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Abstract

Machine-learning systems such as self-driving cars or virtual assistants are com-
posed of a large number of machine-learning models that recognize image content,
transcribe speech, analyze natural language, infer preferences, rank options, etc.
Models in these systems are often developed and trained independently, which
raises an obvious concern: Can improving a machine-learning model make the
overall system worse? We answer this question affirmatively by showing that
improving a model can deteriorate the performance of downstream models, even
after those downstream models are retrained. Such self-defeating improvements are
the result of entanglement between the models in the system. We perform an error
decomposition of systems with multiple machine-learning models, which sheds
light on the types of errors that can lead to self-defeating improvements. We also
present the results of experiments which show that self-defeating improvements
emerge in a realistic stereo-based detection system for cars and pedestrians.

1 Introduction

Progress in machine learning has allowed us to develop increasingly sophisticated artificially intel-
ligent systems, including self-driving cars, virtual assistants, and complex robots. These systems
generally contain a large number of machine-learning models that are trained to perform modular
tasks such as recognizing image or video content, transcribing speech, analyzing natural language,
eliciting user preferences, ranking options to be presented to a user, etc. The models feed each other
information: for example, a pedestrian detector may use the output of a depth-estimation model as
input. Indeed, machine-learning systems can be interpreted as directed acyclic graphs in which each
vertex corresponds to a model, and models feed each other information over the edges in the graph.

In practice, various models in this graph are often developed and trained independently [22]. This
modularization tends to lead to more usable APIs but may also be motivated by other practical
constraints. For example, some of the models in the system may be developed by different teams
(some models in the system may be developed by a cloud provider); models may be retrained and deployed at
a very different cadence (personalization models may be updated very regularly but image-recognition models
may not); new downstream models may be added continuously in the graph (user-specific models may
need to be created every time a user signs up for a service); or models may be non-differentiable (gradient-
boosted decision trees are commonly used for selection of discrete features). This can make backpropagation
through the models in the graph infeasible or highly undesirable in many practical settings.

The scenario described above leads to an obvious potential concern: Can improving a machine-
learning model make the machine-learning system worse? We answer this question affirmatively by
showing how improvements in an upstream model can deteriorate the performance of downstream
models, even if all the downstream models are retrained after updating the upstream model. Such
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self-defeating improvements are caused by entanglement between the models in the system. To
better understand this phenomenon, we perform an error decomposition of simple machine-learning
systems. Our decomposition sheds light on the different types of errors that can lead to self-
defeating improvements: we provide illustrations of each error type. We also show that self-defeating
improvements arise in a realistic system that detects cars and pedestrians in stereo images.

Our study opens up a plethora of new research questions that, to the best of our knowledge, have not
yet been studied in-depth in the machine-learning community. We hope that our study will encourage
the community to move beyond the study of machine-learning models in isolation, and to study
machine-learning systems more holistically instead.

2 Problem Setting

We model a machine-learning system as a static directed acyclic graph (DAG) of machine-learning
models, G = (V, E), where each vertex v ∈ V corresponds to a machine-learning model and each
edge (v, w) ∈ E represents the output of model v being used as input into model w. For example,
vertex v could be a depth-estimation model and vertex w a pedestrian-detection model that operates
on the depth estimates produced by vertex v. A model is upstream of v if it is an ancestor of v. A
downstream model of v is a descendant of v. An example of a machine-learning system with three
models is shown in Figure 1 (we study this model in Section 3.2).
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Figure 1: Example of a machine-learning system
with three models, V = {u, v, w}, and two edges,
E = {(u,w), (v, w)}. The system receives an
example x as input, of which parts x(u), x(v), and
x(w) are fed into u, v, and w, respectively. Model
w’s input is concatenated with the outputs of its
parents, fu(x) and fv(x).

Each vertex in the machine-learning system G
corresponds to a model function, v(·), that op-
erates on both data and outputs from its up-
stream models. Denote the output from model
v by fv(x). The output of a source model v
is fv(x) = v(x(v)), where x(v) represents the
part of input x that is relevant to model v. The
output of a non-source model w is given by
fw(x) = w

([
x(w), fv(x) : v ∈ Pw

])
, where

Pw = {v : (v, w) ∈ E} are the parents of w.

Training. To train model v, we as-
sume access to a training set Dv =
{(x1,y1), . . . , (xNv

,yNv
)} with Nv examples

xn ∈ X and corresponding targets yn ∈ Yv.
For each model, we also assume a training al-
gorithm Av(Dv) that selects a model v ∈ Hv

from hypothesis setHv based on the training set.
The learning algorithm, Av, the hypothesis set,
Hv, and the training set, Dv, are fixed during
training but they may change each time model v is re-trained or updated. The data space X , the target
space Yv , and the way in which inputs x(v) are obtained do not change between model updates.

We assume that models in G may be trained separately rather than jointly, that is, the learning
signal obtained from training a downstream model, v, may not be backpropagated into its upstream
dependencies, w ∈ Pv . This assumption is in line with constraints that commonly arise in real-world
machine learning systems; see our motivation below. Note that this assumption also implies that a
downstream model cannot be trained before all its upstream models are trained.

Evaluation. To be able to evaluate the performance of the task at v, we assume access to a fixed
test set D̄v that is defined analogously to the training set: it contains Mv test examples x̄m ∈ X
and corresponding targets ȳm ∈ Yv. In contrast to the training set, the test set is fixed and does
not change when the model is updated. However, we note that the input distribution into a non-root
model is not only governed by the test set D̄v but also by upstream models: if an upstream model
changes, the inputs into a downstream model may change as well even though the test set is fixed.

We also assume access to a test loss function `v(v, D̄v) for each model v, for example, classification
error (we assume lower is better). Akin to the test set D̄v , all test loss functions `v are fixed. Hence,
we always measure the generalization ability of a model, v, in the exact same way. The test loss
function may not have trainable parameters, that is, it must be a “true” loss function.
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Updating models. The machine-learning system we defined can be improved by updating a model.
In such an update, an individual model v is replaced by an alternative model v′. We can determine if
such a model update constitutes an improvement by evaluating whether or not its test loss decreases:
`v(v′, D̄v) ≤ `v(v, D̄v). When v is not a leaf in G, the update to v′ may affect the test loss of
downstream models as well. In practice, the improvement due to v′ often also improves downstream
models (e.g., [19]), but this is not guaranteed. We define a self-defeating improvement as a situation
in which replacing v by v′ improves that model but deteriorates at least one of the downstream
models w, even after all the downstream models are updated (i.e., re-trained using the same learning
algorithm) to account for the changes incurred by v′.
Definition 2.1 (Self-defeating improvement). Denoting the set of all downstream models (descen-
dants) of v in G as Cv , a self-defeating improvement arises when:

∃w ∈ Cv : `v(v′, D̄v) ≤ `v(v, D̄v) 6=⇒ `w(w′, D̄w) ≤ `w(w, D̄w)), (1)

where w′ represents a new version of model w that was trained after model v was updated to v′ to
account for the input distribution change that the update of v incurs on w.

Motivation of problem setting. In the problem setting described above, we have made two assump-
tions: (1) models may be (re-)trained separately rather than jointly and (2) the training algorithm,
hypothesis set, and training data may change between updates of the model.2 Both assumptions are
motivated by the practice of developing large machine-learning systems that may comprise thousands
of models [22, 28]. Joint model training is often infeasible in such systems because:

• Some of the models may have been developed by cloud providers [34] and cannot be changed.
• Backpropagation may be technically infeasible or inefficient, e.g., when models are implemented

in incompatible learning frameworks or when their training data live in different data centers.
• Some models may be re-trained or updated more often than others. For example, personalization

models may be updated every few hours to adapt to changes in the data distribution, but re-training
large language models [8] at that same cadence is not very practical.

• Upstream models may have hundreds or even thousands of downstream dependencies, complicating
appropriate weighting of the downstream learning signals that multi-task learning [10] requires.

• Some models may be non-differentiable, e.g., gradient-boosted decision trees are commonly used
for feature selection in large sets of features.

We assume that changes in the training algorithm, hypothesis set, and training data may occur because
model owners (for example, cloud providers) constantly seek to train and deploy improved versions
of their models with the ultimate goal of improving the system(s) in which the models are used.

3 Understanding Self-Defeating Improvements via Error Decompositions

Traditional software design relies heavily on modules: independent and interchangeable components
that are combined to form complex software systems [7, §7.4]. Well-designed modules provide an
explicit specification of their inputs, outputs, and functionality. In traditional software engineering,
good modularization allows developers to modify modules independently because the effects of those
modifications on the rest of the system are relatively predictable.

Machine-learned models do not resemble traditional software modules because they lack an explicit
specification of their functionality [14]. As a result, there is often a significant degree of entanglement
between different models in the system [22]. This makes the system-wide effects of model modifica-
tions unpredictable, and can lead to situations where improving a model does not improve the entire
system. To understand such self-defeating improvements, we study Bayes error decompositions of
simple machine-learning systems. Specifically, we study a system with two models in Section 3.1
and a system with three models in Section 3.2.

3.1 Error Decomposition of System with Two Models

We adapt standard Bayes error decomposition [6, 33] to study a simple system that has two vertices,
V = {v, w}, and a dependency between upstream model v and downstream model w, that is,
E = {(v, w)}. We denote the Bayes-optimal downstream model by w∗; the optimal downstream

2The training data is fixed during training, i.e., we do not consider online learning settings in our setting.
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Figure 2: Illustration of a self-defeating improvement due to an increase in the downstream approx-
imation error. Upstream model v predicts a 2D point for each example. Downstream model w is
a linear classifier separating the points into two classes (red and green). Left: Ground-truth target
distribution for the upstream model. Middle: Point predictions by upstream model v, the optimal
v-conditioned downstream classifier w†, and the downstream classifier w learned. Right: Point
predictions by improved upstream model v′, the optimal v′-conditioned downstream classifier w†, and
the downstream classifier w′ learned. Note how the predictions of v′ better match the ground-truth,
but w′ cannot exploit the improvement because it is restricted to be linear.

model conditioned on an upstream model by w†; and the optimal upstream-conditional downstream
model in the hypothesis setHw by w†Hw

. Using these definitions, we can decompose the downstream
risk of model w, given upstream model v, as follows:

E[`w(w ◦ v)− `w(w∗)] =

E[`w(w† ◦ v)− `w(w∗)]︸ ︷︷ ︸
upstream error

+E[`w(w†Hw
◦ v)− `w(w† ◦ v)]︸ ︷︷ ︸

downstream approximation error

+E[`w(w ◦ v)− `w(w†Hw
◦ v)]︸ ︷︷ ︸

downstream estimation error

, (2)

where ◦ denotes function composition, and the expectations are under the data distribution. The error
decomposition is similar to standard decompositions [6, 33] but contains three terms instead of two.3
Specifically, the upstream error does not arise in prior error decompositions, and the downstream
approximation and downstream estimation errors differ from the standard decomposition.

Barring variance in the error estimate due to the finite size of test sets D̄w (which is an issue that can
arise in any model-selection problem), a self-defeating improvement occurs when a model update
from (v, w) to (v′, w′) reduces the upstream risk but increases the downstream risk. An increase in
the downstream risk implies that at least one of the three errors terms in the composition above must
have increased. We describe how each of these terms may increase due to a model update:

• Upstream error measures the error that is due to the upstream model v not being part of the Bayes-
optimal solution w∗. It increases when an improvement in the upstream loss does not translate in
a reduction in Bayes error of the downstream model, i.e., when: `w(w† ◦ v′) > `w(w† ◦ v). An
upstream error increase can happen due the loss mismatch: a setting in which the test loss functions,
`, of the upstream and downstream model optimize for different things. For example, the upstream
test loss function may not penalize errors that need to be avoided in order for the downstream test
loss to be minimized, or it may penalize errors that are irrelevant to the downstream model.

Alternatively, the upstream error may increase due to distribution mismatch: situations in
which the upstream loss focuses on parts of the data-target space X × Yv that are unimportant
for the downstream model (and vice versa). For example, suppose the upstream model v is an
image-recognition model that aims to learn a feature representation that separates cats from dogs,
and fv(x) is a feature representation obtained from that model. A downstream model, w, that
distinguishes different dog breeds based on fv may deteriorate when the improvement of model v
collapses all representations of dog images in fv . Examples of this were observed in, e.g., [19].

• Downstream approximation error measures the error due to the optimal w† not being in the
hypothesis setHw. The approximation error increases when the downstream model, w, is unable
to exploit improvements in the upstream model, v, because exploiting those improvements would
require selection of a model that is not in that hypothesis set.

3For brevity, we do not include optimization error of [5] in our Bayes error decomposition.
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Figure 3: Illustration of a self-defeating improvement due to an increase in the downstream estimation
error. Upstream model v predicts a 2D point for each example. Downstream model w is a quadratic
classifier separating the points into two classes (red and green). Left: Ground-truth target samples
and distribution for the upstream model. Middle: Point predictions by upstream model v, the
corresponding optimal v-conditioned downstream model inHw, w†Hw

, and the downstream classifier
w learned based on the training examples. Right: Point predictions by improved upstream model
v′, the corresponding optimal v′-conditioned downstream model inHw, w†Hw

, and the downstream
classifier w′ learned based on the training examples. Note how the predictions of v′ better match the
ground-truth, but w′ deteriorates because it only receives Nw = 6 training examples.

Figure 2 illustrates how this situation can lead to a self-defeating improvement. In the
illustration, the upstream model, v, predicts a 2D position for each data point. The downstream
model, w, separates examples into the positive (green color) and negative (red color) class based
on the prediction of v using a linear classifier. The predictions of the improved upstream model, v′,
better match the ground-truth targets: the predictions of v′ (right plot) match the ground-truth targets
(left plot) more closely than those of v (middle plot). However, the re-trained downstream model,
w′, deteriorates because the resulting classification problem is more non-linear: the downstream
model cannot capitalize on the upstream improvement because it is linear. The resulting increase
in approximation error leads to the self-defeating improvement in Figure 2.

• Downstream estimation error measures the error due to the model training being performed on
a finite data sample with an imperfect optimizer, which makes finding w†Hw

difficult in practice.
The estimation increases, for example, when the upstream model improves but the downstream
model requires more than Nw training samples to capitalize on this improvement.

Figure 3 shows an example of a self-defeating improvement caused by an increase of the
downstream estimation error. As before, the upstream model, v, predicts a 2D position for each
data point in the example. The downstream model w is selected from the set, Hw, of quadratic
classifiers. It is tasked with performing binary classification into a positive class (green color) and
negative class (red color) based on the 2D positions predicted by the upstream model. To train
the binary classifier, the downstream model w (and w′) is provided with Nw = 6 labeled training
examples (the green and red markers in the plot). In the example, the upstream model v′ performs
better than its original counterpart v: the predictions of v′ (right plot) match the ground-truth
targets (left plot) more closely than those of v (middle plot). However, the upstream improvement
hampers the downstream model even though the optimal downstream model w† is in the hypothesis
set Hw both before and after the upstream improvement. After the upstream improvement, the
optimal downstream model that can be selected from the hypothesis set, w†Hw

, is more complex,
which makes it harder to find it based on the finite number of Nw training examples. This results
in an increase in the estimation error, which causes the self-defeating improvement in Figure 3.

3.2 Error Decomposition of System with Two Upstream Models

More complex types of self-defeating improvements may arise when a downstream model depends
on multiple upstream models that are themselves entangled. Consider the system of Figure 1
that has three models, V = {u, v, w}, and dependencies between upstream models u and v and
downstream model w, that is, E = {(u,w), (v, w)}. The error decomposition for this system is
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(a) Anti-correlated errors (b) Correlated predictions

Figure 4: Illustrations of self-defeating improvement due to an increase in the upstream compatibility
error. Green areas should be labeled as positive; red areas as negative. Left (a and b): Original
upstream model u (top; blue line and +,− symbols) and its improved version u′ (bottom; red).
Middle (a and b): Upstream model v. Right (a and b): Original downstream model w (top) and
its improved version w′ (bottom). In (a), the errors of u and v are anti-correlated. As a result, the
improved upstream model u′ negatively impacts the re-trained downstream model w′. In (b), the
improved upstream model u′ is identical to the other upstream model v. As a result, w′ looses the
additional information previously provided by u, negatively impacting its performance.

similar to Equation 2, but we can further decompose the upstream error. Denoting the Bayes-optimal
downstream model by w∗, the optimal model given upstream models u and v by w†u,v , and the optimal
upstream model v given upstream model u by v†u, we decompose the upstream error as follows:

E[`w(w†u,v ◦ (u, v))− `w(w∗)]︸ ︷︷ ︸
upstream error

=

E[`w(w†u,v ◦ (u, v))− `w(w†u,v ◦ (u, v†u))]︸ ︷︷ ︸
upstream compatibility error

+E[`w(w†u,v ◦ (u, v†u))− `w(w∗)]︸ ︷︷ ︸
excess upstream error

. (3)

The excess upstream error is similar to the upstream error in Equation 2: upstream model u may be
suboptimal for the downstream task, for example, because of loss mismatch or distribution mismatch.
The key observation in the error decomposition of a system with two upstream models is that the
optimal upstream model v is a function of upstream model u (and vice versa). The upstream
compatibility error captures the error due to upstream model v not being identical to the optimal v†u.
A self-defeating improvement can occur when we update upstream model u to u′ because it may be
that v†u 6= v†u′ , which can cause the upstream compatibility error to increase.

We provide two examples of this in Figure 4. The first example (left pane) shows a self-defeating
improvement due to upstream models u and v making anti-correlated errors that cancel each other out.
The second example (right pane) is a self-defeating improvement due to u′ making more correlated
predictions with v. We note that, in both examples, the optimal v depends on u and the self-defeating
improvement arises because of an increase in the upstream compatibility error.

In the examples in Figure 4, all three models aim to distinguish two classes: green (positive class)
and red (negative class). Upstream models u and v do so based the (x, y)-location of points in the
2D plane. The downstream model operates on the (hard) outputs of the two upstream models. In
Figure 4(a), the original upstream models u and v make errors that are anti-correlated. The original
downstream model w exploits this anti-correlation to make perfect predictions. When upstream model
u is replaced by an improved model u′ that makes no errors, a self-defeating improvement arises:
downstream model w no longer receives the information it needs to separate both classes perfectly. In
Figure 4(b), upstream model u is improved to u′, which makes the exact same predictions as the other
upstream model v. As a result, downstream model w′ no longer has access to the complementary
information that u was providing in addition to v, producing the self-defeating improvement.
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Figure 5: Overview of the car and pedestrian detection system used in our case study in Section 4. The
system consists of three models: (1) a disparity-estimation model u that generates a pseudo-LiDAR
representation of the environment, (2) a car-detection model v that operates on 3D point clouds, and
(3) a pedestrian-detection model w that performs 3D pedestrian detection.

While the examples in Figure 4 may seem contrived, anti-correlated errors and correlated predictions
can arise in practice when there are dependencies in the targets used to train different models. For
example, suppose the upstream models are trained to predict ad clicks (will a user click on an ad?)
and ad conversions (will a user purchase the product being advertised?), respectively. Because
conversion can only happen after a click happens, there are strong dependencies between the targets
used to train both models, which may introduce correlations between their predictions.

4 Case Study: Pseudo-LiDAR for Detection

We perform a case study on self-defeating improvements in a system that may be found in self-driving
cars. In both cases, the system uses a pseudo-LiDAR [37] as the basis for 3D detection of cars and
pedestrians. Figure 5 gives an overview of the models in the system:

• A disparity-estimation model, u, predicts a map d with disparities corresponding to every pixel in
the left image of a stereo image (a pair of rectified images from two horizontally aligned cameras).

• A point cloud generator, r, uses disparity map d to create a pseudo-LiDAR representation of the
3D environment. The point cloud generator, r, is a simple non-learnable module [37].

• The stereo image and disparity map are input into a model, v, that performs 3D detection of cars.
• The same inputs are used in a separate model, w, that aims to perform 3D pedestrian detection.

4.1 System Design

Car detection Pedestrian detection
P-RCNN F-PTNET P-RCNN F-PTNET

AP3D

u 39.91 33.64 34.42 43.02
u′ 38.75 32.78 27.64 43.10
y 68.06 55.46 55.19 62.16

APBEV

u 50.34 43.79 38.51 50.49
u′ 49.30 42.77 31.47 48.29
y 78.43 67.35 63.00 65.92

Table 1: Average precision of car detection and
pedestrian detection measured for 3D box view
(AP3D) and 2D birds-eye view (APBEV). Higher is
better. Results are shown for baseline disparity-
estimation model u and an improved disparity-
estimation model u′ that is trained using a differ-
ent loss. The AP of oracle disparity-estimation
model y is shown for reference. Improving the
disparity-estimation model leads to a self-defeating
improvement in both the car detection model and
the pedestrian detection model.

The disparity-estimation and detection models
used in our case study are described below.

Disparity estimation. To perform disparity es-
timation, we adopt the PSMNet model of Chang
and Chen [11]. The model receives a stereo im-
age, (xleft,xright), as input and aims to compute
a disparity map, d = u(xleft,xright), that con-
tains a disparity estimate for each pixel in image
xleft. We experiment with two training loss func-
tions: (1) the depth mean absolute error and (2)
the disparity mean absolute error (MAE). Given
a ground-truth disparity map, y, and a function
that maps disparities to depths, g(d) = C

d , for
some camera constant C, the disparity MAE is
proportional to ‖d− y‖1 and the depth MAE is
proportional to ‖g(d)− g(y)‖1. To evaluate the
quality of model u, we measure disparity MAE:
`u(u, D̄u) = 1

M

∑M
m=1‖d − y‖1. We expect

that a model, u′, trained to minimize disparity

7



MAE will provide better disparity estimates (per test loss `u) than a model, u, that is trained to
minimize depth MAE. This has downstream effects on performance of the detection models.

Car and pedestrian detection. We experiment with two different models for performing detection
of cars and pedestrians, viz., the Point-RCNN model (P-RCNN; Shi et al. [30]) and the Frustum
PointNet detection model (F-PTNET; Qi et al. [26]). Both models take stereo image (xleft,xright)
and point cloud r(d) as input. Before computing r(d), we perform winsorization on the prediction
u(xleft,xright): we remove all points that are higher than 1 meter in the point cloud (where the camera
position is the origin). Both 3D car detection model and 3D pedestrian detection model are trained to
detect their target objects at any distance from the camera.

Following Geiger et al. [16], we evaluate the test loss of car-detection model, `v, using the negative
average precision (AP) for an intersection-over-union (IoU) of 0.7. The test loss of the pedestrian-
detection model, `w, is the negative AP for an IoU of 0.5. The pedestrian-detection test-loss is
only evaluated on pedestrians whose distance to the camera is ≤20 meters. We measure both the
car-detection and the pedestrian-detection test losses for both the 3D box view (−AP3D) and the 2D
bird-eye view (−APBEV); see Geiger et al. [16] for details on the definition of the test-loss functions.

4.2 Experiments

Range 0-max 0-20 20-40 40-max
Model u 1.28 1.32 1.12 1.11
Model u′ 1.21 1.21 1.20 1.20

Table 2: Disparity MAE test loss of
disparity-estimation models u (trained
to minimize depth MAE) and u′ (trained
to minimize disparity MAE), split out
per range of ground-truth depth values
(in meters). Model u better predicts the
disparity of nearby points, but u′ works
better on distant points.

We evaluate our system on the KITTI dataset [16, CC
BY-NC-SA 3.0], using the training-validation split of [12].
Our baseline disparity-estimation model, u, that is trained
to minimize depth MAE obtains a test loss of 1.28 (see
Table 2). The improved version of that model, u′, is trained
to minimize disparity MAE and obtains a test loss of 1.21,
confirming the model improvement.

Table 1 presents the test losses of the downstream models
for car and pedestrian detection, for both the baseline
upstream model u and the improved model u′. We observe
that the improvement in disparity estimation leads to self-
defeating improvements on both the car-detection and the
pedestrian-detection tasks. The AP3D of the car detector
drops from 39.91 to 38.75 (from 50.34 to 49.30 in APBEV).
For pedestrian detection, AP3D is unchanged but APBEV drops from 50.49 to 48.29. Interestingly,
these self-defeating improvements are due to increases in different error terms.

P-RCNN F-PTNET

AP3D

u 30.53 44.10
u′ 34.20 46.14
y 55.19 62.16

APBEV

u 34.09 51.84
u′ 38.83 53.99
y 64.25 65.23

Table 3: Average precision at
IoU 0.5 of pedestrian detec-
tion measured for 3D box view
(AP3D) and 2D birds-eye view
(APBEV) for two different detec-
tion models (P-RCNN and F-
PTNET). Pedestrian detector is
trained by removing pedestrians
farther than 20 meters. Results
are shown for the baseline dis-
parity estimation model, u, the
improved model, u′, and an ora-
cle model, y. Higher is better.

Self-defeating improvement in car detection. The self-
defeating improvement observed for car detection is likely due to
an increase in the upstream error. A disparity-estimation model
that is trained to minimize depth MAE (i.e., model u) focuses
on making sure that small disparity values (large depth values),
are predicted correctly. By contrast, a model trained to minimize
disparity MAE (model u′) aims to predict large disparity values
(small depth values) correctly, sacrificing accuracy in predictions
of large depth values (see Table 2). This negatively affects the
car detector because most cars tend to be relatively far away. In
other words, the loss function that improves model u deteriorates
the downstream model because it focuses on errors that are less
relevant to that model, which increases the upstream error.

Self-defeating improvement in pedestrian detection. Different
from car detection, the self-defeating improvement in pedestrian
detection is likely due to an increase in the downstream approxima-
tion or estimation error. Table 2 shows that whereas the disparity
MAE test loss of u′ increases for large depth values, it decreases
in the 0-20 meter range. As the pedestrian-detection evaluation
focuses on pedestrians within 20 meters, we expect the pedestrian
detector w′ to improve along with disparity-estimation model u′:
that is, the upstream error likely decreases.
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However, the point representations produced by model u′ are likely noisier for far-away pedestrians
than those produced by u (see Table 2). Because the downstream model is trained to (also) detect these
far-away pedestrians, the noise in the pedestrian point clouds makes it harder for that model to learn
a good model of the shape of pedestrians. This negatively affects the ability of w′ to detect nearby
pedestrians. Indeed, if the pedestrian detector is only trained on nearby pedestrians, the self-defeating
improvement disappears; see Table 3. Hence, the observed self-defeating improvement was due to an
increase in a downstream error term: the upstream model did improve for the downstream task, but
the downstream model was unable to capitalize on that improvement.

5 Related Work

This study is part of a larger body of work around machine-learning engineering [9, 21, 23]. Sculley
et al. [28] provides a good overview of the problems that machine-learning engineering studies.
The self-defeating improvements studied in this paper are due to the entanglement problem [1, 22],
where “changing anything changes everything” [28]. Entanglement has also been studied in work on
“backward-compatible” learners [29, 32, 35]. Prior work has also studied how the performance of
humans operating a machine-learning system may deteriorate when the system is improved [3].

Some aspects of self-defeating improvements have been studied in other domains. In particular, the
effect of an upstream model change on a downstream model can be viewed as domain shift [4, 25].
However, approaches to domain shift such as importance weighting of training examples [31] are not
directly applicable because they require the input space of both models to be identical. The study of
self-defeating improvements is also related to the study of transfer learning, e.g., [2, 19, 24]. Prior
work on transfer learning has reported examples of self-defeating improvements: e.g., [19] reports
that some regularization techniques improve the accuracy of convolutional networks on ImageNet,
but negatively affect the transfer of those networks to other recognition tasks.

Finally, work on differentiable programming [18, 36] is relevant to the study of self-defeating
improvements. In some situations, a self-defeating improvement may be resolved by backpropagating
learning signals from a model further upstream. However, such an approach is not a panacea as
downstream tasks may have conflicting objectives. Moreover, technical or practical obstacles may
prevent the use of differentiable programming in practice (see Section 2).

6 Conclusion and Future Work

This study explored self-defeating improvements in modular machine-learning systems. We presented
a new error decomposition that sheds light on the error sources that can give rise to self-defeating
improvements. The findings presented in this study suggest a plethora of directions for future work:

• It may be possible to derive bounds on the error terms in Equation 2 that go beyond the current
art. For example, it is well-known that the trade-off between approximation and estimation error
leads to an excess risk that scales between the inverse and the inverse square root of the number of
training examples [27, 39]. New theory may provide more insight into the effect of the upstream
hypothesis set and training set size on those errors, and may bound the upstream error term in 2.

• Our study focused on first-order entanglement between two models (either an upstream and
a downstream model or two upstream models). Some settings may give rise to higher-order
entanglements, for example, between three upstream models whose errors cancel each other out.

• Our definition of different types of entanglement may pave the way for the development of
diagnostic tools that identify the root cause of a self-defeating improvement.

• We need to develop best practices that can help prevent self-defeating improvements from occurring.
One way to do so may be by tightening the “API” of the machine-learning models, e.g., by
calibrating classifier outputs [17] or whitening feature representations [20]. Such transforms
constrain a model’s output distribution, which may reduce the downstream negative effects of
model changes. Alternatively, we may train models that are inherently more robust to changes in
their input distribution, e.g., using positive-congruent training [38] or meta-learning [15].

• We also need to study self-defeating improvements of other aspects. An important open question
is [13]: Can making an upstream model fairer make its downstream dependencies less fair?

We hope this paper will encourage the study of such questions, and will inspire the machine-learning
community to rigorously study machine-learning systems in addition to individual models.
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