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Abstract

The supervised fine-tuning (SFT) stage is cru-
cial for multimodal large language models
(MLLMs), yet a comprehensive scaling law to
guide the optimal model-data configuration re-
mains lacking. In this paper, we make an initial
attempt to address this gap. First, we theoreti-
cally demonstrate that directly computing the
optimal computation frontier for MLLM-SFT,
as we can for traditional LLMs, is a challenging
task. This complexity arises because MLLM-
SFT is influenced by a broader range of factors,
including model size, LLM pre-training tokens,
and MLLM SFT tokens. To tackle this issue,
we propose two scaling laws based on LLM
paradigms: one applicable when training data
volumes are well defined by researchers, and
another for cases where models are sourced
from open communities with unknown training
data. Through theoretical modeling and approx-
imations, we provide researchers with valuable
recommendations for optimal resource alloca-
tion. Furthermore, we establish a strong cor-
relation (R? = 0.98) between training loss and
downstream performance, enabling accurate
performance estimation without the need for
exhaustive benchmarking. To validate our scal-
ing laws, we construct a testbed of 60 models
ranging from 50 million to 8 billion parameters,
totaling 1,560 checkpoints. Each checkpoint
is evaluated on than 10 MLLM benchmarks,
ensuring robust fitting of our formulations.

1 Introduction

The rapid advancement of MLLMs (Liu et al.,
2023b; Zhang et al., 2024a; Fu et al., 2024b) has un-
locked unprecedented capabilities in understanding
and reasoning across diverse modalities, including
text, images, and structured data. A critical stage in
developing these models is SFT, where pre-trained
large language models (LLMs) are adapted to align
with multimodal tasks through curated datasets.
While existing works often prioritize scaling SFT
data volumes to boost performance (Wang et al.,

2024; Liu et al., 2024b), they largely overlook a
fundamental question: Given fixed model architec-
tures or target performance levels, how can we de-
termine the minimal SFT data required to achieve
computational efficiency? Blindly expanding data
not only incurs prohibitive annotation costs but also
risks diminishing returns, especially in resource-
constrained scenarios.

Scaling laws, which quantitatively model rela-
tionships between computational resources, model
parameters, and performance, have proven instru-
mental in guiding LLM pre-training (Hoffmann
et al., 2022; Kaplan et al., 2020; Clark et al.,
2022). However, existing laws are ill-suited for
MLLM SFT due to its unique complexities. Un-
like LLM training, MLLM SFT is governed by
a broader set of factors: model size (/NV), LLM
pre-training data (Dpretrain)> the LLM’s inherent ca-
pabilities (Ppase), and multimodal SFT data (Dspr).
Moreover, as we theoretically demonstrate in our
paper, deriving a concise “compute frontier” for
MLLM SFT—analogous to the N oc D% rule for
LLMs—is inherently challenging.

To address this gap, we propose the first
systematic framework for MLLM SFT scaling
laws. Our approach introduces two complemen-
tary paradigms:

* From-Scratch Scaling Law: For scenarios
with full control over LLM pre-training, we
model performance as

P=A-B/N*-C/D’

pretrain

— E/Dgpr,

capturing trade-offs between model size, pre-
training, and SFT data.

* Pre-Trained Model Scaling Law: For widely
adopted open-source LLMs (e.g., LLaMA,
Qwen), we link downstream performance to
the LLM’s benchmark scores (Pp,se) Via

P =F - Poe — G/N° — H/ Dy,



where A, B, C, E, «, § are the coefficients and ex-
ponents that need to be fitted.

Additionally, we establish a robust correlation
(R? = 0.98) between training loss and downstream
accuracy, enabling performance prediction without
exhaustive benchmarking. To validate these laws,
we construct a testbed of 60 models (SOM—8B pa-
rameters) and 1,560 checkpoints, rigorously eval-
uated across 10+ multimodal tasks. Our findings
yield actionable insights for MLLM development:

* Optimal Resources Allocation: For LLMs
trained from scratch, we provide the optimal
pre-training token and SFT token numbers
for various model sizes. For example, a 1B
model is best pre-trained with 20.2B text to-
kens and fine-tuned with 9.2B image-text to-
kens. The relationship between Dgspr and
Dyretrain follows a nearly linear growth trend,
with Dspr &~ 0.48 x DO.98 . .

e LLM Baseline Dominance: For LLMs
with opaque pre-training data, the pre-trained
LLM’s performance (Ppase) contributes signif-
icantly more to downstream performance (P)
than model size or SFT data. This highlights
the importance of a strong baseline LLM.

¢ Commonsense Reasoning Impact: The
LLM’s commonsense reasoning capability
has the greatest impact on MLLM perfor-
mance after SFT. Next in importance is the
model’s reasoning ability, while capabilities
related to Natural Language Inference (NLI)
have smaller effect.

» Task-Specific Dynamics: Different multi-
modal tasks exhibit varying preferences for
influencing factors. For example, OCR tasks
rely heavily on Dspr (H = 146.2), while
real-world perception tasks benefit more from
model scaling (6 = 0.13).

* Loss-Driven Prediction: Cumulative train-
ing loss predicts downstream accuracy with
strong correlation R? = 0.98, allowing for
early stopping and efficient resource realloca-
tion.

These results provide a principled foundation for
optimizing MLLM SFT, balancing performance,
cost, and practicality.

2 Related Works

Training of Multimodal Large Language Mod-
els: MLLMs are typically divided into three stages:
pretraining (to bridge the modality gap), instruction
tuning, and post-training (Zhang et al., 2025; Lu
et al., 2025). Current research primarily focuses on
the supervised fine-tuning (SFT) stage, which has
been pivotal in enabling models to perform a wide
range of multimodal tasks, including image-text
alignment, reasoning, and instruction following.
This stage also addresses the challenges associated
with data fusion across various modalities. Recent
open-source MLLMs such as mPLUG-Owl (Ye
et al., 2023), LLaVA (Liu et al., 2023b), Qwen-
VL (Bai et al., 2023b), Cambrian-1 (Tong et al.,
2024), Mini-Gemini (Li et al., 2024b), MiniCPM-
V 2.5 (Hu et al., 2024), DeepSeek-VL (Lu et al.,
2024), SHUME (Zhang et al., 2024a), and the VITA
series (Fu et al., 2024a, 2025; Shen et al., 2025)
have made significant contributions to the SFT
stage, addressing some of the most fundamental
challenges in multimodal Al. These include im-
proving vision/audio-language alignment, reason-
ing, and instruction-following capabilities, thereby
enabling more nuanced and context-aware interac-
tions. Some of the most remarkable open-source
models, such as InternLM-XComposer-2.5 (Zhang
et al., 2023) InternVL-2 (Chen et al., 2023), and
QwenVL-2.5 (Bai et al., 2025), have demonstrated
impressive strides in multimodal understanding,
closely rivaling proprietary models across a variety
of multimodal benchmarks.

Neural scaling laws quantify the relationship
between model size, dataset size, compute budget,
and performance during the training of neural net-
works. Early works proposed unified formulas for
scaling laws and provided practical guidelines for
compute-optimal training, laying the foundation
for understanding how model performance scales
with increased computational resources (Hoffmann
et al.,, 2022; Kaplan et al., 2020). These stud-
ies have since been extended to various domains
and specialized architectures, offering insights into
more specific scenarios. For example, the ap-
plication of scaling laws to Mixture of Experts
(MoE) models has been explored, demonstrating
how sparse activation of model parameters intro-
duces unique trade-offs between compute and per-
formance (Clark et al., 2022). Similarly, the use
of lower precision training, such as 16-bit float-
ing point numbers, has been studied in the context



of scaling laws to reduce memory consumption
and computational overhead in large neural net-
works (Dettmers et al., 2022). Another line of
research has conducted extensive experiments on
scaling laws in the over-trained regime, address-
ing performance prediction benchmarks for neural
networks and providing new insights into this un-
derexplored area (Gadre et al., 2024b). Beyond the
domain of LLMs, scaling laws have been applied
in other fields. Image generation research has an-
alyzed how model size and dataset size influence
generative performance, providing actionable in-
sights for tasks in computer vision (Henighan et al.,
2020; El-Nouby et al., 2024). In the domain of
acoustic models, scaling laws have been studied to
understand their impact on automatic speech recog-
nition tasks, showcasing their relevance in optimiz-
ing models for speech-based applications (Droppo
and Elibol, 2021). Despite these advancements,
there remains a significant gap in the literature
concerning the SFT stage of MLLMs. Unlike the
pre-training phase, the SFT stage involves adapt-
ing pre-trained models to multi-modal tasks us-
ing additional data and task-specific training ob-
jectives, making it a distinct and underexplored
domain for scaling laws. Currently, no established
scaling laws exist to characterize the relationship
between model size, fine-tuning data volume, and
computational budget during this critical stage.

3 Developing scaling laws for MLLM
Supervised Fine-Tuning

In the context of MLLMs, SFT refers to the pro-
cess of adapting a pre-trained LLM to multi-modal
tasks by introducing additional data and training
objectives. This stage builds upon the pre-trained
LLM, extending its capabilities to understand and
process multi-modal inputs such as text, images,
and other modalities. SFT focuses on aligning the
model’s outputs with specific task objectives using
curated datasets. The goal of SFT scaling laws is
to determine the optimal training data volume re-
quired in the SFT stage to minimize computational
costs while maximizing performance.

3.1 MLLM SFT Scaling Laws

The scaling laws describe the relationship between
the amount of data used in the supervised fine-
tuning stage and the model’s performance, partic-
ularly in the multi-modal domain. To address the
unique challenges in the multi-modal fine-tuning

process, we define two types of scaling laws:

1. From-Scratch Language Model Scaling
Law: This scaling law applies when the underly-
ing language model is trained entirely from scratch.
In such cases, the model parameters (/V), the data
volume used during the LLM pre-training phase
(Dpretrain)> and the fine-tuning data volume (Dsfr)
are precisely known. The scaling law examines
how these factors interact to influence the average
performance (P(N, Dpretrain, Dsr)) of the multi-
modal model on downstream tasks. We adopt a
parametric form inspired by classical risk decom-
position:

B C E
P(N, Dpretraina DSFT) = A—W—T_DT
pretrain SFT
(D

where A, B, C, E, a, 3, and ~ are fitted parameters.
This formula captures the contribution of model
parameters, pre-training data, and fine-tuning data
to the final performance.

2. Pre-Trained(PT) Language Model Scaling
Law : In practical scenarios, MLLMs often use
publicly available pre-trained LLMs, such as Qwen
or LLaMA, as foundational models. The training
data volume (Dpyetrain) for these models is typically
unknown. Instead, this scaling law leverages the ob-
served performance of the pre-trained LLM on spe-
cific benchmark tasks, such as NLI, Commonsense,
and Reasoning. The baseline performance (Ppase)
of the pre-trained model is defined as a weighted
combination of these tasks:

ko

_ k1 k3
Prase = wlPNLI + w2PC0mmonsense + w3 h

Reasoning’

(2
where PnLi, Pcommonsenses and P Reasoning aI'c the
performance scores on the respective tasks, and wy,
wa, w3, k1, ko, ks are task-specific weights and ex-
ponents that are fitted empirically. The scaling law
models the relationship between Pp,se, model pa-
rameters (/V), and fine-tuning data volume (Dspr)
to predict the multi-modal model’s downstream

performance (P (N, Pyase, Dsrr)):

G H
P(N7PbaseaDSFT) = F*Pbase_m_Ta (3)
DSFT

where F, G, 6, and ( are fitted parameters. This
formula accounts for the foundational model’s ini-
tial capabilities and the incremental improvements
from SFT. By empirically evaluating F,se across
tasks, we provide a framework for optimizing fine-
tuning data requirements without relying on un-
known pre-training data sizes.
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3. Training Loss and Downstream Perfor-
mance Scaling Law: In addition to the two types
of scaling laws classified by model type, we also in-
vestigate the scaling law between training loss and
downstream performance. In LLMs, scaling laws
are often studied in the context of loss. However, in
MLLMs, researchers focus less on loss and more
on downstream performance metrics. Whether
there is a consistent relationship between train-
ing loss and downstream performance in MLLMs
remains uncertain. To address this question, we
hypothesize that the downstream performance P
(defined as accuracy in this context) is related to
the training loss L through a decaying relationship:

(P max P min)

l+k-Lv ~’
Specifically, Pyax represents the maximum achiev-
able performance when the loss L approaches zero,
reflecting the model’s best possible accuracy un-
der ideal conditions. Conversely, Ppi, denotes the
baseline performance when the loss becomes arbi-
trarily large, ensuring the formula remains bounded
and realistic (e.g., reflecting random guessing or
task-specific Bayes error). The parameter £ con-
trols the sensitivity of performance to changes in
loss, allowing the formula to model how quickly
performance degrades as loss increases. Finally, v
shapes the decay curve, with higher values result-
ing in a sharper decline at smaller losses, which
aligns with empirical observations where small in-
creases in loss can lead to disproportionately large
drops in accuracy.

P(L) = Poin + )

3.2 Model Fitting

To estimate the parameters in the scaling laws (e.g.,
A B,C, E, a, 8, v, wy, wa, ws, ki, ko, k3, F,
G, 6, ), we minimize the Huber loss between the
predicted and observed log performance values us-
ing the L-BFGS algorithm (Hoffmann et al., 2022;
Aghajanyan et al., 2023):

Runs
min Z Hubers (1og P(-) —log B) , (5
parameters :
where ¢ is a hyperparameter controlling the robust-
ness to outliers. This optimization process accounts
for potential local minima by selecting the best fit
from a grid of initializations. The Huber loss, with
§ = 1073, is employed for its ability to handle
outliers effectively, ensuring reliable predictive per-
formance on held-out data points. To reduce the

variance introduced by a single fitting attempt, we
perform 100 independent fits and select the best
five results based on performance.

In Section A, we discuss the significance of scal-
ing laws in optimizing compute resource alloca-
tion, reducing data collection and computational
costs, and predicting downstream task performance
through stable training loss estimates.

4 Experimental Setup

In our experimental setup, we adopt the LLaVA
1.6 (Liu et al., 2024a) architecture, recognized
for its simplicity and efficiency in integrating vi-
sual and textual modalities. The visual encoder
is based on CLIP-ViT-L-336px, and we employ a
dynamic high-resolution strategy for optimal im-
age processing. For language models, we eval-
uate both models trained from scratch and pre-
trained models, encompassing a wide range of sizes
and datasets—totaling 60 models and over 1560
checkpoints. The training corpus on SFT using the
LLaVA-OneVision dataset, which consists of 3.7
million samples. Performance is assessed through
benchmarks grouped into four categories: General
Capabilities, Real-World (High-Resolution Percep-
tion), Chart and Document Understanding Tasks,
and Optical Character Recognition (OCR) Tasks.
We also evaluate core language model abilities, in-
cluding reasoning, commonsense understanding,
and natural language inference. For a comprehen-
sive overview of the model architecture, training
approach, and benchmark details, please refer to
Section B in the Appendix. This setup provides a
robust and comprehensive evaluation of MLLMs
across a diverse range of tasks and modalities.

5 From-Scratch LLM Scaling Law

LLMs and MLLMs require efficient scaling
of compute, pretraining data, and fine-tuning
data to achieve optimal performance. Our
objective is to maximize model performance
P(N, Dyretrain, Dspr) under a compute budget,
while taking into account the constraints between
model size, pretraining data, and fine-tuning data.
The key constraint is (Kaplan et al., 2020; Hoff-
mann et al., 2022): FLOPs = 6N ( Dpretrain + DsFr)

In the ideal case, we should be able to obtain the
following expressions © = C F' LOPs"*, clearly
showing the relationship between each variable and
FLOPs, thus deriving the compute-optimal fron-
tier. However, as we theoretically demonstrate
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Figure 1: Scaling law of model performance with respect to the size of Dspr data, where different colors
represent the ratio of pretraining tokens to model parameters. Warmer colors (closer to red) indicate higher ratios,
suggesting the model is closer to overtraining during the pretrain stage. Different model sizes are distinguished by
varying markers, and quadratic polynomial fits are applied to illustrate the performance trends for each model size.
All models except 7B size show signs of overtraining during the SFT stage, with their optimal Dggr token counts

aligning closely with the predicted value of from Table 1.

in Section C, deriving a closed-form solution for
the multimodal scaling law is much more challed-
nging for LLM scaling laws. Therefore, in the
main text, we adopt an approximate fitting strategy.
Specifically, we first study the optimal pretrain to-
kens for an LLM with model size N (for which
there are already well-established results in exist-
ing works(Kaplan et al., 2020; Hoffmann et al.,
2022)). Then, based on our fitting results, we inves-
tigate the optimal SFT tokens for the SFT phase,
given N and pretrain tokens.

Firstly, in Table 1, we present the optimal pre-
train tokens corresponding to different model sizes
according to the existing LL.M scaling law (Hoff-
mann et al., 2022). Secondly, in Appendix E, we
derive the relationship between pretraining data

L1 a4l

C) B+t
and SFT data: Dyreiain = (25 ) """ Dggy - Sub-
sequently, leveraging the parameters fitted to our

model:

A = 256.76, B = 143.75, C' = 288.56,
E =96.17,a = 0.039, B = 0.054, v = 0.074,

We determine approximate optimal numbers of
Pretrain Tokens and SFT Tokens for a given model
size. Figure 1 illustrates our experimental data,
where each point represents a model checkpoint.
The solid line represents our fitted curve, demon-
strating that the results align closely with the ap-
proximate optimal solutions in Table 1, validating
the efficacy of our approximation method.

Model Size Pretrain Tokens SFT Tokens FLOPs
400 Million 8.0 Billion 3.7 Billion = 2.81E+19
1 Billion 20.2 Billion 9.2 Billion 1.76E+20
10 Billion 205.1 Billion 89.5 Billion  1.77E+22
67 Billion 1.5 Trillion 631.0 Billion 8.57E+23
175 Billion 3.7 Trillion 1.5 Trillion  5.46E+24
280 Billion 5.9 Trillion 2.4 Trillion  1.39E+25
520 Billion 11.0 Trillion 4.4 Trillion  4.80E+25
1 Trillion 21.2 Trillion 8.4 Trillion  1.78E+26
10 Trillion 216.2 Trillion 82.9 Trillion  1.79E+28

Table 1: Estimated optimal training compute and tokens
for various model sizes.

6 Pre-Trained LLM Scaling Law

Challenges in Deriving the Efficient Frontier:
Unlike from-scratch LLM scaling laws, the PT
Scaling Law faces a key issue: the pre-training
process often involves proprietary or unknown data
volume and compute, leaving the relationship be-
tween NV and P, unclear. Specifically:

* Piase often scales with IV, but its growth typi-
cally saturates. For example, it may follow a
saturating function such as:

1
Pbase(N) = Pbase,rnax . (1 - M) . (6)
 This dependency introduces a non-linear in-
teraction between Py, and N, complicating
the optimization problem.

In addition, the performance formula is inher-
ently coupled. For example, increasing N im-



Subset Task Weights Task Exponents Scaling Parameters Scaling Exponents R?
w1 wy w3 ]Cl kz k‘3 F G H 0 C

overall 0.2512 0.7018 0.0470 0.4841 0.8895 1.0045 4.4104 34.4322 99.9371 0.0016  0.0350  0.9129

chart & document  0.0232 09195 0.0573 0.0272 0.7483 0.7269 7.8389 92.6541 88.2644 0.0050  0.0651 0.8931

general knowledge 0.2169 0.2982 0.4849 0.4703 0.9200 0.5539 6.4711 35.1324 132.0660 0.0085  0.0665  0.8223

ocr 0.0072 0.8320 0.1608 0.2094 0.9861 0.9326 3.0259 27.1967 146.2460 0.0675  0.0208  0.9267

real world 0.5323 0.3813 0.0864 0.7043 1.0221 0.5556 2.6240 46.5741 75.1569 0.1342  0.0220  0.8340

Table 2: Summary of best fitted parameters across different subsets. The parameters w;, ws, and ws represent
the weights assigned to NLI, commonsense, and reasoning tasks, respectively, while k;, ko, and k3 are their
corresponding exponents. F', G, and H describe the influence of the baseline performance, model size (/V), and
fine-tuning data (Dsgr), respectively. § and ¢ are scaling exponents for N and Dgpr. R? represents the goodness of

fit for the scaling law.

proves Ppase, but this also reduces marginal returns
due to the penalty term —G /N°. At the same time,
increasing Dgpr reduces the penalty —H/ DgFT,
but its impact is influenced by the starting value
of Prase- These interactions make it infeasible to
derive the efficient frontier analytically without pre-
cise knowledge of the functional form of Ppyse (V).
Therefore, in this section, we only provide valuable
analysis and suggestions for training MLLMs from
pretrained LLMs.

6.1 Analysis of Scaling Parameters and
Recommendations

The proposed scaling law offers a holistic perspec-
tive on how model size (/N), the LLM baseline
performance (Phase), and fine-tuning data (Dgsgr)
influence downstream performance. Based on the
fitted parameters shown in Table 2, the following
key insights have been derived:

* Dominance of LLM Baseline Performance
(Ppase): The scaling law reveals that the base-
line performance of the pre-trained LLM is
the primary determinant of downstream per-
formance, as reflected by the relatively high
value of F' = 4.3585. While both model size
(V) and fine-tuning data volume (Dsgr) make
meaningful contributions, their impact is sec-
ondary to the inherent capabilities of the pre-
trained LLM.

» Task Contributions within F,.: The task-
specific weights (w1, we, ws) highlight that
commonsense reasoning (wy = 0.7598) is the
most critical component of P, followed
by reasoning (w3 = 0.0996) and natural lan-
guage inference (NLI) (w; = 0.1404). This
underscores that LLM performance on com-
monsense reasoning and general reasoning

tasks is crucial for developing robust multi-
modal models.

* Impact of Model Size (IV): G = 64.3677
and 6 = 0.0032 indicate that while increas-
ing model size contributes positively to down-
stream performance, the marginal gains de-
crease significantly as the model size grows.
This diminishing return suggests that after a
certain scale, increases in model size yield
limited improvements.

* Significance of Fine-Tuning Data Volume
(DsFr): The parameters H = 170.2884 and
¢ = 0.0995 emphasize the critical role of fine-
tuning data volume in enhancing downstream
performance. Compared to model size, Dspr
emerges as the second most influential fac-
tor, following Pp,se. The combination of a
relatively large H and a moderate ( suggests
that increasing fine-tuning data volume can
yield substantial improvements, particularly
for smaller or moderately sized LLMs.

7 Average Downstream Performance
Scales as a Function of loss.

Reconciling Results from FS-Scaling and PT-
Scaling Laws: It is worth noting that the findings
presented here appear to differ from those of the FS-
scaling law, where model size (V) was identified
as more significant than fine-tuning data volume
(Dspr). However, this apparent discrepancy can be
explained by considering the implicit dependencies
within Pp,e. As stated earlier in this section, P e
inherently encapsulates the contributions of model
size. Therefore, the role of N here reflects the
marginal impact of increasing model size given a
fixed baseline LLM performance, rather than its ab-
solute contribution to the multi-modal downstream
performance.
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Figure 2: Loss and Accuracy Correlation under Different Loss Calculation Strategies. The left plot evaluates
the model every 1000 steps, using the average loss of those 1000 steps, while the right plot evaluates the model
every 1000 steps but uses the cumulative average loss from the beginning of training up to the current step. Both
approaches reveal a strong correlation (above 0.977) between loss and accuracy, demonstrating that either loss
calculation strategy can effectively reflect the model’s performance.

Efficient SFT from Pretrained LLM

1. Investing in pre-trained LLMs with strong commonsense and reasoning capabilities provides the
most efficient foundation.

2. Prioritize fine-tuning data scaling, particularly for mid-sized models, to achieve balanced perfor-
mance gains without over-reliance on massive model sizes.

3. While increasing model size is critical for improving the baseline LLM performance, its contribution

.

to enhancing multi-modal understanding capabilities is relatively limited.

J/

These two sections are thus complementary
rather than contradictory. The FS-scaling law high-
lights the fundamental importance of model size,
whereas the PT-scaling law reveals that the primary
role of increasing model size lies in improving
the LLM baseline performance F,ge, rather than
directly enhancing multi-modal understanding ca-
pabilities. By contrast, for multi-modal understand-
ing, fine-tuning data volume (Dsgr) emerges as the
more significant factor.

We conduct a task-specific scaling law analysis
across four key categories: General Knowledge,
OCR, Chart and Document Understanding, and
Real-World tasks. This analysis reveals distinct
trends in how different factors—such as LLM per-
formance (reasoning, commonsense understanding,
and NLI) and scaling parameters (model size and
fine-tuning data)—contribute to task performance.
For instance, general knowledge tasks are heavily
influenced by reasoning capabilities, while OCR
tasks benefit significantly from fine-tuning data
augmentation. Detailed findings, including spe-
cific scaling parameters and takeaways for efficient
training strategies, are provided in Appendix F.

First, since evaluating the model at every step is
computationally prohibitive, we evaluate it every
1000 steps and record the loss at those intervals.
However, using the loss of a single point (e.g., at
step 1000) as input for fitting yields unstable results
due to high variance. This variance arises because
the loss at a single step is influenced not only by
the model’s inherent ability but also by the specific
data in the current batch, making it unreliable.

To address this issue, two alternative strategies
were adopted, as shown in Figure 2:
1.Average Loss over 1000 Steps: This strategy
calculates the mean loss over the 1000-step in-
terval before each evaluation to reduce variance.
The fitted parameters from this strategy (Pyin =
4.64, Pnax = 80.00,k = 1.75,~v = 1.95) indicate
a clear relationship between the average loss and
downstream performance. The slightly sharper de-
cay (v = 1.95) suggests that performance is more
sensitive to loss reductions in this setup.

2. Cumulative Average Loss: This strategy uses
the cumulative average loss from the beginning of
training up to the evaluation point. By incorporat-
ing a longer history of training performance, this



Task-Specific Loss and Accuracy Predictions

General Knowledge: Loss is predictive of accuracy due to the lower sensitivity (y = 1.41) and slower
degradation. While loss reductions improve performance, fine-tuning beyond a certain point yields
diminishing returns.

Chart & Document Understanding: Training loss is highly predictive of downstream performance
(R? = 0.974), with high sensitivity to low-loss improvements (7 = 2.50). Fine-tuning for minimal
loss is critical, as even small reductions can yield significant accuracy gains.

OCR: Loss and accuracy are strongly correlated (R? = 0.9831), with the sharpest decay (y = 2.75).
This task benefits the most from loss reduction, making loss a reliable metric.

Real-World Tasks: Loss is a reasonably strong predictor (R?> = 0.9296). Moderate sensitivity
(v = 1.90) suggests that loss reductions improve performance but with less drastic gains compared to

-

OCR or Chart tasks. A task-specific approach is recommended.

J

method reduces the influence of outliers and cap-
tures training dynamics more effectively. The fit-
ted parameters (Ppin = 6.64, Pnax = 80.00,k =
1.57,v = 2.12) reveal a slightly higher baseline
performance (Ppni, = 6.64) and a steeper decay
(v = 2.12). This indicates that cumulative averag-
ing is more robust to noise and provides a smoother
estimate of the training trajectory.

While the overall scaling law provides a general
relationship between training loss and downstream
performance, specific tasks exhibit unique sensi-
tivities and dependencies on loss, which require
a more granular analysis. To better understand
these variations, we summarize the key findings
for task-specific scaling laws in the appendix. Be-
low, we highlight the primary takeaways, empha-
sizing the nuances of using training loss to predict
downstream accuracy for different task types. This
complements the overall observations and provides
actionable insights tailored to specific tasks.

8 Conclusion and Future Work

This work presents the first principled framework
for understanding scaling laws in MLLM-SFT. We
systematically model the interplay between model
size (IV), pre-training data (Dpretrain), fine-tuning
data (Dspr), and the inherent capabilities of pre-
trained LLMs (P, ). Our findings offer valuable
insights into the optimal configuration of these fac-
tors for efficient training.

Although this study lays a foundation for opti-
mizing MLLM performance, there are several av-
enues for future research and aspects not addressed
in this work:

1. Exploring Alternative Theoretical Model-
ing Approaches: As discussed in article, while var-
ious approximation methods have been attempted,

none lead to a theoretically optimal computational
Pareto frontier. In future, we intend to explore
alternative modeling and approximation strategies.
2. Interaction Between Model Size and Fine-
Tuning Data Volume: We quantitatively model the
interaction between model size (V) and fine-tuning
data volume (Dspr), establishing a relationship that
captures the combined impact on performance:

F
P(N7 DSFTa Pbase) Pbase KJFl (N ) DSFT)'Y’
where the parameter v captures the joint effect
of model size and fine-tuning data volume. This
model aids in understanding the trade-offs between
computational resources and training effectiveness
for different configurations.

3. Nonlinear Combination of Tasks: We also
demonstrate that the baseline performance (Ppase)
of an LLM can be modeled as a nonlinear combina-
tion of the model’s capabilities across various tasks,
such as NLI, commonsense and general reasoning.
The relationship is expressed as:

+ w3 P, ks

Commonsense Reasoning

k k
Poase = (wleiI + wo P2

where ~y controls the degree of nonlinearity, em-
phasizing the complex interdependencies between
different task capabilities.

4. Noise and Uncertainty Modeling: To en-
hance performance prediction, we incorporate a
noise term that accounts for variance in model per-
formance, modeled as:

P(N, Ppase, Dspr) = Original Formula + €,

where € ~ N(0, 0?) represents the uncertainty in
performance. This addition provides a more ro-
bust and reliable prediction framework for MLLM
development.



Limitations

This study has several limitations. Firstly, there
is a lack of a theoretically optimal computational
Pareto frontier, indicating the need to explore alter-
native theoretical modeling methods. Secondly, the
relationship between model size and fine-tuning
data volume is not yet fully understood, necessi-
tating the establishment of a quantitative model
to analyze its impact on performance. Addition-
ally, while baseline performance is modeled as a
nonlinear combination of task capabilities, the com-
plex interdependencies between tasks, such as nat-
ural language reasoning, common sense, and in-
ference tasks, require further exploration. Lastly,
the current model insufficiently accounts for perfor-
mance variance, and the study suggests incorporat-
ing noise terms to enhance the model’s robustness
and reliability.
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A The Role of Scaling Laws in
Multi-Modal Model Training

Scaling laws are essential for understanding and op-
timizing the SFT process of MLLMs. These laws
quantitatively model the relationships between key
factors such as model size (/V), fine-tuning data vol-
ume (Dsrr), pre-training data volume (Dpretrain)-
and the performance of downstream tasks (P). By
identifying these relationships, scaling laws pro-
vide actionable insights for achieving efficient com-
pute allocation and performance optimization in
multi-modal tasks. Specifically, scaling laws serve
the following purposes:

1. Compute-Optimal Allocation: Scaling laws en-
able researchers to determine the ideal distribution
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of compute resources between model size (/V) and
the data volume used in SFT (Dgsgr) to optimize
performance. By modeling the loss and perfor-
mance trade-offs, scaling laws provide a framework
to achieve compute-optimal configurations.

2. Practical Optimization of SFT Data Volume:
Scaling laws are particularly useful for multi-modal
SFT as they provide a systematic way to deter-
mine the optimal fine-tuning data volume (Dgspr)
required to achieve a desired level of performance.
In many practical scenarios, collecting or anno-
tating large-scale multi-modal datasets is expen-
sive and time-consuming. By using scaling laws,
researchers can estimate the minimum necessary
Dsgr to achieve a target performance, reducing
computational and data collection costs. This is
especially valuable when leveraging pre-trained
LLMs where Dpreqrain is often unknown or fixed.
3. Performance Prediction from Training Loss:
As MLLM benchmarks continue to grow in di-
versity, comprehensively evaluating model perfor-
mance across all downstream tasks has become
increasingly challenging. Scaling laws relating
training loss to downstream performance provide
a powerful tool for addressing this issue. By mod-
eling the relationship between a model’s final con-
vergence loss and its performance (P), researchers
can predict performance ranges directly from loss
without requiring exhaustive evaluations on every
benchmark. This capability simplifies the evalua-
tion process, enabling efficient comparison of mod-
els and configurations while reducing the reliance
on costly benchmark runs.

In summary, scaling laws provide a critical
framework for the compute-efficient design of
MLLMs during the SFT stage. By balancing model
size, fine-tuning data, and computational resources,
these laws ensure that training and fine-tuning pro-
cesses are both cost-effective and performance-
optimized.

B Experimental Setup
B.1 Model Structure

We primarily follow the architecture design of
LLaVA 1.6 (Liu et al., 2024a), which is one of the
most widely adopted and efficient architectures for
MLLMs. This architecture is known for its simplic-
ity and effectiveness. Specifically, our model pro-
cesses visual information and establishes connec-
tions between the visual and textual modalities us-
ing the following approaches. By default, we adopt
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CLIP-ViT-L-336px' as the visual encoder. To han-
dle image inputs, we utilize the dynamic high res-
olution strategy, which is a mainstream approach
for image splitting and encoding. This method
employs a grid configuration of {2x2, 1x{2,3,4},
{2,3,4}x1} and selects the optimal configuration
for splitting and encoding images. Subsequently,
the image features are mapped to the textual feature
space using a two-layer MLP. The resulting image
tokens are concatenated with the text tokens, and
the combined tokens are passed into the LLM for
further processing.

B.2 Language Model

For the language models trained from scratch,
we used 45 models from OpenLM (Gadre et al.,
2024a). These models are divided into four dif-
ferent sizes (50M, 0.1B, 0.5B, 1B, 7B), and each
size was trained with different datasets and training
data ratios. During the SFT phase, we evaluated
every 1000 steps, resulting in over one thousand
checkpoints for performance evaluation. For mod-
els where the data sources and pretraining data
volumes are less clear, we selected 15 representa-
tive models, including various model sizes from
0.5B to 8B. Similarly, in the SFT phase, perfor-
mance at every 1000-step evaluation is recorded
as a checkpoint. It is worth noting that the check-
points from language models trained from scratch
can also be used for fitting the scaling law in this
phase. Specifically, the pretrain LLM scaling law
was fitted using 1560 checkpoints. The model sizes
and datasets used for both "training from scratch"
and "training from pretrain” are summarized in Ta-
ble 3.

B.3 Training Corpus and Strategy

As our primary focus is not on the pre-training
stage of MLLMs, all experiments use the pre-
training data from LLaVA-1.5 (Liu et al., 2023a),
which consists of 558K samples. The first-stage
training is not counted in the total token count. For
the SFT stage, we utilize the single-image training
dataset from LLaVA-OV (Li et al., 2024a), compris-
ing a total of 3.7M training samples. The average
image + text tokens per sample is 2041.7.

B.4 Benchmarks

To comprehensively evaluate the performance of
MLLMs on downstream tasks, we categorize the

1https://huggingface.co/openai/
clip-vit-large-patch14-336
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N Dyretrain/N Pretrain Dataset
50M 0.25, 4,32 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
From Scratch 0.1B 0.25, 4,32 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
0.5B 0.25,4, 16 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
1B 0.25,1,4, 16 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
7B 1,4 C4, RPJ (Weber et al., 2024), RW (Penedo et al., 2023)
N Model Name
) 0.5B Qwenl.5 (Bai et al., 2023a), Qwen2 (Yang et al., 2024a), Qwen2.5 (Yang et al., 2024b)
From Pretrain | 5/ g Qwenl.5 (Bai et al., 2023a), Qwen2 (Yang et al., 2024a), Qwen2.5 (Yang et al., 2024b)
3/4B Qwenl.5 (Bai et al., 2023a), Qwen?2 (Yang et al., 2024a)
7/8B LLaMAZ2 (Touvron et al., 2023), LLaMA3 (Dubey et al., 2024), LLaMA3.1 (Dubey et al., 2024), Qwen2 (Yang et al., 2024a),

Vicunal.l (Chiang et al., 2023), Vicunal.3 (Chiang et al., 2023), Vicunal.5 (Chiang et al., 2023)

Table 3: Pretraining datasets and model sizes for language models trained from scratch and pretrained models

MLLM evaluation benchmarks into four groups: 1.
General Capabilities: This includes benchmarks
such as MME (Fu et al., 2023), GQA (Hudson
and Manning, 2019), and VQAV2 (Goyal et al.,
2017), which assess overall multi-modal perfor-
mance. 2. Real-World (High-Resolution Percep-
tion): Benchmarks include RealWorld-QA? and
MME-RealWorld-CN (Zhang et al., 2024b), tar-
geting high-resolution perception tasks and under-
standing fine-grained real-world details. 3. Chart
and Document Understanding Tasks: Benchmarks
like ChartQA (Masry et al., 2022), AI2D (Kem-
bhavi et al., 2016), and DocVQA (Mathew et al.,
2021) are used to assess the model’s capability in
understanding structured data and visual informa-
tion in charts and documents. 4. Optical Charac-
ter Recognition (OCR) Tasks: This includes OCR-
Bench (Liu et al., 2023c), TextVQA (Singh et al.,
2019), and WebSRC (Chen et al., 2021), focusing
on extracting text information and reasoning over
textual content.

To evaluate the foundational performance of
the underlying LLM, we assess three key abil-
ities: 1.  Reasoning: Benchmarks include
MMLU (Hendrycks et al., 2020), SciQ?, and ARC-
Easy* to test logical and problem-solving abili-
ties. 2. Commonsense Understanding: Bench-
marks include Winogrande (ai2, 2019) and Open-
BookQA (Mihaylov et al., 2018) to evaluate the
model’s grasp of general world knowledge and
commonsense reasoning. 3. Natural Language In-
ference (NLI): Benchmarks such as COPA (Roem-
mele et al., 2011) and RTE? are used to test the
model’s ability to infer relationships between state-

2https ://x.ai/blog/grok-1.5v

3https ://huggingface.co/datasets/allenai/sciq

4https ://huggingface.co/datasets/allenai/ai2_
arc

5https ://aclweb.org/aclwiki/Recognizing_
Textual_Entailment
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ments. These benchmarks provide a holistic evalu-
ation of the MLLM’s performance, encompassing
both its multi-modal and foundational language
model capabilities. By covering a diverse set of
tasks, we ensure that the scaling laws are applicable
to a wide range of real-world use cases.

C Direct Calculation of the Efficient
Frontier is Extremely Challenging

Assume the optimal solution follows a power-
law form, i.e., there exist constants ki, ko, k3
and exponents a, b, and ¢, such that NV
k1 FLOPs®,  Dyetrain = k2 FLOPs,
ks FLOPs®.

Substituting into the Compute Constraint:
Given the compute constraint

Dspr =

6 N (Dpretrain + Dspr) = FLOPs,

substitute the assumptions into the equation:

6 (k:l FLOPs“) (kg FLOPs® + ks FLOPsC) -
6 ky (/.s2 FLOPs®+? 4 kg FLOPS‘HC) — FLOPs.

For the equation to hold for all values of FLOPs,
the highest FLOPs exponent in the two terms must
be exactly 1. A common assumption is that Dpretrain
and Dsgr are "balanced" in terms of resource allo-
cation, i.e., b = c. This gives us:

6 k1 (ko + k3) FLOPs®*® = FLOPs.
This implies that

a+b=1, orequivalently, b=c=1-—a.

In practical scenarios, the data sizes for MLLM
SFT and LLM pretrain are generally not on the
same scale. In other words, there is a gap between
the theoretical and actual results! This gap arises


https://x.ai/blog/grok-1.5v
https://huggingface.co/datasets/allenai/sciq
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://aclweb.org/aclwiki/Recognizing_Textual_Entailment
https://aclweb.org/aclwiki/Recognizing_Textual_Entailment

from our modeling approach. In reality, the size of
Dspr should be closely related to N and Dprerains
rather than being independent of them (i.e., there
should be a nonlinear relationship among the three;
for example, an LLM trained with a sufficiently
large Dprerain intuitively converges faster than a
freshly initialized LLM).

However, there are two difficulties in modeling
this dependency:

1. First, we do not know what kind of nonlinear
dependency this would be.

2. As shown in Section D, even without consid-
ering additional inequality or equality con-
straints, it is extremely difficult to perform
mathematical analysis to obtain the Efficient
Frontier for our problem, let alone more com-
plex modeling approaches.

Therefore, in the main text, we adopt an approxi-
mate fitting strategy. Specifically, we first study the
optimal pretrain tokens for an LLM with model size
N (for which there are already well-established re-
sults in existing works). Then, based on our fitting
results, we investigate the optimal SFT tokens for
the SFT phase, given N and pretrain tokens.

D Failure Case 1: Challenges in
Approximating the Efficient Frontier

In this section, we explore an approximation strat-
egy to derive the Efficient Frontier, ultimately we
successfully describe the dependence of Dpretrain,
Dspr, and N on F'LOPs. However, this approxi-
mation may incur significant errors, leading to poor
performance in practical applications.

D.1 Assumptions

1. Performance Function: The performance P
is decomposed into contributions from model
size N, pretraining data Dpyeqrain, and fine-
tuning data Dgpr:

P(N, Dpretraim DSFT) =

B C B
T Na v
Ne D fretrain DSFT

Compute Constraint: Compute resources are
consumed as:

6N (Dpretrain + Dspr) = FLOPs
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D.2 Efficiency Frontier Derivation

We use the Lagrange multiplier method to incorpo-
rate the compute constraint:

E(N7 Dpretraina DSFT7 A) = _P(N7 DpretrainyDSFT)
4+ (FLOPs — 6N (Dpreirain + Dsrr))

Taking partial derivatives and solving, we find:

1. For N:
oL aB
67N - W - 6)\(Dpretrain + DSFT) =0

2. For Dpretrain:

oL ¢
_ 6w =0
8Dpretrain Dpretrain
3. For DgFr:
oL E

ODser DI

4. For \:
oL

8—)\ = FLOPs — 6N(Dpretrain + DSFT) =0

Since there are many variables involved, it is
very difficult to directly obtain the closed-form
solution for each variable with respect to FLOPs.
Therefore, for simplicity, we introduce an auxiliary
variable

P = 6AN.

In section. D.3, we show

vr S
~ FLOPs'/p |
where
_ 1, a-1 1
P=3 a 1+ min(B,7)’
and

a—1

1/ L 1 1%,
Cy =6"/P(aB)ar |(BC)FHT +(7E>7+1] .

From this, we can step by step obtain the depen-
dence of Dpetrain, Dsrr, and N on F'LOPs based
on the optimization problem and the approximate
solution for ).



1. First-order Optimality Conditions for the
Data Size: Take the partial derivatives of Dpretrain
and Dsgr, and set them to zero to obtain:

oL _ —p 5?1 TOAN =0
oD, pretrain D pretrain
p+1 BC
- pretrain m’
oL b
— +6AN =0
O0Dsrr Dg;rTl
+1_ vk
= Dgr = 6AN

Thus, the above expressions can be written as

W —-1/(B+1)
Dpretrain = <IBC,>
= (8C)VBHD) =1/ (B+1)
(W —1/(v+1)
e

= (y B)Y O+ =1/ (1)

2. Optimality Condition for /V: Taking the par-
tial derivative of the objective function with respect
to N, we get:

B
NaJrl + 6)\< pretrain + DSFT) =0.

Remembering that ¢ = 6AN, we can rearrange
this to obtain:

abB
W = 1/) (Dpretrain + DSFT) .

Substitute the expressions for Dpretrain and Dsgr
from earlier. Note that

Dpretrain +D SFT —

(B C)MBD) = 1/(BHD) | (o Ry OrHD) y=1/(41),

Thus, we get

aB _
Ne
(BO)FD I FIT 4 (y YYD 17,

Solving for NV, we obtain

N =

aB
FH 4 (y B)V/OrHD) gl

{ (BOY By

The original computational budget requirement
is:

6N (Dpretrain + DSFT) = FLOPs.

Substituting the earlier expressions for Dpretrain and
Dsgr, We can rewrite it as

N [(,80)1/(6+1) 1/)—1/(5-1-1) + (,VE)l/(’H-l) ¢—1/(7+1)

B FLOPs
- —

(From now on, we use F' to represent F'LOPs,
which is simply an adjustment of the constant fac-
tor.)

Expressing the Dependence of Variables on F'
(i.e., FLOPs):

(1) Data Size Using the expressions obtained
earlier:

Diretsain = (BC)M/ BT =1/ (551
(/BC)l/ (B+1) —1/(5+1)F1/(P(5+1))’
Dspr = (,YE)l/(’Y'H =1/(y+1)

= (7E)1/(7+1)01_1/(“/+1)F1/(p(7+1))_

This can be written as:

Dpretrain = [(50)1/(ﬁ+1)0;1/(5+1)} Fm’

Dgpr = {(VE)l/(VH)Cfl/(HU} FrG.

(2) Model Size N
Recalling the expression for V:
N =
oB 1/a
{ (BC)V B! 7 4 (E)V G40yt } |

In the limit of large F' (i.e., small ¢/), assuming
that pretraining data dominates (i.e., 5 < 7, so
1/(B+1) > 1/(y+ 1)), the first term dominates,
and we approximate:

N = (BC)(B+Da)y,=1/((B+1) (o B) 1/
Substituting ¢ ~ C1 /F'/", we get
N =
(QB)l/a(/BC)*1/((5+1)a)C;1/(0¢(5+1))Fm .

Similarly, if fine-tuning data dominates (y < (),
we have

(aB)l/a(’yE)_l/((%H)a)Cl_l/(a(’ﬁ_l))Fm.
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Thus, we can summarize the conditional expression
as:

N =
(aB)1/a(Bc)—1/((6+1)a)0;1/(a(5+1))Fm’
B<,
(aB)1/0‘(ny)—l/((VH)O‘)Cfl/(a(”l))Fm,
v < B.

where

_ l n a—1 1
b= 1+ min(8,7)

(6% (6%
D.3 Derivation of the optimal v

We aim to address the following constrained opti-
mization problem

. B n C " E
min —
. a 2
N, Dyretrain, Dsir>0 N ]ietrain Dt

s. t. 6N(Dpretrain + Dspr) = FLOPs

Using the Lagrangian multiplier A, it becomes min-
imax optimization problem, i.e.

Y

max min

A>0 N,Dpreirain, Dsr>0 N @ B Dipp
pretrain

+)‘ (GN(Dpretrain + DSFT) - FLOPS)

We first fix NV and A. In this case, we can redfine
Y = 6AN and write the solutions for Dprerain and
Dggr in terms of v,

)

Do <1/])1/(/5+1)
preram - BC

—1/(v+1)
%H:(w)
vE
Then, the equation for N becomes
B/ (B+1) /(D)

aB
(BC) @) T (3E) -1/

Ne —

and therefore

N =
WO/ (B+1) grioey T
- o (aB)
(BO)~Y/ B+~ (yE)=1/(+1)
Putting all these together, according to

6N(Dpretrain + DSFT) = FLOPs, we have

-1/(8+1) —1/(v+1)
~1/a [ (Y A
o <<BC> +(35) )

— FLOPs (aB)~ Y
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We begin by examining the summation term within
the parentheses:

B ¥ -1/(8+1) " —1/(y+1)
sw=(52)  +(E)

Rewriting this in an equivalent form:

S(y) = (B C)l/(ﬂ+1) ¢—1/(ﬁ+1)
+(v E)l/(v+1) P~ VO,

Note that when FLOPs are large, in order to meet
the budget constraint, 1) must become very small.
In this case, the powers of v in the two terms are
—1/(8+1)and —1/(y + 1). Clearly, as ¢ — 0,
the term with the more "negative" exponent (i.e.,
the larger value) will dominate the sum.

Notice that

B+1 v+1

the larger of these can be written as

1
1 4+ min(B,~)’

because if min(/3,~) is smaller, the correspond-
ing term 1/(1 4+ min(g3,v)) will be larger than the
other. Therefore, when v is small, we have the
approximation

S@) ~
[(5 OV B 4 (5 E)l/(v-ﬂ-l)] o1/ (tmin(B7)

Substituting the Dominant Term into the
Original Equation: The left-hand side of the orig-
inal equation is

LHS = 6y~ 1/ [S(q/;)} amhie

Substituting the approximate form of S(v), we get

LHS ~ 6~/

- min (a=1)/a
{{(5 O BHD 4 (4 E)l/ml)} 10+ (ﬁ,w)} .

By separating the constants from the powers of 1,
we have

(a—1)/a

a—1)/a
LHS ~ 6 [(5 C)l/(ﬁJrl) + (v E)l/(7+1)}( )/ '

—1 1
17/}71/a* aa T+ min(B,7) .



Thus, the overall power of 1 is

1 a—1 1
B (a+ o .1+min(5,’y)>'

Expressing the Right-hand Side and Solving
for +: The right-hand side of the budget constraint
is

RHS = FLOPs (a B)~'/®,

We approximate the two sides as equal (typically
equality is taken at the optimal solution), and we
write

(a—1)/«
[( BOY/EFD 4 (4 E)l/ml)} :

lye-l_ 1
w_[a_‘— a 1+min(ﬁa’Y)] ~ _F‘.LO‘F)S/G>|< (QB)il/a

Rearranging the above expression into a form for
P, we get

= |(BC)Y/BHD) 4 (4 B)YOHD)
FLOPs

Taking the reciprocal and extracting the appropriate
powers, we obtain

Ch 1 1

w ~ m where p=—

Here, we approximate the exponent by
a—1 1

+ . 9
1 4 min(5, )

1
« «

p%

which simplifies the description of the scaling rela-

tionship between FLOPs and ).
Deriving the Complete Expression for C:
From the equation above, we write

PP~
6(aB)~ 1/
FLOPs

That is,

[(5 CYV/BHD 4 (4 E)l/(7+1)}

o 6(cw B)~ 1/

1

FLOPs!/p’

For simplicity, we define

Cy = 61/7.

o T+ min(B,7)

(a—1)/«

1/p
{ [(BOWE 4 (y B)/a+0] @D } |

Or equivalently,
Ch =

a—1

67 (a B)M/ ) [(8C)Y D 4 (y )OI T

That is, we have

S -
~ FLOPs'/p |
where
1 n a—1 1
P=% a 1+ min(3,7)’
and

a—1

1/ 1 1 1 1%
C1 = 6/(a B)#7 [(BC)7 + (v B)7H| 7.

From this, we can obtain the dependence of
Dpretrains Dsrr, and N on FFLOPs.

"E  Connection between Dsrr and

Dpretrain

We begin with the following system of equations:

1. For N:

aB

W - 6)\(Dpretrain + DSFT)

2. For Dpretrain:

sC

pretrain
3. For DSFT3
B
L =6AN
SFT

From the equations for Dpetrain and Dspr, we
can derive the relationship:

pC Ak
B+1 T oyl
D pretrain D SFT

Rearranging, we get:

B+1 pC D’Y-‘rl
pretrain — ’yiE SFT

Thus, we have:

~(a=1)/a] "1/P C\F 35
|:(a B)—l/a ((6 C)l/(ﬂ‘H) + (7 E)l/(7+1)) :| . Dpretrain = <B> DSﬁl:—Tl



F Task-Specific Scaling Law Analysis

While the overall scaling law provides a broad un-
derstanding, task-specific subsets reveal distinct
trends. Below, we analyze the scaling parameters
with a focus on the contributions of LLM perfor-
mance (wi, we, ws, k1, ko, k3) and scaling impacts
for each subset.

General Knowledge (MME, VQA v2, GQA):

e LLM Performance: w; = 0.2169, w»
0.2982, ws 0.4849, Kk 0.4703,
ko 0.9200, k3 0.5539: Reason-
ing tasks (PReasoning) contribute the most to
LLM performance, followed by common-
sense (PCOI’HIHOI’ISCHSC)7 while NLI (PNLI) Plays
a smaller role. Exponentially scaling com-
monsense yields the strongest effect on task
performance.

Scaling Impact: /' = 6.4711, G = 35.1324,
0 = 0.0085, H = 132.0660, ¢ = 0.0665:
LLM performance dominates general knowl-
edge tasks. Model size has steep diminishing
returns beyond 7B, and fine-tuning data pro-
vides secondary contributions.

OCR (OCRBench, TextVQA):
e LLM Performance: w; = 0.0072, wy =
0.8320, wy = 0.1608, k1 = 0.2094,
ko = 0.9861, ks = 0.9326: OCR tasks

are predominantly driven by commonsense
(Pcommonsense), With reasoning and NLI play-
ing secondary roles. Commonsense and rea-
soning have the strongest exponential impacts.

Scaling Impact: F' = 3.0259, G = 27.1967,
0 = 0.0675, H = 146.2460, ¢ = 0.0208:
Fine-tuning data volume overwhelmingly
drives OCR performance, with significant re-
turns even for smaller models (0.5B-3B).

Chart and Document Understanding (ChartQA,
AI2D, DocVQA):

e LLM Performance: w; = 0.0232, ws
0.9195, ws 0.0573, ki 0.0272,
ko 0.7483, k3 0.7269: Com-
monsense (Pcommonsense) dominates, reflect-
ing the importance of structured knowl-
edge in document-related tasks. Reasoning
(PReasoning) has a moderate impact, while NLI
plays a minimal role.
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* Scaling Impact: ' = 7.8389, G = 92.6541,
0 = 0.0050, H = 88.2644, ¢ = 0.0651:
Model size and fine-tuning data contribute
more equally compared to other subsets, re-
flecting the need for a balanced scaling strat-

cgy.

Real-World (High-Resolution
RealWorld-QA, MME-RealWorld):

Perception,

e LLM Performance: w; = 0.5323, wy =
0.3813, w3 = 0.0864, k1 = 0.7043, ko =
1.0221, k3 = 0.5556: NLI (Pyy1) becomes
the dominant contributor, reflecting the im-
portance of logical reasoning and textual en-
tailment for real-world tasks. Commonsense
plays a secondary role, while reasoning has
limited impact.

Scaling Impact: F' = 2.6240, G = 46.5741,
0 = 0.1342, H = 75.1569, ¢ = 0.0220:
Model size significantly impacts real-world
tasks, with slower diminishing returns com-
pared to general knowledge. Fine-tuning data
remains important but secondary.

Efficient Training of Specific Tasks

General Knowledge: Pre-trained LLMs with
strong reasoning and commonsense capabilities
are essential. Scaling model size beyond 7B
yields limited gains.

OCR: Focus on fine-tuning data augmentation,
as smaller models paired with robust datasets
can achieve competitive performance.

Chart & Document Understanding: A bal-
anced strategy scaling both model size and fine-
tuning data volume is critical.

Real-World Tasks: Prioritize scaling model
size to handle task complexity. Fine-tuning data
kquality should take precedence over quantity.

G Task-Specific Analysis of
Performance-Loss Scaling Laws

Because our computations use model sizes smaller
than 13B, the optimal average performance or task-
specific performance generally does not exceed
60. Under such circumstances, the scaling law
tends to select a smaller P« to optimize the fit-
ting loss, which limits its ability to extrapolate to
better-performing models. To address this, we set
a minimum value for Py,x at 80 to ensure that the
scaling law retains the ability to extrapolate for
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Figure 3: Task-Specific Loss and Accuracy Correlation. This figure illustrates the performance-loss scaling laws
for specific tasks, including General Knowledge, Chart and Document Understanding, OCR, and Real-World Tasks.
For each task, the model is evaluated every 1000 steps using the cumulative average loss from the beginning of
training to the current step. Across all tasks, a strong correlation between training loss and accuracy is observed,
demonstrating that cumulative loss is an effective metric for predicting task-specific downstream performance.

smaller losses. Even with this hard constraint, our
experiments demonstrate that training loss remains
strongly correlated with task-specific performance,
which is shown in Figure. 3.

G.1 General Knowledge (MME, VQA v2,
GQA)

Prediction Results: P, 4.35, Phax
80.00, k = 0.85, = 1.41, R? = 0.8777
Analysis: General Knowledge tasks exhibit a
shallow decay (v = 1.41), suggesting that accu-
racy is less sensitive to variations in training loss.
The low k£ = 0.85 indicates slower performance
degradation as loss increases, and the moderately
high R? = 0.8777 shows that training loss is a rea-
sonable, though not perfect, predictor. The lower
correlation is likely due to the reliance of these
tasks on multimodal reasoning, commonsense, and
instruction following capability®, which may not

The MME benchmark needs the model to directly answer
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be directly reflected in training loss.

Key Insight: Loss is moderately predictive of
performance, but the relationship is weaker com-
pared to other tasks. Fine-tuning for loss reductions
has limited benefits beyond a certain point.

Difference from Overall Scaling Law: Gen-
eral Knowledge tasks deviate significantly from the
overall scaling law due to their lower sensitivity ()
and slower degradation (k).

G.2 Chart and Document Understanding

Prediction Results: P, 5.95, Phax
80.00, k = 1.99,~v = 2.50, R? = 0.974
Analysis: These tasks show a steep decay (v =
2.50), highlighting high sensitivity to changes in
training loss. The higher £ = 1.99 reflects faster
degradation in accuracy as loss increases. The high
R? = 0.974 indicates a strong correlation between
loss and performance, suggesting that training loss

’yes’ or 'no’, which is hard for small scale models.



is a reliable predictor for these tasks, which require
precise feature extraction and structured reasoning.

Key Insight: Training loss is highly predictive
of downstream performance, especially in the low-
loss region where small improvements yield signif-
icant accuracy gains.

Difference from Overall Scaling Law: Com-
pared to the overall scaling law, these tasks show
much higher sensitivity (y = 2.50) and a more
pronounced dependency on loss.

G.3 OCR (OCRBench, TextVQA)

Prediction Results: P, 0.00, Pnax
80.00, k = 1.56,~ = 2.75, R? = 0.9831

Analysis: OCR tasks demonstrate the sharpest
decay (y = 2.75) among all tasks, indicating ex-
treme sensitivity to small loss reductions. The base-
line Py, = 0.00 reflects the absence of meaningful
performance from random guessing. The very high
R? = 0.9831 shows that training loss is an excel-
lent predictor for OCR tasks, where precise text
recognition is critical.

Key Insight: Fine-tuning to achieve minimal
loss is essential for OCR tasks, as even small im-
provements in loss yield significant performance
gains.

Difference from Overall Scaling Law: OCR
tasks show a much stronger dependency on low
losses and sharper decay than the overall scaling
law, emphasizing the importance of fine-grained
loss optimization.

G.4 Real-World Tasks (High-Resolution
Perception, RealWorld-QA,
MME-RealWorld)

Prediction Results: P, 9.59, Pax
80.00, k = 2.61,~ = 1.90, R? = 0.9296

Analysis: Real-World tasks exhibit moderately
steep decay (v = 1.90) and a higher baseline per-
formance (Ppin = 9.59), suggesting these tasks
retain some accuracy even with higher losses. The
moderately high R? = 0.9296 shows that train-
ing loss is a reasonably strong predictor for these
tasks, though less so than for OCR or Chart tasks.
The higher k = 2.61 indicates faster performance
degradation.

Key Insight: While training loss is predictive,
the relationship is less sharp than in OCR or Chart
Understanding tasks, suggesting that other task-
specific factors may play a larger role.

Difference from Overall Scaling Law: Real-
World tasks align more closely with the overall
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scaling law but exhibit a higher baseline and faster
degradation.

H Broader impacts

By lowering costs and providing clearer guide-
lines (a "principled basis for optimizing MLLM
SFT"), this research can make the development of
advanced MLLMs more accessible to a wider range
of researchers and organizations, including those
with limited resources. This could foster broader
innovation and application in the field.
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