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ABSTRACT

Machine learning has demonstrated remarkable performances over finite datasets,
yet whether the scores over the fixed benchmarks can sufficiently indicate the
model’s performances in the real world is still in discussion. In reality, an ideal
robust model will probably behave similarly to the oracle (e.g., the human users),
thus a good evaluation protocol is probably to evaluate the models’ behaviors in
comparison to the oracle. In this paper, we introduce a new robustness measurement
that directly measures the image classification model’s performance compared with
a surrogate oracle. Besides, we design a simple method that can accomplish the
evaluation beyond the scope of the benchmarks. Our method extends the image
datasets with new samples that are sufficiently perturbed to be distinct from the
ones in the original sets, but are still bounded within the same causal structure the
original test image represents, constrained by a surrogate oracle model pretrained
with a large amount of samples. As a result, our new method will offer us a new
way to evaluate the models’ robustness performances, free of limitations of fixed
benchmarks or constrained perturbations, although scoped by the power of the
oracle. In addition to the evaluation results, we also leverage our generated data to
understand the behaviors of the model and our new evaluation strategies.

1 INTRODUCTION

Machine learning has achieved remarkable performance over various benchmarks. For example,
the recent successes of multiple pretrained models (Bommasani et al., 2021} |Radford et al., [2021)),
with the power gained through billions of parameters and samples from the entire internet, has
demonstrated human-parallel performance in understanding natural languages (Brown et al.,|2020) or
even arguably human-surpassing performance in understanding the connections between languages
and images (Radford et al., [2021)). Even within the scope of fixed benchmarks, machine learning
has showed strong numerical evidence that the prediction accuracy over specific tasks can reach the
position of the leaderboard as high as a human (Krizhevsky et al.l 2012;|He et al., 2015; [Nangia &
Bowman, [2019), suggesting multiple application scenarios of these methods.

However, these methods deployed in the real world often underdeliver its promises made through
the benchmark datasets (Edwards, 2019 D’ Amour et al., [2020), usually due to the fact that these
benchmark datasets, typically i.i.d, cannot sufficiently represent the diversity of the samples a model
will encounter after being deployed in practice.

Fortunately, multiple lines of study have aimed to embrace this challenge, and most of these works are
proposing to further diversify the datasets used at the evaluation time. We notice these works mostly
fall into two main categories: (1) the works that study the performances over testing datasets generated
by predefined perturbation over the original i.i.d datasets, such as adversarial robustness (Szegedy
et al 2013; |Goodfellow et al., 2015) or robustness against certain noises (Geirhos et al.| 2019
Hendrycks & Dietterich, [2019;|Wang et al., [2020b)); and (2) the works that study the performances
over testing datasets that are collected anew with a procedure/distribution different from the one for
training sets, such as domain adaptation (Ben-David et al.|[2007; 2010) and domain generalization
(Muandet et al., 2013)).
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Figure 1: (a). the main structure of our system to generate test images with surrogate oracle and
examples of the generated images with their effectiveness in evaluation of model’s robustness. (b).
the sparse VQGAN we used to introduce unbounded perturbation. (c). the sparse feature selection
method to sparsify VQGAN.

Both of these lines, while pushing the study of robustness evaluation further, mostly have their own
advantages and limitations as a tradeoff on how to guarantee the underlying causal structure of
evaluation samples will be the same as the training samples: perturbation based evaluations usually
maintain the causal structure by predefining the perturbations to be within a set of operations that will
not alter the image semantics when applied, such as /-norm ball constraints (Carlini et al.,[2019), or
texture (Geirhos et al.l 2019), frequency-based (Wang et al.,[2020b) perturbations; on the other hand,
new-dataset based evaluations can maintain the causal structure by soliciting the efforts to human
annotators to construct datasets with the same semantics, but significantly different styles (Hendrycks
et al.| 2021b; [Hendrycks & Dietterich, [2019; Wang et al., 2019; |Gulrajani & Lopez-Paz, 2020} |Koh
et al.| 2021} [Ye et al.,[2021). More details of these lines and their advantages and limitations and how
our proposed evaluation protocol will contrast them will be discussed in the next section.

In this paper, we investigate how to diversify the robustness evaluation datasets to make the evaluation
results credible and representative. As shown in Figure [I] we aim to integrate the advantages of
the above two directions by introducing a new protocol to generate evaluation datasets that can
automatically perturb the samples to be sufficiently different from existing test samples, while
maintaining the underlying unknown causal structure with respect to an oracle (we use a CLIP model
in this paper). Based on the new evaluation protocol, we introduce a new robustness measurement that
directly measures the robustness compared with the oracle. With our proposed evaluation protocol
and metric, we give a study of current robust machine learning techniques to identify the robustness
gap between existing models and the oracle. This is particularly important if the goal of a research
direction is to produce models that function reliably to have performance comparable to the oracle.

Therefore, our contributions in this paper are three-fold:
* We introduce a new robustness measurement that directly measures the robustness gap between
models and the oracle.

* We introduce a new evaluation protocol to generate evaluation datasets that can automatically
perturb the samples to be sufficiently different from existing test samples, while maintaining the
underlying unknown causal structure.

* We leverage our evaluation metric and protocol to offer a study of current robustness research to
identify the robustness gap between existing models and the oracle. Our findings further bring us
understandings and conjectures of the behaviors of the deep learning models.

2 BACKGROUND

2.1 CURRENT ROBUSTNESS EVALUATION PROTOCOLS

The evaluation of machine learning models in non-i.i.d scenario have been studied for more than
a decade, and one of the pioneers is probably domain adaptation (Ben-David et al., [2010). In
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domain adaptation, the community trains the model over data from one distribution and test the
model with samples from a different distribution; in domain generalization (Muandet et al., |2013)),
the community trains the model over data from several related distributions and test the model
with samples from yet another distribution. To be more specific, a popular benchmark dataset used
in domain generalization study is the PACS dataset (Li et al., 2017), which consists the images
from seven labels and four different domains (photo, art, cartoon, and sketch), and the community
studies the empirical performance of models when trained over three of the domains and tested
over the remaining one. To facilitate the development of cross-domain robust image classification,
the community has introduced several benchmarks, such as PACS (Li et al., [2017), ImageNet-A
(Hendrycks et al.l|2021b)), ImageNet-C (Hendrycks & Dietterich, [2019)), ImageNet-Sketch (Wang
et al.;,[2019), and collective benchmarks integrating multiple datasets such as DomainBed (Gulrajani
& Lopez-Paz,2020), WILDS (Koh et al.| 2021}, and OOD Bench (Ye et al., 2021).

While these datasets clearly maintain the underlying causal structure of the images, a potential issue
is that these evaluation datasets are fixed once collected. Thus, if the community relies on these
fixed benchmarks repeatedly to rank methods, eventually the selected best method may not be a true
reflection of the world, but a model that can fit certain datasets exceptionally well. This phenomenon
has been discussed by several textbooks (Duda et al., 1973} [Friedman et al., [2001). While recent
efforts in evaluating collections of datasets (Gulrajani & Lopez-Pazl [2020; |[Koh et al., 2021} [Ye
et al., [2021) might alleviate the above potential hazards of “model selection with test set”, a dynamic
process of generating evaluation datasets will certainly further mitigate this issue.

On the other hand, one can also test the robustness of models by dynamically perturbing the existing
datasets. For example, one can test the model’s robustness against rotation (Marcos et al., [2016),
texture (Geirhos et al.l 2019), frequency-perturbed datasets (Wang et al., 2020b)), or adversarial
attacks (e.g., £,-norm constraint perturbations) (Szegedy et al., |2013). While these tests do not
require additionally collected samples, these tests typically limit the perturbations to be relatively
well-defined (e.g., a texture-perturbed cat image still depicts a cat because the shape of the cat is
preserved during the perturbation).

While this perturbation test strategy leads to datasets dynamically generated along the evaluation,
it is usually limited by the variations of the perturbations allowed. For example, one may not be
able to use some significant distortion of the images in case the object depicted may be deformed
and the underlying causal structure of the images are distorted. More generally speaking, most of
the current perturbation-based test protocols are scoped by the tradeoff that a minor perturbation
might not introduce enough variations to the existing datasets, while a significant perturbation will
potentially destroy the underlying causal structures.

2.2 ASSUMED DESIDERATA OF ROBUSTNESS EVALUATION PROTOCOL

As a reflection of the previous discussion, we attempt of offer a summary list of three desired
properties of the datasets serving as the benchmarks for robustness evaluation:

* Stableness in Causal Structure: the most important property of the evaluation datasets is that the
samples must represent the same underlying causal structure as the one in the training samples.

* Diversity in Generated Samples: for any other non-causal factors of the data, the test samples
should cover as many as possible scenarios of the images, such as texture, styles efc.

* A Dynamic Generation Process: to mitigate selection bias of the models over techniques that
focus too attentively to the specification of datasets, ideally, the evaluation protocol should consist
of a dynamic set of samples, preferably generated with the tested model in consideration.

Key Contribution: To the best of our knowledge, there are no other evaluation protocols of model
robustness that can meet the above three properties simultaneously. Thus, we aim to introduce a
method that can evaluate model’s robustness that fulfill the three above desiderata at the same time.

2.3 NECESSITY OF NEW ROBUSTNESS MEASUREMENT IN DYNAMIC EVALUATION PROTOCOL

In previous experiments, we always have two evaluation settings: the “standard” test set, and the
perturbed test set. When comparing the robustness of two models, prior arts would be to rank the
models by their accuracy under perturbed test set (Geirhos et al., [2019; [Hendrycks et al., [2021a;
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Orhan|, 2019} Xie et al., [2020; |[Zhang}, 2019) or other quantities distinct from accuracy, e.g., inception
score (Salimans et al.| [2016)), effective robustness (Taori et al., 2020) and relative robustness (Taor1
et al.||2020). These metrics are good starting points for experiments since they are precisely defined
and easy to apply to evaluate robustness interventions. In the dynamic evaluation protocols, however,
these quantities alone cannot provide a comprehensive measure of robustness, as two models are
tested on two different “dynamical” test sets. When one model outperforms the other, we cannot
distinguish whether one model is actually better than the other, or if the test set happened to be easier.

The core issue in the preceding example is that we can not find the consistent robustness measurement
between two different test sets. In reality, an ideal robust model will probably behave similarly to the
oracle (e.g., the human users). Thus, instead of indirectly comparing models’ robustness with each
other, a measurement that directly measures models’ robustness compared with the oracle is desired.

3 METHOD - COUNTERFACTUAL GENERATION WITH SURROGATE ORACLE

3.1 METHOD OVERVIEW

We use (x,y) to denote an image sample and its corresponding label, use §(x) to denote the model
we aim to evaluate, which takes an input of the image and predicts the label.

We use g(x,b) to denote an image generation
system, which takes an input of the starting im-
age x to generate the another image X within the
computation budget b. The generation process Input: (X,Y), 6, g, h, total number of itera-

Algorithm 1 Counterfactual Image Generation
with Surrogate Oracle

is performed as an optimization process to maxi- tions B R
mize a scoring function (X, z) that evaluate the Output: generated dataset (X,Y)
alignment between the generated image and gen- for each (x,y) in (X,Y) do
eration goal z guiding the perturbation process. generate Xy = g(x, by)
The higher the score is, the better the alignment is. if h(Xp) = y then
Thus, the image generation process is formalized set X = X
as for iteration b; < B do
R generate X; = g(X¢—1, b¢)
X = argmax oa(g(x,b), z), if h(%X;) = y then
X=g(x,b),b<B X=X
set X = X¢
where B denotes the allowed computation budget else PR
for one sample. This budget will constrain the setX = X¢—1
generated image not far from the starting image exit FOR loop
so that the generated one does not converge to end if
a trivial solution that maximizes the scoring the end for
function. else
setx = x
In addition, we choose the model classification end if
loss I(6(X),y) as z. Therefore, the scoring func- use (,y) to construct ()27 Y)
tion essentially maximizes the loss of a given im- end for

age in the direction of a different class.

Finally, to maintain the unknown causal structure

of the images, we leverage the power of the pre-

trained giant models to scope the generation process: the generated images must be considered within
the same class by the pretrained model, denoted as h(X), which takes in the input of the image and
makes a prediction.

Connecting all the components above, the generation process will aim to optimize the following:

X = arg max a(g(x,b),z), subjectto  h(X) =y.
R=g(x,b),b<B,2=1(6(X).y)

Our method is generic and agnostic to the choices of the three major components, namely 6, g, and h.
For example, the g component can vary from something as simple as basic transformations adding
noises or rotating images to a sophisticated method to transfer the style of the images; on the other
hand, the & component can vary from an approach with high reliability and low efficiency such as
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actually outsourcing the annotation process to human labors to the other polarity of simply assuming
a large-scale pretrained model can function plausibly as a human.

In the next part, we will introduce our concrete choices of g and h leading to the later empirical
results, which build upon the recent advances of vision research.

3.2 ENGINEERING SPECIFICATION

We use VQGAN (Esser et al.| 2021)) as the image generation system g(x, b), and the g(x, b) is
boosted by the evaluated model §(x) serving as the (X, z) to guide the generation process, where
z = [(0(X),y) is the model classification loss on current perturbed images.

The generation is an iterative process guided by the scoring function: at each iteration, the system add
more style-wise transformations to the result of the previous iteration. Therefore, the total number of
iterations allowed is denoted as the budget B (see Sectiond.5]and Appendix [H]for details of finding
the best perturbation). In practice, the value of budget B is set based on the resource concerns.

To guarantee the causal structure of images, we use a CLIP (Radford et al.,|2021)) model to serve as h,
and design the text fragment input of CLIP to be “an image of {class}”. We directly optimize VQGAN
encoder space which guided by our scoring function. We show the algorithm in Algorithm|[I]

3.2.1 SPARSE SUBMODEL OF VQGAN FOR EFFICIENT PERTURBATION

While our method will function properly as described above, we notice that the generation process
still have a potential limitation: the bound-free perturbation of VQGAN will sometimes perturb the
semantics of the images, generating results that will be rejected by the oracle later and thus leading to
a waste of computational efforts.

To counter this challenge, we use a sparse variable selection method to analyze the embedding
dimensions of VQGAN to identify a subset of dimensions that are mainly responsible for the
non-semantic variations.

In particular, with a dataset (X,Y) of n samples, we first use VQGAN to generate a style-transferred
dataset (X’,Y). During the generation process, we preserve the latent representations of input sam-
ples after the VQGAN encoder in the original dataset. We also preserve the final latent representations
before the VQGAN decoder that are quantized after the iterations in the style-transferred dataset.
Then, we create a new dataset (E, L) of 2n samples, for each sample (e, !) € (E,L), e is the latent
representation for the sample (from either the original dataset or the style-transferred one), and [ is
labelled as O if the sample is from the original dataset and 1 if the style-transferred dataset.

Then, we train ¢; regularized logistic regression model to classify the samples of (E,L). With w
denoting the weights of the model, we solve the following problem

arg min Z llew,1) + A||w]|1,
W (ed)e(EL)

and the sparse pattern (zeros or not) of w will inform us about which dimensions are for the style.

3.3 MEASURING ROBUSTNESS

Oracle-oriented Robustness (OOR). By design, the causal structures of counterfactual images will
be maintained by the oracle. Thus, if a model has a smaller accuracy drop on the counterfactual
images, it means that the model makes more similar predictions to oracle compared to a different
model. To precisely define OOR, we introduce counterfactual accuracy (CA), the accuracy on the
counterfactual images that our generative model successfully produces. As SA may influence CA to
some extent, to disentangle CA from SA, we normalize CA with SA as OOR:

CA

In settings where the oracle is human labors, OOR measures the robustness difference between the
evaluated model and human perception. In our experiment setting, OOR measures the robustness
difference between models trained on fixed datasets (the evaluated model) and the model trained on
unfiltered, highly varied, and highly noisy data (the oracle CLIP model).
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3.4 THE NECESSITY OF THE SURROGATE ORACLE

At last, we devote a short paragraph to reminder some readers that, despite the alluring idea of
designing systems that forgo the usages of underlying causal structure or oracle, it has been proved
or argued multiple times that it is impossible to create that knowledge with nothing but data, in
either context of machine learning (Locatello et al., 2019; Mahajan et al.,2019; |Wang et al., 2021) or
causality (Bareinboim et al., [2020; Xia et al.,|2021),(Pearl, 2009, Sec. 1.4).

4 EXPERIMENTS - EVALUATION AND UNDERSTANDING OF MODELS

4.1 EXPERIMENT SETUP

We consider four different scenarios, ranging from the basic benchmark MNIST (LeCun et al.,
1998)), through CIFAR10 (Krizhevsky et al., 2009), 9-class ImageNet (Santurkar et al., [2019), to
full-fledged 1000-class ImageNet (Deng et al) [2009). For ImageNet, we resize all images to
224 x 224 px. We also center and re-scale the color values with prep = [0.485,0.456, 0.406] and
o = [0.229,0.224,0.225]. The total number of iterations allowed (computation budget B) of our
evaluation protocol is set as 10. We conduct the experiments on a NVIDIA GeForce RTX 3090 GPU.

For each of the experiment, we report a set of four results:

 Standard Accuracy (SA): reported for references.

* Validation Rate (VR): the percentage of images validated by the oracle that maintains the causal
structure.

* Oracle-oriented Robustness (OOR): the robustness of the model compared with the oracle.
4.2 ROBUSTNESS EVALUATION FOR STANDARD VISION MODELS

We consider a large range of models (Appedix [J) and evaluate pre-trained variants of a LeNet
architecture (LeCun et al., [1998)) for the MNIST experiment and ResNet architecture (He et al.
2016a) for the remaining experiments. For ImageNet experiment, we also consider pretrained
transformer variants of ViT (Dosovitskiy et al.| [2020), Swin (Liu et al., [2021)), Twins (Chu et al.|
2021)), Visformer (Chen et al.,[2021]) and DeiT (Touvron et al.,|2021)) from the timm library (Wightman),
2019). We evaluate the most recent ConvNeXt (Liu et al.,[2022) as well. All models are trained on
the ILSVRC2012 subset of IN comprised of 1.2 million images in the training and a total of 1000
classes (Deng et al., [2009; [Russakovsky et al., 2015).

We report our results in Table [I] As expected,

these models can barely maintain its perfor- Taple 1: The robustness test of standard models.
mances when tested on data from different distri- We note 1) the VR of oracle is different for differ-
butions, as shown by many previous works (e.g., ent datasets, but consistent in each dataset, 2) there
Geirhos et al., 2019; |Hendrycks & Dietterich,  exists performance gap between standard models
2019; [Wang et al., 2020b). and the oracle, and 3) transformer-variants outper-

Interestingly, on ImageNet, though both forms vanilla ResNet in terms of OOR.

transformer-variants models and vanilla CNN-

architecture model, i.e., ResNet, attain similar Data Model SA VR OOR
lean image accuracy, transformer-variants sub- MNIST LeNet D09 2497 2804

clean I g A Y, 50 ; ¢ _CIFARI0 ResNetl8 9538 6280 5488

stantially outperforms ResNet30 in terms of  —5 e R ReNetis 9230 8163 3028

OOR upder our dynamic evaluation protocol. ResNet30 7626 3257 4347
We conjecture such performance gap is partly ViT 82.40 3257 50.55
originated from the differences in training se- DeiT 7857 3258 55.05
tups; more specifically, it may be resulted by the ~ ImageNet Twins 80.53 32.57 60.25
fact transformer-variants by default use strong Visformer  79.88 32.57 59.87
data augmentation strategies while ResNet50 Swin 81.67 3258 69.73
use none of them. The augmentation strategies ConvNeXt 82.05 32.58 58.11

(e.g., Mixup (Zhang et al.;2017), Cutmix (Yun
et al., |2019) and Random Erasing (Zhong et al., [2020)), efc.) already naively introduce out-of-
distribution (OOD) samples during training, therefore are potentially helpful for securing model
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robustness towards data shifts. When equiping with the similar data augmentation strategies, CNN-
architecture model, i.e., ConvNext, has achieved comparable performance in terms of OOR. This
hypothesis has also been verified in recent works (Bai et al.| |2021; |Wang et al.| 2022). We will offer
more discussions on the robustness enhancing methods in Section4.3]

Besides comparing performance between different standard models, OOR brings us the chance
to directly compare models with the oracle. Across all of our experiments, the OOR shows the
significant gap between models and the oracle, which is trained on the unfiltered and highly varied
data, seemingly suggesting that training with a more diverse dataset would help with robustness. This
overarching trend has also been identified in (Taori et al., [2020). However, quantifying when and
why training with more data helps is still an interesting open question.

We also notice that the VR tends to be different for different datasets. We conjecture this is due to
how the oracle model understands the images and labels, more discussions is offered in Section E}

4.3 ROBUSTNESS EVALUATION FOR ROBUST VISION MODELS

Recently, some techniques have been introduced to cope with corruptions or style shifts. For example,
by adapting the batch normalization statistics with a limited number of samples (Schneider et al.,
2020), the performance on stylized images (or corrupted images) can be significantly increased.
Additionally, some more sophisticated techniques, e.g., AugMix (Hendrycks et al.|[2019), have also
been widely employed by the community.

To investigate whether those OOD robust models can still maintain the performance under our
dynamic evaluation protocol, we evaluate the pretrained ResNet50 models combining with the four
leading methods from the ImageNet-C leaderboard, namely Stylized ImageNet training (SIN; (Geirhos
et al.,[2019)), adversarial noise training (ANT; (Rusak et al.)) as well as a combination of ANT and
SIN (ANT+SIN; (Rusak et al.)), optimized data augmentation using Augmix (AugMix; (Hendrycks
et al., 2019)), DeepAugment (DeepAug; (Hendrycks et al.,[2021a)) and a combination of Augmix
and DeepAugment (DeepAug+AM; (Hendrycks et al., 2021a))).

The results are displayed in Table [2] Surpris-
ingly, we find that some common corruption ro- Table 2: The robustness test of generated counte-

bust models, i.e., SIN, ANT, ANT+SIN, fail to factual images for OOD robust models. SA* rep-
maintain their power under our dynamic evalua- esents the model’s top-1 accuracy on ImageNet-C
tion protocol. We take the SIN method as an ex- dataset. We note applying DeepAug+AM yields
ample. The OOR of SIN method is 42.92, which the best OOR under our dynamic evaluation proto-
is even lower than that of a vanilla ResNet50. As €0l

these methods are well fitted in the benchmark Model SA_SA” VR OOR
ImageNet-C, such results verify the weakness ReZNN?S 0 ;252 235? g;g; jzg;
of relying on fixed benchmarks to rank meth- SIN 7624 4519 3257 4290

ods. The selected best method may not be a ANT4SIN 7626 5260 3258 43.52

true reflection of the real world, but a model DeepAug 7626 52.60 3257 4633
well fit certain datasets, which in turn proves the Augmix 76.73 4831 3257 53.36
necessity of our dynamic evaluation protocol. DeepAug+AM  76.68 58.10 32.58 58.19

DeepAug, Augmix and DeepAug+AM perform

better than SIN and ANT methods in terms of OOR as they are dynamically perturbing the datasets,
which alleviates the hazards of “model selection with test set” to some extent. However, their
performance is limited by the variations of the perturbations allowed, resulting in only a marginal
improvement compared with the ResNet50 under our evaluation protocol.

In addition, we also visualize the counterfactual images generated according to the evaluated style-
shift robust models in Figure 2] More results are shown in Appendix [[] Specifically, we have the
following observations:

Preservation of local textual details. A number of recent empirical findings point to an important
role of object textures for CNN, where object textures are more important than global object shapes
for CNN model to learn (Gatys et al.,[2015; Ballester & Araujol 2016; |Gatys et al.,[2017; |Brendel
& Bethgel 2019; |Geirhos et al., 2019; [Wang et al., 2020b)). We notice our generated counterfactual
images may preserve false local textual details, the evaluation task will become much harder since
textures are no longer predictive, but instead a nuisance factor (as desired). For the counterfactual
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image generated for the DeepAug method (Figure [2f), we produce a skin texture similar to chicken
skin, and the fish head becomes more and more chicken-like. ResNet with DeepAug method is misled
by this corruption.

Generalization to shape perturbations. Moreover, since our attack intensity could be dynamically
altered based on the model’s gradient while still maintaining the causal structures, the perturbation
we produce would be sufficiently that not just limited to object textures, but even be a certain degree
of shape perturbation. As it is acknowledged that networks with a higher shape bias are inherently
more robust to many different image distortions and reach higher performance on classification
and classification tasks, we observe that the counterfactual image generated for SIN (Figure 2b]and
Figure [2i) and ANT+SIN (Figure 2d|and Figure 2K) methods are shape-perturbed and successfully
attack the models.

Recognition of model properties. With the combination of different methods, the counterfactual
images generated would be more comprehensive. For example, the counterfactual image generated
for DeepAug+AM (Figure 2g) would preserve the chicken-like head of DeepAug’s and skin patterns
of Augmix’s. As our evaluation method does not memorize the model it evaluated, this result
reveals that our method could recognize the model properties, and automatically generate those hard
counterfactual images to complete the evaluation.

Overall, these visualizations reveal that our dynamic evaluation protocol dynamically adjusts attack
strategies based on different model properties, and automatically generates diversified counterfactual
images that complements static benchmark, i.e., ImageNet-C, to expose weaknesses for models.

(h) gold fish (i) nautilus  (j) lampshade (k) nautilus (1) lampshade (m) anemone (n) parachute

Figure 2: Visualization of the images generated by our system in evaluating the common corruption
robust model, with the original image shown (left image of each row). The caption for each image is
either the original label or the predicted label by the corresponding model. The evaluated models are
SIN, ANT, ANT+SIN, Augmix, DeepAug and DeepAug+AM from left to right.

4.4 UNDERSTANDING THE PROPERTIES OF OUR EVALUATION SYSTEM

We continue to investigate several properties of the models in the next couple sections. To save space,
we will mainly present the results on CIFAR10 experiment here and save the details to the appendix:

* In Appendix [B] we explored the transferability of the generated images. The results of a reasonable
transferability suggests that our method of generating images can be potentially used in a broader
scope: we can also leverage the method to generate a static set of images and set a benchmark
dataset to help the development of robustness methods.

* In Appendix [C] we test whether initiating the perturbation process with an adversarial example will
further degrade the OOR. We find that initiaing with the FGSM adversarial examples
2015) barely affect the OOR.

* In Appendix [D] we compare the vanilla model to a model trained by PGD (Madry et al.,[2017). We

find that the adversarially trained model and vanillaly trained model process the data differently.
However, their robustness weak spots are exposed to a similar degree by our test system.

* In Appendix [E] we explored the possibility of improving the evaluated robustness by augmenting
the images with the images generated by our evaluation system. However, due to the required
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computational load, we only use a static set of generated images to train the model and the results
suggest that static set of images for augmentation cannot sufficiently robustify the model to our
evaluation system.

* We also notice that the generated images tend to shift the color of the original images, so we tested
the robustness of grayscale models in Appendix [F] the results suggest removing the color channel
will not improve robustness performances.

4.5 EXPERIMENTS REGARDING METHOD CONFIGURATION

Table 3: Study of different image generator choices on ImageNet dataset. The numbers of VR and
OOR are reported. The results of our dynamic evaluation protocol is consistent under different image
generator configurations.

ADM Improved DDPM Efficient-VDVAE StyleGAN-XL ~ VQGAN

Model | yR "OOR| VR OOR | VR OOR | VR OOR | VR OOR
ResNetsS0  |32.57 4384 (3257 4263 |3257 4114 [3257 42.93 3257 4347
ANT (3257 4321|3258 4408 |3257 4239 |3258 4329 3257 42.92
SIN  |3257 4358|3257 4343 |3257 4232 3258 4258 |3257 4290

ANT+SIN | 32.57 4392|3257 4526 |32.58 4420 |32.57 44.57 |32.58 4352
DeepAug 32.57 45.04 |32.57 4647 |32.57 4575 |32.57 46.57 |32.57 4633
Augmix 32.58 5277|3257 53.69 3258 5342 |32.57 5257 |32.57 53.36
DeepAug+AM | 32.58 57.98 | 32.57 57.65 |32.57 5523 |32.57 55.64 |32.58 58.19

Generator Configuration. We conduct ablation study on the generator choice to agree on the
performance ranking in Table [1| and Table We consider several image generator architechi-
tures, namely, variational autoencoder (VAE) (Kingma & Welling| 2013} |Rezende et al.,|2014) like
Efficient-VDVAE (Hazami et al.| |2022), diffusion models (Sohl-Dickstein et al.,[2015) like Improved
DDPM (Nichol & Dhariwal, 2021) and ADM (Dhariwal & Nichol,2021), and GAN like StyleGAN-
XL (Sauer et al.,|2022). As shown in TableEl, the validation rate of the oracle stays stable across all
the image generators. We find that the conclusion is consistent under different generator choices,
which validates the correctness of our conclusions in Section4.2]and Section [4.3]

Sparse VQGAN. In experiments of sparse VQGAN, we find that only 0.69% dimensions are highly
correlated to the style. Therefore, we mask the rest 99.31% dimensions to create a sparse submodel of
VQGAN for efficient perturbation. The running time can be reduced by 12.7% on 9-class ImageNet
and 28.5% on ImageNet, respectively. Details can be found in Appendix [G]

Step size. We experiment on the perturbation step size to find the best perturbation under the
computation budget B. We find that too small or large step size lead to slight perturbation strength
while stronger image perturbation could be generated when the step size stays in a mild range, i.e.,
0.1 and 0.2. Details of our experiments on step size can be found in Appendix [H|

5 DISCUSSION AND CONCLUSION

Potential limitation. We notice that, the CLIP model has been influenced by the imbalance sample
distributions across the internet. We provide the details of test on 9-class ImageNet for vanilla
ResNet-18 in Appendix [ We observe that the oracle model can tolerate a much more significant
perturbation over samples labelled as Dog (VR 0.95) or Cat (VR 0.94) than samples labelled as
Primate (VR 0.48). The OOR value for Primate images are much higher than other categories,
creating an illusion that the evaluated models are robust against perturbed Primate images. However,
such an illusion is caused by the limitation of the pretrained models that the oracle could only handle
slightly perturbed samples.

The usage of oracle. Is it cheating to use oracle? The answer might depend on perspectives, but
we hope to remind some readers that, in general, it is impossible to maintain the underlying causal
structure during perturbation without prior knowledge (Locatello et al.l 2019; Mahajan et al., | 2019;
Wang et al.,|2021}; |Bareinboim et al., 2020; Xia et al., [2021),(Pearl, 2009, Sec. 1.4).

Conclusion. To conclude, in this paper, we first summarized the common practices of model
evaluation strategies for robust vision machine learning. We then discussed three desiderata of the
robustness evaluation protocol. Further, we offered a simple method that can fulfill these three
desiderata at the same time, serving the purpose of evaluating vision models’ robustness across
generic i.i.d benchmarks, without requirement on the prior knowledge of the underlying causal
structure depicted by the images, although relying on a plausible oracle.
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ETHICS STATEMENT

The primary goal of this paper is to introduce a new evaluation protocol for vision machine learning
research that can generate sufficiently perturbed samples from the original samples while maintaining
the causal structures by assuming an oracle. Thus, we can introduce significant variations of the
existing data while being free from additional human efforts. With our approach, we hope to renew
the benchmarks for current robustness evaluation, offer understandings of the behaviors of deep vision
models and potentially facilitate the generation of more truly robust models. Increasing the robustness
of vision models can enhance their reliability and safety, which leads to the trustworthy artificial
intelligence and contributes to a wide range of application scenarios (e.g., manufacturing automation,
surveillance systems, efc.). Manufacturing automation can improve the production efficiency, but
may also trigger social issues related to job looses and industrial restructuring. Advanced surveillance
systems are conducive to improving social security, but may also raise public concerns about personal
privacy violations.

We encourage further work to understand the limitations of machine vision models in OOD settings.
More robust models carry the potential risk of automation bias, i.e., an undue trust in vision models.
However, even if models are robust against corruptions in finite OOD datasets, they might still quickly
fail on the massive generic perturbations existing in the real-world data space, i.e., the perturbations
offered by our approach. Understanding under what conditions model decisions can be deemed
reliable or not is still an open research question that deserves further attention.

REPRODUCIBILITY STATEMENT

Please refer to Appendix [J|for the references of all models we evaluated and links to the corresponding
source code.
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A NOTES ON THE EXPERIMENTAL SETUP

A.1 NOTES ON MODELS

Note that we only re-evaluate existing model checkpoints, and hence do not perform any hyperparam-
eter tuning for evaluated models. Since it is possible to work with a small amount of GPU resources,
our model evaluations are done on a single NVIDIA GeForce RTX 3090 GPU.

A.2 HYPERPARAMETER TUNING

Our method is generally parameter-free except for the computation budget and perturbation step size.
In our experiments, the computation budget is the maximum iteration number of Sparse VQGAN.
We consider the predefined value to be 10, as it guarantees the degree of perturbation with acceptable
time costs. We provide the experiment for step size configuration in Section4.3]

B TRANSFERABILITY OF GENERATED IMAGES

We first study whether our generated images are model specific, since the generation of the images
involves the gradient of the original model. We train several architectures, namely EfficientNet (Tan
& Le, [2019), MobileNet (Howard et al., | 2017), SimpleDLA (Yu et al., 2018), VGG19 (Simonyan
& Zisserman, [2014), PreActResNet (He et al.l 2016b), GoogLeNet (Szegedy et al., 2015)), and
DenseNet121 (Huang et al.| |2017) and test these models with the images. We also train another
ResNet following the same procedure to check the transferability across different runs in one
architecture.

Table[d] shows a reasonable transferability of the generated
images as the OOR are all lower than the SA, although  Typle 4: Performances of transferability.
we can also observe an improvement over the OOR when

tested in the new models. These results suggest that our Model SA OOR
method of generating images can be potentially used in a ResNet 9538 54.17
broader scope: we can also leverage the method to gener- EfficientNet  91.37 68.48
ate a static set of images and set a benchmark dataset to MobileNet ~ 91.63  68.72
help the development of robustness methods. SimpleDLA ~ 92.25  66.16

VGG 93.54 70.57
In addition, our results might potentially help mitigate a PreActResNet 94.06  67.25
debate on whether more accurate architectures are natu- ResNet 94.67  66.23
rally more robust: on one hand, we have results showing GoogLeNet ~ 95.06  66.68
that more accurate architectures indeed lead to better em- DenseNet 9526 66.43

pirical performances on certain (usually fixed) robustness

benchmarks (Rozsa et al.| [2016}; |Hendrycks & Dietterich,

2019); while on the other hand, some counterpoints suggest the higher robustness numerical perfor-
mances are only because these models capture more non-robust features that also happen exist in
the fixed benchmarks (Tsipras et al., 2018; [Wang et al., |2020b; |Taori et al., [2020). Table E] show
some examples to support the latter argument: in particular, we notice that VGG, while ranked in the
middle of the accuracy ladder, interestingly stands out when tested with generated images. These
results continue to support our argument that a dynamic robustness test scenario can help reveal more
properties of the model.

C INITIATING WITH ADVERSARIAL ATTACKED IMAGES

Since our method using the gradient of the evaluated model
reminds readers about the gradient-based attack methods
in adversarial robustness literature, we test whether initi-
ating the perturbation process with an adversarial example Data SA __ OOR
will further degrade the accuracy. regular 9538 57.80

w. FGSM 9530 65.79

Table 5: Results on whether initiating
with adversarial images (¢ = 0.003).

We first generate the images with FGSM attack (Goodfel{
low et al., |2015]). TableE} shows that initiating with the
FGSM adversarial examples barely affect the OOR, which
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is probably because the major style-wise perturbation will erase the imperceptible perturbations the
adversarial examples introduce.

D ADVERSARIALLY ROBUST MODELS

With evidence suggesting the adversarially robust models are considered more human perceptually
aligned (Engstrom et al |2019; [Zhang & Zhu, [2019} |Wang et al., [2020b), we compare the vanilla
model to a model trained by PGD (Madry et al.,[2017) (¢, norm smaller than 0.03).

As shown in Table [§] adversarially trained model and

vanillaly trained model indeed process the data differently: Taple 6: Performances comparison with
the transferability of the generated images between these  vanilla model and PGD trained model.
two regimes can barely hold. In particular, the PGD model

can almost maintain its performances when tested with the Data Model SA  OOR
images generated by the vanilla model. Van. 9538 57.79

Van pGD 8570 95.96
However, despite the differences, the PGD model’s robust- Van. 9538 8173
ness weak spots are exposed to a similar degree with the PGD  bop 8570 6618

vanilla model by our test system: the OOR of the vanilla
model and the PGD model are only 57.79 and 66.18, re-
spectively. We believe this result can further help advocate our belief that the robustness test needs
to be a dynamic process generating images conditioning on the model to test, and thus further help
validate the importance of our contribution.

E AUGMENTATION THROUGH STATIC ADVERSARIAL TRAINING

Intuitively, inspired by the success of adversarial training (Madry et al.,[2017) in defending models
against adversarial attacks, a natural method to improve the empirical performances under our new
test protocol is to augment the training data with counterfactual training images generated by the
same process. We aim to validate the effectiveness of this method here.

However, the computational load of generation process is

not ideal to serve the standard adversarial training strat- Taple 7: Test performances of the model
egy, and we can only have one copy of the counterfactual  trained in a vanilla manner (denoted as
training samples. Fortunately, we notice that some recent  van ) or with augmentation data offered
advances in training with data augmentation can help learn  through our approach (marked by the
robust representations with a limited scope of augmented  gecond column). We report two sets
samples (Wang et al.,|2020a), which we use here. of performances, split by whether the
counterfactual images are generated ac-
cording to the vanilla model or the aug-
mented model (marked by the first col-

We report our results in Table [7] The first thing we ob-
serve is that the model trained with the augmentation data
offered through our approach could preserve a relatively
higher performance (OOR 89.10) when testing with the Umn)-

counterfactual images generated according to the vanilla Data Model SA  OOR
model. Since we have shown the counterfactual samples Van. 95.38 57.79
have a reasonable transferability in the main manuscript, Van. Aug 8741 89.10
this result indicates the robustness we brought when train- Aug Van. 9538 74.58
ing with the counterfactual images generated by our ap- © Aug 8741 69.58

proach.

In addition, when tested with the counterfactual images
generated according to the augmented model, both models’ performance would drop significantly,
which again indicates the effectiveness of our approach.

F GRAYSCALE MODELS

Our previous visualization suggests that a shortcut the counterfactual generation system can take is to
significantly shift the color of the images, for which a grey-scale model should easily maintain the
performance. Thus, we train a grayscale model by changing the ResNet input channel to be 1 and
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transforming the input images to be grayscale upon feeding into the model. We report the results in
Table

Interestingly, we notice that the grayscale model cannot defend against the shift introduced by our
system by ignoring the color information. On the contrary, it seems to encourage our system to
generate more counterfactual images that can lower the performances.

Table 8: Test performances of the model trained in a vanilla manner (denoted as Van.) or with
grayscale model. We report two sets of performances, split by whether the counterfactual images are
generated according to the vanilla model or the grayscale one (marked by the first column).

Data Model SA OOR
Van. Van. 95.38 57.79
Gray 93.52 66.06
Van. 9538 67.48
Gray 93.52 44.76

Gray

In addition, we visualize some counterfactual images generated according to each model and show
them in Figure[3] We can see some evidence that the graycale model forces the generation system
to focus more on the shape of the object and less of the color of the images. We find it particularly
interesting that our system sometimes generates different images differently for different models
while the resulting images deceive the respective model to make the same prediction.

222800

(a) dog (b) horse (c) horse (d) plane (e) ship (f) bird
(g) ship (h) car (i) plane (j) bird (k) ship (1) ship

Figure 3: Visualization of the counterfactual images generated by our system in evaluating the vanilla
model (middle image of each group) and the grayscale model (third image of each group), with the
original image shown. The caption for each image is either the original label or the predicted label by
the corresponding model.

G EXPERIMENTS TO SUPPORT SPARSE VQGAN

We generate the flattened latent representations of input images after the VQGAN Encoder with
negative labels. Following Algorithm[I} we generate the flattened final latent representations before
the VQGAN decoder with positive labels. Altogether, we form a binary classification dataset
where the number of positive and negative samples is balanced. The positive samples are the latent
representations of counterfactual images while the negative samples are the latent representations of
input images. We set the split ratio of train and test set to be 0.8 : 0.2. We perform the explorations
on various datasets, i.e. MNIST, CIFAR-10, 9-class ImageNet and ImageNet.

The classification model we consider is LASSdIl as it enables automatically feature selection with
strong interpretability. We set the regularization strength to be 36.36. We adopt saga (Defazio et al.
[2014) as the solver to use in the optimization process. The classification results are shown in Table 9]

! Although LASSO is originally a regression model, we probabilize the regression values to get the final
classification results.
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Table 9: Classification results between vanilla and counterfactual images with LASSO.

Data Sparsity | Test score
MNIST 97.99 78.50
CIFAR-10 98.45 78.00
9-class ImageNet 99.31 72.00
ImageNet 99.32 69.00

We observe that the coefficient matrix of features can be far sparser than we expect. We take the
result of 9-class ImageNet as an example. Surprisingly, we find that almost 99.31% dimensions in
average could be discarded when making judgements. We argue the preserved 0.69% dimensions are
highly correlated to VQGAN perturbation. Therefore, we keep the corresponding 99.31% dimensions
unchanged and only let the rest 0.69% dimensions participate in computation. Our computation loads
could be significantly reduced while still maintain the competitive performance compared with the
unmasked versio

We conduct the run-time experiments on a single NVIDIA GeForce RTX 3090 GPU. Following our
experiment setting, we evaluate a vanilla ResNet-18 on 9-class ImageNet and a vanilla ResNet-50 on
ImageNet. As shown in Table[I0] the run-time on ImageNet can be reduced by 28.5% with our sparse
VQGAN. Compared with large-scale masked dimensions (i.e., 99.31%), we attribute the relatively
incremental run-time improvement (i.e., 12.7% on 9-class ImageNet, 28.5% on ImageNet) to the fact
that we have to perform mask and unmask operations each time when calculating the model gradient,
which offsets the calculation efficiency brought by the sparse VQGAN to a certain extent.

Table 10: Run-time Comparision between VQGAN and Sparse VQGAN.

Time
Method 9-class ImageNet ImageNet
VQGAN 521.5+1.2s 52602.4 £ 2.7s
Sparse VQGAN 455.4 +1.2s 40946.1 + 2.7s
Improv. 12.7% 28.5%

H PARAMETER STUDY ON STEP SIZE

We conduct the parameter study of the perturbation step size for our evaluation system on the
CIFAR10 dataset. Specifically, we tune the step size in {0.01, 0.05, 0.1, 0,2, 0.5}. The maximum
iteration (computation budget B) is set to be 10. All results are produced based on the ResNet18 and
averaged over five runs.

As shown in Figure[d we observe that when the step size
is too small, i.e., 0.01 and 0.05, the strength of perturbation 100 &
cannot be achieved within the predefined maximum iter-

ations, resulting in the higher score of OOR. In addition, 0
large step size will also lead to higher OOR score. When
the step size is large, i.e., 0.5, the perturbation is likely
to stop after only a few iterations. This could also lead

to small perturbation strength compared with the scenario . /
5 0‘1 0?2 0.5

Accuracy
®
3

~
=)

o
=)

where we use relatively small step size but more iterations. =

When the step size is 0.01, the model seems achieves the 00'1 — :

oracle-parallel performance (OOR 99.66). However, such Step Size

OOR values would become meaningless due to the small ) )
perturbation strength. Moreover, when the step size stays Figure 4: Study of different step sizes
in a mild range, i.e., 0.1 and 0.2, stronger image pertur- tested by ResNet.

bation could be generated, while the performances at this

range stay constant. Therefore, we choose the step size of 0.1 for the experiments.

2We note that the overlapping degree of the preserved dimensions for each dataset is not high, which means
that we need to specify these dimensions when facing new datasets.
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I ANALYSIS OF SAMPLES THAT ARE MISCLASSIFIED BY THE MODEL

We present the results on 9-class ImageNet experiment to show the details for each category.

Table 11: Details of test on 9-class ImageNet for vanilla ResNet-18

Type SA VR OOR
Dog 93.33 9533 1798
Cat 96.67 94.00 31.55
Frog 85.33 80.67 20.34
Turtle  84.67 78.67 29.03
Bird 91.33 96.00 28.13
Primate  96.00 48.00 62.21
Fish 94.00 76.67 45.33
Crab 96.00 87.33 19.87
Insect 93.33 78.00 33.88
Total 92.30 81.63 30.28

Table[TT|shows that the VR values for most categories are still higher than 80%, some even reach
95%, which means we produce sufficient number of counterfactual images. However, we notice that
the VR value for primate images is quite lower compared with other categories, indicating around
52% perturbed primate images are blocked by the orcle. We have discussed this category unbalance
issue in Section[3

As shown in Table[TT] the OOR value for each category significantly drops compared with the SA
value, indicating the weakness of trained models. An interesting finding is that the OOR value for
Primate images are quite higher than other categories, given the fact that more perturbed Primate
images are blocked by the oracle. We attribute it to the limitation of foundation models. As the CLIP
model has been influenced by the imbalance sample distributions across the Internet, it could only
handle easy perturbed samples well. Therefore, the counterfactual images preserved would be those
that can be easily classified by the models.

J LIST OF EVALUATED MODELS

The following lists contains all models we evaluated on various datasets with references and links to
the corresponding source code.

J.1 PRETRAINED VQGAN MODEL

We use the checkpoint of vqgan_imagenet f16_16384 from https://heibox.
uni-heidelberg.de/d/a7530b09fed84f80a887/

J.2  PRETRAINED CLIP MODEL

Model weights of ViT-B/32 and usage code are taken from https://github.com/openai/
CLIP

J.3 TIMM MODELS TRAINED ON IMAGENET (WIGHTMAN, 2019)

Weights are taken from https://github.com/rwightman/pytorch-image-models/
tree/master/timm/models

1. ResNet50 (He et al.,[2016a)
2. ViT (Dosovitskiy et al., [2020)
3. DeiT (Touvron et al., [2021])
4. Twins (Chu et al.| 2021)
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5. Visformer (Chen et al., [2021))
6. Swin (Liu et al.,[2021)
7. ConvNeXt (Liu et al.,[2022)

J.4 ROBUST RESNET50 MODELS

1. ResNet50 SIN+IN (Geirhos et al) 2019) https://github.com/rgeirhos/
texture-vs—-shape

2. ResNet50 ANT (Rusak et al) https://github.com/bethgelab/
game—-of-noise

3. ResNet50 ANT+SIN (Rusak et all) https://github.com/bethgelab/
game—-of-noise

4. ResNet50 Augmix (Hendrycks et all [2019) https://github.com/
google—research/augmix

5. ResNet50 DeepAugment (Hendrycks et all [2021a) https://github.com/
hendrycks/imagenet—r

6. ResNet50 DeepAugment+Augmix (Hendrycks et al., 2021a) https://github.com/
hendrycks/imagenet—r

J.5 ADDITIONAL IMAGE GENERATORS
1. Efficient-VDVAE (Hazami et al.l [2022) https://github.com/Rayhane—-mamah/
Efficient-VDVAE

2. Improved DDPM (Nichol & Dhariwal, [2021) https://github.com/open-mmlab/
mmgeneration/tree/master/configs/improved_ddpm

3. ADM (Dhariwal & Nichol, [2021) |https://github.com/openai/
guided-diffusion

4. StyleGAN (Sauer et al) 2022) https://github.com/autonomousvision/
stylegan_x1

K LEADERBOARDS FOR ROBUST IMAGE MODEL

We launch leaderboards for robust image models. The goal of these leaderboards are as follows:

* To keep on track of state-of-the-art on each adversarial vision task and new model architectures
with our dynamic evaluation process.

* To see the comparison of robust vision models at a glance (e.g., performance, speed, size, efc.).

* To access their research papers and implementations on different frameworks.

We offer a sample of the robust ImageNet classification leaderboard in supplementary materials.

L ADDITIONAL COUNTERFACTUAL IMAGE SAMPLES

In Figure[5] we provide additional counterfactual images generated according to each model. We
have similar observations to Section[4.3] First, the generated counterfactual images exhibit diversity
that many other non-causal factors of the data would be covered, i.e., texture, shape and styles.
Second, our method could recognize the model properties, and automatically generate those hard
counterfactual images to complete the evaluation.

In addition, the generated images show a reasonable transferability in Table 4] indicating tha our
method can be potentially used in a broader scope: we can also leverage the method to generate
a static set of images and set a benchmark dataset to help the development of robustness methods.
Therefore, we also offer two static benchmarks in supplementary materials that are generated based
on CNN architecture, i.e., ConvNext and transformer variant, i.e., ViT, respectively.
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greenlizard ~ chameleon

washer speaker remote i speaker
Figure 5: Visualization of the images generated by our system in evaluating the common corruption
robust model, with the original image shown (left image of each row). The caption for each image is
either the original label or the predicted label by the corresponding model. The evaluated models are
SIN, ANT, ANT+SIN, Augmix, DeepAug and DeepAug+AM from left to right.
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