145

In section. D.3, we show 1146

ψ ≈ C1

FLOPs1/p
, 1147

where 1148

p =
1

α
+
α− 1

α
· 1

1 + min(β, γ)
, 1149

and 1150

C1 = 61/p(αB)
1

αp

[
(β C)

1
β+1 + (γ E)

1
γ+1

]α−1
αp

. 1151

From this, we can step by step obtain the depen- 1152

dence of Dpretrain, DSFT, and N on FLOPs based 1153

on the optimization problem and the approximate 1154

solution for ψ. 1155
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1. First-order Optimality Conditions for the1156

Data Size: Take the partial derivatives of Dpretrain1157

and DSFT, and set them to zero to obtain:1158

∂L
∂Dpretrain

= −β C

Dβ+1
pretrain

+ 6λN = 0

=⇒ Dβ+1
pretrain =

β C

6λN
,

∂L
∂DSFT

= −γ E

Dγ+1
SFT

+ 6λN = 0

=⇒ Dγ+1
SFT =

γ E

6λN
.

1159

Thus, the above expressions can be written as1160

Dpretrain =

(
ψ

β C

)−1/(β+1)

= (β C)1/(β+1) ψ−1/(β+1),

DSFT =

(
ψ

γ E

)−1/(γ+1)

= (γ E)1/(γ+1) ψ−1/(γ+1).

1161

2. Optimality Condition for N : Taking the par-1162

tial derivative of the objective function with respect1163

to N , we get:1164

−α B

Nα+1
+ 6λ

(
Dpretrain +DSFT

)
= 0.1165

Remembering that ψ = 6λN , we can rearrange1166

this to obtain:1167

αB

Nα
= ψ

(
Dpretrain +DSFT

)
.1168

Substitute the expressions for Dpretrain and DSFT1169

from earlier. Note that1170

Dpretrain +DSFT =

(β C)1/(β+1) ψ−1/(β+1) + (γ E)1/(γ+1) ψ−1/(γ+1).
1171

Thus, we get1172

αB

Nα
=

(β C)1/(β+1) ψ
1− 1

β+1 + (γ E)1/(γ+1) ψ
1− 1

γ+1 .

1173

Solving for N , we obtain1174

N ={
αB

(β C)1/(β+1) ψ
1− 1

β+1 + (γ E)1/(γ+1) ψ
1− 1

γ+1

}1/α

.
1175

The original computational budget requirement 1176

is: 1177

6N
(
Dpretrain +DSFT

)
= FLOPs. 1178

Substituting the earlier expressions forDpretrain and 1179

DSFT, we can rewrite it as 1180

N
[
(βC)1/(β+1) ψ−1/(β+1) + (γE)1/(γ+1) ψ−1/(γ+1)

]
=
FLOPs

6
.

1181

(From now on, we use F to represent FLOPs, 1182

which is simply an adjustment of the constant fac- 1183

tor.) 1184

Expressing the Dependence of Variables on F 1185

(i.e., FLOPs): 1186

(1) Data Size Using the expressions obtained 1187

earlier: 1188

Dpretrain = (βC)1/(β+1)ψ−1/(β+1)

= (βC)1/(β+1)C
−1/(β+1)
1 F 1/(p(β+1)),

DSFT = (γE)1/(γ+1)ψ−1/(γ+1)

= (γE)1/(γ+1)C
−1/(γ+1)
1 F 1/(p(γ+1)).

1189

This can be written as: 1190

Dpretrain =
[
(βC)1/(β+1)C

−1/(β+1)
1

]
F

1
p(β+1) ,

DSFT =
[
(γE)1/(γ+1)C

−1/(γ+1)
1

]
F

1
p(γ+1) .

1191

(2) Model Size N 1192

Recalling the expression for N : 1193

N ={
αB

(βC)1/(β+1)ψ
1− 1

β+1 + (γE)1/(γ+1)ψ
1− 1

γ+1

}1/α

.
1194

In the limit of large F (i.e., small ψ), assuming 1195

that pretraining data dominates (i.e., β ≤ γ, so 1196

1/(β + 1) > 1/(γ + 1)), the first term dominates, 1197

and we approximate: 1198

N ≈ (βC)1/((β+1)α)ψ−1/(α(β+1))(αB)1/α. 1199

Substituting ψ ≈ C1/F
1/r, we get 1200

N ≈

(αB)1/α(βC)−1/((β+1)α)C
−1/(α(β+1))
1 F

1
pα(β+1) .

1201

Similarly, if fine-tuning data dominates (γ < β), 1202

we have 1203

N ≈

(αB)1/α(γE)−1/((γ+1)α)C
−1/(α(γ+1))
1 F

1
pα(γ+1) .

1204
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Thus, we can summarize the conditional expression1205

as:1206

N =
(αB)1/α(βC)−1/((β+1)α)C

−1/(α(β+1))
1 F

1
pα(β+1) ,

β ≤ γ,

(αB)1/α(γE)−1/((γ+1)α)C
−1/(α(γ+1))
1 F

1
pα(γ+1) ,

γ < β.

1207

where1208

p =
1

α
+
α− 1

α

1

1 + min(β, γ)
.1209

D.3 Derivation of the optimal ψ1210

We aim to address the following constrained opti-1211

mization problem1212

min
N,Dpretrain,DSFT>0

B

Nα
+

C

Dβ
pretrain

+
E

Dγ
SFT

s. t. 6N(Dpretrain +DSFT) = FLOPs

1213

Using the Lagrangian multiplier λ, it becomes min-1214

imax optimization problem, i.e.1215

max
λ≥0

min
N,Dpretrain,DSFT>0

B

Nα
+

C

Dβ
pretrain

+
E

Dγ
SFT

+λ
(
6N(Dpretrain +DSFT)− FLOPs

)1216

We first fix N and λ. In this case, we can redfine1217

ψ = 6λN and write the solutions for Dpretrain and1218

DSFT in terms of ψ,1219

Dpretrain =

(
ψ

βC

)−1/(β+1)

,

DSFT =

(
ψ

γE

)−1/(γ+1)
1220

Then, the equation for N becomes1221

αB

Nα
=

ψβ/(β+1)

(βC)−1/(β+1)
+

ψγ/(γ+1)

(γE)−1/(γ+1)
1222

and therefore1223

N =(
ψβ/(β+1)

(βC)−1/(β+1)
+

ψγ/(γ+1)

(γE)−1/(γ+1)

)−1/α

(αB)1/α
1224

Putting all these together, according to1225

6N(Dpretrain +DSFT) = FLOPs, we have1226

6ψ−1/α

((
ψ

βC

)−1/(β+1)

+

(
ψ

γE

)−1/(γ+1)
)(α−1)/α

= FLOPs (αB)−1/α

1227

We begin by examining the summation term within 1228

the parentheses: 1229

S(ψ) =

(
ψ

β C

)−1/(β+1)

+

(
ψ

γ E

)−1/(γ+1)

. 1230

Rewriting this in an equivalent form: 1231

S(ψ) = (β C)1/(β+1) ψ−1/(β+1)

+(γ E)1/(γ+1) ψ−1/(γ+1).
1232

Note that when FLOPs are large, in order to meet 1233

the budget constraint, ψ must become very small. 1234

In this case, the powers of ψ in the two terms are 1235

−1/(β + 1) and −1/(γ + 1). Clearly, as ψ → 0, 1236

the term with the more "negative" exponent (i.e., 1237

the larger value) will dominate the sum. 1238

Notice that 1239

1

β + 1
and

1

γ + 1
1240

the larger of these can be written as 1241

1

1 + min(β, γ)
, 1242

because if min(β, γ) is smaller, the correspond- 1243

ing term 1/(1 + min(β, γ)) will be larger than the 1244

other. Therefore, when ψ is small, we have the 1245

approximation 1246

S(ψ) ∼[
(β C)1/(β+1) + (γ E)1/(γ+1)

]
ψ−1/(1+min(β,γ)).

1247

Substituting the Dominant Term into the 1248

Original Equation: The left-hand side of the orig- 1249

inal equation is 1250

LHS = 6ψ−1/α
[
S(ψ)

](α−1)/α
. 1251

Substituting the approximate form of S(ψ), we get 1252

LHS ∼ 6ψ−1/α·{[
(β C)1/(β+1) + (γ E)1/(γ+1)

]
ψ−1/(1+min(β,γ))

}(α−1)/α
.

1253

By separating the constants from the powers of ψ, 1254

we have 1255

LHS ∼ 6
[
(β C)1/(β+1) + (γ E)1/(γ+1)

](α−1)/α
·

ψ
−1/α−α−1

α
· 1
1+min(β,γ) .

1256
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Thus, the overall power of ψ is1257

−
(
1

α
+
α− 1

α
· 1

1 + min(β, γ)

)
.1258

Expressing the Right-hand Side and Solving1259

for ψ: The right-hand side of the budget constraint1260

is1261

RHS = FLOPs (αB)−1/α.1262

We approximate the two sides as equal (typically1263

equality is taken at the optimal solution), and we1264

write1265 [
(β C)1/(β+1) + (γ E)1/(γ+1)

](α−1)/α
·

ψ
−
[
1
α
+α−1

α
· 1
1+min(β,γ)

]
≈ FLOPs/6 ∗ (αB)−1/α.

1266

Rearranging the above expression into a form for1267

ψ, we get1268

ψ
1
α
+α−1

α
· 1
1+min(β,γ) ≈

6(αB)−1/α

FLOPs

[
(β C)1/(β+1) + (γ E)1/(γ+1)

](α−1)/α
.

1269

Taking the reciprocal and extracting the appropriate1270

powers, we obtain1271

ψ ≈ C1

FLOPs 1/p
where p =

1

α
+

1

1 +min(β, γ)
.1272

Here, we approximate the exponent by1273

p ≈ 1

α
+
α− 1

α

1

1 + min(β, γ)
,1274

which simplifies the description of the scaling rela-1275

tionship between FLOPs and ψ.1276

Deriving the Complete Expression for C1:1277

From the equation above, we write1278

ψ p ≈
6(αB)−1/α

FLOPs

[
(β C)1/(β+1) + (γ E)1/(γ+1)

](α−1)/α
.

1279

That is,1280

ψ ≈

{
6(αB)−1/α[

(β C)1/(β+1) + (γ E)1/(γ+1)
]−(α−1)/α

}1/p

·

1

FLOPs1/p
.

1281

For simplicity, we define1282

C1 = 61/p·[
(αB)−1/α

(
(β C)1/(β+1) + (γ E)1/(γ+1)

)−(α−1)/α
]−1/p

.
1283

Or equivalently, 1284

C1 =

61/p(αB)1/(αp)
[
(β C)1/(β+1) + (γ E)1/(γ+1)

]α−1
αp

,
1285

That is, we have 1286

ψ ≈ C1

FLOPs1/p
, 1287

where 1288

p =
1

α
+
α− 1

α
· 1

1 + min(β, γ)
, 1289

and 1290

C1 = 61/p(αB)
1

αp

[
(β C)

1
β+1 + (γ E)

1
γ+1

]α−1
αp

. 1291

From this, we can obtain the dependence of 1292

Dpretrain, DSFT, and N on FLOPs. 1293

E Connection between DSFT and 1294

Dpretrain 1295

We begin with the following system of equations: 1296

1. For N : 1297

αB

Nα+1
= 6λ(Dpretrain +DSFT) 1298

2. For Dpretrain: 1299

βC

Dβ+1
pretrain

= 6λN 1300

3. For DSFT: 1301

γE

Dγ+1
SFT

= 6λN 1302

From the equations for Dpretrain and DSFT, we 1303

can derive the relationship: 1304

βC

Dβ+1
pretrain

=
γE

Dγ+1
SFT

1305

Rearranging, we get: 1306

Dβ+1
pretrain =

βC

γE
Dγ+1

SFT 1307

Thus, we have: 1308

Dpretrain =

(
βC

γE

) 1
β+1

D
γ+1
β+1

SFT 1309
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F Task-Specific Scaling Law Analysis1310

While the overall scaling law provides a broad un-1311

derstanding, task-specific subsets reveal distinct1312

trends. Below, we analyze the scaling parameters1313

with a focus on the contributions of LLM perfor-1314

mance (w1, w2, w3, k1, k2, k3) and scaling impacts1315

for each subset.1316

General Knowledge (MME, VQA v2, GQA):1317

• LLM Performance: w1 = 0.2169, w2 =1318

0.2982, w3 = 0.4849, k1 = 0.4703,1319

k2 = 0.9200, k3 = 0.5539: Reason-1320

ing tasks (PReasoning) contribute the most to1321

LLM performance, followed by common-1322

sense (PCommonsense), while NLI (PNLI) plays1323

a smaller role. Exponentially scaling com-1324

monsense yields the strongest effect on task1325

performance.1326

• Scaling Impact: F = 6.4711, G = 35.1324,1327

δ = 0.0085, H = 132.0660, ζ = 0.0665:1328

LLM performance dominates general knowl-1329

edge tasks. Model size has steep diminishing1330

returns beyond 7B, and fine-tuning data pro-1331

vides secondary contributions.1332

OCR (OCRBench, TextVQA):1333

• LLM Performance: w1 = 0.0072, w2 =1334

0.8320, w3 = 0.1608, k1 = 0.2094,1335

k2 = 0.9861, k3 = 0.9326: OCR tasks1336

are predominantly driven by commonsense1337

(PCommonsense), with reasoning and NLI play-1338

ing secondary roles. Commonsense and rea-1339

soning have the strongest exponential impacts.1340

• Scaling Impact: F = 3.0259, G = 27.1967,1341

δ = 0.0675, H = 146.2460, ζ = 0.0208:1342

Fine-tuning data volume overwhelmingly1343

drives OCR performance, with significant re-1344

turns even for smaller models (0.5B–3B).1345

Chart and Document Understanding (ChartQA,1346

AI2D, DocVQA):1347

• LLM Performance: w1 = 0.0232, w2 =1348

0.9195, w3 = 0.0573, k1 = 0.0272,1349

k2 = 0.7483, k3 = 0.7269: Com-1350

monsense (PCommonsense) dominates, reflect-1351

ing the importance of structured knowl-1352

edge in document-related tasks. Reasoning1353

(PReasoning) has a moderate impact, while NLI1354

plays a minimal role.1355

• Scaling Impact: F = 7.8389, G = 92.6541, 1356

δ = 0.0050, H = 88.2644, ζ = 0.0651: 1357

Model size and fine-tuning data contribute 1358

more equally compared to other subsets, re- 1359

flecting the need for a balanced scaling strat- 1360

egy. 1361

Real-World (High-Resolution Perception, 1362

RealWorld-QA, MME-RealWorld): 1363

• LLM Performance: w1 = 0.5323, w2 = 1364

0.3813, w3 = 0.0864, k1 = 0.7043, k2 = 1365

1.0221, k3 = 0.5556: NLI (PNLI) becomes 1366

the dominant contributor, reflecting the im- 1367

portance of logical reasoning and textual en- 1368

tailment for real-world tasks. Commonsense 1369

plays a secondary role, while reasoning has 1370

limited impact. 1371

• Scaling Impact: F = 2.6240, G = 46.5741, 1372

δ = 0.1342, H = 75.1569, ζ = 0.0220: 1373

Model size significantly impacts real-world 1374

tasks, with slower diminishing returns com- 1375

pared to general knowledge. Fine-tuning data 1376

remains important but secondary. 1377

Efficient Training of Specific Tasks

General Knowledge: Pre-trained LLMs with
strong reasoning and commonsense capabilities
are essential. Scaling model size beyond 7B
yields limited gains.
OCR: Focus on fine-tuning data augmentation,
as smaller models paired with robust datasets
can achieve competitive performance.
Chart & Document Understanding: A bal-
anced strategy scaling both model size and fine-
tuning data volume is critical.
Real-World Tasks: Prioritize scaling model
size to handle task complexity. Fine-tuning data
quality should take precedence over quantity.

1378

G Task-Specific Analysis of 1379

Performance-Loss Scaling Laws 1380

Because our computations use model sizes smaller 1381

than 13B, the optimal average performance or task- 1382

specific performance generally does not exceed 1383

60. Under such circumstances, the scaling law 1384

tends to select a smaller Pmax to optimize the fit- 1385

ting loss, which limits its ability to extrapolate to 1386

better-performing models. To address this, we set 1387

a minimum value for Pmax at 80 to ensure that the 1388

scaling law retains the ability to extrapolate for 1389
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Figure 3: Task-Specific Loss and Accuracy Correlation. This figure illustrates the performance-loss scaling laws
for specific tasks, including General Knowledge, Chart and Document Understanding, OCR, and Real-World Tasks.
For each task, the model is evaluated every 1000 steps using the cumulative average loss from the beginning of
training to the current step. Across all tasks, a strong correlation between training loss and accuracy is observed,
demonstrating that cumulative loss is an effective metric for predicting task-specific downstream performance.

smaller losses. Even with this hard constraint, our1390

experiments demonstrate that training loss remains1391

strongly correlated with task-specific performance,1392

which is shown in Figure. 3.1393

G.1 General Knowledge (MME, VQA v2,1394

GQA)1395

Prediction Results: Pmin = 4.35, Pmax =1396

80.00, k = 0.85, γ = 1.41, R2 = 0.87771397

Analysis: General Knowledge tasks exhibit a1398

shallow decay (γ = 1.41), suggesting that accu-1399

racy is less sensitive to variations in training loss.1400

The low k = 0.85 indicates slower performance1401

degradation as loss increases, and the moderately1402

high R2 = 0.8777 shows that training loss is a rea-1403

sonable, though not perfect, predictor. The lower1404

correlation is likely due to the reliance of these1405

tasks on multimodal reasoning, commonsense, and1406

instruction following capability6, which may not1407

6The MME benchmark needs the model to directly answer

be directly reflected in training loss. 1408

Key Insight: Loss is moderately predictive of 1409

performance, but the relationship is weaker com- 1410

pared to other tasks. Fine-tuning for loss reductions 1411

has limited benefits beyond a certain point. 1412

Difference from Overall Scaling Law: Gen- 1413

eral Knowledge tasks deviate significantly from the 1414

overall scaling law due to their lower sensitivity (γ) 1415

and slower degradation (k). 1416

G.2 Chart and Document Understanding 1417

Prediction Results: Pmin = 5.95, Pmax = 1418

80.00, k = 1.99, γ = 2.50, R2 = 0.974 1419

Analysis: These tasks show a steep decay (γ = 1420

2.50), highlighting high sensitivity to changes in 1421

training loss. The higher k = 1.99 reflects faster 1422

degradation in accuracy as loss increases. The high 1423

R2 = 0.974 indicates a strong correlation between 1424

loss and performance, suggesting that training loss 1425

’yes’ or ’no’, which is hard for small scale models.
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is a reliable predictor for these tasks, which require1426

precise feature extraction and structured reasoning.1427

Key Insight: Training loss is highly predictive1428

of downstream performance, especially in the low-1429

loss region where small improvements yield signif-1430

icant accuracy gains.1431

Difference from Overall Scaling Law: Com-1432

pared to the overall scaling law, these tasks show1433

much higher sensitivity (γ = 2.50) and a more1434

pronounced dependency on loss.1435

G.3 OCR (OCRBench, TextVQA)1436

Prediction Results: Pmin = 0.00, Pmax =1437

80.00, k = 1.56, γ = 2.75, R2 = 0.98311438

Analysis: OCR tasks demonstrate the sharpest1439

decay (γ = 2.75) among all tasks, indicating ex-1440

treme sensitivity to small loss reductions. The base-1441

line Pmin = 0.00 reflects the absence of meaningful1442

performance from random guessing. The very high1443

R2 = 0.9831 shows that training loss is an excel-1444

lent predictor for OCR tasks, where precise text1445

recognition is critical.1446

Key Insight: Fine-tuning to achieve minimal1447

loss is essential for OCR tasks, as even small im-1448

provements in loss yield significant performance1449

gains.1450

Difference from Overall Scaling Law: OCR1451

tasks show a much stronger dependency on low1452

losses and sharper decay than the overall scaling1453

law, emphasizing the importance of fine-grained1454

loss optimization.1455

G.4 Real-World Tasks (High-Resolution1456

Perception, RealWorld-QA,1457

MME-RealWorld)1458

Prediction Results: Pmin = 9.59, Pmax =1459

80.00, k = 2.61, γ = 1.90, R2 = 0.92961460

Analysis: Real-World tasks exhibit moderately1461

steep decay (γ = 1.90) and a higher baseline per-1462

formance (Pmin = 9.59), suggesting these tasks1463

retain some accuracy even with higher losses. The1464

moderately high R2 = 0.9296 shows that train-1465

ing loss is a reasonably strong predictor for these1466

tasks, though less so than for OCR or Chart tasks.1467

The higher k = 2.61 indicates faster performance1468

degradation.1469

Key Insight: While training loss is predictive,1470

the relationship is less sharp than in OCR or Chart1471

Understanding tasks, suggesting that other task-1472

specific factors may play a larger role.1473

Difference from Overall Scaling Law: Real-1474

World tasks align more closely with the overall1475

scaling law but exhibit a higher baseline and faster 1476

degradation. 1477

H Broader impacts 1478

By lowering costs and providing clearer guide- 1479

lines (a "principled basis for optimizing MLLM 1480

SFT"), this research can make the development of 1481

advanced MLLMs more accessible to a wider range 1482

of researchers and organizations, including those 1483

with limited resources. This could foster broader 1484

innovation and application in the field. 1485
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